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Abstract: This paper investigates the structural performance of flat double-layer grids with various
constitutive units, addressing a notable gap in the literature on diverse geometries. Six common
types of flat double-layer grids are selected to provide a comprehensive comparison to understand
their structural performance. Parametric models are built using Rhino and Grasshopper plugins.
Single- and multi-objective optimization processes are conducted on the considered models to
evaluate structural mass and maximum deflection. The number of constitutive units, the structural
depth, and the cross-section diameter of the members are selected as design variables. The analysis
reveals that the semi-octahedron upon square-grid configuration excels in minimizing structural
mass and deflection. Furthermore, models lacking a full pyramid form exhibit higher deflections.
Sensitivity analyses disclose the critical influence of the design variables, particularly highlighting the
sensitivity of structural mass to the number of constitutive units and cross-section diameter. These
findings offer valuable insights and practical design considerations for optimizing double-layer grid
space structures.

Keywords: double-layer grid; sensitivity analysis; optimization; genetic algorithm; constitutive unit

1. Introduction

The increasing demand for constructing complex structures has driven the adoption
of space structures, which are renowned for their innovative architectural forms and struc-
tural efficiency [1]. These structures are truss-like constructions composed of interlocking
lightweight elements arranged in specific geometric patterns, typically used to span large
areas with minimal supporting columns. Space structures are particularly favored in ar-
chitectural applications due to their excellent structural performance and esthetic appeal,
especially in free-form configurations [2–5]. Despite extensive research on specific aspects
of double-layer grids, the literature lacks comprehensive comparisons that evaluate the
structural performance of these grids across various constitutive units, structural depths,
and cross-section diameters. This study aims to fill this gap by conducting a detailed
comparative analysis and sensitivity assessment of six common types of flat double-layer
grid space structures to enhance understanding of their structural behavior.

The selection of appropriate materials is critical in structural design, as materials
must provide sufficient strength to withstand both tensile and compressive forces [6].
Common materials used in space structures include steel, aluminum, and timber. Space
structures can be categorized into single-, double-, or triple-layer flat grids, as well as
braced-barrel vaults and domes, with double-layer grids being the most prevalent in
applications such as terminals, sports complexes, domes, and hangars [7]. Over the past
few decades, extensive research has been conducted on the performance of double-layer
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grid structures, focusing either on specific components of the system [8,9] or the overall
structural behavior [10,11]. For instance, composite double-layer grids have been shown to
improve structural reliability and reduce the probability of progressive collapse in bridge
decks compared to conventional reinforced concrete slabs [10]. Additionally, the use of
double-layer space structures as vertical load-resisting elements in super-tall buildings has
been explored, highlighting their potential advantages [11].

Proper connections between elements are essential for achieving reliable performance
in double-layer grid structures. Previous studies have evaluated the effects of different
joints, such as spherical joints [12], plate joints [13], and hollow section joints [14], and
reported their successful load-transferring behavior. However, the probability of failure in
joints containing multiple members under accidental loads remains high, as demonstrated
by Tian et al. [15,16]. Furthermore, the work of Lee and Makowski [17] highlighted the key
roles of structural depth, element size, and the number of supports in stress distribution
and overall cost, providing essential insights for optimization strategies.

Structural optimization is another critical area of study, as it aims to achieve eco-
nomic designs by minimizing weight and cost [18,19]. Previous research has focused on
optimizing various parameters, such as the number of elements and nodes, to facilitate
mass production of repeated components [20,21]. Salajegheh et al. [22] used a genetic
algorithm to determine the optimal shape for space structures by selecting joint locations
and cross-sectional areas as design variables, considering structural weight as the cost
function. Other studies have explored different optimization strategies, emphasizing the
importance of factors like structural depth, element size, and the number of supports on
stress distribution and total cost [23–26].

Several research studies have been conducted on the effectiveness of double-layer grids’
parameters during the last decades. Lee and Makowski [17] and Agerskov [27] performed
comparative studies to assess the stress distribution in structural elements of different
configurations of flat double-layer grids. The results indicated that the optimum stress
distribution results in lower material consumption depending on the number of nodes and
the position of the supports. Grigorian [28] investigated the usefulness of truss elements
in a simple space structure based on two main criteria of maximum structural deflection
and failure mechanism. In 2017, Surzhan et al. [29] evaluated the material consumption for
different structural depth-to-span under service and ultimate limit states. They showed
that the structural depth is inversely proportional to the material consumption. The space
structure in their studies was formed based on a semi-octahedron upon a square-grid
pattern. A similar investigation was conducted in 2020 by Alpatov [30] to highlight the
effects of structural depth and the number of nodes in material consumption. In another
study, Alpatov [31] investigated the influence of rod numbers attaching in a joint on their
performance and manufacturing cost.

Despite these significant contributions to evaluating the influencing parameters of
each double-layer grid, limited investigations have been conducted on the comparison of
different forms of these structures, and a comparative analysis of different configurations
seems to be necessary. To address this critical gap, this paper presents a comprehensive
analysis of six widely used flat double-layer grid configurations, each varying in con-
stitutive units. Advanced parametric modeling is employed using Rhino environment
and Grasshopper plugins, and both single and multi-objective optimization processes are
conducted to evaluate structural mass and maximum deflection. A detailed sensitivity
analysis is also performed to examine the influence of design variables such as the number
of constitutive units, structural depth, and cross-section diameter on structural perfor-
mance. The findings from this study offer practical guidelines for the optimal design of
double-layer grid space structures. This paper is organized as follows: Section 2 outlines
the methodology, Section 3 describes the simulation and modeling processes, and Sections 4
and 5 present the results and conclusions, respectively.
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2. Methodology
2.1. Double-Layer Space Structure

Double-layer space structures consist of two parallel layers of chord members intercon-
nected through diagonal elements. These structures are generally divided into planar and
curved grids. The planar double-layer space structures, also known as space frames, are
the most common type due to their adaptability and simpler erection process compared to
curved types. Over the past few decades, various space frames with different geometrical
forms of constitutive units have been investigated, and their performance has been evalu-
ated [32–35]. Figure 1 shows the constitutive units of six popular types of flat double-layer
space structures [36], whose structural performance will be evaluated in this paper.
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2.2. Optimization Process

The optimization process is defined as a procedure for identifying the best possible
solution among all available alternatives. This process is typically carried out by minimizing
a cost function f(x) while considering constraints relevant to the optimization problem.

2.2.1. Cost Function

Total cost and the assurance of structural stability are the main features affecting the
choice of space structures in a project. Structural mass directly influences the overall cost,
while deflection control ensures confidence in the structural stability. This paper adopts two
approaches to achieve these objectives. The first approach treats both structural mass and
deflection as cost functions, allowing for a balanced optimization between cost and stability.
The second approach selects structural mass as the sole cost function, with deflection
constraints adhering to the recommended limitations from design codes, ensuring that
stability is maintained within acceptable limits.

2.2.2. Constraints

The constraints governing the optimization process can be divided into two types:
inequality constraints g(x) and equality constraints h(x). The general forms of these
constraints are given as follows:

gi(x) ≤ 0 i = 1, 2, . . . , n
hj(x) = 0 j = 1, 2, . . . , p
Lk ≤ Xk ≤ Uk k = 1, 2, . . . , m

(1)

where X is the optimization variable, and L and U are the boundary conditions. These
constraints can be either behavioral or geometric. Behavioral constraints assess the struc-
tural capacity concerning the required demand recommended by the provision [37], while
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geometric constraints provide a reasonable range for each design variable. In this study,
the axial capacity of the structural members, as well as their buckling capacity, are defined
as behavioral constraints. The geometric constraints considered are listed in Table 1. These
geometric constraints are applied to the design variables, including the rod diameter as the
cross-sectional characteristic of the elements, the number of constitutive units in the entire
space structure, and the structural depth (the distance between the lower and upper layers).

Table 1. Geometric constraints of the considered design variables of this study.

Design Variable Symbol Unit Lower Bound Upper Bound

Cross-section diameter d cm 3 15
No. of constitutive units n - 3 10

Depth D m 0.5 4

2.2.3. Genetic Algorithm

The genetic algorithm (GA) is a metaheuristic optimization technique that follows the
natural selection process. The developed form of the algorithm was presented by David E.
Goldberg [38].

During the optimization process, an initial population with specific properties is
generated and randomly distributed within the search space of the variables. This initial
population is referred to as phenotypes, and each individual within the population is called
a chromosome. In each iteration, the cost function of every chromosome is evaluated, and
those with lower cost functions are retained for the next iteration. Their properties are
revised based on recombination or random mutation to generate subsequent generations.
The remaining chromosomes are replaced by new ones. This iterative process continues
until the desired number of iterations is reached.

3. Numerical Simulations

To assess the structural performance of flat double-layer grids, six types of structures
with different constitutive units are considered in this study. These include a hexagonal
pyramid upon a honeycomb grid, a semi-octahedron upon a square grid, a tetrahedron
upon a triangular grid, two square grids at a 45◦ rotational angle, two counter-running
triangular grids, and a triangular grid above a hexagonal grid. For simplicity, these
structures are referred to as M1 to M6, respectively. Plan and perspective views of the
considered models are shown in Figure 2.

Parametric modeling for these structures is developed using Rhino 7.0 software and
the Grasshopper plugin. The 3D models are created with a length of 10 m in the x-direction.
Due to the geometric forms of the constitutive units, the structural length in the y-direction
cannot be fixed at 10 m for all models. Therefore, the models are created twice: once with
the maximum possible units in the y-direction to provide a corresponding length less than
10 m, and once with the minimum possible units in the y-direction to achieve a length
greater than 10 m. This approach covers both possibilities for creating a plan dimension of
10 m × 10 m. After finalizing the modeling phase, the Karamba3D plugin is utilized for
defining structural characteristics and conducting static analyses. For this purpose, four
simple supports are assumed at each corner of the plan to prevent structural movements,
as indicated by the circles in the plan view in Figure 2. The structural members are defined
using the Line to Beam command in the software, and both ends are released to provide a
pinned connection. A rod cross-section is assigned to the members using the cross-section
option. For industrialization purposes, the rod diameter is kept the same for all elements.
S355 steel material, with an elastic modulus of 210 GPa and yield strength of 355 MPa, is
used for the rods. The depth, number of units in the x-direction, and the cross-section of
the members are selected as variables.
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Figure 2. Plan and perspective view for (a) M1, hexagonal pyramid upon honeycomb grid; (b) M2,
semi-octahedron upon square grid; (c) M3, tetrahedron upon triangular grid; (d) M4, two square
grids in 45◦ rotational angle; (e) M5, two counter-running triangular grids; and (f) M6, triangular
grid above the hexagonal grid.

Three load combinations, including dead load (D), balanced snow load (S), and un-
balanced snow load (S’), are considered based on the Iranian national code, part 6 [39], as
depicted in the flowchart in Figure 3. An unfactored extra dead load for the covering is
assumed to be 0.5 kN/m2, which is added to the structural weight, and the unfactored
snow load is 1.2 kN/m2.

The optimization process of the models is conducted using the Octopus plugin and
Galapagos components for multi- and single-objective optimizations. The considered
design variables, along with their lower- and upper-bound limits, are provided in Table 1.
The cost functions for multi-objective optimization are the overall mass and maximum
deflection of the structure, while for single-objective optimization, the cost function is the
structural mass, with the maximum deflection defined as a constraint limited to L/200 [40]
(where L is the span of the structure). For both the single- and multi-objective optimizations,
the population number is set to 100. The maximum number of iterations is set to 50 for the
multi-objective optimization and 5 for the single-objective optimization, which serves as
the termination criterion. Through trial and error, it was determined that higher iterations
had minimal impact on the optimal results.
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Figure 3. The simulation and optimization process.

The optimization process is illustrated in the flowchart in Figure 3. The process begins
with selecting the double-layer grid type and setting the optimization algorithm parameters.
The values of each design variable are allocated randomly according to the algorithm’s
specific procedure. The chosen load combination is then applied to the structure, and a
static analysis is conducted using the software. Depending on the optimization type, either
single- or multi-objective, the cost function(s) is (are) evaluated, and the relevant constraints
are assessed. Finally, the stop criterion is checked by the software; if the iteration reaches
its maximum value, the optimal parameters of the variables, as well as the corresponding
cost function(s), are displayed.

4. Results and Discussion

In this section, the optimal design parameters for double-layer grids with various
constitutive units, based on multi-objective optimization and the design variable boundaries
outlined in Table 1, are computed and presented. Figure 4 illustrates the Pareto front
of optimal solutions for the M2 model within the defined search space. The vertical
axis represents the overall structural mass, while the horizontal axis corresponds to the
maximum deflection. The points on the Pareto front denote a set of superior solutions



Buildings 2024, 14, 2816 7 of 14

compared to the other available options. Solutions located on the hypothetical bisector
represent choices with balanced weights for both cost functions. As each axis is approached,
the corresponding cost function’s weight increases, concentrating the optimization process
on minimizing that cost function.
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Figure 4. The Pareto front of optimal solutions in the M2 model under (a) LC1, (b) LC2, and (c) LC3
load combinations.

Similar results were obtained for the other models considered in this study, though
they are not included here to limit the number of charts. For a more effective comparison,
solutions situated on the hypothetical bisector have been selected for all considered models,
and their results are presented in Table 2. This Table lists the optimum values of the
variables as well as their corresponding cost functions for the different models. For the M1,
M3, M5, and M6 models, where the spans in the y-direction could not be fixed at 10 m, both
cases—where the span is either less than or greater than 10 m—are provided, as previously
discussed in Section 3.

According to the results presented in Table 2, the dominant load combination varies
with changes in the pattern of constitutive units. Specifically, LC2 is critical for models
M1, M3, and M5, whereas LC3 is dominant in models M2, M4, and M6. It is evident that
the cost functions increase when the number of constitutive units is adjusted to provide a
span greater than 10 m. For a clearer comparison, the results from Table 2 are visualized
in Figure 5. However, due to the unreasonable values observed in models with spans less
than 10 m, their results are excluded from Figure 5. The critical load combinations for
different models are highlighted in dark blue within Figure 5.

Buildings 2024, 14, x FOR PEER REVIEW 8 of 14 
 

LC3 10 10 3 3 9.7 3.1 15,093 0.124 

M3 

LC1 
10 10.39 4 6 6.4 2.4 13,175 0.12 

10 6.92 4 4 6.4 2.2 8489 0.076 

LC2 10 10.39 4 6 7.2 2.5 16,909 0.136 
 10 6.92 4 4 6.9 2.3 10,008 0.087 

LC3 10 10.39 4 6 7.2 2.5 16,909 0.128 
 10 6.92 4 4 7 2.1 10,012 0.08 

M4 

LC1 10 10 4 4 5.6 2.9 9005 0.12 

LC2 10 10 3 3 7.6 3.3 12,190 0.144 

LC3 10 10 3 3 8.5 4 16,608 0.86 

M5 

LC1 
10 10.39 4 6 6.1 2.3 14,819 0.143 

10 6.92 4 4 6.2 2 10,051 0.093 

LC2 10 10.39 4 6 7 2.5 20,137 0.172 
 10 6.92 4 4 7.1 2.1 13,395 0.107 

LC3 10 10.39 4 6 6.9 2.4 19,262 0.156 
 10 6.92 4 4 7.3 2.1 14,160 0.098 

M6 

LC1 
10 10.39 3 4 6.9 4.5 15,591 0.643 

10 6.92 3 3 6.7 4.2 10,755 0.785 

LC2 10 10.39 3 4 8.2 4.1 21,029 0.646 
 10 6.92 3 3 8.1 4.2 15,719 0.715 

LC3 10 10.39 3 4 8.7 3.6 22,300 0.54 
 10 6.92 3 3 7.8 3.9 14,066 0.729 

As shown in Figure 5a, the minimum overall structural mass is associated with the 

M2 model, with a value of 15,093.9 kg, while the M1 model has the maximum structural 

mass. Figure 5b compares the maximum deflection across different models; here, the M1 

model exhibits the lowest deflection. It is also noted that the deflections in the M3 and M6 

models are larger than in the other models studied. This is due to the fact that the consti-

tutive units in these models do not form a pyramid, a geometric shape known for its sta-

bility. This aspect will be further discussed later in this section. 

  

(a) (b) 

Figure 5. The optimum: (a) overall structural mass and (b) maximum deflection for all the studied 

models under different load combinations. 

Figure 6 illustrates the axial stress distributions of the M2 model under the three con-

sidered load combinations. The contour beside each model is colored from dark blue to 

dark red, representing tension and compression axial stresses, respectively. As observed, 

the distribution is nearly identical under different load combinations, with higher stress 

concentrations near the support positions. 

Figure 5. The optimum: (a) overall structural mass and (b) maximum deflection for all the studied
models under different load combinations.



Buildings 2024, 14, 2816 8 of 14

Table 2. Multi-objective optimization results for all considered models.

Model Load
Combination

Span (m) Design Variable Cost Function

x y
n

d (cm) D (m)
Structural
Mass (kg)

Max.
Deflection (cm)x y

M1

LC1
10 10.39 3 4 8.4 2.9 17,130 0.155
10 6.92 3 3 8.5 2.7 12,308 0.115

LC2 10 10.39 3 4 9.7 3 23,160 0.167
10 6.92 3 3 9.3 3 15,362 0.119

LC3 10 10.39 3 4 9.5 3.1 22,522 0.261
10 6.92 3 3 9.4 3 15,694 0.159

M2
LC1 10 10 4 4 7.5 2.6 12,527 0.104
LC2 10 10 3 3 9.4 3 14,019 0.131
LC3 10 10 3 3 9.7 3.1 15,093 0.124

M3

LC1
10 10.39 4 6 6.4 2.4 13,175 0.12
10 6.92 4 4 6.4 2.2 8489 0.076

LC2 10 10.39 4 6 7.2 2.5 16,909 0.136
10 6.92 4 4 6.9 2.3 10,008 0.087

LC3 10 10.39 4 6 7.2 2.5 16,909 0.128
10 6.92 4 4 7 2.1 10,012 0.08

M4
LC1 10 10 4 4 5.6 2.9 9005 0.12
LC2 10 10 3 3 7.6 3.3 12,190 0.144
LC3 10 10 3 3 8.5 4 16,608 0.86

M5

LC1
10 10.39 4 6 6.1 2.3 14,819 0.143
10 6.92 4 4 6.2 2 10,051 0.093

LC2 10 10.39 4 6 7 2.5 20,137 0.172
10 6.92 4 4 7.1 2.1 13,395 0.107

LC3 10 10.39 4 6 6.9 2.4 19,262 0.156
10 6.92 4 4 7.3 2.1 14,160 0.098

M6

LC1
10 10.39 3 4 6.9 4.5 15,591 0.643
10 6.92 3 3 6.7 4.2 10,755 0.785

LC2 10 10.39 3 4 8.2 4.1 21,029 0.646
10 6.92 3 3 8.1 4.2 15,719 0.715

LC3 10 10.39 3 4 8.7 3.6 22,300 0.54
10 6.92 3 3 7.8 3.9 14,066 0.729

As shown in Figure 5a, the minimum overall structural mass is associated with the M2
model, with a value of 15,093.9 kg, while the M1 model has the maximum structural mass.
Figure 5b compares the maximum deflection across different models; here, the M1 model
exhibits the lowest deflection. It is also noted that the deflections in the M3 and M6 models
are larger than in the other models studied. This is due to the fact that the constitutive units
in these models do not form a pyramid, a geometric shape known for its stability. This
aspect will be further discussed later in this section.

Figure 6 illustrates the axial stress distributions of the M2 model under the three
considered load combinations. The contour beside each model is colored from dark blue to
dark red, representing tension and compression axial stresses, respectively. As observed,
the distribution is nearly identical under different load combinations, with higher stress
concentrations near the support positions.
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Figure 6. Axial stress distribution in model M2 under (a) LC1, (b) LC2, and (c) LC3 load combinations.

To better understand the effects of the variables, the considered models were re-
optimized based on a single-cost function focused on overall structural mass, which is
more significant from an economic perspective. Unlike the previous process, deflection
was excluded as a cost function and instead constrained to L/200, a more practical limit.
The results of this optimization are presented in Table 3.

According to Table 3, the overall structural mass is reduced compared to the corre-
sponding results in Table 2. Similar to the earlier findings, the critical load combination
varies across different models. The results from Table 3 are also visualized in Figure 7
for ease of comparison. As before, the critical load combinations are highlighted in dark
blue. Analysis of these results underscores the superiority of the M2 model compared to
the other five models. Notably, the maximum deflection values in models M4 and M6 are
higher than in the other models, likely due to the absence of a full pyramid form in their
constitutive units. In summary, the M2 model appears to excel in both overall structural
mass and maximum deflection.
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Table 3. Single-objective optimization results for all considered models (L/200 equals 5 cm).

Model Load
Combination

Span Design Variable Cost Function

x y
n

d (cm) D (m)
Structural
Mass (kg)

Max.
Deflection (cm)x y

M1

LC1
10 10.39 3 4 5.2 2 5800 0.327
10 6.92 3 3 4.7 2.1 3462 0.294

LC2 10 10.39 3 4 6.5 2 9063 0.377
10 6.92 3 3 6 2.1 5642 0.277

LC3 10 10.39 3 4 6.6 2.3 9734 0.569
10 6.92 3 3 6.1 2.3 5995 0.38

M2
LC1 10 10 3 3 5.1 1.4 3506 0.378
LC2 10 10 3 3 6.6 1.4 5873 0.428
LC3 10 10 3 3 6.5 1.5 5745 0.389

M3

LC1
10 10.39 4 6 3.7 1.3 3771 0.313
10 6.92 4 4 3.9 0.7 2578 0.387

LC2 10 10.39 4 6 4.5 1.2 5504 0.462
10 6.92 4 4 4 1.2 2879 0.294

LC3 10 10.39 4 6 4.7 1.2 6004 0.404
10 6.92 4 4 4.1 1.2 3025 0.268

M4
LC1 10 10 3 3 4 1.3 2627 0.512
LC2 10 10 3 3 4.7 1.9 3897 0.484
LC3 10 10 3 3 5.7 3.3 6856 4.95

M5

LC1
10 10.39 4 6 3.9 0.9 4890 0.57
10 6.92 4 4 4 0.7 3446 0.424

LC2 10 10.39 4 6 4.6 1.1 6991 0.682
10 6.92 4 4 4.2 1.2 4064 0.348

LC3 10 10.39 4 6 4.5 1.2 6788 0.496
10 6.92 4 4 4.1 1.3 3932 0.29

M6

LC1
10 10.39 3 4 4.8 1.7 5326 3.585
10 6.92 3 3 4.3 2.2 3441 4.398

LC2 10 10.39 3 4 6.3 1.6 9060 3.301
10 6.92 3 3 5.7 2.4 6208 3.534

LC3 10 10.39 3 4 6.3 2.1 9661 2.569
10 6.92 3 3 5.6 2.2 5836 3.629

A sensitivity analysis was conducted to investigate the impact of each variable on the
cost functions. For this analysis, each variable’s value was independently altered while
keeping the other parameters constant, allowing us to observe its influence on overall
structural mass and maximum deflection. To avoid unstable conditions across different
models, the constant variables were set to their upper limits (i.e., structural depth, cross-
section diameter, and the number of constitutive units were assumed to be 4 m, 15 cm, and
11, respectively). The ranges of alteration for structural depth, cross-section diameter, and
the number of constitutive units were within the intervals of [0.5 m–4 m], [3 cm–12 cm],
and [3–11], respectively. The goal of this analysis was to clearly understand the role each
variable plays in structural performance.

The results of this analysis are presented in Figure 8. As shown, increasing the number
of constitutive units, structural depth, and cross-section diameter leads to an increase in
structural mass. However, the rate of increase varies, with structural mass being more
sensitive to the number of constitutive units and cross-section diameter than to structural
depth. Unlike the other variables, the effect of cross-section diameter on mass is non-linear,
with a significantly greater impact at larger diameters. This trend is consistent across all
models. This observation is also reflected in the results of Table 2, where the optimization
process tends to minimize the number of constitutive units, utilize intermediate diameters,
and meet additional requirements by increasing the structural depth.
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The influence of each variable on maximum structural deflection is also illustrated in
Figure 8. As shown, an increase in the number of constitutive units proportionally increases
deflection. In contrast, the effects of depth and cross-section diameter exhibit an inverse
trend, where increases in these variables lead to a reduction in deflection. The beneficial
impact of these two variables on structural deflection is more pronounced at lower values,
with diminishing returns as their values continue to increase. The effects of the number of
constitutive units and cross-section diameter on structural deflection are highly dependent
on the selected type of double-layer grid, whereas the impact of depth remains relatively
consistent across different grid types.

5. Conclusions

This paper investigates the performance of flat double-layer space structures, focusing
on two key factors: overall structural mass and deflection. To address a significant gap
in the comparative analysis of different types of double-layer grids, six diverse configura-
tions were parametrically simulated, varying in constitutive units, structural depth, and
cross-section diameters. Both the single- and multi-objective optimization processes were
performed to assess structural mass and deflection. Additionally, a sensitivity analysis was
conducted to understand the impact of each variable on structural mass and maximum
deflection. The main findings are summarized as follows:

• The superiority of the semi-octahedron configuration over the square grid configura-
tion in minimizing both structural mass and maximum deflection is clearly demon-
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strated. Specifically, the multi-objective optimization results show that the semi-
octahedron configuration achieves an overall structural mass of approximately 15,093
kg and a maximum deflection of 0.124 cm. In contrast, under the single-objective
optimization process, the overall structural mass is reduced to 5873 kg, with a corre-
sponding maximum deflection of 0.428 cm.

• The critical load combination affecting optimization results varies depending on the
pattern of constitutive units.

• Increasing the number of constitutive units, structural depth, and cross-section di-
ameter leads to an increase in structural mass. However, the rate of increase is more
sensitive to the number of constitutive units and cross-section diameter than to struc-
tural depth.

• Unlike structural depth and cross-section diameter, an increase in the number of
constitutive units results in higher maximum deflection.

• The effects of the number of constitutive units and cross-section diameter on structural
deflection are highly dependent on the selected type of double-layer grid.

• Based on the analysis of all models, it was found that selecting a structural depth
within the range of 1 m to 1.5 m and choosing a cross-section diameter between
6 cm and 7 cm result in optimal structural deflection. These quantitative insights
provide a clear direction for designers in selecting the most effective configuration and
design parameters.

The comparative assessment and sensitivity analyses conducted in this study enhance
the understanding of the structural performance of flat double-layer grids and offer practical
design considerations for achieving optimal configurations. In addition to the contributions
presented, future studies should include complementary analyses, such as the effects of
structural span and lateral loads on structural behavior.
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