
Interactive Learning
in State-space
Enabling robots to learn from
non-expert humans

Snehal Jauhri

Master Thesis
Embedded Systems
May 14th, 2020

Interactive Learning in
State-space

Enabling robots to learn from non-expert humans

by

Snehal Jauhri
to obtain the degree of Master of Science in Embedded Systems

at the Delft University of Technology,
to be defended publicly on Thursday May 14, 2020 at 01:00 PM.

Student number: 4772202
Project duration: August 15, 2019 – May 14, 2020
Thesis committee: dr. ing. Jens Kober, TU Delft, supervisor, chair

dr. Luka Peternel, TU Delft
dr. ir. A. J. van Genderen TU Delft
dr. Carlos Celemin, TU Delft, supervisor

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

Imitation Learning is a powerful technique that enables programming the behavior of agents
through demonstration, as opposed to manually engineering behavior. It has been successfully
used to train agents in a short amount of time in areas such as computer games, robotic control and
motion-planning. However, Imitation Learning methods require demonstration data (in the form
of state-action labels) and in many scenarios, the demonstrations can be expensive to obtain or too
complex for a demonstrator to execute. This lack or sub-optimality of demonstrations limits the
applicability and performance of many Imitation Learning methods.

Advancements in Interactive Imitation Learning techniques however, have made it easier for
demonstrators to train agents and improve their performance. These techniques involve demon-
strators interacting with and guiding the agent as it performs the requisite task. This guidance is
typically in the form of corrections or feedback on the current actions being executed by the agent.

In this work, we propose a novel Interactive Learning technique that uses human corrective
feedback in state-space to train and improve agent behavior. This technique is beneficial since pro-
viding guidance to the agent in terms of ‘changing its state’ is often easier or more intuitive for the
human demonstrator (as opposed to changing the actions being executed). For instance, in ma-
nipulation tasks using a robotic arm, it is easier for the demonstrator to provide state information
such as the Cartesian position of the end-effector rather than low-level action information such as
joint torques. Keeping such scenarios in mind, we propose our method titled: Teaching Imitative
Policies in State-space (TIPS). In TIPS, the agent is provided on-line human feedback in terms of
modifications to its current state. To perform the instructed state transitions, the requisite actions
to be taken are computed by querying a learnt forward dynamics model.

We evaluate the performance of TIPS for various control tasks as part of the OpenAI Gym toolkit
as well as for a manipulation task using a KUKA LBR iiwa robotic arm. We show that our state-
space feedback mechanism allows non-expert demonstrators to teach agents that achieve high task
performance. Moreover, through continuous improvement via feedback, agents trained using TIPS
outperform the demonstrator and in-turn outperform conventional Imitation Learning agents.

iii

“Admission of ignorance is often the first step in our education.”

— Stephen R. Covey

Acknowledgments

I am immensely grateful to my advisors Dr. Ing. Jens Kober and Dr. Carlos Celemin for giving
direction to this thesis project, entertaining my long discussions at meetings, patiently answering
all my queries and continuously providing feedback on my work. I would also like to thank them for
administering the course titled ‘Knowledge Based Control Systems’ at TU Delft which introduced
me to the exciting world of learning-based robotics and led me to this thesis.

I would like to thank Brinda Mohan for her constant support in keeping me focused as well as
proof-reading this document and providing valuable feedback. The paper that this thesis resulted
in was made possible by her selfless efforts in understanding the material and helping condense it.

Lastly I would like to thank my family for always supporting me in my endeavors and giving me
the opportunity to excel.

Delft, University of Technology Snehal Jauhri
May 7, 2020

vii

Contents

Acknowledgments vii

1 Introduction 1
1.1 Motivation . 1
1.2 Current Literature . 2
1.3 Contribution . 3
1.4 Thesis Outline . 3

2 Background and Related Work 5
2.1 Imitation Learning (IL). 5

2.1.1 Preliminaries . 6
2.1.2 Behavioral Cloning (BC) . 8
2.1.3 Inverse Reinforcement Learning (IRL) . 10

2.2 Interactive Imitation Learning . 11
2.2.1 Corrective Labels . 12
2.2.2 Corrective Feedback . 12
2.2.3 Evaluative Feedback . 14

2.3 Imitation from Observation (IfO) . 15
2.3.1 Inverse Dynamics Model (IDM)-learning. 15
2.3.2 Inverse Reinforcement Learning (IRL)-based methods 18

2.4 Conclusions. 20

3 Teaching Imitative Policies in State-space (TIPS) 21
3.1 Learning Framework . 21
3.2 Computing Actions via Indirect Inverse Dynamics . 23

3.2.1 Model Learning . 24
3.3 Algorithm in full . 24
3.4 Discussion . 26

4 Experimental Setting 27
4.1 Implementation of Method . 27
4.2 Evaluation Domains . 28

4.2.1 OpenAI Gym . 28
4.2.2 Robotic Fishing Task . 30

4.3 Methods for Comparison . 31
4.4 Experiment Setup with Human Teachers. 31

5 Results 33
5.1 Performance Improvements. 33
5.2 State-space vs Action-space . 35

5.2.1 Performance . 35
5.2.2 Demonstrator Effort . 37

5.3 Validation: Robotic fishing task . 38
5.4 Discussion . 39

ix

x Contents

6 Conclusion 41

A Paper 43

B Task Load Index Questionnaire 55

Bibliography 57

C Glossary 63

1
Introduction

1.1. Motivation
We have been promised an autonomous future in which intelligent agents and robots are prevalent
in many spheres of our lives and can be tasked with driving, mowing our lawns and even perform-
ing surgery. To program agents that can perform such complex and diverse sets of tasks requires
developing robust control algorithms [Argall et al., 2009]. Typically, this involves engineers using
their understanding of the task to mathematically devise algorithms resulting in the necessary per-
formance. However, this requires considerable expertise and can still be limited by the number of
situations considered by the engineer [Kober and Peters, 2009]. Another promising approach how-
ever, is to use techniques such as Reinforcement and Imitation Learning that allow behavior to be
learnt from experience or from demonstration.

Imitation Learning (IL) involves using example data, gathered during execution of a task by a
demonstrator, to ‘imitate’ behavior. The demonstration data is described in the form of sequential
states (or observations) and actions taken in those states. Imitation Learning (IL) is useful since it
is often much easier for humans to demonstrate desired behavior as opposed to engineering the
robot/agent’s behavior [Osa et al., 2018]. Consider the case of automating a task performed by an
operator in a factory setting. Using Imitation Learning, the operator (a domain expert for the task)
can demonstrate and teach the task to a robot without much knowledge about robotics or control
engineering. Such an approach is also important as we are moving into a future where robots work
closely with humans in applications such as elderly care, domestic housework etc. With this view,
there have also been research efforts to make training via Imitation Learning easier for demonstra-
tors. This is done by allowing demonstrators to interact with and provide corrections/feedback to
the agent as it performs the task [Argall et al., 2008; Chernova and Veloso, 2009; Celemin and Ruiz-
del Solar, 2019]. Learning using such interactive methods can further increase the applicability of
Imitation Learning and often results in better agent performance [Ross et al., 2011].

There are however, limitations to current Imitation and Interactive Imitation Learning tech-
niques. These techniques typically require demonstration or feedback in the action-space of the
agent. However, this is different from how humans learn behavior. Humans can often be taught
through information about changes in state required for a task, without providing the actions to
be taken [Liu et al., 2018]. Moreover, providing demonstration or feedback in the action-space can
be difficult for demonstrators. For example, consider a learning agent for a robotic arm manipula-
tion task. Providing action-space information to the agent in the form of angles or torques at each

1

2 1. Introduction

of the joints requires considerable demonstrator expertise. It would be easier to instead provide
state-space information such as the Cartesian position of the end-effector. It is thus beneficial to
develop learning methods that do not require action information but can instead utilize feedback
in state-space to learn behavior. Devising such a method and minimizing the required demonstra-
tor expertise in Imitation Learning is the main focus of this thesis.

1.2. Current Literature
Advancements in Imitation Learning (IL) techniques have led to several successes in learning tasks
such as robot locomotion [Zucker et al., 2011], helicopter flight [Abbeel et al., 2010] etc. as well as
learning to play games [Silver et al., 2016]. However, such Imitation Learning (IL) methods typi-
cally assume the availability of optimal demonstrations. In addition, several Interactive Imitation
Learning methods have been developed which enable demonstrators to guide agents by provid-
ing corrective action labels [Ross et al., 2011], corrective feedback [Argall et al., 2011; Celemin and
Ruiz-del Solar, 2019] or evaluative feedback [Knox and Stone, 2009; Christiano et al., 2017].

In the context of learning using state-space information, there has been some recent research
into methods that can learn using states/observations only. These methods learn behavior us-
ing recorded state trajectories or videos of task execution by a demonstrator and this technique
is known as Imitation from Observation (IfO). Though Imitation from Observation (IfO) methods
may not use human interaction, they provide useful insights into learning using state-space infor-
mation. Recent advances in Imitation from Observation (IfO) have led to some success in learning
simulated as well as physical robotic tasks using observations [Nair et al., 2017; Torabi et al., 2018;
Liu et al., 2018; Sun et al., 2019].

For this thesis, a survey of current IL and IfO literature was performed, details of which are
provided in Chapter 2. Some of the key findings and conclusions of the survey are as follows:

• The use of human interaction and feedback during the learning process has made it easier for
demonstrators to guide agents and continuously improve agent behavior. However, further
research is required into methods that enable such interactive feedback in state-space.

Providing corrections or feedback to the agent during learning can increase the applicabil-
ity and performance of IL [Ross et al., 2011; Chernova and Thomaz, 2014]. To this end, some
methods utilize corrections in the action-space [Celemin and Ruiz-del Solar, 2019; Pérez-
Dattari et al., 2019], while others use pre-defined or learnt primitives [Argall et al., 2008, 2011]
to guide agents. However, learning by providing corrective feedback to the agent in state-
space (which is often more intuitive for demonstrators) is still an open problem. Developing
such a method could make it easier for non-expert demonstrators to train agents.

• Techniques such as Inverse Dynamics Model (IDM) learning have been used in an Imitation
from Observation (IfO) setting to learn from demonstrative state trajectories. Such techniques
could be applied in an Interactive Learning setting with state-space feedback.

Inverse Dynamics Models (IDMs) map state transitions to actions that lead to these transi-
tions. Recent IfO methods have used an estimated IDM to infer actions in order to train agents
using state-trajectories only [Nair et al., 2017; Torabi et al., 2018]. Such an approach could also
be applied for an Interactive Imitation Learning method in order to compute requisite actions
when provided corrections/feedback in state-space.

1.3. Contribution 3

1.3. Contribution
In this thesis, we aim to devise a viable Interactive Imitation Learning method for training agents
that requires minimal demonstrator expertise.

To this end, we propose using a learning framework that utilizes human corrective feed-
back. This is because providing corrective feedback in the form of adjustments to the current
states/actions being executed by the agent is easier for non-experts (as opposed to providing ex-
act state/action labels that should be executed). Moreover, since the action-space is often not con-
ducive for providing demonstration or feedback, we evaluate how feedback provided in state-space
can be utilized to train agents.

The main contributions of this thesis are the following:

• Development of a novel Interactive Imitation Learning method that utilizes corrective
feedback in state-space.

This thesis proposes and evaluates an Interactive IL method titled: ‘Teaching Imitative Poli-
cies in State-space (TIPS)’. The method uses state-space corrective feedback (in the form of
changes to the current state) to learn behavior. To change the state as per the feedback re-
ceived, appropriate actions to be taken need to be computed. We propose a mechanism to
infer actions using indirect inverse dynamics i.e. by querying a forward dynamics model and
predicting the future state.

• Display of improved performance upon current IL methods in sub-optimal demonstration
scenarios.

Our proposed method ‘Teaching Imitative Policies in State-space (TIPS)’ was evaluated
and compared with IL methods such as Behavioral Cloning (BC) and Generative Adversar-
ial Imitation Learning (GAIL). Through continuous improvement, TIPS agents outperform
the demonstrator as well as IL agents for benchmark OpenAI Gym tasks [Brockman et al.,
2016] in scenarios where demonstrations are sub-optimal. To validate the method for real
world application, experiments were also run on a KUKA LBR iiwa Robotic arm for learning a
manipulation task.

1.4. Thesis Outline
This thesis report is structured in the following manner:

In Chapter 2 a detailed background of Imitation Learning (IL) and Imitation from Observa-
tion (IfO) is provided. Firstly, some preliminary information is provided about how Imitation Learn-
ing problems are formulated and mathematically represented. We then elaborate on Interactive
Imitation Learning methods and their advantages. This is followed by a discussion on current IfO
literature.

In Chapter 3, we explain the proposed method: ‘Teaching Imitative Policies in State-space
(TIPS)’. The learning framework as well as the technique used to infer actions from state-space
feedback are elaborated.

In Chapter 4 we elaborate on the experimental environment used to evaluate our method. This
includes explanation of the Open AI Gym tasks [Brockman et al., 2016] as well as the robotic manip-
ulation task.

4 1. Introduction

In Chapter 5 we provide the results of our experiments and delineate the performance improve-
ments provided by TIPS.

In Chapter 6, some conclusions and possible future improvements to this work are provided.

Appendix A consists of a draft version of the paper that this thesis work resulted in. The paper
will be submitted to the Conference on Robot Learning (CoRL) 2020.

2
Background and Related Work

This chapter is meant to provide background information about Imitation Learning (IL) and the
different approaches to solving the IL and Imitation from Observation (IfO) problems. Moreover, as
a precursor to the method proposed in this thesis, a discussion on current Interactive IL methods is
presented. We aim to provide a broad view of different types of IL and IfO techniques and discuss
their advantages/disadvantages. Throughout this discussion an emphasis is placed on practical,
real-world robotic applications.

In section 2.1, preliminary information about IL is provided, followed by details about two
of the most popular IL approaches, namely, Behavioral Cloning (BC) and Inverse Reinforcement
Learning (IRL).

Section 2.2 elaborates on Interactive Imitation Learning i.e. methods that utilize interaction
with a demonstrator during learning to accelerate learning or improve performance.

Section 2.3 delves into Imitation from Observation (IfO) and the types of methods used in this
relatively new field. Key techniques in IfO such as Inverse Dynamics Model (IDM) learning are de-
lineated.

In section 2.4, we summarize the chapter and offer a concluding hypothesis on improving In-
teractive Imitation Learning (IL) methods and minimizing the required demonstrator expertise.

2.1. Imitation Learning (IL)
Imitation Learning (IL) is a machine learning technique through which an agent can learn to per-
form a task using example demonstrations of the task [Schaal, 1997; Daumé III, 2012]. The agent
is trained to perform actions that lead to similar behavior as seen in the example demonstrations
[Argall et al., 2009; Torabi et al., 2019].

In the context of learning techniques, IL offers some key advantages. Firstly, IL significantly
reduces the search space for learning using the provided desirable examples (in contrast to most
Reinforcement Learning (RL) settings where the entire state-action space needs to be searched)
[Billard et al., 2008]. Furthermore, it eliminates the need for humans to pre-program the required
behavior for a task, instead utilizing the sometimes easier or more intuitive mechanism of demon-
strating the task [Osa et al., 2018].

5

6 2. Background and Related Work

IL also provides some useful features when applied to the field of robotics [Argall et al., 2009].
For instance, instead of the tedious tuning of multiple control parameters, robots can be taught
motor skills through interaction with a human demonstrator [Kober and Peters, 2009]. Additionally,
IL offers a lot of flexibility in terms of the tasks that the robot can be taught to perform [Billard and
Matarić, 2001].

2.1.1. Preliminaries

Some preliminary information about the IL problem and its framework is presented in this sub-
section. We also provide necessary background about Reinforcement Learning (RL) since it goes
hand-in-hand with many IL methods we will elaborate.

2.1.1.1. Learning framework:

Imitation learning problems are defined using the following elements (as described by Osa et al.
[2018] and Sutton and Barto [1998]):

Environment This is the scenario or setting in which the necessary task needs to be performed.
For example, in a self-driving car application, the environment consists of the dynamics of the car
as well as the real world the car is in. A situation in the environment can be captured by it’s current
state s ∈ S. The dynamics of the environment may be deterministic or stochastic.

Agent A learning agent interacts with the environment to achieve a desired goal. The agent must
have the ability to sense the environment it is in, either directly in the form of the state s (full ob-
servability) or through observation o (partial observability). Moreover, the agent can take an action
a ∈ A to transition from the current state at time t i.e. st to the next state st+1.

Policy A policy π defines the agent’s behavior (actions to be taken) in the environment. This is
essentially what we aim to learn in our IL or RL setting. It maps the state in which an agent is to an
action to be taken in that state i.e. a function π : S → A (Note that in the case of partial observability,
the policy can instead be an observation to action mapping). The policy could be deterministic
(always choosing the same action in a given state) or stochastic.

Demonstrations These are example executions of the task. This information is typically provided
in the form of a sequence of state-action pairs that were observed during task execution by a demon-
strator [Argall et al., 2009]. We denote such a trajectory over time T as: τ= {(s0, a0), ...(sT , aT)} and
the total demonstration data as a set of these trajectories: D= {(τi)}N

i=1.

The aim of IL is to learn a policy π(s) that leads to similar behavior as seen in the demonstrations
D during the policy’s ‘roll-out’ (an execution over time). A common approach is to consider this as
an optimization problem to find the optimal policy π∗ [Osa et al., 2018]:

π∗ = arg min D(q(φ), p(φ)), (2.1)

2.1. Imitation Learning (IL) 7

where φ represents features of the trajectory (typically state or observation trajectories), q(φ) and
p(φ) represent the distribution of features produced by executing the demonstrator and learner
policies respectively, and D(q, p) is a dissimilarity measure between q and p.

While standard IL methods assume demonstrations as state-action pairs, there exist other IL
formulations with different forms of demonstrative information. Moreover, in this survey we will
also consider scenarios where demonstrator feedback is used while learning. Thus we additionally
define the following types of demonstrative information:

• Observations: These are observations of the example execution of the task. This is typically
in the form of a sequence of observations that are recorded as the task was executed. Ob-
servations can vary from state-trajectories of the system τ= {(s0)..(sT)} (in a full observability
scenario) to videos i.e. sequences of images of the task execution.

• Corrective Labels: These are action labels that are provided by the demonstrator during the
learning phase in order to correct the agent’s behavior. These action labels can be appended
to the current state of the agent thus enabling addition of state-action demonstrations on-
the-fly.

• Corrective Feedback: Demonstrator feedback in the form of adjustments to the current
states/actions being executed by the agent. This type of information is useful when
the demonstrator cannot provide exact labels but can give information related to how
states/actions can be modified.

• Evaluative Feedback: This is feedback in the form of qualitative evaluation of the current be-
havior. This is useful when the demonstrator cannot provide any information about exact
states/actions but can give qualitative advice or provide preferences between different be-
haviors.

IL using observations is discussed in detail in section 2.3. Details about IL using the other
mentioned types of demonstrative information are provided in section 2.2 of this chapter.

2.1.1.2. Reinforcement Learning (RL)

Reinforcement Learning (RL) methods involve agents interacting with the environment over time
to learn the desired policy. Thus, in contrast to IL, in the RL paradigm agents learn from their own
experience rather than examples [Argall et al., 2009]. RL systems consist of the following additional
elements [Sutton and Barto, 1998]:

Reward A reward value or signal r ∈ R is used to define the goal of the agent. Upon interacting with
the environment, the agent receives these rewards (represented by a function r : S×A → R). Rewards
can also be negative to represent undesirable events. The maximization of total reward received
over time (

∑
rt) (also known as the return) becomes the basis for choosing the policy. Additionally,

a discount factor γ can be used to reduce the weight of future rewards when calculating the return
(
∑
γt rt).

Markov Decision Process (MDP) The RL problem is typically modeled as a decision process
(choosing actions that maximize total reward). Moreover, the process is assumed to obey the
Markov property and hence called a Markov Decision Process (MDP). In simple terms, the Markov

8 2. Background and Related Work

property implies that a future state st+1 is dependent on the history of states only through the cur-
rent state st [Serfozo, 2009]. We define an MDP by the tuple: (S, A,P,r,γ), where S and A are the state
and action spaces, P (st+1|st , at) represents the transition probability i.e. the probability of reaching
state st+1 from st after executing action at , r is the reward function and γ is the discount factor.

The goal in RL is to learn a policy that maximizes the expected total reward over time i.e. the
return. Thus we can write an objective function J of the form [Osa et al., 2018]:

J (π) = E

[
T∑

t=0
rt

∣∣∣∣π
]

. (2.2)

So, we can now write the RL optimization problem to find the desired policy π∗ as:

π∗ = arg max J (π). (2.3)

Typically, reward functions are defined by experienced programmers even though for the agent,
we consider these as coming from the environment. The design of the reward function greatly af-
fects the performance of a RL method. For instance, if the rewards in an environment are sparse,
the agent may never encounter a state that leads to a reward, thus never learning any useful pol-
icy. Reward shaping is the concept of choosing the right reward function that guides the agent in a
controlled way [Grzes and Kudenko, 2009].

RL agents use the rewards obtained to learn the policy and visit the state-action space that
maximizes return. However, the reward obtained at any time-step can be due to multiple actions
that were taken at previous time-steps. It can thus be challenging to assign credit for the reward
to an appropriate past state-action pair. This is known as the credit assignment problem and is
another key challenge in RL problems.

Since RL methods involve some ‘trial and error’, another key consideration is the strategy
around trials. Choosing actions known to provide maximum return is termed exploitation of the
knowledge of these actions. Conversely, choosing actions with unknown return is known as explo-
ration. Exploration helps improve the knowledge of actions and in the long run may lead to higher
return [Sutton and Barto, 1998]. However, increased exploration comes at the cost of an increased
number of trials required for learning. Moreover, exploring all possible state-actions is typically
infeasible in most environments. This inherent trade-off in RL is known as the exploration vs. ex-
ploitation trade-off.

More details about RL methods and solving MDPs can be found in [Sutton and Barto, 1998].
Specific to robotics, a detailed survey is also provided by Kober et al. [2013].

2.1.2. Behavioral Cloning (BC)

A direct approach to learning a policy in IL is to leverage supervised learning [Shalev-Shwartz and
Ben-David, 2014]. Treating policy learning as a regression problem, the example demonstrations
can be used to build a state to action mapping [Osa et al., 2018]. This method essentially clones the
demonstrated behavior and is known as Behavioral Cloning (BC) [Bain and Sammut, 1995; Ross and
Bagnell, 2010] .

2.1. Imitation Learning (IL) 9

Figure 2.1: An example behavioral cloning strategy for a driving agent. The observations ot (images of the road) and the
actions at (steering commands) demonstrated by the human are used to learn the policy πθ . From Levine [2018] and
Bojarski et al. [2016].

Regression technique The choice of regression technique is one of the main considerations in
such a supervised learning approach. This includes the representation function for the policy and
its training method. A chosen representation function must be able to capture the complexity and
non-linearity of the specific problem [Osa et al., 2018]. However, a more complex function requires
a larger amount of data for training. It is also useful to have methods that can capture uncertainty in
demonstrations as well as the policy. For instance, Gaussian Mixture Models (GMMs) can explicitly
model uncertainty and have been used to teach robots manipulation skills through Gaussian Mix-
ture Regression (GMR) [Calinon and Billard, 2009; Gribovskaya et al., 2011]. One of the most typi-
cal representations used in IL however are artificial neural networks. In the field of robotics, neu-
ral network based BC methods have been used for autonomous driving [Bojarski et al., 2016] and
quad-rotor control [Giusti et al., 2015]. Moreover, different architectures of neural networks such
as Recurrent Neural Networks (RNNs) can capture the entire history of states/observations in the
demonstrations. The usage of RNNs along with Long short-term memory units (LSTMs) [Hochreiter
and Schmidhuber, 1997] has shown promise in imitating robot manipulation tasks [Rahmatizadeh
et al., 2018].

Model-free vs. Model-learning Another consideration in BC is whether to create a model of the
system dynamics. Based on this, BC methods can be divided into model-free and model-learning.
Model-free methods attempt to directly map observations to actions without modeling the system
dynamics. This can lead to a simpler learning process with fewer iterations [Osa et al., 2018]. How-
ever, in some cases this may lead to trajectories being learnt that are infeasible to execute since they
violate the physical constraints of the system. For instance, consider a case where the embodiment
of the demonstrator is different from the learner and the demonstrated trajectory needs to be exe-
cuted at a higher velocity. If the learner’s system is under-actuated (Eg. An under-actuated robotic
manipulator), executing the policy at this velocity may not be possible [Billard et al., 2008]. Model-
learning BC methods on the other hand do not suffer from this issue since they involve learning
a dynamics model of the system. Though this requires a larger number of learning iterations, it

10 2. Background and Related Work

ensures that the learnt trajectory is both feasible and close to the demonstrated trajectories. Such
BC techniques have been used to great effect for learning manipulation tasks using representations
such as Gaussian Mixture Models (GMMs) [Grimes et al., 2007] and neural networks [Nair et al.,
2017].

The BC approach has some inherent challenges and drawbacks. Firstly, in a supervised learning
formulation, the training and test data need to be independent and identically distributed. This
does not hold true in an IL setting where we need to learn a policy for sequential decision making
[Osa et al., 2018]. Another problem is that supervised learning typically requires significant training
data. Obtaining demonstration data might be very expensive, especially for robotics applications,
and hence there is the need to develop less data hungry IL methods. Some of these will be discussed
in section 2.2.

Finally, arguably the biggest drawback of BC is that it fails to learn appropriate actions in states
that were not visited during the demonstrations. This is known as the covariate shift problem where
the source distribution (demonstrator’s states) is different from the target distribution (learner’s vis-
ited states) [Ross and Bagnell, 2010; Osa et al., 2018]. This is a major issue since it leads to com-
pounding errors. During execution, if an agent reaches a state where the correct action is not known,
there is a high chance of again reaching such states in the future leading to a large trajectory devi-
ation [Bagnell, 2015; Ross and Bagnell, 2010]. To solve this problem, one common approach is to
use a combination of IL and RL [Nair et al., 2018; Hester et al., 2018] thus utilizing exploration and
reward strategies in unknown states. Another approach is to leverage human interaction and feed-
back which we will elaborate in section 2.2.

2.1.3. Inverse Reinforcement Learning (IRL)

In Inverse Reinforcement Learning (IRL) [Russell, 1998; Ng et al., 2000], the provided demonstra-
tions are used to infer a reward function which can then be used to learn an optimal policy using
RL. It is assumed that the demonstrator’s behavior is based on maximizing a reward function and
thus the main aim is to estimate this reward function. Conversely, this can also be thought of as
learning a cost function that penalizes behavior that is dissimilar to the demonstrator. IRL has been
successfully used to learn many tasks from robot locomotion [Zucker et al., 2011] to helicopter flight
[Abbeel et al., 2010].

IRL involves two key steps: (i) reward function estimation and (ii) policy optimization based
on the reward function. In the former step, a reward function is chosen that measures the differ-
ence between relevant features of the demonstrator and learning agent’s behavior (similar to Eq.
2.1) and penalizes this difference. In the latter step, an optimum learner policy is chosen using this
reward function in a RL fashion. For instance, let us say that task execution by the demonstrator
and the agent policy leads to distributions of state-action trajectories q(τ) and p(τ) respectively.
A suitable reward function is such that it leads to an agent policy being learnt (in the policy opti-
mization step) that minimizes the difference between these distributions. In order to estimate the
agent policy’s trajectory distribution p(τ), some methods utilize a model of the system dynamics
(model-based) [Abbeel and Ng, 2004; Levine et al., 2011] while other methods use sampling-based
approaches (model-free) [Finn et al., 2016; Ho and Ermon, 2016].

One drawback of the IRL approach is that reward estimation typically needs to be done iter-
atively with policy optimization for every reward function (RL) running in an ‘inner loop’ [Torabi
et al., 2019]. This can be highly computationally expensive. However, some methods try to avoid

2.2. Interactive Imitation Learning 11

this pitfall using ideas such as solving an approximate local control problem [Levine and Koltun,
2012] or by instead performing policy optimization with reward estimation in-the-loop [Finn et al.,
2016].

Uniqueness of Reward Function Finding a unique solution to the IRL problem is a challenge since
there can be many reward functions that lead to the same optimal policy and state-action trajectory
[Osa et al., 2018]. One solution to this problem is to choose a reward function that additionally
maximizes a margin between the optimal trajectory and others in the agent’s trajectory distribution
[Ratliff et al., 2006; Ng et al., 2000]. This typically works well in case where one reward function is
considerably better than the others [Osa et al., 2018]. However, a more general and popular solution
is to use the maximum entropy principle [Jaynes, 1957]. As per this principle, in the case where mul-
tiple trajectory distributions can be considered equivalent, the distribution which maximizes the
entropy should be chosen [Ziebart et al., 2008]. In this manner, the ambiguity is resolved by choos-
ing the distribution that does not exhibit any additional bias beyond matching the demonstrator’s
distribution [Ziebart et al., 2008].

The maximum entropy method has been used successfully to estimate unique IRL solutions for
tasks such as highway driving [Levine et al., 2011] and robotic manipulation [Finn et al., 2016]. An-
other popular entropy based IRL approach, proposed by Ho and Ermon [2016] is GAIL. This method
uses a Generative Adversarial Network (GAN) architecture [Goodfellow et al., 2014] in which the
reward/cost function acts as a discriminator that distinguishes the trajectory distributions of the
demonstrator and the learner, while the RL optimization acts as the generator and provides candi-
date distributions. Thus, direct policy optimization (generation) is done while the reward function
is implicitly represented by the discriminator network. GAIL and its extensions [Henderson et al.,
2018] have been used to learn relatively complex tasks simulated in OpenAI Gym [Brockman et al.,
2016] and achieve high performance, highlighting the promise of the adversarial learning approach.
However, a drawback of such methods is that they require a relatively large number of environment
interactions during learning.

When compared to Behavioral Cloning, a drawback of IRL stems from the fact that it requires
an RL step. In the absence of a model, this necessitates interaction with the environment which can
be expensive (in terms of time) and is also unsafe for many applications (Eg. Self-driving vehicles).
Another limitation, even in model-based IRL, is that the reward function is estimated under an as-
sumption that the provided demonstrations are optimal. When this assumption does not hold, the
learnt behavior can be sub-optimal and may not improve over time (unlike standard RL).

2.2. Interactive Imitation Learning
A typical drawback of agents trained using IL is the compounding error problem [Bagnell, 2015].
Due to small errors (especially in stochastic environments), agents will inevitably reach states that
were not in the demonstrations. This leads to further mistakes and eventually causes significant
deviation from the demonstrated trajectory [Osa et al., 2018; Ross et al., 2011]. Moreover, since
providing demonstration data to cover all possible situations encountered by the agent is infeasible
or highly expensive, there is a need for alternative methods that provide information to the agent.
One way to do this is to use interaction and feedback during learning to guide the agent as it executes
its policy. This can be considered as an ‘on-policy’ approach to IL [Laskey et al., 2017] or Interactive
Machine Learning (IML) [Chernova and Thomaz, 2014] and in this section we discuss some of the
methods in this domain.

12 2. Background and Related Work

2.2.1. Corrective Labels

Pomerleau [1989] argues that it is insufficient to provide the agent example demonstrations of a
task. Instead, it must also be taught recovery actions to correct its errors. One way to achieve this is
to have demonstrators provide corrective action labels to IL agents as the policy is executed.

Interactive learning methods can further be classified as passive or active. Passive learning
techniques require the demonstrator to observe the agent’s behavior and provide corrections when
necessary [Ross et al., 2011]. On the other hand, in active learning, the agent explicitly requests the
demonstrator for input, typically at times when the agent lacks knowledge of the correct action to
be taken in its current state. For example, a successful active learning method in this domain is
proposed by Chernova and Veloso [2009] who utilize a confidence measure of the agent based on its
state. Upon visiting states where the agent’s confidence is low, the agent requests a human expert
to provide correct actions which then get added to the training data. Such active techniques are
aimed at reducing the demonstrator’s observation effort and ensuring safe operation. However, a
drawback of such an approach is that it requires the human demonstrator to be constantly attentive.

Dataset Aggregation (DAgger) One of the most popular methods utilizing corrective labels is
the DAgger algorithm proposed by Ross et al. [2011]. In this method, the agent is allowed to execute
its IL policy while keeping an expert demonstrator in the loop. Initially, the agent is trained using an
IL algorithm such as Behavioral Cloning (BC). The agent then executes its policy while the demon-
strator simultaneously provides action labels that the agent should have taken in the visited states.
These state-action labels are added to the training dataset and the BC step is carried out again (data
aggregation). The entire process is iterated until necessary performance is obtained. This method
has been shown to significantly improve the learning of tasks such as steering a cart [Ross et al.,
2011].

DAgger surpasses BC in terms of performance since it solves the distribution mismatch prob-
lem between the states in the learner’s and demonstrator’s trajectories [Ross and Bagnell, 2010].
Unlike BC, when the agent makes mistakes and visits states in the ‘neighborhood’ of the initial
demonstrated trajectory, the correct recovery actions are added to its dataset and subsequently
learnt. Asymptotically, with enough training data accumulated over iterations, DAgger has been
shown to achieve the same expected error bound as supervised learning [Ross et al., 2011].

The main obstacle in implementing DAgger is that it can be expensive to query the demonstra-
tor a large number of times. This is especially the case with human demonstrators. The demon-
strators also need to be experts in that they know the correct actions in every state. This might not
always be feasible. Moreover, since the agent makes mistakes during execution, it raises safety con-
cerns in many applications such as driving. However, some of these problems can be alleviated
by using a confidence measure of the agent and only querying the human when this confidence is
below a threshold [Zhang and Cho, 2017; Menda et al., 2018].

2.2.2. Corrective Feedback

Methods that leverage demonstration data (IL) and corrective labels (DAgger) can still be insuffi-
cient for some problems such as when the embodiment of the learner is different than that of the
demonstrator [Argall et al., 2011]. Furthermore, the requirement of visiting a state in order to re-
ceive information about which action to perform in it is a bottleneck, especially if the environment
consists of unreachable or unsafe states. In these situations, it can be beneficial to use an alternate
means of human interaction: corrective feedback. In this setting, the human provides feedback in

2.2. Interactive Imitation Learning 13

the form of modifications or adjustments to the current agent behavior. This type of interaction
is also desirable since it enables teaching by non-expert or sub-optimal human demonstrators who
may not be able to provide accurate state/action labels, but can still provide feedback on how to
modify the states/actions.

In Argall et al. [2008], the advice-operator paradigm for corrective feedback is introduced. In
this setting the human provides advice on what operation should be performed on the current state-
action data point (typically a state/action modification). With this operation, a new data-point is
generated that gets added to the demonstration dataset. Thus, an initial policy learnt from demon-
stration can be improved upon with the updated dataset [Argall et al., 2008]. This feedback tech-
nique is especially advantageous in problems with continuous action spaces since it is unreasonable
to always expect the demonstrator to provide accurate continuous valued actions. The technique
has been extended by Argall et al. [2011] who use it to learn motion primitives. In their method ti-
tled ‘Feedback for Policy Scaffolding (FPS)’, corrective feedback is used to learn primitive policies.
These primitives can then be used to learn more complex policies for whom demonstration may be
difficult. The advice-operator framework has been used to learn simulated tasks such as driving on
a racetrack Argall et al. [2011] as well as motion control task for Segway robots [Argall et al., 2008].

A limitation of the advice-operator approach is that devising the operators requires significant
prior knowledge about the environment as well as the task to be performed. Moreover, another
drawback is that the effect of the corrections is only seen after the policy is re-derived with the new
data. This means that until the policy is updated, the demonstrator may still observe the agent’s
incorrect behavior and provide further corrections that are harmful or contradictory [Celemin and
Ruiz-del Solar, 2019].

COACH (COrrective Advice Communicated by Humans) An important method that uses
human advice is COACH (COrrective Advice Communicated by Humans), proposed by Celemin
and Ruiz-del Solar [2019]. Aimed at problems with continuous action spaces, this method uses
feedback (ht) in the form of a binary signal implying an increase/decrease in value of an action (i.e.
ht ∈ {−1,0,+1}). Moreover, during execution, a human feedback model is learnt that predicts the
magnitude of this correction. The intuition is that if a sequence of corrections provided in a state
are in the same direction (increase/decrease), the demonstrator is suggesting a larger magnitude
correction. Conversely, if the feedback alternates between increase/decrease, the demonstrator is
suggesting a smaller change around a set-point [Celemin and Ruiz-del Solar, 2019]. This helps re-
solve the ambiguity around the magnitude of correction. Another feature of COACH is that the
corrected action is executed immediately by the agent, thus making it more intuitive for non-expert
demonstrators to observe the behavior and provide further corrections. The method has been used
to successfully learn tasks such as a ‘Reacher’ (with a 3DoF robot) as well as ball-dribbling (with a
humanoid robot) even when trained by non-expert humans who make occasional mistakes.

Pérez-Dattari et al. [2019] have subsequently proposed an extension of COACH to specifically
work with policies that are represented using neural networks. In their method called Deep-COACH
(D-COACH), the human feedback model of COACH is replaced by a demonstration replay mecha-
nism. The demonstration replay memory stores previously computed state-action pairs based on
previous feedback received. Updation of the agent’s policy is done using samples from this memory
(similar to experience replay [Lin, 1992]). The replay memory mechanism thus resolves the ambi-
guity around the magnitude of correction by considering prior corrections. Moreover, it also helps
avoid the catastrophic forgetting problem [French, 1999] commonly observed in learning neural
network representations. To ensure sufficient learning iterations to train the neural network, a pe-
riodic training step is also taken. The method has been used to learn tasks such as car racing using

14 2. Background and Related Work

a Duckietown robot as well as ‘reacher’ and ‘pusher’ tasks using a 3-DoF robot manipulator. The
pseudo-code of D-COACH is shown in Algorithm 1.

Algorithm 1: D-COACH [Pérez-Dattari et al., 2019]

Require: Error constant: e, Periodic update interval: Tupd ate

Initialize: Replay buffer B = []
for time = 1,2,.... do

observe state st

execute action at = π(st)
get human corrective feedback ht

if ht is not 0 then
er r ort = ht .e
al abel (t) = at +er r ort

update policy π using pair (st , al abel (t))
update policy π using a batch sampled from replay buffer B
append (st , al abel (t)) to buffer B

end
if mod(t ,Tupd ate) then

update policy π using a batch sampled from replay buffer B
end

end

2.2.3. Evaluative Feedback

The final type of interaction we will discuss is in the form of qualitative evaluation i.e. evaluative
feedback. This kind of interaction is especially useful in cases where non-expert humans are unable
to demonstrate or correct behavior but can evaluate and specify whether the observed behavior
(states/actions) are good or bad. This type of feedback is typically either reward-based [Knox and
Stone, 2009; Griffith et al., 2013] or preference-based [Akrour et al., 2011; Christiano et al., 2017].

In reward-based evaluative feedback methods, demonstrator feedback is in the form of scalar
reward signals indicating desirable/undesirable behavior. An important work in this domain is
TAMER (Training an Agent Manually via Evaluative Reinforcement) [Knox and Stone, 2009]. In the
TAMER framework, human feedback is modeled as H : S×A → R (mapping from state-action space
to reward). During task execution, in addition to the existing RL reward function, the agent also
queries the model (H) to receive ‘human feedback reward’. This is then used to modify the policy
and has been used to learn tasks such as mountain-car and later for robot navigation [Knox et al.,
2013]. In other works by Suay and Chernova [2011] and Najar et al. [2016], this type of human eval-
uation and guidance is used to teach a sorting task to a robotic manipulator. A drawback of the
reward-based feedback approach however, is the sensitivity to relative values of the human feed-
back reward signals. Another limitation is that a relatively large amount of feedback data may be
required before correct actions can be learnt. Thus, the approach does not scale well to problems
with large state-action spaces [Suay and Chernova, 2011].

Preference-based evaluative feedback methods elicit preferences between multiple behaviors
or policies and then use these to build scoring/reward functions. The idea is that policies with a
higher rank/preference result in a higher reward and with a large enough number of preferences
obtained, a suitable reward function can be estimated. This approach is advantageous since it re-
quires less teacher expertise as compared to providing accurate reward signals. The preference-

2.3. Imitation from Observation (IfO) 15

based feedback technique has been used to learn motion control tasks for humanoid Nao robots
[Akrour et al., 2014] as well as robotic manipulators [Jain et al., 2013]. Moreover, for learning in high
dimensional state-spaces such as images, Christiano et al. [2017] propose an extension that lever-
ages deep neural networks. The method uses feedback in the form of preferences between video
clips of trajectories, and has been successfully applied to simulated OpenAI Gym [Brockman et al.,
2016] tasks such as Hopper. However, a limitation of preference-based feedback methods is that in
cases where multiple sub-optimal policies are presented, providing a preference becomes ambigu-
ous. Another drawback is that to converge to an optimal policy, a large number of preferences may
need to be elicited.

2.3. Imitation from Observation (IfO)
Though Imitation Learning (IL) has proved successful for learning robotic skills, the required
demonstrations can be expensive to obtain or too complex for a demonstrator to execute. This
can limit the applicability of IL. Thus there has been recent interest in methods that learn by utiliz-
ing existing resources such as videos of humans performing the task. This technique of Imitation
Learning using only observations or states is termed as Imitation from Observation (IfO).

Imitation from Observation (IfO) is more representative of how humans learn tasks [Liu et al.,
2018]. Humans are able to imitate tasks by just observing their execution by a demonstrator without
requiring exact action labels. To this end, the goal in IfO is to learn a policy using only observations
which can range from state trajectories (in full-state observability scenarios) to high dimensional
camera images/videos. In the case of demonstrative videos, difficulties can arise due to variations
in embodiment or viewpoint. For instance, a robot might be provided with a video demonstration
of a human performing the task which may also be in a different context (Eg. different environ-
ment). This is known as the embodiment mismatch problem and is a key challenge in imitation
from videos.

In this section, we elaborate various types of successful IfO methods. A typical approach in IfO
is to learn an Inverse Dynamics Model (IDM) through which actions can be inferred from the pro-
vided state/observation trajectories (section 2.3.1). Alternatively, many methods use the provided
observations to build a reward function and then learn a policy in an IRL fashion (section 2.3.2).

2.3.1. Inverse Dynamics Model (IDM)-learning

An Inverse Dynamics Model (IDM) maps states transitions to the actions that produce the state
transitions [Hanna and Stone, 2017]. The model can be written as a function fi nv such that:

fi nv (st , st+1) = at , (2.4)

where st is the current state, st+1 is the next state and at is the action that leads to the transition
from st to st+1. Such models are in principle the inverse of ‘forward’ dynamics models which map
state-action pairs to their resulting subsequent states (f (st , at) = st+1). Since in an IfO problem
the desired state trajectory is already known (or obtained using the observations), the appropriate
action labels can be computed through the IDM. Thus if an accurate IDM is estimated, it can reduce
the IfO problem to an IL problem.

We note that in a model-based problem setting (i.e. when the forward dynamics model is al-
ready known), inferring the action labels for imitation is further simplified. Using the forward model
and demonstrated state trajectories, a minimum variance and bias estimation technique can be

16 2. Background and Related Work

used to compute the actions [Gillijns and De Moor, 2007]. This has been successfully demonstrated
by Curi et al. [2018] who use an adaptive linear estimator to compute actions and then use Behav-
ioral Cloning (BC) for imitation. However, in this discussion, we will consider scenarios where the
forward model is not already known.

For learning the IDM, a typical approach is to sample state-action trajectories and then fit
model parameters through regression. A consideration when sampling is that the data acquired
is sufficiently rich i.e. sufficiently captures the dynamics of the system. To this end, some methods
acquire samples while executing pre-defined trajectories while others may use randomized execu-
tion of actions (typically requiring a larger number of samples to cover sufficient state-action space).
For model representation and regression, there exist many techniques. For instance, Gaussian Pro-
cess Regression can be used to learn the parameters of a model represented using Gaussian kernels
[Nguyen-Tuong et al., 2008]. Moreover, neural network based models, trained on random execution
samples, are popular among IfO methods [Torabi et al., 2018; Nair et al., 2017].

For the remainder of this subsection we will discuss various IfO methods that use the IDM-
learning approach:

Behavioral Cloning from Observation (BCO) Proposed by Torabi et al. [2018], BCO is an im-
portant IfO method that uses the IDM-learning approach. The method extends Behavioral Cloning
(BC) by learning an IDM in two stages:

In the first pre-demonstration stage, the agent is allowed to randomly execute actions in it’s envi-
ronment and record the states visited. Through these samples of state-trajectories (T) and actions
(A) generated, the IDM (Mθ) is learnt via supervised learning (in Torabi et al. [2018] the model is
represented using a neural net).

The second post-demonstration stage further involves learning both the policy (πφ) and IDM in-
the-loop. The policy is learnt in a BC fashion using state-action pairs. The states are selected from
the provided state-trajectory demonstrations while actions for these states are inferred using the
currently learnt IDM. Crucially, in the loop, the agent rolls out its current policy and the actual
states visited are again sampled. These samples are then used to again learn and improve the IDM
and in turn, the policy. Thus, BCO iteratively learns an accurate IDM and the appropriate policy for
imitating the demonstrations. The pseudo-code of the method is provided in Algorithm 2.

BCO has shown promising results for simulated OpenAI Gym tasks such as ‘Reacher’ and ‘Ant’
[Brockman et al., 2016]. The method converges to a good model and policy that lead to high re-
turns even when the state space is high dimensional [Torabi et al., 2018] (Eg. The state space of the
‘Ant’ task in OpenAI Gym has over a hundred dimensions). Although, unlike standard Behavioral
Cloning, BCO requires a significant amount of environment interactions during the pre and post-
demo iterations, the total number of interactions are relatively fewer as compared to many other
methods that utilize RL [Torabi et al., 2018].

A drawback of the BCO method is that the significant number of environment interactions im-
mediately makes it infeasible for applications where such interaction is expensive or unsafe. More-
over, the pre-demonstration stage involves completely random interaction with the environment.
Due to this, learning can be quite sensitive to the number of iterations initially trained on (I pr e)
since the agent needs to explore its entire state-action space through random interactions to learn
a reasonable initial IDM. Another demerit is that BCO suffers from the same problems as Behav-
ioral Cloning (BC) such as distribution-mismatch between the states observed by the agent and the
demonstrations. A possible solution to this problem however, is to combine the method with RL

2.3. Imitation from Observation (IfO) 17

Algorithm 2: Behavioral Cloning from Observation (BCO) [Torabi et al., 2018]

Initialize the model Mθ (random)
Initialize the policy πφ (random)
Set iterations = I pr e

while policy improvement do
for iterations do

Generate samples
(
sa

t , sa
t+1

)
and (at) using πφ

Append samples Ta
πφ

← (
sa

t , sa
t+1

)
, Aπφ ← (at)

end

Improve Mθ by model learning
(
Ta
πφ

, Aπφ

)
Select a set of state transitions Ta

demo from the demonstrated state trajectories
Use Mθ with Ta

demo to infer actions Ademo

Improve πφ by behavioral cloning (Sdemo, Ademo)
Set iterations = Ipost

end

[Pavse et al., 2019; Guo et al., 2019]. The additional reward function helps the agent learn optimal
policy actions even for the states not present in the demonstrations.

IDM learning has also led to some success in the context of imitation from videos. For in-
stance, Nair et al. [2017] propose a vision-based self-supervised method for IDM learning. The
agent (robot) is allowed to physically interact with the environment and self-supervise its learning
of a Convolutional Neural Network (CNN) based IDM that maps the image sequences observed to
actions. This is successfully applied to the challenging problem of manipulation of a deformable
object (in the mentioned case, a rope). A limitation of this method is that it suffers from the
embodiment-mismatch problem generally observed in IfO. The robot fails to learn a good policy
when there are differences in the background of the environment or object being manipulated. Fur-
thermore, training the CNN through interaction can be very costly in terms of robot learning hours
(over 60K interactions in the mentioned case).

Though IDM learning is useful in practice, Sun et al. [2019] argue that the approach is ‘ill-
defined’. From a probabilistic viewpoint, the IDM can be denoted as P (a|st , st+1). Using Bayes rule,
we can say that P (a|st , st+1) ∝ P (st+1|st , a)P (a|st). This means that the IDM, by definition, is de-
pendent on the policy P (a|st) (or π(st)). Thus, to learn an IDM that predicts the correct actions that
lead to the demonstrator’s state trajectory, we need to estimate P∗(a|st , st+1) ∝ P (st+1|st , a)π∗(st),
which requires sampling actions from the optimal policy π∗ [Sun et al., 2019]. Since we don’t have
access to π∗, there are no guarantees on learning P∗(a|st , st+1). Thus, IDM learning may work in
practice, but is not guaranteed to always converge to the correct model.

2.3.1.1. Alternative Model-learning Approaches

It is important to note some general limitations of IfO using model-learning. Most methods that use
this approach operate under an assumption that the state transitions shown in the demonstrations
can be executed by the agent using only a single action [Torabi et al., 2019]. Moreover, learning a
model can also be a challenge in the case of multi-modal behavior i.e. when there exist multiple
actions that lead to the same state transition. Another significant issue is the typical requirement
of environment interaction for model learning, limiting the applicability for some physical systems.
To overcome these limitations, some IfO methods learn alternative dynamics models.

18 2. Background and Related Work

In one such method, ‘Imitating Latent Policies from Observation’ [Edwards et al., 2018], a for-
ward dynamics model is learnt in a latent action (z) space. Using the demonstrative state trajec-
tories, an initial latent policy πz (st) and a forward model f (st+1|st , z) is estimated. This does not
require environment interactions and can be thought of as estimating what needs to be done (la-
tent actions z) based on just observing the demonstrator. Subsequently, using interactions with the
environment, the latent actions are mapped to actual actions and thus a real policy π is learnt. The
method requires a lower number of environment interactions as compared to IDM learning meth-
ods such as BCO while still performing well for OpenAI Gym tasks such as ‘Acrobot’ and ‘CoinRun’
[Edwards et al., 2018]. However, the method is only applicable to environments with deterministic
state transitions and discrete action spaces since the number of possible actions need to be known
beforehand to build the latent space.

Another method in this domain is proposed by Pathak et al. [2018] titled: ‘Zero-Shot Visual
Imitation’. It involves learning a model that predicts a sequence of actions to be executed from the
current state that lead to the goal state. This model, known as a ‘Goal Conditioned Skill Policy’ (GSP),
is implemented using a recurrent neural network and is learnt by interacting with the environment.
The method also attempts to solve the multi-modal behavior problem i.e. when there exist multiple
actions that lead to the same state transition. First, a forward dynamics model (f (st , at) = st+1) is
estimated using the samples from environment interactions. Then, when training the GSP, a ‘for-
ward consistency loss’ is used which only penalizes actions at if they result in a different next state
st+1 than the one predicted by the forward dynamics model f . In this way, multiple actions that
lead to the same goal state are not penalized and can be learnt by the GSP. The method outperforms
‘Vision-based self-supervised learning’ [Nair et al., 2017] in rope manipulation and has also been
used to successfully navigate a robot through an office environment [Pathak et al., 2018].

2.3.2. Inverse Reinforcement Learning (IRL)-based methods

Another popular IfO approach is to leverage Inverse Reinforcement Learning (IRL). This implies
learning a reward function using only the demonstrated state/observation sequences and then
learning the policy using RL. In this section we elaborate on such methods while making a distinc-
tion between methods aimed at developing suitable reward functions i.e. reward-shaping methods
(section 2.3.2.1), and adversarial methods which involve learning a discriminator that provides re-
wards (section 2.3.2.2).

2.3.2.1. Reward-shaping based methods

These IfO methods utilize reward-shaping in the IRL step (shaping involves choosing/designing a
viable reward function that guides the agent during RL).

Given demonstrations in the form of state trajectories, a natural approach is to reward the agent
if it executes actions that result in these state trajectories. Such an approach is used by Kimura et al.
[2018] who propose learning a sequence model that uses the current state to predict the next state
(f (st) = st+1) based on the behavior observed in the demonstrations. The reward function is based
on the Euclidean distance between the actual next state reached and the next state predicted by
the sequence model. Imitation policies learnt using this reward function outperform Behavioral
Cloning (BC) as well as other sparse reward functions for simulated tasks such as ‘Reacher’ and
video games such as Super Mario Bros. [Kimura et al., 2018].

Another method, proposed by Brown et al. [2019], can not just imitate but also potentially im-
prove upon the demonstrator’s performance. In this method, using a set of ranked demonstra-

2.3. Imitation from Observation (IfO) 19

tion trajectories, a reward function is estimated that best explains the rankings. With sub-optimal
demonstrations, the method has been used to learn policies that surpass the performance of the
demonstrations for tasks such as ‘HalfCheetah’ and ‘Ant’ in OpenAI Gym as well as several Atari
games [Brown et al., 2019].

Reward shaping has also been used by many methods in the domain of video based demonstra-
tions [Liu et al., 2018; Sermanet et al., 2018; Dwibedi et al., 2018; Aytar et al., 2018; Goo and Niekum,
2019]. To overcome problems in this domain such as embodiment mismatch, a core idea behind
many of these approaches is to devise a reward function that is invariant to changes in embodi-
ment or viewpoint. Liu et al. [2018] propose such a method which is able to imitate behavior even
when there exist context differences between the demonstrator and imitator. This is done by learn-
ing a context translation model through which observations of a task can be converted from one
context to the other. The internal feature space of the learnt model captures key information about
a task. Thus the Euclidean distance between the demonstrator and imitators observations in this
feature space is used to specify the reward. The method has been validated by learning ‘Reacher’
and ‘Pusher’ tasks with both simulated and real robots [Liu et al., 2018]. However, a limitation of the
technique is that to learn the translation model many demonstrations are required in each of the
contexts.

2.3.2.2. Adversarial methods

While the reward-shaping based IfO approach has let to some success, developing suitable reward
functions requires sufficient domain knowledge which can restrict applicability. An alternative is to
learn both the reward function and the imitation policy in an adversarial manner (inspired by the
Generative Adversarial Network (GAN) learning approach [Goodfellow et al., 2014]). These methods
have also shown state-of-the-art performance for current IfO techniques [Torabi et al., 2019] and we
will detail some them in this subsection.

Adversarial IfO methods typically extend Generative Adversarial Imitation Learning (GAIL) [Ho
and Ermon, 2016] to enable learning using only states/observations. In one such method proposed
by Merel et al. [2017], a discriminator network is trained to output differences between the demon-
strator and imitator based on only the state distributions observed during their execution of the
task. The discriminator’s output is effectively used as reward to train the generator network i.e.
the imitation policy in an RL fashion. This work has been extended by Torabi et al. [2019] in their
method titled GAILfO (GAIL from Observations). In this method, the discriminator compares dis-
tributions of state transitions (as opposed to only states) which is more suitable for capturing the
agent’s behavior [Torabi et al., 2019]. The method has also been tested with visual demonstrations
and has been shown to learn good policies for simulated tasks such as ‘Hopper’ in Open AI Gym as
well as a physical ‘Reacher’ task using a robotic arm.

Another adversarial approach using visual observations has been proposed by Stadie et al.
[2017] who also try to solve the viewpoint difference problem. In their method titled ‘Third-person
Imitation Learning’, demonstrations are in the form of third-person observations rather than first-
person. The discriminator network in this case is divided into the feature extraction layers (early
layers of the network) and the classification layers (that do the discrimination between demonstra-
tor and imitator). The network is then trained in such a way that the feature extraction layers are
invariant to viewpoint differences. This approach has led to some success for tasks such as ‘Reacher’
in OpenAI Gym with observations from different camera angles.

The main drawback of the IRL-based IfO approach is that the RL formulation requires sig-
nificant environment interactions during learning. This is especially true for Adversarial methods

20 2. Background and Related Work

which tend to have very high sample complexities [Torabi et al., 2019].

2.4. Conclusions
In this chapter, we outlined the basic framework of Imitation Learning (IL) and discussed important
methods and algorithms in this domain. We also saw how human interaction has proved to be a
powerful tool that can improve agent performance and increase the applicability of IL. Moreover, we
elaborated on the Imitation from Observation (IfO) problem and briefly discussed some approaches
to learning using state-space information.

The main conclusions we note from this chapter are the following:

• Among interaction-based learning approaches, the usage of corrective feedback is the most
promising approach in scenarios with non-expert demonstrators. This is because providing
corrective feedback in the form of adjustments to the current states/actions being executed
by the agent is easier for non-experts (as opposed to providing exact state/action labels that
should be executed). Moreover, evaluative feedback methods are sensitive to the demonstra-
tor’s scoring of good and bad behavior and evaluation is ambiguous when comparing multiple
sub-optimal agent behaviors.

• Among corrective feedback learning techniques, a typical approach is to utilize corrections in
the action-space [Celemin and Ruiz-del Solar, 2019; Pérez-Dattari et al., 2019] or to use pre-
defined or learnt primitives [Argall et al., 2008, 2011] to guide agents. However, the action-
space is often not conducive for providing feedback to the agent (Eg. Action-space as joint
torques for a robotic arm). Moreover, defining primitives requires significant prior knowledge
about the environment as well as the task to be performed, thus limiting the generalizability
of such methods. An alternative approach could be to use corrective feedback in state-space
to guide agents. This is however, still an open problem.

• To enable learning using state-space information, many Imitation from Observation (IfO)
methods propose using an Inverse Dynamics Model (IDM) [Nair et al., 2017; Torabi et al.,
2018]. Such an approach could also be applied for an Interactive Imitation Learning method
in order to compute requisite actions when provided corrective feedback in state-space. An
implication for such a method however, is the additional focus towards learning an accurate
dynamics model. A sufficiently rich state-action transition dataset should be sampled which
also implies a significant number of environment interactions.

With these insights in mind, we propose a new Interactive Learning method, details of which
are provided in the next chapter.

3
Teaching Imitative Policies in

State-space (TIPS)

As noted in the previous chapter, there are currently no Interactive Imitation Learning techniques
that utilize human corrective feedback in state-space. Since providing such state feedback is often
easier for a demonstrator (as opposed to feedback in the action-space), developing such a technique
can reduce the required demonstrator expertise in Imitation Learning (IL). This chapter details our
proposed method: Teaching Imitative Policies in State-space (TIPS). With this we aim to provide an
intuitive mechanism for non-expert demonstrators to teach agents. Throughout the presentation of
this method, we assume environments with continuous state-spaces (s ∈ S) and unknown dynam-
ics. The method is however applicable to both continuous and discrete action spaces (a ∈ A).

Section 3.1 details the learning framework of the method. In TIPS, on-line binary feedback is
obtained from the human demonstrator (implying an increase/decrease of particular states) and
the agent policy is accordingly modified.

Section 3.2 elaborates on the indirect inverse dynamics mechanism used in TIPS. This is used
to compute actions that realize the state changes requested by the demonstrator.

Section 3.3 delineates the algorithm in full while some comments and conclusions about TIPS
are discussed in section 3.4.

3.1. Learning Framework
The general idea in TIPS is to let the agent execute its policy while a human demonstrator observes
and suggests modifications to the state visited by the agent at any given time. This feedback is then
used to update the agent’s policy on-line i.e. during the execution itself. The initial policy of the
agent could be random or could be pre-trained using prior knowledge/demonstration (if available).

The learning framework of TIPS is similar to another corrective feedback method: D-COACH
[Pérez-Dattari et al., 2019; Celemin and Ruiz-del Solar, 2019]. However, while D-COACH uses feed-
back in the action-space, TIPS uses feedback in state-space. In this framework, human feedback
(ht) is in the form of binary signals implying an increase/decrease in the value of a state (i.e.
ht ∈ {−1,0,+1} where 0 implies no feedback). Each dimension of the state has a corresponding
feedback signal. To convert this binary signal into a modification value, an error constant hyper-

21

22 3. Teaching Imitative Policies in State-space (TIPS)

parameter (e) is chosen. Thus the human desired state (sdes
t+1) is computed as:

sdes
t+1 = st +ht .e. (3.1)

It is important to note that the feedback (ht) and the desired modification can be both in the
full state or partial state. Thus, the demonstrator is allowed to just suggest modifications in the
partial state dimensions that are well understood or easy to observe for the demonstrator. More-
over, the binary feedback mechanism is simpler for the demonstrator as opposed to providing an
exact value of the desired state. Even though the state computed using binary feedback (sdes

t+1) may
be larger than what the demonstrator is suggesting, Celemin and Ruiz-del Solar [2019] and Pérez-
Dattari et al. [2019] have shown that it is sufficient to capture the trend of modification. This is be-
cause, when updating the policy, information from past feedback is also used via a replay memory
mechanism. The idea is that if a sequence of feedback provided in a state is in the same direction
(increase/decrease), the demonstrator is suggesting a large magnitude change. Conversely, if the
feedback alternates between increase/decrease, a smaller change around a set-point is suggested
[Celemin and Ruiz-del Solar, 2019].

With the desired state known, we compute the action (ades
t) required to realize the transition

from the current state to the desired state i.e st → sdes
t+1. To do this we use an Indirect Inverse Dy-

namics computation. This is because, since the desired state transition could be in the partial state
dimension or could be infeasible, directly using an Inverse Dynamics Model (IDM) is ill-suited. De-
tails about the action computation are provided in section 3.2.

After computing the required action ades
t , the policy (π(s)) can be trained in a supervised-

learning fashion using the state-action pair (st , ades
t). Training can differ based on the type of rep-

resentation function used for the policy. We represent policies using feed-forward artificial neural
networks and hence use a similar training mechanism as D-COACH [Pérez-Dattari et al., 2019]. This

Environment Human

Agent

Execute	action
� = �(�)

Action
�

Feedback
ℎ

State
�

Observed	state
�

����

ℎ = 0

= � + ℎ. ��
���

Compute	desired	state
�

Update	policyExecute	action
� = �

���

Compute	action								�
���

(Indirect	Inverse	Dynamics)

Figure 3.1: High-level representation of the learning framework of TIPS.

3.2. Computing Actions via Indirect Inverse Dynamics 23

involves an immediate training step using the current state-action sample as well as a training step
using a batch sampled from a ‘demonstration replay memory’ (similar to experience replay [Lin,
1992]). The demonstration replay memory stores previously computed state-action pairs based on
previous feedback received. As noted before, this replay mechanism ensures that the learning is as
per the sequence of changes suggested by the demonstrator. Moreover, the combination of the two
training steps ensures that the policy is updated based on recent feedback while also avoiding the
catastrophic forgetting problem in neural networks [French, 1999]. Lastly, to ensure sufficient learn-
ing iterations to train the neural network, a batch replay training step is also carried out periodically
every Tupd ate time-steps. The full algorithm is detailed in section 3.3.

Crucially, the computed action ades
t is also executed immediately by the agent. This helps in

visiting the subsequent states that the demonstrator wants to visit. It also speeds up the learning
process since further feedback can be received in subsequent states to learn the next actions to be
taken. Moreover, executing the computed action ades

t also makes it easy for the human demonstra-
tor to observe the effect of the feedback that they have just provided. An implication of this however
is that the action needs to be computed in real-time. A high-level view of the learning framework
can be seen in Figure 3.1.

3.2. Computing Actions via Indirect Inverse Dynamics

For the computation of actions (at) that lead to the desired state transitions (st → sdes
t+1), many meth-

ods have proposed using an Inverse Dynamics Model (IDM) [Nair et al., 2017; Torabi et al., 2018].
However, IDMs are ill-suited in our case for two main reasons. Firstly, the feedback provided by the
demonstrator can be in the partial state-dimension, leading to ambiguity regarding the desired state
transition in the remaining dimensions. For instance, the state-space of the environment could in-
clude both position and velocity while the demonstrator only provides feedback on the position. In
this case the necessary desired velocity transition is unknown. Secondly, the desired state transition
(st → sdes

t+1) may be infeasible. There may not exist an action that leads to the human suggested state
transition in a single time-step. In such cases the IDM provides no solution and the method fails.

To avoid these pitfalls, we propose an indirect inverse dynamics mechanism. This involves
sampling possible actions (a ∈ A) and using a learnt forward dynamics model (f) to predict the
next states (ŝt+1 = f (st , a)) for these actions. The action that results in a subsequent state that is
closest to the desired state in the partial state dimensions is chosen. Mathematically, we can write
this as:

ades
t = arg min

a

∣∣∣∣∣∣ f (st , a)− sdes
t+1

∣∣∣∣∣∣ ,

where a ∈ A (Na uniform samples).
(3.2)

The actions are uniformly sampled from the action-space A which can be discrete or continuous
and the number of samples Na is a hyper-parameter. This indirect inverse dynamics formulation
allows us to compare only the state dimensions of interest and compute actions accordingly. More-
over, it avoids the infeasibility problem altogether since the objective is to choose the action that
brings us closest to the desired next state, regardless of whether the desired state transition is feasi-
ble.

The success of this mechanism depends on a few key factors. Firstly, an accurate Forward
Dynamics Model (FDM) needs to be learnt. For this, our proposed model-learning technique is

24 3. Teaching Imitative Policies in State-space (TIPS)

explained in the next sub-section 3.2.1. Secondly, the chosen number of samples Na should be a
sufficiently large to ensure that an appropriate action is sampled that brings us close enough to the
desired state. Lastly, there can be scenarios in which there exist multiple actions that lead to the
same partial state transition, leading to ambiguity around action selection. For example, consider
a task performed by a robotic manipulator. There can be multiple viable actions that result in the
desired state transition in the position of the end-effector. In such cases, to break ties among such
actions, we propose selecting the action that results in the least predicted change in the full state i.e.
minimizes ||st − ŝt+1||.

3.2.1. Model Learning

We propose a sampling-based approach to learn the Forward Dynamics Model (FDM) in a
supervised-learning fashion. An implication of this is that a sufficiently rich state-action transi-
tion dataset needs to be sampled, requiring a significant number of environment interactions. We
propose a two-stage learning procedure similar to the one used in Behavioral Cloning from Obser-
vation (BCO) [Torabi et al., 2018].

In an initial stage (before any teaching by the demonstrator), the agent is allowed to gain ex-
perience of the dynamics by letting it execute an exploration policy πe . This could be a random
exploration policy or could be pre-defined based on prior information about the environment. The
number of experience samples to be generated is a hyper-parameter (Ne) chosen specific to the en-
vironment. The generated samples, {(si , ai , si+1)i=Ne

i=1 }, are stored in an experience buffer E and used
to train a FDM fθ. This involves learning the model parameters θ such that:

θ∗ = arg min
θ

i=Ne∑
i=1

∣∣∣∣si+1 − fθ(si , ai)
∣∣∣∣ . (3.3)

Solving this equation for parameters θ can be done using any supervised-learning procedure based
on the representation function used for the FDM (fθ).

This initial FDM is then further improved using the experience gained in the demonstrator
teaching phase. The state-transitions and actions taken by the agent are continuously added to the
experience buffer E and the FDM is updated at the end of every episode. The update is done using
all prior experience i.e. batches sampled from the experience buffer E . This second learning stage
not only fine-tunes the model but also helps in learning the dynamics in state-action spaces that
are newly visited by the agent as it learns its policy.

3.3. Algorithm in full
The full procedure of TIPS can be seen in Algorithm 3.

As mentioned previously, in an initial Model-learning phase, samples are generated by execut-
ing an exploration policy πe (random policy in our implementation) and used to learn an initial
Forward Dynamics Model (FDM) fθ (solving equation 3.3). Moreover, the samples are added to an
experience buffer E that is used later to update the model. In our implementation we represent the
FDM using a feed-forward neural network.

In a second Teaching phase, the human demonstrator suggests changes to the state visited
by the agent i.e. st → sdes

t+1. To compute the action required for this state transition we use the
indirect inverse dynamics as detailed in section 3.2. The computed action ades

t is also executed

3.3. Algorithm in full 25

Algorithm 3: Teaching Imitative Policies in State-space (TIPS)

Initial Model-Learning Phase:

Require: Number of exploration samples Ne

Initialize:
Forward-dynamics model fθ,
Exploration policy πe (random/prior knowledge),
Experience buffer E = []

for i = 1,2...Ne do
Generate sample (si , ai , si+1) by executing policy πe

Append sample to experience buffer E
end

Learn model fθ using inputs {si , ai }Ne
1 and targets {si+1}Ne

1

Teaching Phase:

Require: Forward-dynamics model fθ, Experience buffer E , Number of action samples Na ,
Error constant e, Periodic policy update interval Tupd ate

Initialize:
Agent policy πφ (random/prior knowledge),
Demonstration buffer D = []

for episodes do
for t = 0,1,2.....T do

Visit state st

Get human corrective feedback ht

if ht isnot 0 then
errort = ht .e
Compute desired state sdes

t+1 = st+ errort

Compute action ades
t = arg min

a

∣∣∣∣ fθ(st , a)− sdes
t+1

∣∣∣∣, using Na sampled actions

Append (st , ades
t) to demonstration buffer D

Update policy πφ using pair (st , ades
t) and using batch sampled from D

Execute action at = ades
t , reach state st+1

Append (st , at , st+1) to experience buffer E
else

No feedback
Execute action at =πφ(st), reach state st+1

Append (st , at , st+1) to experience buffer E
end
if mod(t ,Tupd ate) then

Update policy πφ using batch sampled from demonstration buffer D
end

end
Update learnt FDM fθ using samples from experience buffer E

end

26 3. Teaching Imitative Policies in State-space (TIPS)

immediately. The policy πφ is updated using the pair (st , ades
t) as well as a batch sampled from

the demonstration buffer D that stores previous corrections. We represent the policy using a feed-
forward neural network which is randomly initialized with small weights.

Finally, to ensure enough training iterations, the policyπφ is trained periodically using samples
from the demonstration buffer D . Moreover, to improve the FDM, it is trained every episode using
the experience gathered in E .

3.4. Discussion
In this chapter we delineated our proposed method TIPS that uses human corrective feedback in
state-space to teach agent behavior. We explained our binary feedback mechanism (inspired by
COACH [Celemin and Ruiz-del Solar, 2019]) and how it makes providing demonstration simple for
the demonstrator. Unlike COACH however, our method allows the demonstrator to provide relative
corrections in both discrete and continuous action spaces. We also noted how computing the ac-
tions required to perform the suggested state transitions is a challenge when the feedback received
is in partial state dimensions. To tackle this, we elaborated on our indirect inverse dynamics com-
putation.

There are however, some limitations of our approach. Firstly, model-learning through random
sampling can be difficult in many environments and typically requires a significant number of en-
vironment interactions. This can be a limiting factor in scenarios where environment interaction is
expensive. Another factor for consideration is that our action computation technique requires uni-
formly sampling Na possible actions, followed by real-time execution of the chosen action. In high-
dimensional continuous action spaces, this requires significant computational power, affecting the
scalability of the method to such spaces. Another problem that is unaddressed by TIPS is credit as-
signment. The feedback provided by the demonstrator is assumed to be applicable to the current
state st . However, in many relatively fast environments, the feedback may have been intended for a
past state. Nevertheless, as we will show in the next chapters, these limitations were not significant
in practice when learning several control tasks. Overall, we were able to learn a sufficiently accurate
forward dynamics model, compute correct actions quickly and avoid credit assignment problems
even with non-expert demonstrators.

In the next chapters, we detail our experiments and provide results obtained from the evalua-
tion of TIPS.

4
Experimental Setting

In this chapter, we provide information about the experimental setting for the evaluation of our
method: Teaching Imitative Policies in State-space (TIPS). Experiments are setup with human
teachers who are non-experts and our main criteria for evaluation are (i) task performance of the
trained agent over time and (ii) the ease of demonstration for the human teacher.

Firstly, some implementation details of the method are provided, followed by information
about the different domains and tasks used for evaluation. The techniques/methods that are used
for comparison are then mentioned. Finally, we elaborate on the setup for conducting trials with
human teachers.

4.1. Implementation of Method
Our implementation of TIPS (in python) is available at: github.com/sjauhri/Interactive-Learning-
in-State-space. As mentioned previously, we represent the forward dynamics model (f) and pol-
icy (π) as feed-forward artificial neural networks. We use the TensorFlow python library to imple-
ment and train the neural networks. Training of the neural networks is done in a standard super-
vised learning fashion and for optimization we use the Adam variant of stochastic gradient descent
[Kingma and Ba, 2014]. The number of layers and sizes of the neural networks vary as per the task
being learnt and these parameter settings can be seen in Table 4.1. In discrete action-spaces, the
neural networks consist of an additional soft-max layer at the output. Both the model and the pol-
icy networks are initialized with random small weights.

For model-learning, we use a random exploration policy (πe) and the number of initial explo-
ration samples (Ne) vary with the size of state-action space and complexity of the task to be learnt.
The states for which feedback is provided are also chosen specific to the task. The number of actions
to be sampled (Na) for computing the inverse dynamics is based on the size of the action space. The
parameter settings for each of the domains/tasks we use for evaluation can be seen in Table 4.1.

27

https://github.com/sjauhri/Interactive-Learning-in-State-space
https://github.com/sjauhri/Interactive-Learning-in-State-space

28 4. Experimental Setting

Table 4.1: Parameter settings in the implementation of TIPS for different evaluation tasks.

Parameter Value
CartPole Reacher LunarLander Robot-Fishing

No. of exploration 500 10000 20000 5000
samples (Ne)

States for feedback Pole tip x-y position Vertical, angular x-z position
position of end effector position of end effector

Error constant (e) 0.1 0.008 0.15 0.05
No. of action 10 500 500 1000
samples (Na)

Periodic policy update 10 10 10 10

interval (Tupd ate)

FDM Network (fθ)

Network layer sizes 16, 16 64, 64 64, 64 32, 32
Learning rate 0.005 0.005 0.005 0.005

Batch size 16 32 32 32

Policy Network (πφ)

Network layer sizes 16, 16 32, 32 32, 32 32, 32
Learning rate 0.005 0.005 0.005 0.005

Batch size 16 32 32 32

4.2. Evaluation Domains

4.2.1. OpenAI Gym

The OpenAI gym toolkit [Brockman et al., 2016] provides standardized simulated environments and
tasks for the evaluation of learning agents. We use three such environments for the evaluation of
agents trained via TIPS, namely: CartPole, Reacher and LunarLanderContinuous (depicted in Fig-
ure 4.1). Each OpenAI gym environment has a pre-defined reward function and thus the net reward
obtained by the agent during execution i.e. return can be used as a performance metric.

4.2.1.1. CartPole

This is a classic control problem which involves balancing a pole attached to a cart which moves
along a friction-less track. The cart is controlled by applying a force to it. Thus the action-space is
discrete with the actions being a force applied to the cart towards the left or right. A reward of +1
is provided for every time-step that the pole remains upright. The maximum length of an episode
is 200 time-steps but can also end if the pole is more than 40 degrees from the vertical or if the cart
moves more than 2.4 units from the center. To make the task viable for demonstration, the duration
of each execution time-step is set to 75ms.

In our TIPS implementation for this task, we chose the position of the tip of the pole as the state
based on which feedback is provided. Thus, the human demonstrator needs to observe the tip of
the pole and suggest which direction the tip should move (left/right) in order to balance the pole.

4.2. Evaluation Domains 29

Figure 4.1: Representative screenshots of (from left to right) the CartPole, Reacher and LunarLanderContinuous tasks in
OpenAI Gym [Brockman et al., 2016].

4.2.1.2. Reacher

The Reacher task involves using a 2 DOF robotic arm to reach a particular target position in a flat
plane. This task uses the Mujoco physics engine [Todorov et al., 2012] for simulation. The actions
(continuous) are in the form of forces at the two joints which move the two arms clockwise or an-
ticlockwise. A negative reward is provided at every time-step based on the the force applied at the
joints as well as the distance between the end effector and the target position. The length of an
episode is set to 500 time-steps. The duration of each execution time-step is set to 50ms.

In our TIPS implementation for the Reacher task, the demonstrator provides feedback based
on the x-y Cartesian position of the end effector. Thus instead of providing actions in the form of
forces, feedback is provided in the form of up/down/left/right signals which accordingly move the
end-effector in the x-y plane. Since, the movement of the arm is quite sensitive to actions/forces
applied at the joints, we restrict the force to a maximum of 50% of the total capacity. Importantly,
the Reacher problem is simplified in our experiments by keeping the target position fixed over all
episodes during training and evaluation. This makes it easier to learn a policy via demonstration
since the learnt behavior does not need to generalize to different target positions. This simplifica-
tion is done mainly to make it feasible for the human demonstrators to teach a good policy in a
relatively short amount of time. The simplification also makes it easier for the human demonstrator
to compare state and action-space feedback since the target position is the same in both types of
experiments.

4.2.1.3. LunarLanderContinuous

This problem involves flying a Lunar-Lander craft to a landing pad between the two flags (Fig-
ure 4.1). The actions are two continuous values that control the firing of the landers’ main engine
and steering/side engines. The first action powers the main (bottom) engine while the second ac-
tion powers the side engines (left or right but never both). The engines do not fire with less than
50% power. The lander starts from the top of the screen and needs to navigate to the landing pad at
the bottom. This entails a reward of 140, though a -20 reward is received for each leg of the lander
that is damaged in the landing process. Moreover, the firing of engines is punished with a small
negative reward every time-step. The episode ends if the lander crashes or comes to rest, receiving
an additional -100 or +100 respectively. The maximum episode length is set to 1000 time-steps. The
duration of each execution time-step is set to 80ms.

The states chosen for providing feedback in the implementation of TIPS for this task include
the vertical and angular positions of the lander (in the world frame). The human teacher provides
feedback in the form of up/down signals to modify the vertical position and left/right signals to
suggest a anti-clockwise/clockwise rotation of the lander. Such feedback has a stabilizing effect
when flying the lander since the vertical position is maintained even when modifying the angular

30 4. Experimental Setting

Figure 4.2: The robotic ‘fishing’ task using a KUKA lbr iiwa 7 robot, visualized in Gazebo (left) and with the real robot
(right). The task is to place the swinging ball tied to the end effector of the robot into the cup.

position and vice versa. The teacher is also allowed to provide feedback in both state dimensions
simultaneously (i.e. up+left, down+right etc.).

4.2.2. Robotic Fishing Task

To validate the application of TIPS on a real robot, we design a simple experiment for a robotic
‘fishing’ task. For this task we use a KUKA LBR iiwa7 robotic manipulator with a ball attached to its
end-effector by a thread. The task is to swing the ball into a nearby cup/slot (similar to handling a
fishing rod with a bait attached). To reduce the complexity of the task, the movement of the robot
end-effector (and ball) is restricted to a 2-D x-z Cartesian plane i.e. height and forward/backward
movement. This is done by restricting the usage of the robot’s joints (only the 2nd, 4th and 6th joints
are used). The task is visualized in Figure 4.2.

The experiment is first validated using simulations of the task in the Gazebo simulator followed
by execution using the real robot. For simulations, as well as for interfacing with the robot, we use
a ROS interface and the iiwa stack [Hennersperger et al., 2017]. The robot is controlled using a iiwa
stack position controller that controls the joint angles. The actions taken by the robot are in the form
of relative changes to the joint angles. An external camera is used to track the position of the ball
using OpenCV color segmentation and blob detection. The overall state-space of the environment
consists of the joint angles, joint angular velocities and the position and velocity of the ball in the x
and z axes.

To teach the task using TIPS, feedback is provided in the x-z Cartesian position of the end-
effector. The demonstrator provides up/down/left/right signals that should accordingly move the
end-effector in the x-z plane. To enable this, a forward dynamics model in the joint-angle space is
learnt. Thus the model is used to predict the position of the end-effector based on the joint angle
commands (actions) sent to the robot. An appropriate action is chosen from a sample size of 1000
actions (Parameter settings in Table 4.1).

To evaluate the task, we define a reward function to be used as a performance metric. The
function is inspired from the reacher task and consists of a negative reward at every time-step based
on the magnitude of the action command sent to the robot as well as the distance between the ball
and the center of the cup/slot (rt =−‖at‖−‖distt ‖). Note that this experiment is run only to validate

4.3. Methods for Comparison 31

the application of TIPS and comparisons are not made with other learning methods.

4.3. Methods for Comparison
We evaluate and compare TIPS to other techniques based on two main criteria: (i) the task per-
formance of the trained agent over time and (ii) the total demonstration effort required by the hu-
man teacher. Firstly, we compare the performance of the TIPS agent with the demonstrator’s own
performance when executing the task via tele-operation. We further compare with other agents
trained using standard Imitation Learning (IL) techniques. It is also of interest to highlight the dif-
ferences between demonstration in state-space versus action-space. For this, we compare both
tele-operation and corrective feedback learning techniques in state and action spaces.

Following is the list of techniques used for the comparison:

• Tele-operation in Action-space: The demonstrator is asked to execute the task by providing
action values. Actions are in the form of forces to the cart/joints for the CartPole and Reacher
tasks and firing the main/side engines for the LunarLander task.

• Tele-operation in State-space: The demonstrator is asked to execute the task by providing
state-space information and computing actions via the indirect inverse dynamics mechanism
of TIPS. The states that the demonstrator provides feedback on are the same as the ones used
to teach in TIPS (Table 4.1).

• Behavioral Cloning (BC): Supervised learning to imitate the demonstrator using state-action
demonstration data recorded during tele-operation. Notably, we only use demonstrations
from tele-operation episodes where the demonstrator was successful in performing the task.
Success is defined as a return of atleast 40% in the range of minimum to maximum return
for the three tasks. Agents are trained using both action-space and state-space tele-operation
data and the better performing agent is used for performance comparison.

• Generative Adversarial Imitation Learning (GAIL) [Ho and Ermon, 2016]: Inverse Reinforce-
ment Learning (IRL) method that uses adversarial learning to learn a reward function and pol-
icy. Similar to BC above, the successful state-action demonstration data recorded during tele-
operation is used for imitation. Agents are trained using both action-space and state-space
tele-operation data and the better performing agent is used for performance comparison. The
implementation of GAIL by Hill et al. [2018] is used for the tests.

• D-COACH [Pérez-Dattari et al., 2019]: Interactive Imitation Learning method that uses bi-
nary corrective feedback in the action space. The demonstrator suggests modifications to the
current actions being executed to train the agent as it executes the task.

4.4. Experiment Setup with Human Teachers
We run experiments with non-expert human participants who have no prior knowledge of the tasks.
A total of 22 sets of experiments are performed, with 8, 8 and 6 participants for the CartPole, Reacher
and LunarLander tasks respectively. All the participants belong to an age group of 25 to 30 years.

Participants are first allowed to tele-operate and get acquainted with/understand the goals of
the task. During execution, the performance metric i.e. the return after every episode is provided to

32 4. Experimental Setting

the participants. Subsequently, the participants perform four different experiments, namely: Tele-
operation in action-space, Tele-operation in state-space, training an agent using D-COACH and
training an agent using TIPS. To compensate for learning effect (i.e. participants learning and im-
proving over time), the order of the experiments is changed for every participant. For consistency
between the four experiments with respect to the environment stochasticity, the same random seed
is used for all four experiments. The seed is changed for every new participant.

When performing tele-operation, the demonstrator provides actions and the corresponding
states are recorded. Tele-operation is deemed to be complete once no new demonstrative informa-
tion can be provided. When training interactively using D-COACH and TIPS, the demonstrator pro-
vides feedback until no more agent performance improvement is observed. The maximum number
of episodes for all the experiments is set to 50 episodes.

It is also of interest to capture and compare the demonstration effort required for performing
and teaching the tasks. For this, the human teachers are asked to fill out the NASA Task Load Index
Questionnaire [Hart and Staveland, 1988] after each experiment. In this questionnaire, ratings re-
lated to the mental demand, physical demand, time pressure, performance, effort and frustration
during the different experiments are obtained. The questionnaire is provided in Appendix B.

The results obtained from the experiments are provided in the next chapter.

5
Results

In this chapter, we provide the results from our experiments. We delineate the performance im-
provements provided by our method TIPS in trials where agents are trained by human participants.
We compare the TIPS agent’s performance to the demonstrator (tele-operation) as well as to agents
trained via Behavioral Cloning (BC) and GAIL [Ho and Ermon, 2016] using the tele-operation data.
Furthermore, a comparison of state-space and action-space demonstration is done by comparing
tele-operation in both spaces as well as interactive learning in both spaces using TIPS and D-COACH
[Pérez-Dattari et al., 2019].

To assess the demonstration effort required in state-space vs action-space teaching, we use
the ratings filled out by the human teachers in the NASA Task Load Index Questionnaire [Hart and
Staveland, 1988].

Finally we validate the application of TIPS to a real robot by displaying the performance ob-
tained when learning the robotic fishing task.

5.1. Performance Improvements
Figure 5.1 shows the performance in terms of average return obtained for the tasks (averaged over
all participants) using tele-operation, agents trained via IL techniques and agents trained using our
method: TIPS.

We notice that tele-operation is challenging for the demonstrator, especially for time-critical
tasks such as CartPole and LunarLander where the system is inherently unstable. The Reacher task
is solved by the demonstrator albeit with a relatively large overall force applied and large position
error between the end effector and target (as compared to TIPS). The LunarLander task is the most
challenging for demonstrators with no participant successful in reliably performing the landing.

Agents trained using IL techniques (Behavioral Cloning (BC) and GAIL), with the successful
tele-operation data (*40% return in the normalized range), perform better than the demonstrator for
the CartPole task. For this task, the state-action space is the smallest and the consolidated successful
demonstration data over multiple episodes of tele-operation is sufficient to learn a good policy and
outperform the demonstrator. However, this is not true for the Reacher and LunarLander tasks. In
the Reacher task, the IL agents tend to overshoot the desired target position and keep performing
recovery actions, leading to further negative rewards and thus a low return. For the LunarLander

33

34 5. Results

Tele-Op (A) Tele-Op (S) BC* GAIL* TIPS
0.00

0.25

0.50

0.75

1.00

Re
tu

rn

CartPole

Tele-Op (A) Tele-Op (S) BC* GAIL* TIPS
0.00

0.25

0.50

0.75

1.00

Re
tu

rn

Reacher

Tele-Op (A) Tele-Op (S) BC* GAIL* TIPS
Method

0.00

0.25

0.50

0.75

1.00

Re
tu

rn

LunarLanderContinuous

Figure 5.1: Performance achieved using the different methods in the experiments: Tele-Operation (Action space), Tele-
Operation (State space), Behavioral Cloning (BC), GAIL and our method TIPS. The return is normalized for each environ-
ment and averaged over multiple episodes and over all participants (with the variance as indicated). Behavioral Cloning*
and GAIL* use only successful tele-operation data (return of atleast 40% in the normalized range.)

5.2. State-space vs Action-space 35

task, the provided demonstrations do not generalize well to the situations encountered by the agent.
This can be attributed to the higher stochasticity of the task as well as inconsistent demonstrations
provided by the teachers.

Interactively learning via TIPS leads to the highest agent performance. It is observed that the
first few episodes of training are similar to tele-operation in that the demonstrator provides a large
amount of feedback based on which actions are immediately executed. After this stage, the demon-
strator feedback reduces significantly and only corrections and fine-tuning of the behavior is done.
This second learning stage especially leads to the learning of well performing policies. All partici-
pants are successful in achieving the maximum return for the CartPole task. High performing poli-
cies are also learnt for the Reacher task. The performance improvement with TIPS for the LunarLan-
der task however, is not significant. While the participants are successful in teaching the lander to
not crash, they struggle to teach it to land and thus the agent ends up flying out of the frame which
leads to a low return.

5.2. State-space vs Action-space

5.2.1. Performance

Figure 5.2 compares the performance of state-space interactive learning (TIPS) and action-space
interactive learning (D-COACH) over training episodes. The performance obtained during tele-
operation in state-space and action-space can be seen in Figure 5.1.

In tele-operation, state-space demonstration leads to better performance for the CartPole task.
Participants find it easier to provide feedback in terms of the position of the pole since balancing the
pole is the main goal of the task. For the Reacher task however, tele-operation in state-space does
not perform better. This is mainly due to inconsistencies of actions resulting from the provided
feedback. Since the forward dynamics model is learnt and not perfect, the computed actions are
always slightly different, even in similar state-spaces. This can make performing the task difficult
for the demonstrator. For the LunarLander task, the difference in tele-operation performance in
state and action spaces was insignificant.

When comparing interactive learning techniques (TIPS and D-COACH), the advantage of state-
space feedback is significant for the Reacher task. Higher agent performance is achieved by all of
the participants when teaching using TIPS as compared to D-COACH. For the CartPole task, all
participants are able to train agents that achieve the highest return using both TIPS and D-COACH
though fewer training episodes are needed when using TIPS (Figure 5.2). For the LunarLander task
there is no significant performance improvement observed when using state-space demonstration.
The overall demonstration mechanism in state-space using angular position is not too different
from demonstration in action-space. Though state-space feedback does provide a stabilizing effect
when flying the lander and leads to fewer crashes, it does not translate to a higher return. This is
mainly due to the lander flying out of the frame. Since crashing the lander entails a smaller penalty
as compared to flying out of the frame, no significant performance improvement is observed when
using state-space feedback.

36 5. Results

50

100

150

200

Re
tu

rn

CartPole

Method
TIPS
D-COACH

100

75

50

25

0

Re
tu

rn

Reacher

Method
TIPS
D-COACH

0 10 20 30 40 50
Episodes

600

400

200

0

200

Re
tu

rn

LunarLanderContinuous

Method
TIPS
D-COACH

Figure 5.2: Average performance of TIPS and D-COACH agents over training episodes when trained by human
participants (with variance between participants as indicated). TIPS uses state-space feedback while D-COACH uses

action-space feedback.

5.2. State-space vs Action-space 37

Table 5.1: Average ratings provided by the participants in the NASA Task Load Index questionnaire [Hart and Staveland,
1988]. Values are normalized, with smaller magnitude implying lower mental demand etc. (S) and (A) are used to denote

state-space and action-space techniques respectively.

Mental Physical Temporal 1-Performance Effort Frustration
Demand Demand Demand

CartPole

Tele-Operation (S) 0.54 0.53 0.56 0.19 0.56 0.37
Tele-Operation (A) 0.71 0.61 0.7 0.33 0.71 0.69
TIPS (S) 0.29 0.33 0.33 0.11 0.37 0.19
D-COACH (A) 0.49 0.37 0.43 0.14 0.44 0.3

Reacher

Tele-Operation (S) 0.8 0.79 0.73 0.46 0.76 0.66
Tele-Operation (A) 0.66 0.56 0.63 0.19 0.69 0.47
TIPS (S) 0.53 0.64 0.61 0.17 0.63 0.3
D-COACH (A) 0.63 0.66 0.57 0.2 0.61 0.41

LunarLanderContinuous

Tele-Operation (S) 0.8 0.8 0.7 0.37 0.77 0.73
Tele-Operation (A) 0.8 0.77 0.7 0.4 0.8 0.6
TIPS (S) 0.8 0.7 0.67 0.3 0.73 0.73
D-COACH (A) 0.8 0.77 0.67 0.27 0.73 0.6

5.2.2. Demonstrator Effort

To capture the the demonstrator’s effort during teaching and tele-operation in state vs. action
spaces, the NASA Task Load Index ratings provided by the participants are used (Table 5.1). The
questionnaire is provided in Appendix B.

For the CartPole task, there is a significant reduction in demonstrator task load with state-
space demonstration, both in the tele-operation case and for interactive teaching (TIPS, D-COACH).
When teaching using TIPS, participants report lower ratings for all the parameters with the mental
demand rating reduced by about 40% as compared to D-COACH. Moreover, temporal demand and
participant frustration is reduced by about 25% and 35% respectively. These figures are highlighted
in Table 5.1.

For the Reacher task, teaching using TIPS leads to a 25% lower participant frustration and a
reduction in mental demand of about 16% as compared to D-COACH. For the other ratings, the
improvements are not as significant as CartPole. One of the reasons for this could be the aforemen-
tioned inconsistencies of actions resulting from state-space feedback. Models learnt for the Reacher
task are more complex and not as accurate as the ones in CartPole and thus the demonstrator needs
to be attentive to these inconsistencies in computed actions for the Reacher task. For the LunarLan-
der task, demonstration in state and action-spaces is equally challenging, backed up by little change
in the ratings.

38 5. Results

(a)

30

25

20

15

10

Re
tu

rn

0 20 40 60 80 100
Episodes

0.0

0.1

0.2

0.3

0.4

0.5

Fe
ed

ba
ck

 R
at

e
(/s

ec
)

(b)

Figure 5.3: Results from the validation experiment on the KUKA robot. (a) Left to right, the fishing task performed by
the robot after being taught by the demonstrator for 60 episodes using TIPS. (Episode length is 30 seconds) (b) Return
obtained as per our defined reward function and demonstrator feedback rate over learning episodes. (Values are averaged
over a rolling window of size 10)

5.3. Validation: Robotic fishing task
For validation on a real system, the robotic-fishing task (as described in subsection 4.2.2) is taught
to an agent using TIPS. The experiment was first successfully carried out in simulation using the
Gazebo simulator, followed by experiments on the real robot with a demonstrator in a laboratory
setting. In this section we provide the final results from experiments on the real system (visualized
in Figure 5.3). Since the objective is to validate the application of TIPS, comparisons with other
learning techniques are not made.

To teach the task using TIPS, the teacher provides corrective feedback in terms of the desired
end effector position. Based on some initial trials, a correction magnitude (i.e. error constant e) of
5 centimeters is found to work well for the task. The minimum height of the end effector is limited
such that the ball does not hit the ground plane. For safety reasons, the joint angles are also limited
to between zero and 90 degrees. To avoid the ball rolling off the sides of the cup and thus moving

5.4. Discussion 39

out of the x-z plane, two supports are attached to the sides of the cup.

The learning is evaluated over a period of 100 episodes. Each episode is 30 seconds long, after
which the robot is reset to its starting position. The initial position of the joints and the ball is
randomized by making the robot perform a random motion at the start of every episode. The return,
used as a performance metric, is calculated using a defined reward penalty at every time-step based
on the magnitude of the executed action and the distance between the ball and the center of the
cup.

The agent performance and demonstrator feedback rate over learning episodes can be seen
in Figure 5.3b. The agent successfully learns to reliably perform the task (return of -15) after 60
episodes of training. After about 90 episodes, the agent performance is further improved in terms
of speed at which the task is completed (return of -10). The feedback rate reduces over time as the
agent performs better and only some fine-tuning of the behavior is needed after 60 episodes.

The learnt behavior depends on the strategy used by the demonstrator to perform the task. In
our experiments the demonstrator’s strategy is to move the end effector towards a position above
the cup and choose the appropriate moment to bring the end effector down such that the ball falls
into the cup. This behavior is sucessfully imitated by the agent (shown in Figure 5.3a). Notably, the
robot has to be taught to stay still at the desired final state i.e. when the ball is in the cup. Thus, in
such states, the demonstrator alternately provides feedback signals in opposite directions through
which the agent eventually learns the average behavior at that state i.e. to stay still. A video of the
learnt behavior is available at: https://youtu.be/aN1r8IytsXY.

5.4. Discussion
In this Chapter, we provided the results from our experiments for the evaluation of TIPS.

Through our comparison of TIPS with tele-operation and IL techniques (BC and GAIL), we have
shown that agents trained using TIPS achieve significantly higher performance. This illustrates the
viability of TIPS as an interactive learning technique suitable for scenarios where demonstrators are
non-experts.

Through our comparison of state-space interactive learning (TIPS) with action-space interac-
tive learning (D-COACH), we have shown that state-space feedback is advantageous. Both in terms
of performance over time as well as demonstration effort, TIPS compares favorably to D-COACH
for the CartPole and Reacher tasks. Thus, the merits of state-space interactive learning are clear.
However, it is noted that these advantages are task specific. For the LunarLander task, state-space
feedback helps avoid crashing the lander but poses a new problem of avoiding flying outside the
limits which can still be difficult for demonstrators. It is also noted that actions computed based on
feedback using TIPS can be irregular due to inaccuracies in model learning. Since handling such
scenarios requires demonstrator effort, this can diminish the advantages provided by state-space
feedback.

In the experiment carried out on the KUKA iiwa robot to learn the fishing task, we have shown
that the agent is able to successfully learn a high performing policy in a reasonable amount of time
through state-space feedback (end-effector position). This validates the application of TIPS to a real
robotic task.

We conclude the discussion and this thesis work in the next chapter.

https://youtu.be/aN1r8IytsXY

6
Conclusion

Imitation Learning (IL) techniques enable the programming of agent behavior through demon-
stration and eliminate the need for humans to manually engineer behavior. Moreover, Interactive
Learning techniques have made it easier for demonstrators to train and improve agent performance
by guiding the agent’s actions as it performs the requisite task. However, providing guidance in
terms of ’change of state’ is often easier for human teachers as opposed to ’change of actions’ being
executed. In this thesis we proposed a novel Interactive Learning technique: ‘Teaching Imitative
Policies in State-space (TIPS)’, that uses human corrective feedback in state-space to train agents.

The proposed method TIPS provides a simple binary corrective feedback mechanism (in the
form of increase/decrease signals) in state-space through which demonstrators can train agents.
Unlike similar techniques that use feedback in action space (COACH [Celemin and Ruiz-del Solar,
2019]), the method allows the demonstrator to provide relative corrections in both continuous and
discrete action-space environments (since the actions are computed internally).

Through experiments with non-expert human demonstrators, it is observed that TIPS outper-
forms IL techniques such as BC and GAIL as well as Interactive Learning in action-space (D-COACH
[Pérez-Dattari et al., 2019]). Moreover, the state-space feedback mechanism also leads to a signifi-
cant reduction in demonstrator effort (captured using the NASA Task Load Index [Hart and Stave-
land, 1988]). With these results we have illustrated the viability of TIPS to non-expert demonstration
scenarios and have also highlighted the merits of state-space Interactive Learning.

A caveat of the proposed method however is that, to compute actions, an accurate forward
dynamics model needs to be learnt using random environment interaction samples. This can be
challenging in many environments and can require a large number of environment interactions.
Moreover, as observed in the experiments, inaccuracies in the learnt model can lead to irregular ac-
tions computed. Handling such scenarios requires demonstrator effort and thus diminishes the ad-
vantages provided by state-space feedback. Another consideration is that, for action selection, can-
didate actions are sampled from the entire action-space. This is not scalable to high-dimensional
continuous action spaces, thus affecting the viability of the method to such spaces.

Despite these caveats, we have demonstrated the practical viability of TIPS on a real system
by training an agent for a robotic fishing task. We are able to learn a sufficiently accurate forward
dynamics model, compute correct actions and successfully teach the robotic task to an agent with
good performance.

41

42 6. Conclusion

In conclusion, we have successfully demonstrated a method that makes corrective feedback
learning more feasible in non-expert demonstration scenarios. Moreover, the advantages of Inter-
active Learning in state-space have been established.

Future recommendations
For the extension of this work, a main focus would be towards improving on the current action
computation mechanism (i.e. indirect inverse dynamics). Following are some recommendations
for this:

• Model learning: Improving the accuracy of the learnt model is of course crucial for computing
more accurate actions. For this, one direction to explore could be to use smarter exploration
strategies for acquiring experience samples. With a more complete experience dataset, the
learnt model can be more representative of the ground truth. Another direction could be
to use better knowledge representations for the model, such as Recurrent Neural Networks
that can capture the history of states (although such representations can be especially data
hungry).

• Action selection: In the proposed method, action selection is done by minimizing a simple
cost function based on deviation of the predicted next state with the desired next state. How-
ever, in practice, the demonstrator may not actually require the desired state to be reached
in a single time-step or using a single action. Thus, a time horizon may instead be used with
multiple actions selected over the horizon to reach the desired state. Uniformly sampling ac-
tions from the action-space may not suffice in this case and an optimization method could
instead be used to compute the actions. With these changes, the action computation mech-
anism starts looking more and more like a Model Predictive Control scheme and it would be
very interesting to see if the scheme could be combined with our learning framework.

A
Paper

A draft version of the research paper presenting the method proposed in this thesis: Teaching Imita-
tive Policies in State-space (TIPS), is provided below. The paper will be submitted to the Conference
on Robot Learning (CoRL) 2020.

43

Interactive Imitation Learning in State-space

Snehal Jauhri
TU Delft

Delft, Netherlands
snehal.jauhri@gmail.com

Carlos Celemin
TU Delft

Delft, Netherlands
c.e.celeminpaez@tudelft.nl

Jens Kober
TU Delft

Delft, Netherlands
j.kober@tudelft.nl

Abstract: Imitation Learning techniques enable programming the behavior of
agents through demonstration rather than manual engineering. However, they
are limited by the quality of available demonstration data. Interactive Imitation
Learning techniques, which involve providing feedback while the agent executes
its task, can improve the efficacy of learning. In this work, we propose a novel In-
teractive Learning technique that uses human feedback in state-space to train and
improve agent behavior (as opposed to alternative methods that use feedback in
action-space). Our method titled Teaching Imitative Policies in State-space (TIPS)
enables providing guidance to the agent in terms of ‘changing its state’ which
is often more intuitive for a human demonstrator. The performance of TIPS is
evaluated for various control tasks as part of the OpenAI Gym toolkit and for a
manipulation task using a KUKA LBR iiwa robotic arm. Through continuous im-
provement via feedback, agents trained by non-expert demonstrators using TIPS
outperform the demonstrator and conventional Imitation Learning agents.

Keywords: Imitation Learning, Interactive Imitation Learning, Learning from
Demonstration

1 Introduction

We have been promised an autonomous future in which intelligent agents and robots can be tasked
with driving, mowing our lawns and even performing surgery. To program agents that can perform
such complex and diverse tasks requires developing robust control algorithms [1]. Typically, this
involves engineers using their understanding of the task to mathematically devise algorithms to
achieve the necessary performance. However, this requires considerable expertise and can still be
limited by the number of situations considered by the engineer [2]. In this regard, techniques such
as Reinforcement Learning and Imitation Learning, that allow behavior to be learnt from experience
or from demonstration, provide an advantage.

Imitation Learning (IL) is a machine learning technique through which an agent learns to perform
a task using example demonstrations of the task [3, 4]. It eliminates the need for humans to pre-
program the required behavior for a task, instead utilizing the more intuitive mechanism of demon-
strating it [5]. Advancements in Imitation Learning techniques have led to successes in learning
tasks such as robot locomotion [6], helicopter flight [7] and learning to play games [8]. There have
also been research efforts to make training via Imitation Learning easier for demonstrators. This
is done by allowing them to interact by providing feedback to the agent as it performs the task
[9, 10, 11]. Learning using such interactive methods has further increased the applicability of IL and
often results in better agent performance [12].

One limitation of current Imitation and Interactive Imitation Learning techniques is that they typi-
cally require demonstration or feedback in the action-space of the agent. However, humans com-
monly learn behaviors by understanding the changes in state required for a task, not the precise
actions to be taken [13]. Additionally, providing demonstration or feedback in the action-space can
be difficult for demonstrators. E.g. consider a learning agent for a robotic arm manipulation task.
Providing action-space information to the agent for the movement of individual joints requires con-
siderable demonstrator expertise. It would be easier to instead provide state-space information such
as the Cartesian position of the end effector.

4th Conference on Robot Learning (CoRL 2020), Cambridge MA, USA.

In this paper, a novel Interactive Learning method is proposed that utilizes feedback in state-space
to learn behavior. The main focus of this work is to enable non-expert demonstrators to interactively
train agents.

2 Related Work

In recent literature, several Interactive Imitation Learning methods have been proposed that enable
demonstrators to guide agents by providing corrective action labels [12], corrective feedback [14, 11]
or evaluative feedback [15, 16]. Celemin and Ruiz-del Solar [11] have argued that the usage of cor-
rective feedback is the most promising approach in scenarios with non-expert demonstrators. This is
because providing corrective feedback in the form of adjustments to the current states/actions being
visited/executed by the agent is easier for non-experts (as opposed to providing exact state/action
labels). Moreover, evaluative feedback methods require demonstrator’s to score good and bad be-
havior which can be ambiguous when comparing multiple sub-optimal agent behaviors.

Among corrective feedback learning techniques, a typical approach is to utilize corrections in the
action-space [11, 17] or to use pre-defined or learnt primitives [9, 14] to guide agents. However, the
action-space is often not conducive for providing feedback to the agent (e.g. Action-space as joint
torques of a robotic arm). Further, defining primitives requires significant prior knowledge about the
environment as well as the task to be performed, thus limiting the generalizability of such methods.
An alternative approach, proposed in this work, is to use corrective feedback in state-space to guide
agents.

There has been recent interest in Imitation Learning methods that learn using state/observation in-
formation only. This problem is termed as Imitation from Observation (IfO) and enables learning
from state trajectories of humans performing the task. To compute the requisite actions, many IfO
methods propose using a learnt Inverse Dynamics Model (IDM) [18, 19] which maps state transi-
tions to the actions that produce those state transitions. However, the usage of human interaction to
guide agent behavior in an IfO setting has not been studied.

In our approach, we combine the concept of action computation by learning inverse dynamics with
an Interactive Learning framework. The demonstrator provides state-space corrective feedback to
guide the agent’s behavior towards desired states. Meanwhile an indirect inverse dynamics scheme
is used to ensure the availability of the requisite actions to learn the policy.

3 Teaching Imitative Policies in State-space (TIPS)

The principle of TIPS is to allow the agent to execute its policy while a human demonstrator observes
and suggests modifications to the state visited by the agent at any given time. This feedback is then
used to update the agents policy on-line i.e. during the execution itself. The learning framework
of TIPS is similar to another corrective feedback method: D-COACH (Deep-COrrective Advice
Communicated by Humans) [17, 11]. However, while D-COACH uses feedback in the action-space,
TIPS uses feedback in state-space.

Human feedback (ht) is in the form of binary signals implying an increase/decrease in the value of
a state (i.e. ht ∈ {−1, 0,+1}). Each dimension of the state has a corresponding feedback signal. To
convert this binary signal into a modification value, an error constant hyper-parameter (e) is chosen.
Thus the human desired state (sdest+1) is computed as:

sdest+1 = st + ht.e. (1)

The feedback (ht) and the desired modification can be both in the full state or partial state. Thus, the
demonstrator is allowed to only suggest modifications in the partial state dimensions that are well
understood or easy to observe for the demonstrator. Moreover, the binary feedback mechanism is
simpler than providing an exact value of the desired state. Even though the state computed using
binary feedback (sdest+1) may be larger than what the demonstrator is suggesting, Celemin and Ruiz-
del Solar [11] and Pérez-Dattari et al. [17] have shown that it is sufficient to capture the trend of
modification. This is because, when updating the policy, information from past feedback is also
used via a replay memory mechanism. The idea is that if a sequence of feedback provided in a
state is in the same direction (increase/decrease), the demonstrator is suggesting a large magnitude

2

Environment Human

Agent

Execute	action
� = �(�)

Action
�

Feedback
ℎ

State
�

Observed	state
�

����

ℎ = 0

= � + ℎ. ��
���

Compute	desired	state
�

Update	policyExecute	action
� = �

���

Compute	action								�
���

(Indirect	Inverse	Dynamics)

Figure 1: High-level representation of the learning framework of TIPS

change. Conversely, if the feedback alternates between increase/decrease, a smaller change around
a set-point is suggested [11].

The action (adest) required to realize the transition from the current state to the desired state i.e
st → sdest+1 is computed using a indirect inverse dynamics computation. Since the desired state
transition could be in the partial state dimension or could be infeasible, directly using an IDM is
ill-suited. Instead, we sample possible actions (a ∈ A) and use a learnt forward dynamics model (f)
to predict the next states (ŝt+1 = f(st, a)) for these actions. The action that results in a subsequent
state that is closest to the desired state in the partial state dimensions is chosen. Mathematically, we
can write this as:

adest = arg min
a

∣∣∣∣f(st, a)− sdest+1

∣∣∣∣ ,

where a ∈ A (Na uniform samples).
(2)

The policy (π(s)) is trained in a supervised learning fashion using the state-action pair (st, adest).
Training can differ based on the type of representation function used for the policy. We represent
policies using feed-forward artificial neural networks and use a similar training mechanism as D-
COACH [17]. This involves an immediate training step using the current state-action sample as well
as a training step using a batch sampled from a demonstration replay memory. Lastly, to ensure
sufficient learning iterations to train the neural network, a batch replay training step is also carried
out periodically every Tupdate time-steps.

Crucially, the computed action adest is also executed immediately by the agent. This helps speed up
the learning process since further feedback can be received in the demonstrator requested state to
learn the next action to be taken. Moreover, executing the computed action adest also makes it easy
for the human demonstrator to observe the effect of the feedback that they have just provided. An
implication of this however is that the action needs to be computed in real-time. A high-level view
of the learning framework can be seen in Figure 1.

The full procedure of TIPS can be seen in Algorithm 1.

• In an initial Model-learning phase, samples are generated by executing an exploration pol-
icy πe (random policy in our implementation) and used to learn an initial FDM fθ. The
samples are added to an experience buffer E that is used later when updating the model.
The FDM is represented by a feed-forward neural network.

• In the teaching phase, the policy πφ is trained using an immediate training step as well as a
periodic step using past feedback from a demonstration bufferD. Moreover, to improve the

3

FDM, it is trained after every episode using the consolidated new and previous experience
gathered in E.

Algorithm 1: Teaching Imitative Policies in State-space (TIPS)

Initial Model-Learning Phase:
Require: Number of exploration samples Ne
Initialize:

Forward-dynamics model fθ,
Exploration policy πe (random/prior knowledge),
Experience buffer E = []

for i = 1, 2...Ne do
Generate sample (si, ai, si+1) by executing policy πe
Append sample to experience buffer E

end
Learn model fθ using inputs {si, ai}Ne

1 and targets {si+1}Ne
1

Teaching Phase:
Require: Forward-dynamics model fθ, Experience buffer E, Number of action samples
Na, Error constant e, Periodic policy update interval Tupdate

Initialize:
Agent policy πφ (random/prior knowledge),
Demonstration buffer D = []

for episodes do
for t = 0, 1, 2.....T do

Visit state st
Get human corrective feedback ht
if ht is not 0 then

errort = ht.e
Compute desired state sdest+1 = st+ errort
Compute action adest = arg min

a

∣∣∣∣fθ(st, a)− sdest+1

∣∣∣∣, using Na sampled actions

Append (st, a
des
t) to demonstration buffer D

Update policy πφ using pair (st, adest) and using batch sampled from D
Execute action at = adest , reach state st+1

Append (st, at, st+1) to experience buffer E
else

No feedback
Execute action at = πφ(st), reach state st+1

Append (st, at, st+1) to experience buffer E
end
if mod(t, Tupdate) then

Update policy πφ using batch sampled from demonstration buffer D
end

end
Update learnt FDM fθ using samples from experience buffer E

end

4 Experimental Setting

Our implementation of TIPS is available at github.com/sjauhri/Interactive-Learning-in-State-space.
The forward dynamics model (f) and policy (π) are represented as feed-forward artificial neural
networks. Training is done in a standard supervised learning fashion and for optimization the Adam
variant of stochastic gradient descent [20] is used. Both the model and the policy networks are
initialized with random small weights. The parameter settings for each of the domains/tasks in the
experiments can be seen in Table 1.

4

Table 1: Parameter settings in the implementation of TIPS for different evaluation tasks

CartPole Reacher LunarLander Robot-Fishing

Number of exploration samples (Ne) 500 10000 20000 5000
States for feedback Pole tip x-y position Vertical, angular x-z position

position of end effector position of end effector

Error constant (e) 0.1 0.008 0.15 0.05

Number of action samples (Na) 10 500 500 1000

Periodic policy update interval (Tupdate) 10 10 10 10

FDM Network (fθ) layer sizes 16, 16 64, 64 64, 64 32, 32

Policy Network (πφ) layer sizes 16, 16 32, 32 32, 32 32, 32

Learning rate 0.005 0.005 0.005 0.005

Batch size 16 32 32 32

4.1 Evaluation:

The tasks used for the evaluation of TIPS are chosen from the OpenAI gym toolkit [21]. The
environments chosen are: CartPole, Reacher and LunarLanderContinuous. The reward obtained by
the agent during execution is used as a performance metric.

TIPS is evaluated and compared to other techniques based on two main criteria: (i) the task perfor-
mance of the trained agent over time and (ii) the total demonstration effort required by the human
teacher. The performance of a TIPS agent is compared against the demonstrator’s own performance
when executing the task via tele-operation, and against other agents trained via IL techniques us-
ing the tele-operation data. It is also of interest to highlight the differences between demonstration
in state-space versus action-space. For this, both tele-operation and corrective feedback learning
techniques in state and action spaces are compared.

The following techniques are used for comparison.

• Tele-operation in Action-space: Demonstrator executes task by providing action values.

• Tele-operation in State-space: Demonstrator executes task by providing state-space in-
formation (as per Table 1) with actions computed in a similar way as TIPS.

• Behavioral Cloning (BC): Supervised learning to imitate the demonstrator using state-
action demonstration data recorded during tele-operation. (Only successful demonstrations
are used, i.e. those with a return of atleast 40% in the min-max range).

• Generative Adversarial Imitation Learning (GAIL) [22]: Method that uses adversarial
learning to learn a reward function and policy. Similar to BC, the successful state-action
demonstration data is used for imitation. GAIL implementation by Hill et al. [23] is used.

• D-COACH [17]: Interactive IL method that uses binary corrective feedback in the action
space. The demonstrator suggests modifications to the current actions being executed to
train the agent as it executes the task.

Experiments are run with non-expert human participants who have no prior knowledge of the tasks.
A total of 22 sets of experiments are performed, with 8, 8 and 6 participants for the CartPole,
Reacher and LunarLander tasks respectively. The participants belong to an age group of 25 to 30
years. Participants performed four experiments: Tele-operation in action-space and state-space,
training an agent using D-COACH and training an agent using TIPS. To compensate for learning
effect the order of the experiments is changed for every participant.

When performing tele-operation, the demonstrator provided actions and the corresponding states
are recorded. Tele-operation is deemed to be complete once no new demonstrative information can
be provided. When training interactively using D-COACH and TIPS, the demonstrator provides
feedback until no more agent performance improvement is observed. The maximum number of
episodes for all the experiments is set to 50. To compare the demonstration effort, participants
are asked to fill out the NASA Task Load Index Questionnaire [24] after each experiment wherein
ratings related to the mental demand, time pressure etc. of the experiment are obtained.

5

Tele-Op (A) Tele-Op (S) BC* GAIL* TIPS
0.00

0.25

0.50

0.75

1.00

Re
tu

rn

CartPole

Tele-Op (A) Tele-Op (S) BC* GAIL* TIPS
0.00

0.25

0.50

0.75

1.00

Re
tu

rn

Reacher

Tele-Op (A) Tele-Op (S) BC* GAIL* TIPS
Method

0.00

0.25

0.50

0.75

1.00

Re
tu

rn

LunarLanderContinuous

(a)

50

100

150

200

Re
tu

rn

CartPole

Method
TIPS
D-COACH

100

75

50

25

0

Re
tu

rn

Reacher

Method
TIPS
D-COACH

0 10 20 30 40 50
Episodes

600

400

200

0

200

Re
tu

rn

LunarLanderContinuous

Method
TIPS
D-COACH

(b)

Figure 2: Evaluation results of TIPS. (a) Performance comparison of Tele-Operation (Action space), Tele-
Operation (State space), BC, GAIL and TIPS. The return is normalized for each environment and averaged over
multiple episodes and over all participants. BC* and GAIL* use only successful tele-operation data (return of
atleast 40% in the normalized range). (b) Performance of TIPS (state-space feedback) and D-COACH (action-
space feedback) agents over training episodes.

4.2 Validation task:

To validate the application of TIPS on a real robot, a robotic ‘fishing’ task is designed. The KUKA
LBR iiwa 7 robotic manipulator is used, with a ball attached to its end-effector by a thread and the
task is to swing the ball into a nearby cup. To reduce the complexity of the task, the movement of
the robot end-effector (and ball) is restricted to a 2-D x-z Cartesian plane. This is done by restricting
the usage of the robot’s joints (only the 2nd, 4th and 6th joints are used). An illustration of the task
can be seen in Figure 3a.

The robot is controlled using a position controller that controls the joint angles. The actions taken
by the robot are in the form of relative changes to the joint angles. To teach the task using TIPS,
feedback is provided in the x-z Cartesian position of the end-effector. A forward dynamics model
in the joint-angle space is learnt. Thus the model is used to predict the position of the end-effector
based on the joint angle commands (actions) sent to the robot.

To measure task performance, a reward function is defined for use as a metric. The function is
inspired from the Reacher task and consists of a negative reward at every time-step based on the
magnitude of the action command sent to the robot as well as the distance between the ball and the
centre of the cup (rt = −‖at‖−‖ distt ‖). Note that since this experiment is run only to validate the
application of TIPS to a real system, comparisons are not made with other learning methods.

5 Results

5.1 Performance

Figure 2a shows the performance obtained for the tasks (averaged over all participants) using tele-
operation, agents trained via IL techniques and agents trained using TIPS. It is noticed that tele-
operation is challenging for the demonstrator, especially for time-critical tasks such as CartPole and

6

Table 2: Average ratings provided by the participants in the NASA Task Load Index questionnaire [24].
Values are normalized, with smaller magnitude implying lower mental demand etc. (S) and (A) are used to

denote state-space and action-space techniques respectively.
Mental Physical Temporal 1-Performance Effort Frustration

Demand Demand Demand

CartPole

TIPS (S) 0.29 0.33 0.33 0.11 0.37 0.19
D-COACH (A) 0.49 0.37 0.43 0.14 0.44 0.3
Reacher

TIPS (S) 0.53 0.64 0.61 0.17 0.63 0.3
D-COACH (A) 0.63 0.66 0.57 0.2 0.61 0.41
LunarLanderContinuous

TIPS (S) 0.8 0.7 0.67 0.3 0.73 0.73
D-COACH (A) 0.8 0.77 0.67 0.27 0.73 0.6

LunarLander where the system is inherently unstable. Agents trained using IL techniques (BC and
GAIL) suffer from inconsistency as well as lack of generalization of the demonstrations. For the
CartPole task, this problem is not as significant given the small state-action space. Interactively
learning via TIPS enables continuous improvement over time and leads to the highest agent perfor-
mance.

Figure 2b compares the performance of state-space interactive learning (TIPS) and action-space
interactive learning (D-COACH) over training episodes. The advantage of state-space feedback is
significant for the Reacher and CartPole tasks with higher agent performance and learning efficiency
observed. For the LunarLander task, no performance improvement is observed. While state-space
feedback provides a stabilizing effect on the lander and leads to fewer crashes, participants struggle
to teach it to land and thus the agent ends up flying out of the frame.

5.2 Demonstrator Effort

The NASA Task Load Index ratings are used to capture demonstrator effort when teaching using
state-space (TIPS) and action-space (D-COACH) feedback and the results can be seen in Table 2.
Significant differences in rating are highlighted.

When teaching using TIPS, participants report lower ratings for the CartPole and Reacher tasks
with the mental demand rating reduced by about 40% and 16% and participant frustration reduced
by about 35% and 25% respectively. Thus, the merits of state-space interactive learning are clear.
However, these advantages are task specific. For the LunarLander task, demonstration in state and
action-spaces is equally challenging, backed up by little change in the ratings.

It is noted that actions computed based on feedback using TIPS can be irregular due to inaccuracies
in model learning. This was observed for the Reacher and LunarLander tasks where model learning
is relatively more complex as compared to CartPole. Since handling such irregular action scenarios
requires demonstrator effort, this can diminish the advantage provided by state-space feedback.

5.3 Validation Results

The robotic-fishing task is taught to an agent using TIPS, the results of which are visualized in
Figure 3. Since the objective of the experiment is to validate the application of TIPS on a real
system, comparisons with other learning techniques are not made.

In our experiment, the demonstrator’s strategy is to move the end effector towards a position above
the cup and choose the appropriate moment to bring the end effector down such that the ball falls
into the cup. This behavior is sucessfully imitated by the agent (shown in Figure 3a).

The agent performance and demonstrator feedback rate over learning episodes can be seen in
Figure 3b. The agent successfully learns to reliably place the ball in the cup (return of -15)
after 60 episodes of training (each episode is 30 seconds long). After about 90 episodes, the
agent performance is further improved in terms of speed at which the task is completed (return
of -10). The feedback rate reduces over time as the agent performs better and only some fine-

7

(a)

30

25

20

15

10
Re

tu
rn

0 20 40 60 80 100
Episodes

0.0

0.1

0.2

0.3

0.4

0.5

Fe
ed

ba
ck

 R
at

e
(/s

ec
)

(b)

Figure 3: Results from the validation experiment on the KUKA robot. (a) Left to right, the fishing task per-
formed by the robot after being taught by the demonstrator for 60 episodes using TIPS. (Episode length is 30
seconds) (b) Return obtained as per our defined reward function and demonstrator feedback rate over learning
episodes. (Values are averaged over a rolling window of size 10)

tuning of the behavior is needed after 60 episodes. A video of the learnt behavior is available at:
https://youtu.be/aN1r8IytsXY.

6 Conclusion

In experiments with non-expert human demonstrators, our proposed method TIPS outperforms IL
techniques such as BC and GAIL [22] as well as Interactive Learning in action-space (D-COACH
[17]). Moreover, the state-space feedback mechanism also leads to a significant reduction in demon-
strator effort. With these results we have illustrated the viability of TIPS to non-expert demonstration
scenarios and have also highlighted the merits of state-space Interactive Learning.

A caveat of the proposed method however is that, to compute actions, an accurate forward dynamics
model needs to be learnt which can be challenging and can require a large number of environment
interactions. Another consideration is that, for action selection, candidate actions are sampled from
the entire action-space. This is not scalable to high-dimensional continuous action spaces. Despite
these caveats, we have demonstrated the practical viability of TIPS on a real system by training an
agent for a robotic fishing task.

For the extension of this work, a main focus would be towards improving on the current action
computation mechanism. One approach could be to use smarter exploration strategies for acquiring
experience samples to learn a more accurate forward dynamics model. Another direction to explore
would be to compute multiple actions over a time horizon to reach the human feedback desired
state. An optimization method could be used, making the action computation similar to a Model
Predictive Control scheme and it would be interesting to see such a scheme could be combined with
our learning framework.

8

References
[1] B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of robot learning from

demonstration. Robotics and autonomous systems, 57(5):469–483, 2009. doi:10.1016/j.robot.
2008.10.024.

[2] J. Kober and J. Peters. Learning motor primitives for robotics. In 2009 IEEE International
Conference on Robotics and Automation, pages 2112–2118. IEEE, 2009. doi:10.1109/ROBOT.
2009.5152577.

[3] S. Schaal. Learning from demonstration. In Advances in neural information pro-
cessing systems, pages 1040–1046, 1997. URL http://papers.nips.cc/paper/
1224-learning-from-demonstration.pdf.

[4] H. Daumé III. A course in machine learning. Publisher, ciml. info, 5:69, 2012.

[5] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, J. Peters, et al. An algorithmic
perspective on imitation learning. Foundations and Trends R© in Robotics, 7(1-2):1–179, 2018.
doi:10.1561/9781680834116.

[6] M. Zucker, N. Ratliff, M. Stolle, J. Chestnutt, J. A. Bagnell, C. G. Atkeson, and J. Kuffner.
Optimization and learning for rough terrain legged locomotion. The International Journal of
Robotics Research, 30(2):175–191, 2011.

[7] P. Abbeel, A. Coates, and A. Y. Ng. Autonomous helicopter aerobatics through apprenticeship
learning. The International Journal of Robotics Research, 29(13):1608–1639, 2010.

[8] D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalch-
brenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis.
Mastering the game of go with deep neural networks and tree search. Nature, 529:484–489,
01 2016. doi:10.1038/nature16961.

[9] B. D. Argall, B. Browning, and M. Veloso. Learning robot motion control with demonstration
and advice-operators. In 2008 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 399–404. IEEE, 2008. doi:10.1109/IROS.2008.4651020.

[10] S. Chernova and M. Veloso. Interactive policy learning through confidence-based autonomy.
Journal of Artificial Intelligence Research, 34:1–25, 2009. doi:10.1613/jair.2584.

[11] C. Celemin and J. Ruiz-del Solar. An interactive framework for learning continuous actions
policies based on corrective feedback. Journal of Intelligent & Robotic Systems, 95(1):77–97,
2019. doi:10.1007/s10846-018-0839-z.

[12] S. Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and structured prediction
to no-regret online learning. In Proceedings of the fourteenth international conference on
artificial intelligence and statistics, pages 627–635, 2011.

[13] Y. Liu, A. Gupta, P. Abbeel, and S. Levine. Imitation from observation: Learning to imitate
behaviors from raw video via context translation. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pages 1118–1125. IEEE, 2018. doi:10.1109/ICRA.2018.
8462901.

[14] B. D. Argall, B. Browning, and M. M. Veloso. Teacher feedback to scaffold and refine demon-
strated motion primitives on a mobile robot. Robotics and Autonomous Systems, 59(3-4):
243–255, 2011. doi:10.1016/j.robot.2010.11.004.

[15] W. B. Knox and P. Stone. Interactively shaping agents via human reinforcement: The tamer
framework. In Proceedings of the Fifth International Conference on Knowledge Capture, K-
CAP 09, page 916, New York, NY, USA, 2009. Association for Computing Machinery. ISBN
9781605586588. doi:10.1145/1597735.1597738.

[16] P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and D. Amodei. Deep reinforcement
learning from human preferences. In Advances in Neural Information Processing Systems,
pages 4299–4307, 2017. URL https://arxiv.org/abs/1706.03741v3.

9

[17] R. Pérez-Dattari, C. Celemin, J. Ruiz-del Solar, and J. Kober. Continuous control for high-
dimensional state spaces: An interactive learning approach. In 2019 International Conference
on Robotics and Automation (ICRA), pages 7611–7617. IEEE, 2019. URL https://arxiv.
org/abs/1908.05256.

[18] A. Nair, D. Chen, P. Agrawal, P. Isola, P. Abbeel, J. Malik, and S. Levine. Combining self-
supervised learning and imitation for vision-based rope manipulation. In 2017 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 2146–2153. IEEE, 2017. doi:
10.1109/ICRA.2017.7989247.

[19] F. Torabi, G. Warnell, and P. Stone. Behavioral cloning from observation. In Proceedings of
the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18, pages
4950–4957. International Joint Conferences on Artificial Intelligence Organization, 7 2018.
doi:10.24963/ijcai.2018/687.

[20] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. URL https://arxiv.org/abs/1412.6980.

[21] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym, 2016. URL https://arxiv.org/abs/1606.01540.

[22] J. Ho and S. Ermon. Generative adversarial imitation learning. In D. D. Lee, M. Sugiyama,
U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing
Systems 29, pages 4565–4573. Curran Associates, Inc., 2016. URL http://papers.nips.
cc/paper/6391-generative-adversarial-imitation-learning.pdf.

[23] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore, P. Dhariwal, C. Hesse,
O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman, S. Sidor, and Y. Wu. Stable
baselines. https://github.com/hill-a/stable-baselines, 2018.

[24] S. G. Hart and L. E. Staveland. Development of nasa-tlx (task load index): Results of empirical
and theoretical research. In Advances in Psychology, volume 52, pages 139–183. Elsevier,
1988. doi:10.1016/S0166-4115(08)62386-9.

[25] C. Hennersperger, B. Fuerst, S. Virga, O. Zettinig, B. Frisch, T. Neff, and N. Navab. Towards
mri-based autonomous robotic us acquisitions: a first feasibility study. IEEE transactions on
medical imaging, 36(2):538–548, 2017.

10

B
Task Load Index Questionnaire

Following is the NASA Task Load Index [Hart and Staveland, 1988] questionnaire provided to partic-
ipants after each experiment to capture the demonstration effort:

Question Response options

Mental Demand: How much mental and percep-
tual activity was required (e.g., thinking, decid-
ing, calculating, remembering, looking, searching
etc.)?

Low [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] High

Physical Demand: How much physical activity
was required (e.g.. turning, controlling, activating
etc.)?

Low [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] High

Temporal Demand: How much time pressure did
you feel due to the rate or pace at which the tasks
or task elements occurred?

Low [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] High

Performance: How successful do you think you
were in accomplishing the goals of the task set by
the experimenter (or yourself)?

Poor [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] Good

Effort: How hard did you have to work (mentally
and physically) to accomplish your level of perfor-
mance?

Low [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] High

Frustration: How insecure, discouraged, irritated,
stressed and annoyed versus secure, gratified, con-
tent, relaxed and complacent did you feel during
the task?

Low [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] High

55

Bibliography

Abbeel, P., Coates, A., and Ng, A. Y. (2010). Autonomous helicopter aerobatics through apprentice-
ship learning. The International Journal of Robotics Research, 29(13):1608–1639.

Abbeel, P. and Ng, A. Y. (2004). Apprenticeship learning via inverse reinforcement learning. In Pro-
ceedings of the twenty-first international conference on Machine learning, page 1.

Akrour, R., Schoenauer, M., and Sebag, M. (2011). Preference-based policy learning. In Joint Eu-
ropean Conference on Machine Learning and Knowledge Discovery in Databases, pages 12–27.
Springer.

Akrour, R., Schoenauer, M., Sebag, M., and Souplet, J.-C. (2014). Programming by feedback. In
International Conference on Machine Learning, volume 32, pages 1503–1511.

Argall, B. D., Browning, B., and Veloso, M. (2008). Learning robot motion control with demonstra-
tion and advice-operators. In 2008 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 399–404. IEEE.

Argall, B. D., Browning, B., and Veloso, M. M. (2011). Teacher feedback to scaffold and refine demon-
strated motion primitives on a mobile robot. Robotics and Autonomous Systems, 59(3-4):243–255.

Argall, B. D., Chernova, S., Veloso, M., and Browning, B. (2009). A survey of robot learning from
demonstration. Robotics and autonomous systems, 57(5):469–483.

Aytar, Y., Pfaff, T., Budden, D., Paine, T., Wang, Z., and de Freitas, N. (2018). Playing hard explo-
ration games by watching youtube. In Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-
Bianchi, N., and Garnett, R., editors, Advances in Neural Information Processing Systems 31, pages
2930–2941. Curran Associates, Inc.

Bagnell, J. A. D. (2015). An invitation to imitation. Technical Report CMU-RI-TR-15-08, Carnegie
Mellon University, Pittsburgh, PA.

Bain, M. and Sammut, C. (1995). A framework for behavioural cloning. In Machine Intelligence 15,
pages 103–129.

Billard, A., Calinon, S., Dillmann, R., and Schaal, S. (2008). Robot Programming by Demonstration.
In Siciliano, B. and Khatib, O., editors, Springer Handbook of Robotics, pages 1371–1394. Springer
Berlin Heidelberg, Berlin, Heidelberg.

Billard, A. and Matarić, M. J. (2001). Learning human arm movements by imitation:: Evaluation of a
biologically inspired connectionist architecture. Robotics and Autonomous Systems, 37(2-3):145–
160.

Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L. D., Monfort,
M., Muller, U., Zhang, J., et al. (2016). End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316.

57

58 Bibliography

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and Zaremba, W.
(2016). Openai gym.

Brown, D. S., Goo, W., Nagarajan, P., and Niekum, S. (2019). Extrapolating beyond subop-
timal demonstrations via inverse reinforcement learning from observations. arXiv preprint
arXiv:1904.06387.

Calinon, S. and Billard, A. (2009). Statistical learning by imitation of competing constraints in joint
space and task space. Advanced Robotics, 23(15):2059–2076.

Celemin, C. and Ruiz-del Solar, J. (2019). An interactive framework for learning continuous actions
policies based on corrective feedback. Journal of Intelligent & Robotic Systems, 95(1):77–97.

Chernova, S. and Thomaz, A. L. (2014). Robot learning from human teachers. Synthesis Lectures on
Artificial Intelligence and Machine Learning, 8(3):1–121.

Chernova, S. and Veloso, M. (2009). Interactive policy learning through confidence-based auton-
omy. Journal of Artificial Intelligence Research, 34:1–25.

Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg, S., and Amodei, D. (2017). Deep reinforcement
learning from human preferences. In Advances in Neural Information Processing Systems, pages
4299–4307.

Curi, S., Levy, K. Y., and Krause, A. (2018). Unsupervised imitation learning. arXiv preprint
arXiv:1806.07200.

Daumé III, H. (2012). A course in machine learning. Publisher, ciml. info, 5:69.

Dwibedi, D., Tompson, J., Lynch, C., and Sermanet, P. (2018). Learning actionable representations
from visual observations. In 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 1577–1584.

Edwards, A. D., Sahni, H., Schroecker, Y., and Isbell, C. L. (2018). Imitating latent policies from
observation. arXiv preprint arXiv:1805.07914.

Finn, C., Levine, S., and Abbeel, P. (2016). Guided cost learning: Deep inverse optimal control via
policy optimization. In International conference on machine learning, pages 49–58.

French, R. M. (1999). Catastrophic forgetting in connectionist networks. Trends in cognitive sciences,
3(4):128–135.

Gillijns, S. and De Moor, B. (2007). Unbiased minimum-variance input and state estimation for
linear discrete-time systems with direct feedthrough. Automatica, 43(5):934–937.

Giusti, A., Guzzi, J., Cireşan, D. C., He, F.-L., Rodríguez, J. P., Fontana, F., Faessler, M., Forster, C.,
Schmidhuber, J., Di Caro, G., et al. (2015). A machine learning approach to visual perception of
forest trails for mobile robots. IEEE Robotics and Automation Letters, 1(2):661–667.

Goo, W. and Niekum, S. (2019). One-shot learning of multi-step tasks from observation via activ-
ity localization in auxiliary video. In 2019 International Conference on Robotics and Automation
(ICRA), pages 7755–7761. IEEE.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Ben-
gio, Y. (2014). Generative adversarial nets. In Ghahramani, Z., Welling, M., Cortes, C., Lawrence,
N. D., and Weinberger, K. Q., editors, Advances in Neural Information Processing Systems 27, pages
2672–2680. Curran Associates, Inc.

Bibliography 59

Gribovskaya, E., Khansari-Zadeh, S. M., and Billard, A. (2011). Learning non-linear multivariate
dynamics of motion in robotic manipulators. The International Journal of Robotics Research,
30(1):80–117.

Griffith, S., Subramanian, K., Scholz, J., Isbell, C. L., and Thomaz, A. L. (2013). Policy shaping: In-
tegrating human feedback with reinforcement learning. In Advances in neural information pro-
cessing systems, pages 2625–2633.

Grimes, D. B., Rashid, D. R., and Rao, R. P. (2007). Learning nonparametric models for probabilistic
imitation. In Advances in Neural Information Processing Systems, pages 521–528.

Grzes, M. and Kudenko, D. (2009). Theoretical and empirical analysis of reward shaping in rein-
forcement learning. In 2009 International Conference on Machine Learning and Applications,
pages 337–344. IEEE.

Guo, X., Chang, S., Yu, M., Tesauro, G., and Campbell, M. (2019). Hybrid reinforcement learning with
expert state sequences. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,
pages 3739–3746.

Hanna, J. P. and Stone, P. (2017). Grounded action transformation for robot learning in simulation.
In Proceedings of the 31st AAAI Conference on Artificial Intelligence (AAAI).

Hart, S. G. and Staveland, L. E. (1988). Development of nasa-tlx (task load index): Results of empiri-
cal and theoretical research. In Advances in Psychology, volume 52, pages 139–183. Elsevier.

Henderson, P., Chang, W. D., Bacon, P. L., Meger, D., Pineau, J., and Precup, D. (2018). OptionGAN:
Learning joint reward-policy options using generative adversarial inverse reinforcement learning.
32nd AAAI Conference on Artificial Intelligence, AAAI 2018, pages 3199–3206.

Hennersperger, C., Fuerst, B., Virga, S., Zettinig, O., Frisch, B., Neff, T., and Navab, N. (2017). To-
wards mri-based autonomous robotic us acquisitions: a first feasibility study. IEEE transactions
on medical imaging, 36(2):538–548.

Hester, T., Vecerik, M., Pietquin, O., Lanctot, M., Schaul, T., Piot, B., Horgan, D., Quan, J., Sendonaris,
A., Osband, I., et al. (2018). Deep q-learning from demonstrations. In Thirty-Second AAAI Confer-
ence on Artificial Intelligence.

Hill, A., Raffin, A., Ernestus, M., Gleave, A., Kanervisto, A., Traore, R., Dhariwal, P., Hesse, C., Klimov,
O., Nichol, A., Plappert, M., Radford, A., Schulman, J., Sidor, S., and Wu, Y. (2018). Stable baselines.
https://github.com/hill-a/stable-baselines.

Ho, J. and Ermon, S. (2016). Generative adversarial imitation learning. In Lee, D. D., Sugiyama,
M., Luxburg, U. V., Guyon, I., and Garnett, R., editors, Advances in Neural Information Processing
Systems 29, pages 4565–4573. Curran Associates, Inc.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Computation,
9(8):1735–1780.

Jain, A., Wojcik, B., Joachims, T., and Saxena, A. (2013). Learning trajectory preferences for manip-
ulators via iterative improvement. In Advances in neural information processing systems, pages
575–583.

Jaynes, E. T. (1957). Information theory and statistical mechanics. Phys. Rev., 106:620–630.

https://github.com/hill-a/stable-baselines

60 Bibliography

Kimura, D., Chaudhury, S., Tachibana, R., and Dasgupta, S. (2018). Internal model from observa-
tions for reward shaping. arXiv preprint arXiv:1806.01267.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Knox, W. B. and Stone, P. (2009). Interactively shaping agents via human reinforcement: The tamer
framework. In Proceedings of the Fifth International Conference on Knowledge Capture, K-CAP
’09, page 9–16, New York, NY, USA. Association for Computing Machinery.

Knox, W. B., Stone, P., and Breazeal, C. (2013). Training a robot via human feedback: A case study. In
International Conference on Social Robotics, pages 460–470. Springer.

Kober, J., Bagnell, J. A., and Peters, J. (2013). Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research, 32(11):1238–1274.

Kober, J. and Peters, J. (2009). Learning motor primitives for robotics. In 2009 IEEE International
Conference on Robotics and Automation, pages 2112–2118. IEEE.

Laskey, M., Lee, J., Hsieh, W., Liaw, R., Mahler, J., Fox, R., and Goldberg, K. (2017). Iterative noise
injection for scalable imitation learning. arXiv preprint arXiv:1703.09327.

Levine, S. (2018). Deep reinforcement learning - cs 294-112, lecture slides.

Levine, S. and Koltun, V. (2012). Continuous inverse optimal control with locally optimal examples.
arXiv preprint arXiv:1206.4617.

Levine, S., Popovic, Z., and Koltun, V. (2011). Nonlinear inverse reinforcement learning with gaus-
sian processes. In Advances in Neural Information Processing Systems, pages 19–27.

Lin, L.-J. (1992). Self-improving reactive agents based on reinforcement learning, planning and
teaching. Machine learning, 8(3-4):293–321.

Liu, Y., Gupta, A., Abbeel, P., and Levine, S. (2018). Imitation from observation: Learning to imi-
tate behaviors from raw video via context translation. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pages 1118–1125. IEEE.

Menda, K., Driggs-Campbell, K., and Kochenderfer, M. J. (2018). Ensembledagger: A bayesian ap-
proach to safe imitation learning. arXiv preprint arXiv:1807.08364.

Merel, J., Tassa, Y., Srinivasan, S., Lemmon, J., Wang, Z., Wayne, G., and Heess, N. (2017). Learning
human behaviors from motion capture by adversarial imitation. arXiv preprint arXiv:1707.02201.

Nair, A., Chen, D., Agrawal, P., Isola, P., Abbeel, P., Malik, J., and Levine, S. (2017). Combining self-
supervised learning and imitation for vision-based rope manipulation. In 2017 IEEE International
Conference on Robotics and Automation (ICRA), pages 2146–2153. IEEE.

Nair, A., McGrew, B., Andrychowicz, M., Zaremba, W., and Abbeel, P. (2018). Overcoming explo-
ration in reinforcement learning with demonstrations. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pages 6292–6299. IEEE.

Najar, A., Sigaud, O., and Chetouani, M. (2016). Training a robot with evaluative feedback and unla-
beled guidance signals. In 2016 25th IEEE International Symposium on Robot and Human Inter-
active Communication (RO-MAN), pages 261–266. IEEE.

Bibliography 61

Ng, A. Y., Russell, S. J., et al. (2000). Algorithms for inverse reinforcement learning. In Icml, volume 1,
pages 663–670.

Nguyen-Tuong, D., Peters, J., Seeger, M., and Schölkopf, B. (2008). Learning inverse dynamics: a
comparison. In European symposium on artificial neural networks.

Osa, T., Pajarinen, J., Neumann, G., Bagnell, J. A., Abbeel, P., Peters, J., et al. (2018). An algorithmic
perspective on imitation learning. Foundations and Trends® in Robotics, 7(1-2):1–179.

Pathak, D., Mahmoudieh, P., Luo, G., Agrawal, P., Chen, D., Shentu, Y., Shelhamer, E., Malik, J., Efros,
A. A., and Darrell, T. (2018). Zero-shot visual imitation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, pages 2050–2053.

Pavse, B. S., Torabi, F., Hanna, J. P., Warnell, G., and Stone, P. (2019). RIDM: Reinforced Inverse
Dynamics Modeling for Learning from a Single Observed Demonstration. arXiv e-prints, page
arXiv:1906.07372.

Pérez-Dattari, R., Celemin, C., Ruiz-del Solar, J., and Kober, J. (2019). Continuous control for high-
dimensional state spaces: An interactive learning approach. In 2019 International Conference on
Robotics and Automation (ICRA), pages 7611–7617. IEEE.

Pomerleau, D. A. (1989). Alvinn: An autonomous land vehicle in a neural network. In Advances in
neural information processing systems, pages 305–313.

Rahmatizadeh, R., Abolghasemi, P., Behal, A., and Bölöni, L. (2018). From virtual demonstration
to real-world manipulation using lstm and mdn. In Thirty-Second AAAI Conference on Artificial
Intelligence.

Ratliff, N. D., Bagnell, J. A., and Zinkevich, M. A. (2006). Maximum margin planning. In Proceedings
of the 23rd international conference on Machine learning, pages 729–736.

Ross, S. and Bagnell, D. (2010). Efficient reductions for imitation learning. In Proceedings of the
thirteenth international conference on artificial intelligence and statistics, pages 661–668.

Ross, S., Gordon, G., and Bagnell, D. (2011). A reduction of imitation learning and structured pre-
diction to no-regret online learning. In Proceedings of the fourteenth international conference on
artificial intelligence and statistics, pages 627–635.

Russell, S. (1998). Learning agents for uncertain environments. In Proceedings of the eleventh annual
conference on Computational learning theory, pages 101–103.

Schaal, S. (1997). Learning from demonstration. In Advances in neural information processing sys-
tems, pages 1040–1046.

Serfozo, R. (2009). Basics of applied stochastic processes. Springer Science & Business Media.

Sermanet, P., Lynch, C., Chebotar, Y., Hsu, J., Jang, E., Schaal, S., Levine, S., and Brain, G. (2018).
Time-contrastive networks: Self-supervised learning from video. In 2018 IEEE International Con-
ference on Robotics and Automation (ICRA), pages 1134–1141. IEEE.

Shalev-Shwartz, S. and Ben-David, S. (2014). Understanding Machine Learning: From Theory to
Algorithms. Cambridge University Press.

62 Bibliography

Silver, D., Huang, A., Maddison, C., Guez, A., Sifre, L., Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever,
I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., and Hassabis, D. (2016). Mastering the
game of go with deep neural networks and tree search. Nature, 529:484–489.

Stadie, B. C., Abbeel, P., and Sutskever, I. (2017). Third-Person Imitation Learning. arXiv e-prints,
page arXiv:1703.01703.

Suay, H. B. and Chernova, S. (2011). Effect of human guidance and state space size on interactive
reinforcement learning. In 2011 Ro-Man, pages 1–6. IEEE.

Sun, W., Vemula, A., Boots, B., and Bagnell, J. A. (2019). Provably Efficient Imitation Learning from
Observation Alone. arXiv e-prints, page arXiv:1905.10948.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement learning: An introduction. IEEE Transactions
on Neural Networks, 9(5):1054–1054.

Todorov, E., Erez, T., and Tassa, Y. (2012). Mujoco: A physics engine for model-based control. In
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033.

Torabi, F., Warnell, G., and Stone, P. (2018). Behavioral cloning from observation. In Proceedings of
the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18, pages 4950–
4957. International Joint Conferences on Artificial Intelligence Organization.

Torabi, F., Warnell, G., and Stone, P. (2019). Generative adversarial imitation from observation. In
ICML Workshop on Imitation, Intent, and Interaction (I3).

Torabi, F., Warnell, G., and Stone, P. (2019). Recent Advances in Imitation Learning from Observa-
tion. arXiv e-prints, page arXiv:1905.13566.

Zhang, J. and Cho, K. (2017). Query-efficient imitation learning for end-to-end simulated driving.
31st AAAI Conference on Artificial Intelligence, AAAI 2017, pages 2891–2897.

Ziebart, B. D., Maas, A. L., Bagnell, J. A., and Dey, A. K. (2008). Maximum entropy inverse reinforce-
ment learning. In Aaai, volume 8, pages 1433–1438. Chicago, IL, USA.

Zucker, M., Ratliff, N., Stolle, M., Chestnutt, J., Bagnell, J. A., Atkeson, C. G., and Kuffner, J. (2011).
Optimization and learning for rough terrain legged locomotion. The International Journal of
Robotics Research, 30(2):175–191.

C
Glossary

List of Acronyms

IL Imitation Learning

IIL Interactive Imitation Learning

RL Reinforcement Learning

IRL Inverse Reinforcement Learning

DRL Deep Reinforcement Learning

BC Behavioral Cloning

MDP Markov Decision Process

IfO Imitation from Observation

LfD Learning from Demonstration

IDM Inverse Dynamics Model

FDM Forward Dynamics Model

BCO Behavioral Cloning from Observation

GAIL Generative Adversarial Imitation Learning

GAILfO GAIL from Observations

CNN Convolutional Neural Network

GAN Generative Adversarial Network

TRPO Trust Region Policy Optimization

DAgger Dataset Aggregation

63

64 C. Glossary

COACH COrrective Advice Communicated by Humans

D-COACH Deep-COACH

TAMER Training an Agent Manually via Evaluative Reinforcement

TIPS Teaching Imitative Policies in State-space

TU Delft Delft University of Technology

	Acknowledgments
	Introduction
	Motivation
	Current Literature
	Contribution
	Thesis Outline

	Background and Related Work
	Imitation Learning (IL)
	Preliminaries
	Behavioral Cloning (BC)
	Inverse Reinforcement Learning (IRL)

	Interactive Imitation Learning
	Corrective Labels
	Corrective Feedback
	Evaluative Feedback

	Imitation from Observation (IfO)
	Inverse Dynamics Model (IDM)-learning
	Inverse Reinforcement Learning (IRL)-based methods

	Conclusions

	Teaching Imitative Policies in State-space (TIPS)
	Learning Framework
	Computing Actions via Indirect Inverse Dynamics
	Model Learning

	Algorithm in full
	Discussion

	Experimental Setting
	Implementation of Method
	Evaluation Domains
	OpenAI Gym
	Robotic Fishing Task

	Methods for Comparison
	Experiment Setup with Human Teachers

	Results
	Performance Improvements
	State-space vs Action-space
	Performance
	Demonstrator Effort

	Validation: Robotic fishing task
	Discussion

	Conclusion
	Paper
	Task Load Index Questionnaire
	Bibliography
	Glossary

