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Abstract— Understanding traffic participants’ behaviour is
crucial for predicting their future trajectories, aiding in de-
veloping safe and reliable planning systems for autonomous
vehicles. Integrating cognitive processes and machine learning
models has shown promise in other domains but is lacking
in the trajectory forecasting of multiple traffic agents in
large-scale autonomous driving datasets. This work investigates
the state-of-the-art trajectory forecasting model Trajectron++
which we enhance by incorporating a smoothing term in its
attention module. This attention mechanism mimics human
attention inspired by cognitive science research indicating limits
to attention switching. We evaluate the performance of the
resulting Smooth-Trajectron++ model and compare it to the
original model on various benchmarks, revealing the potential
of incorporating insights from human cognition into trajectory
prediction models.

I. INTRODUCTION

In a world where the demand for intelligent vehicles is in-
creasing rapidly [1], the concern for the safety of passengers
and other road users should grow with it [2]. According to the
World Health Organization, approximately 1.3 million people
die each year due to road traffic accidents, and this number
is expected to increase if proper measures are not taken [3].
Therefore, it should be paramount for future autonomous
vehicles to improve traffic safety.

One of the most critical factors for ensuring a safe environ-
ment around intelligent vehicles is accurately predicting the
future movements of surrounding traffic participants. These
predictions allow for a better assessment of the environment
and anticipation of potentially dangerous situations at an
early stage, lowering the risk of accidents. The accurate
predictions of interactive behaviours are especially important,
as those comprise the most challenging situations.

Numerous methods have been used to tackle the human
behaviour prediction problem [4]–[6], with examples ranging
from reasoning-based methods to data-driven techniques.
Over the last few years, data-driven approaches have shown
great potential [7]–[13], using machine learning algorithms
to learn from large amounts of data to predict the trajecto-
ries of traffic participants. One of these data-driven models

is Trajectron++ [10], which stands out due to its public
code availability, the general applicability and the results it
achieved on multiple datasets (including nuScenes [14], and
highD [15]).

Other methods to predict future behaviour of traffic partic-
ipants are based on theories from cognitive science. Instead
of learning merely from data, the model is constructed to
mimic human cognition. One class of such models based
on the concept of evidence accumulation [16] have proved
useful specifically in predicting binary decisions in traffic
interactions [17], [18]. However, these models are not yet
applicable to trajectory forecasting in a more general setting.
Another example of using insights from cognitive science for
behaviour prediction in traffic is the use of a quantum-like
Bayesian model, a mathematical framework that combines
elements of quantum theory and Bayesian probability theory
to describe decision-making and information processing in
complex and uncertain environments [19]. It is used in [20]
to more accurately predict human street crossing behaviour,
compared to the more data-driven model Social-LSTM [7].
Yet another insight from cognitive science suggests that the
brain has a limited capacity for shifting attention rapidly
between different tasks [21]. This is used in [22], where the
application of the smoothing term to the attention module of
a machine-learning prediction model – referred to as Smooth-
Attention – which mimics human cognition, allows for better
predictive performance.

Recent work demonstrated that integrating insights from
cognitive science is a promising way of improving the
performance of trajectory prediction models, but such cogni-
tively inspired models need to be explored in a much more
comprehensive way. Specifically, Cao et al. [22] emphasize
the need to combine smooth attention with more advanced
interaction modelling network architectures. Here we aim to
address this challenge by applying smooth attention to a state-
of-the-art behaviour prediction model. Namely, we aim to
improve upon the performance of Trajectron++ (T++) [10]
by leveraging the method of smooth attention proposed
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Attention

Edge Influence Encoder
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Node History Encoder

Map Encoder

CNN
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Fig. 1. Encoder part of Trajectron++ [10] that encodes various past input
information into the representation vector ex.

in [22]. Applying a smoothness constraint on the attention
module significantly reduces changes in attention, which
mimics human cognitive processing. We name our approach
of this combined model Smooth-Trajectron++. We test this
new model on the nuScenes [14] and highD [15] datasets.

II. METHODS

In this section, we provide an overview of the various
elements of the Trajectron++ model (T++) as well as the
functioning of the Smooth-Attention module.

A. Trajectron++

We use Trajectron++ [10] as the baseline model, for
several reasons. Firstly, the model showed state-of-the-art
performance on various public datasets [10] while including
an attention module. Secondly, the authors have made the
source code publicly available, including proper documen-
tation regarding its application. This offers the opportunity
to potentially reproduce the originally reported results while
minimizing deviations from the original setup used by the
authors. Lastly, the model has been tested on a large-scale
public autonomous driving dataset, nuScenes [14]. This pro-
vides evidence of the applicability of the model to real-world
scenarios concerning interactions between multiple traffic
participants.

Trajectron++ is a graph-based conditional variational au-
toencoder model comprising an encoder and a decoder. The
encoder uses various modules representing different influ-
ences on the trajectory forecast Figure 1. First, the past loca-
tion and speed of the chosen traffic agent with multiple input
time steps (x0

1, x
1
1, ...) are fed into the Node History Encoder

ϕH , whose main component is a long-short-term memory
cell (LSTM). This ensures that the past positional data is
used for future predictions. The output of the LSTM is the
hidden state ht

H . Secondly, the T++ model makes use of road

map data to make its predictions more feasible and realistic.
The Map Encoder module ϕM takes relevant environmental
information, which is fed to a convolutional neural network
(CNN), which has the hidden state ht

M as output. Thirdly, the
Edge Influence Encoder ϕE is used for taking into account
to what extent other traffic agents in the scene are influenc-
ing the prediction. This module contributes to the ”social
awareness”, which means that the behaviour of the agent
gets influenced by other traffic participants. To encode graph
edges, the method follows a two-step process. Firstly, edge
information is collected from neighbouring agents belonging
to the same semantic class, such as pedestrian-pedestrian
and car-car semantic classes. Summation is used for feature
aggregation inside these classes to handle varying numbers
of neighbouring nodes while preserving count information,
following [23]. The encodings of all the connections between
the modelled agent and its neighbours are combined to create
an ”influence” representation vector, which represents the
overall impact of the neighbouring nodes, which is done
using an additive attention module [24]. Finally, the output
is concatenated with the node’s history and road map data
to produce a unified node representation vector ex fed to a
decoder that constructs a predicted trajectory.

B. Smooth Attention

The smooth attention approach [22] presents a novel
perspective on attention modules. Unlike traditional methods,
it applies attention at each time step, following [25]. Emu-
lating human attention during deliberate tasks incorporates a
smoothness constraint based on the hypothesis that attention
does not frequently change over time. Previous research [21]
shows that deliberate attention shifts are slower due to inter-
nal limitations. This implies that attention does not frequently
fluctuate during driving, as it falls under intentional shifts. By
incorporating the smoothness constraint, the smooth attention
approach enhances the attention mechanism, improving the
selection of important information while disregarding less
relevant input variables and aligning better with the charac-
teristics of human attention.

III. SMOOTH-TRAJECTRON++

Attention

LSTMLSTMped,car LSTMped,car

LSTM

Attention

LSTMped,ped LSTMped,ped

Fig. 2. Edge Influence Encoder including Smooth-Attention (in green).
The model is trained to produce smooth attention values α using the loss
function (1).

In this section, we propose a way to apply the smooth
attention module [22] specifically to the Trajectron++
model. To do this, we alter the Edge Influence Encoder
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module of Trajectron++ Figure 1, as this is the part where
the social interactions are modelled, and the attention is
applied.

Our approach2, which we call Smooth-Trajectron++, is
illustrated in Figure 2. At a high level, the original Edge
Influence Encoder is expanded by applying the attention
module at each time step in a similar fashion as in the smooth
attention model (the green highlighted box in Figure 2),
where the outputs ατ

i,jab
are the attention weights that are

used to rank the importance the human agent i assigns to the
semantic class jab for neighbouring agents of types a and b (a
and b can stand for agent types such as cars or pedestrians) at
the time τ . All these attention weights from every time step
are then used as an input for the added smoothing term in the
loss function to incorporate the regularising of the attention
by imposing a vectorial total variation penalty:

Lsmooth(α) =

t∑
τ=t−T+1

N∑
i=1

√∑
j

(
ατ
ij − ατ−1

ij

)2
. (1)

To ensure that the attention weights are utilised during
the model training process, we incorporate Lsmooth into the
original loss function L0 [10]:

Lnew = L0 + βLsmooth. (2)

The scaling factor β is introduced to fine-tune the influence
of Lsmooth. By adjusting β, the model can be trained to
effectively balance the contribution of the attention weights
with the original loss function. The β value of 0.01 is used
as a starting point, following [22]. Additionally, this scaling
factor is expanded up until β=10 to study its impact on
performance. The intermediate steps are chosen logarithmic
to cover a wide range of possibilities, with β=0.5 being an
exemption to find an optimum between two promising values.

The extra loss term Lsmooth and associated additional calls
to the attention module increase the number of computations
and therefore have an effect on the training time, which
is approximately 1.5 times slower compared to the original
version of Trajectron++.

IV. RESULTS

Our method is evaluated on two publicly available datasets:
nuScenes [14] and highD [15]. In both scenarios, we trained
and assessed both the original Trajectron++ model (which
is a special case of Smooth-Trajectron++ for β = 0) and the
expanded model, with multiple versions of the latter, differ-
entiated by five β-values ranging from 0.01 to 10. We also
compared the obtained results with those originally reported
for T++ [10], as these turned out to be substantially different
from the results we obtained after directly reproducing T++
using the available source code and the same hyperparameters
mentioned in the original article for the model’s training.

2The source code is available at https://github.com/fwesterhout/Smooth-
Trajectron

The experiments were performed on DelftBlue, the high-
performance cluster of Delft University of Technology.

A. nuScenes dataset

The nuScenes dataset [14] consists of 1000 driving scenes
in Boston and Singapore, characterised by their high traffic
volumes and challenging driving situations. The driving
scenes span 20 seconds each and are annotated at 2Hz.

For this dataset, we evaluated the models according to
three metrics: Final Displacement Error (FDE), Average
Displacement Error (ADE) and Kernel Density Estimation
of Negative Log Likelihood (KDE-NLL). These metrics are
chosen as they were used in the original paper [10]. First,
FDE indicates how far off the model’s predicted location
is from the actual location at the end of a predicted tra-
jectory. Second, ADE is particularly useful for evaluating
the overall accuracy of a model’s trajectory predictions, as
it considers the entire predicted trajectory rather than just
the final location. Finally, KDE-NLL is a valuable metric
for evaluating the uncertainty of a model’s predictions, as it
measures how well the model can capture the true distribution
of the data. Following [10], we calculate the three above
metrics at prediction horizons of 1, 2, 3, and 4s. The FDE and
the ADE outputs comprise the most likely single trajectory
prediction, using the ”Most Likely” output configuration as
in [10].

There are two main agent classes in nuScenes, pedestrians
and vehicles. As their behaviour is significantly different, we
evaluate the models on these classes separately.

1) Pedestrian-only predictions: Leftmost numbers in each
column of Table I-Table III show the results for the predicted
pedestrian trajectories. The numbers in bold represent the
lowest metric values per prediction horizon, compared to the
reproduced T++ results (the ”T++ (rep)” row), which serve
as a reference for comparative analysis.

First, we found a significant gap between the reproduced
T++ performance and the results reported and T++ paper.
The FDE and ADE exhibit notable differences, especially
at shorter prediction horizons. The reproduced KDE-NLL
values also diverge significantly from the reported values.
Several factors may contribute to this deviation; for example,
a different version of nuScenes, a discrepancy in used and
reported hyper-parameters and model settings, or possible
deviations introduced during the reproduction process, such
as data downloading or package installation. Future research
should more closely examine the reproducibility of the orig-
inal results and clarify potential causes of mismatches with
the original findings.

Second, the smooth attention extensions of the reproduced
T++ (β = 0.01 to β = 10) consistently outperform the base-
line reproduced version of T++. Tuning the scaling factor
β influences the error. Regarding the FDE, the parameter
β = 0.1 has the lowest error in all cases, except for the shared
lowest error at the first prediction horizon (@1s) of β = 1.0.
The higher the β-value, the more it resembles the ”T++
(rep)” reference values. However, in Table III, the opposite
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seems to be happening; the ”T++ (rep)” row shows the lowest
values for almost all cases. An exception is the smooth
version with β = 0.01 @4s, where a marginal performance
increase is seen. However, in general, in this pedestrian-
only case, smooth attention does not improve this metric,
although the decline for the smooth versions is minimal.
The smoothing term might decrease the variety of predicted
trajectory distributions, affecting the average and making it
less similar to the ground truth. Further research is needed
to explore this hypothesis in other pedestrian-only scenarios.

TABLE I
RESULTS nuScenes T++ PEDESTRIAN-ONLY/VEHICLE-ONLY: FDE (M)

Model @1s @2s @3s @4s

T++ [10] 0.014/0.07 0.17/0.45 0.37/1.14 0.62/2.20

T++ (rep.) 0.168/0.430 0.369/1.168 0.608/2.323 0.886/3.868
β = 0.01 0.157/0.413 0.353/1.102 0.586/2.141 0.855/3.546
β = 0.1 0.155/0.419 0.350/1.081 0.580/2.122 0.842/3.496
β = 0.5 0.159/0.421 0.354/1.123 0.588/2.181 0.857/3.560
β = 1.0 0.155/0.448 0.351/1.128 0.582/2.165 0.845/3.507
β = 10 0.160/0.425 0.366/1.149 0.607/2.190 0.876/3.539

TABLE II
RESULTS nuScenes T++ PEDESTRIAN-ONLY/VEHICLE-ONLY: ADE (M)

Model @1s @2s @3s @4s

T++ [10] 0.021/- 0.073/- 0.15/- 0.25/-

T++ (rep) 0.126/0.307 0.221/0.632 0.329/1.092 0.450/1.689
β = 0.01 0.116/0.296 0.208/0.602 0.314/1.021 0.432/1.559
β = 0.1 0.114/0.302 0.206/0.597 0.311/1.012 0.427/0.543
β = 0.5 0.118/0.301 0.210/0.613 0.316/1.041 0.434/1.580
β = 1.0 0.114/0.319 0.207/0.630 0.312/1.048 0.428/1.575
β = 10 0.118/0.303 0.215/0.628 0.325/1.055 0.445/1.586

TABLE III
RESULTS nuScenes T++ PEDESTRIAN-ONLY/VEHICLE-ONLY: KDE NLL

Model @1s @2s @3s @4s

T++ [10] -5.58/-4.17 -3.96/-2.74 -2.77/-1.62 -1.89/-0.71

T++ (rep) -2.575/-1.760 -1.530/-0.604 -0.797/0.235 -0.230/0.927
β = 0.01 -2.560/-1.861 -1.519/-0.726 -0.795/0.108 -0.240/0.801
β = 0.1 -2.541/-1.856 -1.502/-0.679 -0.776/0.176 -0.216/0.875
β = 0.5 -2.542/-1.885 -1.505/-0.690 -0.779/0.150 -0.211/0.818
β = 1.0 -2.549/-1.880 -1.507/-0.679 -0.785/0.173 -0.226/0.868
β = 10 -2.480/-1.861 -1.471/-0.661 -0.759/0.173 -0.205/0.845

2) Vehicle-only predictions: Rightmost numbers in each
column of Table I-Table III show the results for the predicted
vehicle trajectories. Similarly to the previous pedestrian-only
case, a general FDE and ADE decline is seen along the
β-versions of the Smooth-Trajectron++. The ADE values

of the T++ paper are missing in Table II, as they are not
reported by the authors in the original article. The version
with β = 0.01 holds the lowest value for the prediction
horizon of 1 second, while β = 0.1 has a minor error for the
remaining prediction horizons. Contrary to the pedestrian-
only predictions in Table III, Smooth-Trajectron++ on the
vehicle-only forecasts has better KDE-NLL numbers than the
reproduced model, which indicates that the model is better
able to match the original distribution of predicted trajectories
with the inclusion of the smooth-attention term in the loss
function. Furthermore, this can be said for all β-factors, while
in this case, the β = 0.01 has the lowest values.

B. highD dataset

To evaluate the models on the highD dataset, we used
the previously proposed benchmarking framework [26]. This
framework was designed to benchmark prediction models
in gap acceptance scenarios, i.e. situations where drivers
decide whether to enter a gap in traffic or wait for the next
opportunity, such as when a car approaches an intersection
and decides whether to turn left immediately or wait for a
break in oncoming traffic. In case of the highD dataset, we
investigated the predictions of gap acceptance in lane-change
decisions using a restricted version of highD (see [26] for
details).

The framework [26] allowed us to use two methods of
splitting the highD data into training and testing sets: the
random split and the critical split. The first method randomly
splits the data for testing and training. In contrast, the second
method deliberately selects the most unusual behaviour for
testing, such as accepting a very small gap or rejecting a large
gap. This latter testing scenario, therefore, tests the model’s
ability to extrapolate to situations that lie outside its training
distribution, which is generally considered to be a more
difficult task [27]. Also, small accepted gaps can be regarded
as safety-critical scenarios, which is especially important
when developing safe and reliable prediction models.

Furthermore, the framework allowed us to test the models
with varying number of input time steps(nI ) to study the
input-dependability of the tested models; we used nI = 2
and nI = 10.

In addition to the metrics used for the nuScenes dataset,
the gap acceptance benchmark includes an additional metric,
the Area under the Receiver-Operator Curve (AUC), used
to evaluate the performance of binary classification models
(here between accepted and rejected gaps).

First, we analysed the performance of the models at
predicting lane-change decisions at initial gaps, i.e. at the
start of the interaction (Figure 3, top row). Here, only in
the case of β = 0.5 there is a notable increase in AUC
for the random split compared to T+ in both nI -instances.
For the critical split, almost all AUC-values are lower than
T+, except for β = 0.1 and β = 0.5 at nI = 10 where
it is slightly higher. Generally, the β-term does not seem to
increase the performance of the base model.

Second, we investigated models’ predictions of lane
changes in highD at the fixed-sized gaps, as defined in
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Fig. 3. The performance of Smooth-Trajectron++ and T++ on the highD
dataset: β1−5 refer to the β-values of 0.01, 0.1, 0.5, 1.0 and 10 respectively

[26] (Figure 3, bottom three rows). Looking at the random
splits, again for β = 0.5 there is an increase in AUC for
both nI -situations. The changes for the other β-versions are
not consistently different when compared to T + +, having
minor fluctuations to perform slightly better or slightly worse.
Concerning the critical split, all β-versions but β = 10
perform better than the base model, where β = 10 performs
very similarly to T ++. Also, the difference between nI = 2
and nI = 10 is logical, as the latter consistently has a higher
AUC than the former.

For both the FDE and ADE, all the β-versions are
outperforming the T + +-model at nI = 10 on the random
split. However, this seems due to one extremely high value
of one of the random splits of T + + (each random split
consists of three sub-splits, which are averaged to minimize
the effect of randomness). This could be an outlier, caused
by an error in the training process. At nI = 2, the β-values
under-perform compared to T + + for the random split,
indicating no significant improvement. At the critical split,
only at β = 0.1 and β = 10 both ADE and FDE values are
lower at nI = 10. In general, there is no clear improvement
regarding these metrics across the various β-values.

Overall, in highD lane-change prediction experiments,

there are instances of both better and worse performance
of Smooth-Trajectron++ compared to T++, indicating no
consistent benefits of adding smooth attention to T++. This
is in contrast to the nuScenes results, which may stem from
fundamental differences in the datasets. While the nuScenes
dataset encompasses a wide range of data with cars and
pedestrians, highD mainly focuses on cars. The application
of the smoothing term β in the Smooth-Trajectron++ model
relies on the attention module that compares different se-
mantic classes of traffic participants. In datasets where one
class dominates, the smoothing term may not yield tangible
improvements.

V. CONCLUSION

This paper proposed Smooth-Trajectron++, a trajectory
prediction model based on an existing state-of-the-art model
Trajectron++ [10] in which we incorporated a cognitively-
inspired smooth attention module [22]. We demonstrated that
our smooth-attention version of T++ can achieve increased
performance on the large-scale dataset nuScenes, but does
not result in tangible improvements on the highD dataset.
This suggests that the smooth attention approach seems to
be more suitable for large-scale multi-agent datasets with
multiple agent types rather than on datasets with few traffic
agents of mostly the same type. Hence, the concept of
smooth attention might be better applied to models where
the attention module is implemented over individual agents
and not semantic classes. Nevertheless, our results further
strengthen previous work [18], [20], [22], indicating that
including cognitive insights can allow better predictions of
human behaviour in traffic.
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