


ABSTRACT
Recently, automating test suite generation is a problem that has
drown attention in both industry and academia. One of the tools
used to automatically generate test suites is EvoSuite, which is a
state-of-the-art tool often used in research. It uses a genetic algo-
rithm, which seeks to maximize certain coverage criteria, such as
Branch Coverage or Exception Coverage. Previous research has
investigated the possibility of combining multiple coverage crite-
ria, but there is no single combination which performs best for
all classes. This paper aims to investigate if it possible to predict
when coverage criteria perform best, specifically Exception Cov-
erage, according to the characteristics of the class under test. The
paper shows that there is a significant difference between the per-
formances of these coverage criteria. The paper also shows that this
difference can be predicted using a Machine Learning model with
an f1-score of 0,865, when performance was measured using Muta-
tion Score. Lastly, an exploration is made into the characteristics of
the Class-under-test which cause this.

1 INTRODUCTION
Testing software is an important part of developing software, it is
necessary to ensure that software functions according to the expec-
tations of the developers. Writing test cases can take developers
significant amounts of time [11]. If the time developers have to
spend on testing their code can be reduced, their efficiency will be
increased.

A tool that can solve this problem is EvoSuite [6]. EvoSuite is
a tool that automatically generates test suites for a class-under-
test (CUT) in Java. [todo why EvoSuite]It has been shown that
these test cases can detect real faults in used software [1, 7]. A
well-functioning test suite generation tool can help reduce time
developers spend writing tests.

EvoSuite generates test suites according to various coverage cri-
teria. These have been defined over time to optimize for certain
goals, such as Branch coverage, Input coverage or Exception cover-
age. It has been shown that combining different coverage criteria
can provide better results than using coverage criterion individually
[14].

The effect of different coverage criteria has been studied by Gay
[9]. They found that for different classes there are different optimal
criteria or combinations of criteria, there is no single combination
of criteria that performs best for all classes. This means that if it is
known which (combination of) criteria performs best for a given
class, the generated test suite could be better.

What has not yet been researched is if there is a way to predict
which of the coverage criteria will perform best for each class. This
prediction would depend on the characteristics of the class under
test (CUT). If such a prediction can be made, then before test suite
generation the optimal coverage criterion could be selected. This
would make test suite generation more effective. For this paper
there will be a focus on the coverage criteria of Branch Coverage
and Branch Coverage combined with Exception Coverage.

Which coverage criteria are best for each class depends on the
characteristics of the Class-under-test. The prediction of which
coverage criteria will be made based on those characteristics.

The main question that will be answered is "How effective are
the different state-of-the-art fitness functions at guiding the
search process towards finding bugs?", where the research ques-
tion of this project is "When and how does Exception Coverage
increase the number of bugs detected when combined with
branch coverage?".

To answer this question, the following sub-questions have to be
answered:

• What is the improvement likewhen combining the BRANCH
coverage criterion with the EXCEPTION criterion?

• How accurate are possible models in predicting when com-
bining with the EXCEPTION criterion brings improvement?

• Under which class characteristics does combining with the
EXCEPTION coverage criterion give improvements?

The contribution of this paper is that it will investigate which
characteristics of the CUT are relevant for this research, andwhether
this connection exists.

The contribution of this paper is that it shows that there is a
statistically significant difference between the performance of the
BRANCH coverage criteria and it combined with EXCEPTION.
Then it is shown that it is possible to make a prediction based on
the characteristics of the Class-under-test. Lastly there is an explo-
ration of which characteristics of the Class-under-test contribute
to the combination of BRANCH and EXCEPTION coverage criteria
performing well.

First the paper will give some background information. Next the
methodology that is used will be discussed. After that, there will
be a section describing the results. Then the threats to validity will
be discussed. There will also be a section on responsible research.
The paper will finish with the conclusions and future work.

1.1 Background
This section will give some background information. First there
will be some more detail given on EvoSuite, coverage criteria and
fitness functions. Then an overview of different possible coverage
criteria will be given. Lastly there will be an explanation of some
of the class metrics that will be used.

1.1.1 EvoSuite. As mentioned in the introduction, EvoSuite is a
tool for generating test suites. It was chosen because it is a state-of-
the-art test suite generation tool, that is often used in research.

EvoSuite generates test suites that optimize a certain coverage
criterion, or a combination of multiple coverage criteria. These cov-
erage criterion are for example Branch Coverage (percentage of
branches covered by a test) or Exception Coverage (amount of pos-
sible exceptions covered by a test). The coverage criteria show the
quality of the current test suite. These coverage criteria form a
meta-heuristic to guide the search of EvoSuite.

Covering the entire coverage criterion involves generating a test
suite that covers all the parts of the criterion. In the example of
Branch Coverage as the coverage criterion, each branch must at
least have a test case covering it. The distance between a certain test



Toon Kling, et al.

case and it’s target branch, is given by a fitness function. The fitness
function of a test depends on the coverage criterion or combination
of criteria chosen. The goal of the tool is then to optimize this set
of fitness functions.

Optimizing these functions in EvoSuite is done by a genetic al-
gorithm, DynaMOSA, which was proposed by Panichella et al [12].
DynaMOSA is a many-objective solver that optimizes the different
fitness functions. Since there is a prohibitively large amount of
fitness functions to optimize, DynaMOSA utilizes the hierarchy
between the coverage criteria to select a subset of coverage tar-
gets to focus on. Since recently DynaMOSA has also been able to
efficiently search through a combination of coverage criteria [13].

1.1.2 Coverage Criteria. EvoSuite comes packed with a standard
list of coverage criteria. In this section the coverage criteria that are
relevant for this paper will be covered [8]. Some of these coverage
criteria are used in the papers of other peers:

(1) BRANCH. Branch coverage is attained when all branches,
possible paths in relation to control flow, are executed.

(2) CBRANCH. Branch coverage is attainedwhen all branches,
possible paths in relation to control flow, are executed.

(3) EXCEPTION. Exception coverage means that the more
exceptions that are thrown in the class under test (CUT),
the better.

(4) WEAKMUTATION. The amount of mutants that are de-
tected. Since weak mutations is used, these mutations do
not need to reach program output.

(5) OUTPUT. This coverage criteria rewards a higher diversity
in the output. Distance can be used to define the distance
between the different output types, for example returning
all possible subclasses or distance in numeric terms.

(6) INPUT. Similar to output coverage.

1.1.3 Class metrics. The goal is to find which characteristics of
the CUTs influence the effectiveness of different coverage criteria.
An often used set of metrics that give information about a class
are the metrics developed by Chidamber & Kemerer [4]. There also
exists an extension of these metrics, developed by Aniche [3], which
computes a total of 49 class metrics.

1.1.4 Model. This section will give background information on
the model that will eventually be used. It will only give background
information that the average reader is not expected to know. Since
the choice of model is not yet made, this part remains empty.

1.2 Related work
As mentioned, Gay [9] has investigated the results of combining
fitness functions. They have found that there are different opti-
mal fitness functions for each class, however they have made no
attempts to predict this.

Coverage criterion selection has been done by Almulla et al.[2],
who propose an adaptive algorithmwhere fitness function selection
is another step of optimization. The results are promising, but a
reinforced learning model will always contain some overhead. The
method proposed in this paper would not have such a significant
overhead.

2 METHODOLOGY
In this section there will be an overview of the methodology that
was used to answer the research question. First there will be a
description of the dataset that was used. Then the method for an-
swering the first research question will be covered. Secondly, the
metrics that were collected from the classes are coverd. Then it is
discussed how the data was cleaned and balanced. Next the paper
describes how the second research question was answered by devel-
oping a model. Then it answers how to measure the performance
of that model before ending with the last research question.

2.1 Data collection
The set of classes that was used was the SF110 corpus of classes [7],
over which the test suites and their performance evaluation were
generated. The SF110 corpus is a collection of 100 random classes
combined with the 10 most popular classes from SourceForge. This
set of classes were chosen because they are a large representative
sample of open-source Java classes.

On this dataset test suites were generated using EvoSuite for
each class. These classes were scored by the Branch Coverage which
EvoSuite computed and the Mutation Score which was computed
using PITest[5]. EvoSuite was run for each class, for each criterion
and for each time budget. The time budgets were 60 seconds, 180
second and 300 seconds. EvoSuite was run 10 times for each class
and each criterion. The median value for these 10 runs was taken
as the Branch Coverage value for that class and criterion. Note
that BRANCH refers to using the BRANCH coverage criterion only,
and BRANCH;EXCEPTION refers to using BRANCH and EXCEP-
TION coverage criteria combined. Only the criteria BRANCH and
BRANCH;EXCEPTION were investigated for this paper. All criteria
for which EvoSuite was run were:

• BRANCH
• BRANCH;CBRANCH
• BRANCH;EXCEPTION
• BRANCH;INPUT
• BRANCH;OUTPUT
• BRANCH;WEAKMUTATION
• default (combines all coverage criteria)

A sample of the data this produced can be seen in Table 1. Here
the TARGET_CLASS is the class that the data was taken from, the
round refers to the 10 times that EvoSuite was run and the criterion
refers to which criterion this run was for. TARGET_CLASS has
been shorted for ease of reading. The table also contains the Branch
Coverage that this resulted in.

Besides only the Branch Coverage for each test suite, the Mu-
tation Scores were also computed by using the PITest tool. The
Mutation scores were generated for each class and each criterion,
but only for the 60 seconds time budget.

2.2 RQ 1 - What is the improvement like when
combining the BRANCH coverage criterion
with the EXCEPTION criterion?

To answer the first research question, the median results in Branch
Coverage and Mutation Score was computed for each class and



project.id TARGET_CLASS BranchCoverage
round criterion

24_saxpath [...].XPathLexer 0.878099
3 BRANCH;CBRANCH

jdom [...].XMLOutputter 0.951613
3 BRANCH;EXCEPTION

scribe [...].Verifier 1.000000
10 BRANCH;OUTPUT

twitter4j [...].TwitterException 0.829268
8 default

59_mygrid [...]._AvailableJobsResponse 0.821429
10 BRANCH;EXCEPTION

Table 1: A random sample of EvoSuite data, 𝑛 = 5.

criterion, so taking the median of the 10 rounds. The data resulting
frmo this has been used to compute the number of classes where
each criterion performs best, and graphs displaying the average
performance of each criterion. This has been done for both Branch
Coverage and Mutation Score. Based on this, it is possible to see
which criterion or combination of criteria performs best.

2.3 Metrics
This paper uses the CK tool mentioned in the background, devel-
oped by Aniche [3], to compute the metrics for each class. These
metrics have been used as features of each class in order for the
model to use for predictions. To this end, the metrics have been
normalized.

2.4 Data cleaning
With the dataset that was computed, some metrics contained Not-
A-Number (NaN ) values. Since these values are undefined, it is best
to define a way to replace them, or not to use the classes where they
occur. There were three code metrics where NaN values occurred.

2.4.1 LCOM*. This was the first code metric which contained NaN
values. These NaN values were caused because the method that
computes LCOM* divides by the number of methods as one the
steps to compute it. Whenever a class does not have any methods,
this results in a division by zero. The tool [3] was written in Java,
which means that the division by zero eventually resulted in the
NaN values. A class with no methods should have a high cohesion,
so these NaN values were replaced with 1.

2.4.2 TCC & LCC. These metrics compute Tight and Loose class
cohesion. This is computing by dividing the amount of connections
of a class by the total amount of possible connections of that class,
the amount of possible connections is computed by 𝑁 ∗ (𝑁 − 1),
where 𝑁 is the number of visible methods. Whenever 𝑁 < 1, TCC
and LCC are undefined because a division by zero would occur so
the metric returns -1. However, whenever 𝑁 = 1, a division by zero
also occurs, which leads to the NaN values being present in the
data. Therefore, for these metrics NaN was replaced with -1, which
is the value they should have.

2.5 Imbalanced data
Learning from unbalanced data can reduce the performance of pre-
dictive models [10]. Unbalanced data occurs when the occurrence
of different categories in the data is unequal, some data appears
less often than average, while some categories appear more often
than average.

Imbalanced data is often resolved by either artificially adding
more datapoints to the rarer category, which is called oversampling,
or by removing datapoints from the more common category, which
is called undersampling. Since undersampling reduced the amount
of available data, this paper will randomly oversample the training
data.

2.6 RQ 2 - How accurate are possible models in
predicting when combining with the
EXCEPTION criterion brings improvement?

To answer this research question, a model was developed. This
model should try to predict which criterion, BRANCH;EXCEPTION
or BRANCH, performs better for a given class. A separate label
was introduced for if both criteria produce the same results. There-
fore the labels that should be predicted are better, equal or worse,
representing performance of BRANCH;EXCEPTION compared to
BRANCH.

The features on which the prediction should be based are the
features that are mentioned in the metrics section.

For predicting when a higher Branch Coverage or Mutation
Coverage was achieved, a model was developed. For both of these
questions a Random Forest Classifier was used. This classifiers
trains a number of decision trees on samples of the training data.
The final classification is an average of the classification of the
individual decision trees.

2.7 Measuring performance
While the results of the classification use 3 labels, better, equal and
worse, the prediction should give a boolean answer: which criterion
performs better. A choice should be made which criterion to use
in the case that the model predicts an equal outcome. Since the
model will not predict perfectly, this choice will have an effect. It
was chosen that an equal prediction would be interpreted as using
the BRANCH;EXCEPTION criterion. This reduces the amount of
final labels from 3 to 2, which makes measuring the performance
of the model simpler.

Since the dataset is imbalanced, as discussed in section 2.5, a
simple accuracy measurement would not be helpful. Instead of
an accuracy score, often picked metrics to evaluate imbalanced
learning problems are recall and precision or a score which combines
both, F-Measure [10]. Here precision refers to how often a prediction
for the true class was actually correct, and recall gives a measure of
how often an actually correct class was labeled as true. F-Measure
combines these scores according to the following formula:

F-Measure =
(1 + 𝛽)2 · 𝑅𝑒𝑐𝑎𝑙𝑙 · 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝛽2 · 𝑅𝑒𝑐𝑎𝑙𝑙 · 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
F-Measure with 𝛽 = 1 was used as one way to measure the

performance of the models. This is referred to as the f1-score.



Toon Kling, et al.

Another way of measuring performance is to simulate what the
results of running EvoSuite with criterion selection from this model
would be. As mentioned, the dataset contains the Branch Coverage
and Mutation Score for each class for each criterion. This allows
the computation of the average Branch Coverage and Mutation
Score for each criterion. But it also allows the computation of this
average, when the selection is made which criterion to use for each
class based on the prediction of the model. For comparison, this
measurement will also contain the average result with a fake model
that has perfect predictions. Therefore, this measure contains 4 data-
points, each representing the average Branch Coverage or Mutation
score, for the following criteria: BRANCH, BRANCH;EXCEPTION,
model-prediction, perfect-prediction.

The advantage of this way of measuring the performance of the
model is that it corresponds to a real-world application of EvoSuite
with this model. Using this model tells us whether it is possible to
improve EvoSuite using a prediction like this. In order to provide
an accurate measurement the the data was split using K-Fold cross-
validation, with 5 splits.

Whether the model with selection outperforms the criterion is
relevant information. In the case that this was very close and not
conclusive, the difference between the selection with the model and
the usage of that criterion was computed over 10 runs of training
the model.

2.8 RQ 3 - Under which class characteristics
does combining with the EXCEPTION
coverage criterion give improvements?

This research question concerns the characteristics of the classes
that contribute to which criterion performs best. This research
question will be answered by exploring which characteristics of
the class correspond to the BRANCH;EXCEPTION combination
performing well, as well as exploring the Decision Trees compris-
ing the Random Forest classifier that was developed for research
question 2.

3 RESULTS & ANALYSIS
This section will give an overview of the results. The results will
be given per Research Question.

3.1 RQ 1 - What is the improvement like when
combining the BRANCH coverage criterion
with the EXCEPTION criterion?

As can be seen in table 2, there is a significant number of classes
where BRANCH;EXCEPTION outperforms BRANCH, (44% of the
time). There are cases where this is not the case or where the
results are the same(56%). As can be seen in figure 1 and 2, there is
a significant average improvement when using BRANCH criterion
as opposed to using the BRANCH;EXCEPTION criterion. However,
it should be noted that there is also a significant amount of classes
where the BRANCH criterion performs best. This means that for
both Branch Coverage and Mutation Score a greatest performance
can be achieved if it is correctly predicted which criterion performs
best.

Metric Total B better B;E better equal

BranchCoverage 338 94 79 165
MutationScore 321 71 140 109

Table 2: For how many classes the different criterion
outperform eachother. Comparing BRANCH (B) to
BRANCH;EXCEPTION (B;E for both metrics that were
collected.

Figure 1: Average Branch coverage for each dataset and each
criterion.

Figure 2: Average Mutation Score for both criteria.

3.2 RQ 2 - How accurate are possible models in
predicting when combining with the
EXCEPTION criterion brings improvement?

In Figure 3 there is a comparison of the results of different criteria.
As mentioned, the figure shows the resulting Branch Coverage
had EvoSuite been run on the test classes according to the various
criteria. The model achieved an f1-score of 0,793.

In the figure it can be seen that using the predictions from the
model outperforms a naive approach of picking either of the criteria
themselves. However, this experiment was run 10 times, and the
the model outperforming BRANCH;EXCEPTION was not consis-
tent, of the total of 10 runs, only 5 times the model predictions
outperformed selecting BRANCH;EXCEPTION as a criterion. This
means that the results are not consistent.

The experiment was also run for Mutation Score prediction, as
can be seen in Figure 6. Here, oversampling did not have a positive



Figure 3: Average Branch Coverage comparison for each pos-
sible criterion.

effect on the outcome so it was not done. As can be seen, the Model
predictions outperform both criteria. This experiment was repeated
10 times as well, with the model outperforming both BRANCH and
BRANCH;EXCEPTION individually 8 out of 10 times. The model
seen in the figure achieved an f1-score of 0,865.

Figure 4: Average Mutation Score comparison for each possi-
ble criterion.

3.3 RQ 3 - Under which class characteristics
does combining with the EXCEPTION
coverage criterion give improvements?

Firstly in table 3 and 4 are the 10 class metrics that correlated the
most with whether BRANCH;EXCEPTION outperforms BRANCH
for both Branch Coverage and Mutation Score. These results show
that there are definitely some characteristics which are correlated
with the performance, however individually they do not correlate
significantly.

For figure 4, which contains the metrics and their correlation to
Branch Coverage, it can be seen that there is often a significant, neg-
ative correlation. The metrics which have this negative correlation
can be seen as metrics indicative of a more complex class.

Class metric Correlation

synchronizedMethodsQty -0.107576
mathOperationsQty 0.097993

fanout 0.096586
cbo 0.096586

maxNestedBlocksQty 0.090270
assignmentsQty 0.088040
variablesQty 0.086791

rfc 0.086417
anonymousClassesQty 0.082053

stringLiteralsQty 0.081770
Table 3: Most correlating metrics for Mutation Score

Class metric Correlation

uniqueWordsQty -0.276232
comparisonsQty -0.263137

rfc -0.226523
assignmentsQty -0.217081

visibleMethodsQty -0.216861
variablesQty -0.212898

publicMethodsQty -0.192095
staticFieldsQty -0.187837
totalMethodsQty -0.187225

nosi -0.184247
Table 4: Most correlating metrics for Branch Coverage

4 VALIDITY
4.1 Threats from Class Selection
The dataset that was used in this paper is the SF110 corpus of classes.
If there is a bias in the selection of these classes this could influence
whether the results could be generalized. However, the SF110 corpus
of classes contains a random selection of 100 open-source projects
from Sourceforge, which means that there was no bias in their
selection. It does contain the 10 most popular popular projects
on Sourceforge as well, however this is not a significant enough
number to threaten the results provided. There is a bias present
towards open-source projects written in the Java language.Whether
these results also apply to other languages is not investigated.

4.2 Threats from EvoSuite
The test suite generation from EvoSuite is by it’s nature a stochastic
process. The results for each generation could differ signficantly
from the others. The threats to validity from this fact were alleviated
by running the algorithm 10 times for each class, and taking the
median of those values as the result. This reduces the risk of random
chance interfering with the results.

4.3 Threats from Mutation Score
The computation of mutation scores for each generated test suite
is by it’s nature also a stochastic process. Here too, 10 runs were



Toon Kling, et al.

done for each class. The result that was worked with is the median
of these 10 runs.

4.4 Threats from Random Models evaluation
The models that were developed during this paper are made up of
stochastic processes, their performance varied significantly. Perfor-
mance metrics were made less variable by using K-Fold cross valida-
tion with 5 folds. During answering of the second research question,
where it was relevant whether the model-selected coverage crite-
rion outperformed "BRANCH;EXCEPTION", the experiment was
repeated 10 times to get a conclusive answer.

5 ETHICS
This paper concerns a tool which is used by developers to write
tests. It cannot influence humans or the environment directly. Care
should always be taken when relying on automatically generated
test cases.

The dataset of this paper, SF110, is a collection of open-source
projects. EvoSuite, PITest and CK, which computes the class metrics,
are all open-source tools. This allows the analysis that was done in
this paper.

The results in this paper can be reproduced by running the code.
The code will be released and be made accessible.

6 CONCLUSIONS AND FUTUREWORK
Criteria for guiding automated test suite generation algorithms
like EvoSuite have been studied recently. Two of these criteria, or
combinations of criteria, are BRANCH and BRANCH;EXCEPTION,
which this paper focuses on. In this paper, it is shown that it is
possible to predict whether BRANCH or the combination performs
better.

To this end, first it is shown that there is a significant difference
in performance between these characteristics. This is based on an
evaluation of the SF110 Corpus of classes, of which test suites have
been generated using EvoSuite, and class metrics using the CK tool,
developed by Aniche [3].

Based on this data, a Random Forest model has been developed
to predict which criterion performs best, where performance is
measured by Branch Coverage orMutation Score. It has been shown
that this model could achieve a higher Mutation Score compared
to each of the criteria individually, with an f1-score of 0,865. The
results for achieving a higher Branch Coverage were promising but
not conclusive.

In order to find which characteristics contribute to which crite-
rion performs best, a list of correlated metrics has been produced.
For Branch Coverage, the most significant correlations were nega-
tive. In other words, Exception Coverage achieves higher results
with low metrics. Generalizing all metrics it can be said that a class
which scores low on all of them is often "simpler". Therefore Excep-
tion Coverage will only really achieve improved Branch Coverage
on simpler classes. Since Exception Coverage does not necessar-
ily automatically lead to better Branch Coverage, this does not
necessarily have consequences for real fault-detection capability.

For mutation score there are more metrics which have a signifi-
cant positive correlationwith a good result for BRANCH;EXCEPTION
criterion as opposed to BRANCH criterion. The list of metrics

can be of interest to see which characteristics contribute to the
BRANCH;EXCEPTION performing well. A developer could use this
information to make a more informed decision on which coverage
criteria to use.

For future work, this paper only compares two coverage criteria
or combinations of, while a real implementation with EvoSuite
would require to make this prediction for more combinations. This
paper has not been able to predict when BRANCH;EXCEPTION
achieves a better Branch Coverage, only when it achieves a better
Mutation Score. More analysis into which characteristics contribute
of classes contribute to the difference in performance could also be
performed.

REFERENCES
[1] M Moein Almasi, Hadi Hemmati, Gordon Fraser, Andrea Arcuri, and Janis Bene-

felds. 2017. An industrial evaluation of unit test generation: Finding real faults
in a financial application. In 2017 IEEE/ACM 39th International Conference on
Software Engineering: Software Engineering in Practice Track (ICSE-SEIP). IEEE,
263–272.

[2] Hussein Almulla and Gregory Gay. 2022. Learning how to search: Generating
effective test cases through adaptive fitness function selection. Empirical Software
Engineering 27, 2 (2022), 1–62.

[3] Maurício Aniche. 2015. Java code metrics calculator (CK). Available in
https://github.com/mauricioaniche/ck/.

[4] Shyam R Chidamber and Chris F Kemerer. 1994. A metrics suite for object
oriented design. IEEE Transactions on software engineering 20, 6 (1994), 476–493.

[5] Henry Coles, Thomas Laurent, Christopher Henard, Mike Papadakis, and An-
thony Ventresque. 2016. Pit: a practical mutation testing tool for java. In Pro-
ceedings of the 25th international symposium on software testing and analysis.
449–452.

[6] Gordon Fraser and Andrea Arcuri. 2011. Evosuite: automatic test suite generation
for object-oriented software. In Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of software engineering. 416–419.

[7] Gordon Fraser and Andrea Arcuri. 2014. A large-scale evaluation of automated
unit test generation using evosuite. ACM Transactions on Software Engineering
and Methodology (TOSEM) 24, 2 (2014), 1–42.

[8] Gregory Gay. 2017. The fitness function for the job: Search-based generation
of test suites that detect real faults. In 2017 IEEE International Conference on
Software Testing, Verification and Validation (ICST). IEEE, 345–355.

[9] Gregory Gay. 2017. Generating effective test suites by combining coverage crite-
ria. In International Symposium on Search Based Software Engineering. Springer,
65–82.

[10] Haibo He and Edwardo A Garcia. 2009. Learning from imbalanced data. IEEE
Transactions on knowledge and data engineering 21, 9 (2009), 1263–1284.

[11] Glenford J Myers, Corey Sandler, and Tom Badgett. 2011. The art of software
testing. John Wiley & Sons.

[12] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. 2017. Au-
tomated test case generation as a many-objective optimisation problem with
dynamic selection of the targets. IEEE Transactions on Software Engineering 44, 2
(2017), 122–158.

[13] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. 2018. In-
cremental control dependency frontier exploration for many-criteria test case
generation. In International Symposium on Search Based Software Engineering.
Springer, 309–324.

[14] José Miguel Rojas, José Campos, Mattia Vivanti, Gordon Fraser, and Andrea
Arcuri. 2015. Combining multiple coverage criteria in search-based unit test
generation. In International Symposium on Search Based Software Engineering.
Springer, 93–108.


