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Nonlocal Elasticity near Jamming in Frictionless Soft Spheres

Karsten Baumgarten,* Daniel Vågberg, and Brian P. Tighe
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(Received 25 August 2016; revised manuscript received 3 November 2016; published 27 February 2017)

We use simulations of frictionless soft sphere packings to identify novel constitutive relations for linear
elasticity near the jamming transition. By forcing packings at varying wavelengths, we directly access their
transverse and longitudinal compliances. These are found to be wavelength dependent, in violation of
conventional (local) linear elasticity. Crossovers in the compliances select characteristic length scales,
which signify the appearance of nonlocal effects. Two of these length scales diverge as the pressure
vanishes, indicating that critical effects near jamming control the breakdown of local elasticity. We expect
these nonlocal constitutive relations to be applicable to a wide range of weakly jammed solids, including
emulsions, foams, and granulates.
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Classical linear elastic continuum theory is blind to
structure: it contains no length scale(s) characteristic of,
e.g., interparticle interactions or structural correlations [1].
As a result, the theory is only valid at asymptotically long
wavelengths. While predicted displacement fields can be
accurate down to a few lattice constants in ordered solids,
deviations in amorphous materials are apparent over much
longer distances [2,3]. Soft sphere packings, a standard
model for emulsions, foams, and granular materials,
provide an important example of this effect. Response
functions in simulated packings depart significantly from
elasticity [4–6] when the packings are close to the (un)
jamming transition at zero confining pressure p [7,8].
Jammed solids are anomalously soft: while their shear

modulus G0 ∼ p1=2 vanishes continuously, the bulk modu-
lus K0 jumps discontinuously to zero at the jamming point.
The vibrational density of states also displays excess low
frequency modes with a characteristic scale ω� ∼ p1=2.
Together with a linear dispersion relation, these features
imply that longitudinal and transverse sound are charac-
terized by diverging length scales l� ∼ K1=2

0 =ω� ∼ 1=p1=2

and lc ∼G1=2
0 =ω� ∼ 1=p1=4, respectively [9,10]. Details

remain controversial, but there is consensus that the break-
down of classical elasticity near jamming is governed by l�
[4], lc [5], or both [6].
In order to determine the response of jammed solids at

short wavelengths, one typically gives up on continuum
descriptions and turns to computationally expensive meth-
ods that resolve discrete particles, such as molecular
dynamics, with resulting restrictions on accessible system
sizes. Here, we show that, close to jamming, continuum
elasticity can be extended to short wavelengths and the
considerable computational advantages of continuum
methods can be retained by using nonlocal constitutive
relations, which “know about” microstructure by incorpo-
rating at least one length scale l [11–14]. Our work is
inspired by recent demonstrations that nonlocal effects play

a central role in rheology near jamming [15–27], and in
particular by the successful application of nonlocal models
to predict unusual phenomena such as flow below the
nominal yield stress [19,28] and wide shear bands in split-
bottomed Couette cells [29,30].
Nonlocal linear elastic constitutive relations replace the

usual moduli with kernels in an integral relation [12].
This can be illustrated with a classical scalar constitutive
relation σ ¼ C0ϵ in one dimension, which relates the stress σ
to the strain ϵvia amodulusC0 and holds at each position x in
a volume Ω. Its nonlocal counterpart σðxÞ ¼ R

Ω Cðx − x0Þ
ϵðx0Þdx0 introduces a kernel CðxÞ. The kernel is a priori
unknown, though it must vanish as x → ∞ and must be an
even-valued function in isotropic systems. The integral
constitutive relation can be approximated with a weakly
nonlocal or stress gradient form ð1 − l2∂2Þσ ¼ C0ϵ. (Strain
gradient variations are also possible.) In this simpler form, all
nonlocal effects are quantified by the coefficientl, which has
units of length. To characterize and quantify nonlocal effects
in amaterial, onemust determine l, or more generally its full
kernel. We do so by measuring the wave-number-dependent
compliance ŜðqÞ ¼ 1=ĈðqÞ, where ĈðqÞ is the Fourier

(a) (b) (c)

FIG. 1. (a) Sinusoidal forcing applied to a soft sphere packing,
and (b) the resulting displacements. (c) A parametric plot of the
constitutive relation is linear with a slope that increases with wave
number q, violating classical elasticity (dashed line).
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transform of CðxÞ. In a tensorial theory for isotropic
materials, the kernel is not a scalar but a rank 4 tensor with
two independent elements, which can be determined by
measuring two separate compliances.
In the typical approach to nonlocal modeling, one uses

data fitting to determine free parameters in a particular
model. This can make it difficult to discriminate between
the many available models [11–16,18–20,23,25–30]. Our
method more closely resembles oscillatory rheology, which
gives direct access to frequency-dependent viscoelastic
moduli without fitting to a model. Here, we apply forcing
that is periodic in space, rather than time, thereby meas-
uring wavelength-dependent compliances [31,32] without
invoking the fluctuation-dissipation relation [33]. On the
basis of our measurements, we identify two diverging
length scales, growing fluctuations, and new nonlocal
constitutive relations.
Model system.— We study mixtures of N soft disks in

D ¼ 2 dimensions with equal numbers of large and small
disks having a 1.4∶1 ratio of their radii, a commonly
studied model system [7,34]. Unless noted otherwise, N ¼
65 536 prior to removing nonload bearing “rattlers”.
Contacting disks labeled i and j interact via a pair potential
Vij ¼ ð1=2Þkδ2ij, where δij is the difference between the
sum of the disks’ radii and their center-to-center distance.
Noncontacting disks do not interact. All results are reported
in units where the spring constant k and the small particle
diameter d are equal to 1. Packings are prepared in a
biperiodic L × L cell via instantaneous quench from
infinite to zero temperature using a nonlinear conjugate
gradient method [35], followed by a series of small volume
changes to reach a target pressure. Particle displacements
are determined by inverting DN coupled linear equations
involving the Hessian, the matrix of second derivatives of
the potential energy with respect to the particle positions
[36,37]. The response is calculated for vanishing perturba-
tion amplitude, so contact changes and other nonlinear
effects are absent. However, recent work has shown that the
Hessian accurately predicts average stress-strain curves
over finite strain intervals with an extensive number of
contact changes [38–42]. We employ the standard tech-
nique of “removing the prestress”, which is equivalent to
replacing each contact with a spring at its rest length
[43,44]. Data with the prestress are qualitatively similar but
noisier. While all our simulations are in D ¼ 2 dimensions,
we expect no qualitative differences for D ≥ 3, because the
upper critical dimension for jamming is 2 [39].
Measuring nonlocal constitutive relations.—We adapt a

method developed independently by several authors—see
Refs. [6,45] and especially [31,32], which explicitly make
the connection to nonlocality. Packings are subjected to
longitudinal and transverse force densities

f∥ðyÞ ¼ ð0; f∥ÞT sin qy ð1Þ

f⊥ðyÞ ¼ ðf⊥; 0ÞT sin qy ð2Þ

with wave number q. These establish changes in the stress
tensor with Fourier amplitudes δσ̂yyðqÞ≡ σ̂∥ðqÞ ¼ f∥=q
and δσ̂xyðqÞ≡ σ̂⊥ðqÞ ¼ f⊥=q, respectively. We then mea-
sure the average displacement fields u∥ ¼ ð0; u∥ÞT and
u⊥ ¼ ðu⊥; 0ÞT . Longitudinal forcing and response are
illustrated in Figs. 1(a) and 1(b). We restrict ourselves to
linear response [40,42], though application to nonlinear
response and flow is possible.
In a classical and isotropic elastic continuum, a sinus-

oidal force density establishes a sinusoidal displacement
field in phase with the forcing. Hence, we can reproduce the
constitutive relation by noting that a parametric plot of, e.g.,
the y components of qu∥ðyÞ and q−1f∥ðyÞ sweeps out the
same curve as a conventional plot of strain ϵ∥ vs stress σ∥.
(This is simplest to see in a scalar 1Dmodel, where the force
density f ¼ −∂σ and the strain ϵ ¼ ∂u.) Classical elasticity
predicts the curve will be linear with a constant slope
K0 þ G0 in two dimensions. The slope is independent of
q because the theory is insensitive to gradients. In Fig. 1(c),
we demonstrate that the second prediction fails near jam-
ming: the slope varies with q and approaches the classical
prediction (dashed line) only as q → 0, when spatial gra-
dients are weakest. This is our first main result: the elasticity
of jammed packings is indeed nonlocal.
To quantify nonlocality, we measure the longitudinal

compliance Ŝ∥ðqÞ ¼ q2û∥ðqÞ=f∥ and transverse compli-
ance Ŝ⊥ðqÞ ¼ q2û⊥ðqÞ=f⊥ for each packing via direct
Fourier transform of the displacement field. These two
compliances fully determine the linear nonlocal constitu-
tive relation [12], which in Fourier space reads σ̂αβðqÞ ¼
ĈαβγδðqÞϵ̂γδðqÞ (summation implied). Because of several
symmetries, in isotropic materials, the tensor Ĉ has just two
independent elements [1]; these are fixed by Ŝ∥ and Ŝ⊥.
Full expressions are given in the Supplemental Material
[46]. Because local elasticity must be recovered for
spatially uniform strains, the compliances at q ¼ 0 encode
the bulk and shear modulus, Ŝ∥ð0Þ ¼ 1=½K0 þG0� and
Ŝ⊥ð0Þ ¼ 1=G0. Continuity of the q ¼ 0 limit is not
required, but will be verified numerically.
Mean response.— We first consider the response to

longitudinal forcing. Figure 2 depicts S∥ðqÞ for a range
of pressures close to jamming and wave numbers
2π=L ≤ q ≤ π=d. Data are averaged over approximately
1000 configurations per condition.
Each curve approaches a pressure-dependent plateau

Ŝ∥ð0þÞ as q tends to zero. To determine whether the limit
is continuous, we measure the local compliance Ŝ∥ð0Þ by
subjecting each packing to a uniform stress in an inde-
pendent test [37]. As shown in Fig. 2(b), the excess
compliance Δŝ∥ðqÞ≡ hŜ∥ðqÞ=Ŝ∥ð0Þi − 1 vanishes contin-
uously with q, indicating a continuous limit.
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As q increases the compliance shows a clear pressure-
dependent crossover, which selects a nonlocal length scale
l∥. We now show that this length diverges with pressure.
To do so, we demonstrate that the excess compliance Δŝ∥
collapses to a master curve when plotted vs the rescaled
coordinate ql∥. We first consider a simple power law
ansatz l∥ ∼ 1=pα, which gives excellent data collapse for
α ¼ 0.33 and pressures 10−5.5 ≤ p ≤ 10−3 [Fig. 2(b),
inset]. The value of α is surprising insofar as it differs
from the exponents 1=2 and 1=4 of the previously identified
length scales l� and lc, respectively. Indeed, we show below
that l� and lc can be identified in the fluctuations about the
mean response. If one insists that l∥ should approach l� or
lc near jamming, it is also possible to obtain good data
collapse of Δŝ∥ by making the alternative ansatz
1=l∥ ∼ 1=l� þ β=lc ∼ p1=2 þ βp1=4—see Fig. 2(b) (main
panel). For β ¼ 0.15 and 10−5.5 ≤ p ≤ 10−2, the ansatz is
nearly indistinguishable from pure power law scaling
[dashed and solid lines in Fig. 2(a), inset]. Hence, it is
plausible l∥ → lc (α approaches 1=4) as p → 0. We stress
that a diverging nonlocal length implies significant

nonlocal corrections to classical elasticity, regardless of
the value of its exponent.
We now consider transverse forcing. Figure 3 plots the

transverse compliance Ŝ⊥ðqÞ for a range of pressures.
While the general shape of the compliance curves echoes
the longitudinal case, there are several differences. First,
the crossover scale 1=l⊥ is a constant on the order of the
inverse particle size, independent of pressure. Hence,
the transverse length l⊥ does not diverge near jamming,
unlike l∥. A similar p-independent crossover was noted
in Ref. [6] without making the connection to nonlocality.
The transverse compliance is nonmonotonic, with an initial
dip that appears to survive in the infinite system size limit
[Fig. 3(b)]. Despite the dip, the q → 0 limit is again
continuous, Ŝ⊥ð0þÞ ¼ Ŝ⊥ð0Þ. Finite size effects are
stronger than in the longitudinal forcing case (not shown);
they are also more dramatic than finite size effects under
uniform strain [47], which can be neglected when
p ≫ 1=N2—which holds for all data in Fig. 3.
Constitutive relations.— For analytical modeling, it is

often desirable to assign a functional form to the compli-
ances. While one would like to have an accurate description
of the nonlocal compliances over the whole range of q, no
currently available nonlocal model correctly predicts the
data of Figs. 2 and 3. Fitting functions are an option, though
they lack physical insight. Micromechanical models such as
effective medium theory (EMT) would be preferable [48].
While we expect that EMT can predict the nonlocal
transverse compliance, it fails to capture the longitudinal
compliance even for spatially uniform forcing [49].

(a)

(b)

FIG. 2. (a) Longitudinal compliance Ŝ∥ðqÞ vs inverse wave-
length λ for pressures 10−5.5 ≤ p ≤ 10−2 in half decade steps.
(inset) Nonlocal length scale determined from Ŝ∥ð2π=l∥Þ=
Ŝ∥ð0Þ ¼ 2. (b) Data collapse of the excess compliance Δŝ∥ðqÞ
for mixed (main panel) and pure power law rescaling (inset).

(a)

(b)

FIG. 3. (a) The transverse compliance shows no pressure-
dependent crossover for 10−5.5 ≤ p ≤ 10−2. (b) The excess
compliance at low p is nonmonotonic, even at large system size
N. Here: p ¼ 10−4 and 210 ≤ N ≤ 216. (inset) Nonlocal length
scale determined from Ŝ⊥ð2π=l⊥Þ=Ŝ⊥ð0Þ ¼ 2.
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Approaches based on spatially fluctuating moduli may
provide an alternative [33,50–52].
Even in the absence of a more detailed model, it is

possible to write down constitutive relations that capture
essential nonlocal features of the mean response. As
isotropy of the material requires Ŝ∥ and Ŝ⊥ to be even in
q, the leading term in an expansion of the excess com-
pliance is quadratic, as verified in Fig. 2(b). Truncating the
expansion leads to weakly nonlocal, or stress gradient,
constitutive relations, with a particularly simple form when
the wave vector has fixed orientation,

ð1 − l2⊥∂2Þσ⊥ ¼ 2G0ϵ⊥ ð3Þ

ð1 − l2
∥∂2Þσ∥ ¼ ðK0 þ G0Þϵ∥: ð4Þ

Full expressions are available in the Supplemental Material
[46]. These relations represent a qualitative improvement
over classical elasticity near jamming. Equation (3) pro-
vides a good description of the transverse response over a
wide range of q; note the minus sign neglects the dip in Ŝ⊥.
Equation (4) introduces the diverging length scale l∥,
though it misses the slow bending over of Δŝ∥ apparent
in Fig. 2(b).
Fluctuations.— It is apparent from Fig. 1(b) that indi-

vidual particle displacements deviate from perfect sinus-
oidal response. These nonaffine fluctuations can be
quantified by the ensemble average of the ratio

F ∘ðq0; qÞ ¼
�
�
�
�
hu∘ðqÞjq0∘i
hu∘ðqÞjq∘i

�
�
�
�; ð5Þ

where ∘ refers to ∥ or ⊥. F ∘ compares the projections of
the DN-component displacement vector ju∘ðqÞi ¼
fðu∘Þigi¼1…N on sinusoids with wave numbers q0 ≠ q
and q. The sinusoids’ polarization matches the forcing.
We first consider transverse forcing. We restrict our focus to
long wavelengths q ≤ 30ð2π=LÞ, where S⊥ is approxi-
mately flat, and consider only q0 < q, where fluctuation
amplitudes are largest. Figure 4(a) (inset) shows that for a
given pressure, F⊥ collapses when plotted vs q0=q. The
curves present a pressure-dependent crossover from steep
to shallow decay. The data can be collapsed further still by
plotting pa⊥F⊥ vs ðq0=qÞ=p1=4, with a⊥ ≈ 0.52 [Fig. 4(a),
main panel]. We conclude that transverse fluctuations are
governed by the length scale lc.
Analyzing low-q fluctuations under longitudinal forcing

is more difficult due to the vanishing crossover near
jamming. As a compromise, we vary q0 and q for
q0 < q ≤ 10ð2π=LÞ, where the excess compliance Δŝ∥ is
approximately quadratic for all accessed pressures. These
fluctuations have a more complex dependence on q, as
evidenced by slight but systematic spread in the data when
plotted vs q0=q—see Fig. 4(b) (inset). Nevertheless, there is
again a clear p-dependent crossover, which can be

collapsed by plotting pa∥F ∥ vs ðq0=qÞ=p1=2, with a∥ ≈
0.57 (main panel). While the collapse is less convincing
than F⊥, it suggests that longitudinal fluctuations are
governed by the length scale l�.
For both types of forcing, we observe data collapse only

for sufficiently low q0. The restriction to q0 < q is strictly
necessary in the longitudinal case; data fall off the master
curve rapidly for larger q0. In the transverse case the fall off
comes later and more gradually. We note that prior work
has related l� [4], lc [5], or both [6] to (deviations from)
classical elastic Green’s functions [4–6].
Discussion.— We have demonstrated novel constitutive

relations that improve on classical elasticity near jamming
by capturing the appearance of a diverging length scale
within a continuum description. The divergence scales with
the distance to jamming, indicating that critical effects
enhance deviations from local elasticity. Nonlocal effects
are stronger in deformations involving compression, as
reflected in the distinct length scales l⊥ and l∥; the former
remains finite, while the latter diverges. Fluctuations about
the mean nonlocal response are governed by two distinct
diverging length scales.
The sinusoidal forcing technique used here is not

restricted to soft spheres—it can be used to test for
nonlocal effects in a wide range of materials. It is
straightforward to implement numerically and can also
be implemented in experimental systems that allow for
forcing in the bulk, such as thermoresponsive microgels

(a)

(b)

FIG. 4. (a) Data collapse of the transverse Fourier spectrum
before (inset) and after (main panel) rescaling q0 with p−0.25.
(b) The longitudinal Fourier spectrum shows similar collapse
before (inset) and after (main panel) rescaling q0 with p−0.5.
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and granular monolayers. In the jamming context, obvious
extensions include acoustic dispersion relations [44],
nonlinear forcing [42], and steady flow [53,54].

We thank Wouter Ellenbroek and Edan Lerner for
helpful discussions. We acknowledge financial support
from the Netherlands Organization for Scientific
Research (NWO) and the use of supercomputer facilities
sponsored by NWO Physical Sciences.

*k.baumgarten@tudelft.nl
[1] L. D. Landau and E. M. Lifshitz, Theory of Elasticity

(Butterworth-Heineman, Oxford, 1997).
[2] A. Tanguy, J. P. Wittmer, F. Leonforte, and J.-L. Barrat,

Phys. Rev. B 66, 174205 (2002).
[3] R. Maranganti and P. Sharma, Phys. Rev. Lett. 98, 195504

(2007).
[4] W. G. Ellenbroek, E. Somfai, M. van Hecke, and W. van

Saarloos, Phys. Rev. Lett. 97, 258001 (2006).
[5] E. Lerner, E. DeGiuli, G. Düring, and M. Wyart, Soft Matter

10, 5085 (2014).
[6] K. Karimi and C. E. Maloney, Phys. Rev. E 92, 022208

(2015).
[7] C. S. O’Hern, L. E. Silbert, A. J. Liu, and S. R. Nagel, Phys.

Rev. E 68, 011306 (2003).
[8] M. van Hecke, J. Phys. Condens. Matter 22, 033101 (2010).
[9] L. E. Silbert, A. J. Liu, and S. R. Nagel, Phys. Rev. Lett. 95,

098301 (2005).
[10] M. Wyart, S. R. Nagel, and T. A. Witten, Europhys. Lett. 72,

486 (2005).
[11] R. D. Mindlin, Arch. Ration. Mech. Anal. 16, 51 (1964).
[12] A. C. Eringen, J. Appl. Phys. 54, 4703 (1983).
[13] Z. P. Bazant and M. Jirásek, J. Eng. Mech. 128, 1119

(2002).
[14] H. Askes and E. C. Aifantis, Int. J. Solids Struct. 48, 1962

(2011).
[15] O. Pouliquen and N. Renaut, J. Phys. II (France) 6, 923

(1996).
[16] O. Pouliquen, Y. Forterre, and S. Le Dizes, Adv. Complex

Syst. 04, 441 (2001).
[17] T. S. Komatsu, S. Inagaki, N. Nakagawa, and S. Nasuno,

Phys. Rev. Lett. 86, 1757 (2001).
[18] I. S. Aranson, L. S. Tsimring, F. Malloggi, and E. Clément,

Phys. Rev. E 78, 031303 (2008).
[19] J. Goyon, A. Colin, G. Ovarlez, A. Ajdari, and L. Bocquet,

Nature (London) 454, 84 (2008).
[20] O. Pouliquen and Y. Forterre, Phil. Trans. R. Soc. A 367,

5091 (2009).
[21] G. Katgert, B. P. Tighe, M. E. Möbius, and M. van Hecke,

Europhys. Lett. 90, 54002 (2010).
[22] K. Nichol, A. Zanin, R. Bastien, E. Wandersman, and M.

van Hecke, Phys. Rev. Lett. 104, 078302 (2010).
[23] M. Bouzid, M. Trulsson, P. Claudin, E. Clément, and B.

Andreotti, Phys. Rev. Lett. 111, 238301 (2013).
[24] E. Wandersman and M. Van Hecke, Europhys. Lett. 105,

24002 (2014).

[25] M. Bouzid, A. Izzet, M. Trulsson, E. Clément, P. Claudin,
and B. Andreotti, Eur. Phys. J. E 38, 125 (2015).

[26] P. Kharel and P. Rognon, arXiv:1605.00337.
[27] T. Gueudré, J. Lin, A. Rosso, and M. Wyart, arXiv:

1607.07290.
[28] L. Bocquet, A. Colin, and A. Ajdari, Phys. Rev. Lett. 103,

036001 (2009).
[29] K. Kamrin and G. Koval, Phys. Rev. Lett. 108, 178301

(2012).
[30] D. L. Henann and K. Kamrin, Proc. Natl. Acad. Sci. U.S.A.

110, 6730 (2013).
[31] M. R. Kuhn, Mech. Mater. 37, 607 (2005).
[32] B. D. Todd, J. S. Hansen, and P. J. Daivis, Phys. Rev. Lett.

100, 195901 (2008).
[33] T. Kawasaki and L. Berthier, Phys. Rev. E 94, 022615

(2016).
[34] D. J. Koeze, D. Vågberg, B. B. Tjoa, and B. P. Tighe,

Europhys. Lett. 113, 54001 (2016).
[35] D. Vågberg, P. Olsson, and S. Teitel, Phys. Rev. E 83,

031307 (2011).
[36] C. E. Maloney and A. Lemaître, Phys. Rev. E 74, 016118

(2006).
[37] B. P. Tighe, Phys. Rev. Lett. 107, 158303 (2011).
[38] C. F. Schreck, T. Bertrand, C. S. O’Hern, and M. D.

Shattuck, Phys. Rev. Lett. 107, 078301 (2011).
[39] C. P. Goodrich, A. J. Liu, and S. R. Nagel, Phys. Rev. Lett.

109, 095704 (2012).
[40] M. S. van Deen, J. Simon, Z. Zeravcic, S. Dagois-Bohy,

B. P. Tighe, and M. van Hecke, Phys. Rev. E 90, 020202
(2014).

[41] M. S. van Deen, B. P. Tighe, and M. van Hecke, Phys. Rev.
E 94, 062905 (2016).

[42] J. Boschan, D. Vågberg, E. Somfai, and B. P. Tighe, Soft
Matter 12, 5450 (2016).

[43] W. G. Ellenbroek, M. van Hecke, and W. van Saarloos,
Phys. Rev. E 80, 061307 (2009).

[44] S. S. Schoenholz, C. P. Goodrich, O. Kogan, A. J. Liu, and
S. R. Nagel, Soft Matter 9, 11000 (2013).

[45] E. Somfai, J.-N. Roux, J. H. Snoeijer, M. van Hecke, and W.
van Saarloos, Phys. Rev. E 72, 021301 (2005).

[46] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.118.098001 for the
constitutive relation in tensorial form.

[47] C. P. Goodrich, S. Dagois-Bohy, B. P. Tighe, M. van Hecke,
A. J. Liu, and S. R. Nagel, Phys. Rev. E 90, 022138 (2014).

[48] E. DeGiuli, A. Laversanne-Finot, G. Düring, E. Lerner, and
M. Wyart, Soft Matter 10, 5628 (2014).

[49] W. G. Ellenbroek, Z. Zeravcic, W. van Saarloos, and M. van
Hecke, Europhys. Lett. 87, 34004 (2009).

[50] K. Karimi and C. E. Maloney, Phys. Rev. Lett. 107, 268001
(2011).

[51] H. Mizuno, L. E. Silbert, and M. Sperl, Phys. Rev. Lett. 116,
068302 (2016).

[52] W. Schirmacher, Europhys. Lett. 73, 892 (2006).
[53] P. Olsson and S. Teitel, Phys. Rev. Lett. 99, 178001 (2007).
[54] B. P. Tighe, E. Woldhuis, J. J. C. Remmers, W. van Saarloos,

and M. van Hecke, Phys. Rev. Lett. 105, 088303 (2010).

PRL 118, 098001 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

3 MARCH 2017

098001-5

http://dx.doi.org/10.1103/PhysRevB.66.174205
http://dx.doi.org/10.1103/PhysRevLett.98.195504
http://dx.doi.org/10.1103/PhysRevLett.98.195504
http://dx.doi.org/10.1103/PhysRevLett.97.258001
http://dx.doi.org/10.1039/c4sm00311j
http://dx.doi.org/10.1039/c4sm00311j
http://dx.doi.org/10.1103/PhysRevE.92.022208
http://dx.doi.org/10.1103/PhysRevE.92.022208
http://dx.doi.org/10.1103/PhysRevE.68.011306
http://dx.doi.org/10.1103/PhysRevE.68.011306
http://dx.doi.org/10.1088/0953-8984/22/3/033101
http://dx.doi.org/10.1103/PhysRevLett.95.098301
http://dx.doi.org/10.1103/PhysRevLett.95.098301
http://dx.doi.org/10.1209/epl/i2005-10245-5
http://dx.doi.org/10.1209/epl/i2005-10245-5
http://dx.doi.org/10.1007/BF00248490
http://dx.doi.org/10.1063/1.332803
http://dx.doi.org/10.1061/(ASCE)0733-9399(2002)128:11(1119)
http://dx.doi.org/10.1061/(ASCE)0733-9399(2002)128:11(1119)
http://dx.doi.org/10.1016/j.ijsolstr.2011.03.006
http://dx.doi.org/10.1016/j.ijsolstr.2011.03.006
http://dx.doi.org/10.1142/S0219525901000358
http://dx.doi.org/10.1142/S0219525901000358
http://dx.doi.org/10.1103/PhysRevLett.86.1757
http://dx.doi.org/10.1103/PhysRevE.78.031303
http://dx.doi.org/10.1038/nature07026
http://dx.doi.org/10.1098/rsta.2009.0171
http://dx.doi.org/10.1098/rsta.2009.0171
http://dx.doi.org/10.1209/0295-5075/90/54002
http://dx.doi.org/10.1103/PhysRevLett.104.078302
http://dx.doi.org/10.1103/PhysRevLett.111.238301
http://dx.doi.org/10.1209/0295-5075/105/24002
http://dx.doi.org/10.1209/0295-5075/105/24002
http://dx.doi.org/10.1140/epje/i2015-15125-1
http://arXiv.org/abs/1605.00337
http://arXiv.org/abs/1607.07290
http://arXiv.org/abs/1607.07290
http://dx.doi.org/10.1103/PhysRevLett.103.036001
http://dx.doi.org/10.1103/PhysRevLett.103.036001
http://dx.doi.org/10.1103/PhysRevLett.108.178301
http://dx.doi.org/10.1103/PhysRevLett.108.178301
http://dx.doi.org/10.1073/pnas.1219153110
http://dx.doi.org/10.1073/pnas.1219153110
http://dx.doi.org/10.1016/j.mechmat.2004.05.001
http://dx.doi.org/10.1103/PhysRevLett.100.195901
http://dx.doi.org/10.1103/PhysRevLett.100.195901
http://dx.doi.org/10.1103/PhysRevE.94.022615
http://dx.doi.org/10.1103/PhysRevE.94.022615
http://dx.doi.org/10.1209/0295-5075/113/54001
http://dx.doi.org/10.1103/PhysRevE.83.031307
http://dx.doi.org/10.1103/PhysRevE.83.031307
http://dx.doi.org/10.1103/PhysRevE.74.016118
http://dx.doi.org/10.1103/PhysRevE.74.016118
http://dx.doi.org/10.1103/PhysRevLett.107.158303
http://dx.doi.org/10.1103/PhysRevLett.107.078301
http://dx.doi.org/10.1103/PhysRevLett.109.095704
http://dx.doi.org/10.1103/PhysRevLett.109.095704
http://dx.doi.org/10.1103/PhysRevE.90.020202
http://dx.doi.org/10.1103/PhysRevE.90.020202
http://dx.doi.org/10.1103/PhysRevE.94.062905
http://dx.doi.org/10.1103/PhysRevE.94.062905
http://dx.doi.org/10.1039/C6SM00536E
http://dx.doi.org/10.1039/C6SM00536E
http://dx.doi.org/10.1103/PhysRevE.80.061307
http://dx.doi.org/10.1039/c3sm51096d
http://dx.doi.org/10.1103/PhysRevE.72.021301
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.098001
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.098001
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.098001
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.098001
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.098001
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.098001
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.098001
http://dx.doi.org/10.1103/PhysRevE.90.022138
http://dx.doi.org/10.1039/C4SM00561A
http://dx.doi.org/10.1209/0295-5075/87/34004
http://dx.doi.org/10.1103/PhysRevLett.107.268001
http://dx.doi.org/10.1103/PhysRevLett.107.268001
http://dx.doi.org/10.1103/PhysRevLett.116.068302
http://dx.doi.org/10.1103/PhysRevLett.116.068302
http://dx.doi.org/10.1209/epl/i2005-10471-9
http://dx.doi.org/10.1103/PhysRevLett.99.178001
http://dx.doi.org/10.1103/PhysRevLett.105.088303

