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Abstract

Rowhammer is a security exploit used to cause bit errors DRAM chips. Newer DRAM
technologies are becoming more vulnerable to rowhammer attacks, and existing protec-
tion methods are starting to reach their limits. This thesis provides methods for DRAM
characterization by means of reverse engineering, an in-depth analysis of vulnerable cells
during rowhammer and a novel protection method.
First the DRAM module is characterized by performing a retention test and a one-

sided rowhammer attack throughout the memory. The resilience to rowhammer of vul-
nerable victim cells has been analysed by using various data patterns in the victim cell
itself in combination with its direct and diagonal neighbours. The impact of the pro-
posed protection method is measured by flipping the data in the attacker row during a
simulated rowhammer attack. Various rowhammer sequences are investigated.
The results following the DRAM characterization show that only a one-sided rowham-

mer attack is possible. Rows that impact one another during rowhammer come in pairs
of two, one attacker row impacts only one neighbouring row. The results of the in-depth
analysis of cells during rowhammer shows evidence of negative horizontal impact com-
ing from uncharged neighbouring cells in the same row and negative diagonal impact
coming from charged cells neighbouring the attacker cell in the attacker row. The hori-
zontal impact is mirrored in symmetrical cells whilst the diagonal impact is not. Results
following the proposed protection method experiments show that using the protection
method improves the overall resilience to rowhammer ranging from 50%, 65% to 100%
depending on the hammer sequence.
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Chapter 1

Introduction

This chapter introduces the topic of the thesis. A motivation is given, state of the art
protection methods are discussed, the thesis contributions are provided and the thesis
layout is presented.

1.1 Motivation

DRAM has become an essential component in modern computer systems. Ever since the
first development of DRAM the strive has been to offer the processors more memory at
a higher access rate. According to Moore’s law every two years the number of transistors
in IC’s doubles. DRAM technology has also shown to follow this trend. Where every
generation of DRAM development the bit density increases meaning a higher storage
capacity. Increasing DRAM capacity has come at a cost and newer technology is being
pushed to its limits. Modern DRAM devices have shown to suffer from the unwanted
flipping of bits caused by specific access patterns.

One of the first papers discussing the topic of flipping bits in DRAM memory is [1].
Here it is mentioned that the scaling down of DRAM technology has made it more
difficult to prevent unwanted electrical interaction between cells. Where DRAM cell im-
plementations have become smaller and smaller, negative effects have started to become
more prevalent.

This unwanted flipping of bits in DRAM memory has not gone unnoticed among those
with certain curiosities or even malicious intent. This is where the term rowhammer
comes to play. rowhammer is a security exploit where an attacker frequently accesses
a row in DRAM with the intention to flip bits in neighbouring rows. Other than soft
errors that are caused by environmental interference, bit flips caused by rowhammer are
due to electrical interference between components and these are intentional. In 2015
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Google’s Project Zero [2] showed that is is possible to gain kernel privileges by means
of a rowhammer attack. It was shown that a successful bit flip could occur in laptops
dating as far back as 2010.

The ease at which it takes to flip bits in DRAM devices is increasing for newer gen-
erations of DRAM. The results in [3] show that newer DRAM devices are becoming
increasingly vulnerable to rowhammer and require significantly fewer row accesses to
cause bit flips in neighbouring rows.

Protection methods have been developed to mitigate the effects of rowhammer. These
methods range from manufacturing DRAM with higher quality standards, adjusting
DRAM refresh period parameters, refreshing only victim rows and even the detection of
malicious access patterns. Many of these protection methods are being pushed to their
limits as they have to account for the decrease in resilience of modern DRAM devices.

The motivation behind this research is due to two main point. These are, that newer
DRAM technology is becoming increasingly vulnerable to rowhammer and existing pro-
tection methods cannot keep up with this trend. The goal is to investigate the effects
of a newly proposed protection method, that operates by flipping the attacking row
data throughout the rowhammer attack in order to prevent the failure of bits in the
victim row. This investigation will also entail the effects that local DRAM cells have on
each other during rowhammer without and with implementing the proposed protection
method.

1.2 State of the art

In the present day there are numerous protection methods specifically targeting rowham-
mer. A number of these protection methods have been investigated and are discussed
in [3]. Figure 1.1 shows the different types of protection methods. A clear distinction
is made between hardware and software implementable protection methods. This thesis
will solely focus on a hardware implementable protection method. The software half in
the figure is to indicate that such protection methods exist.

The probabilistic protection methods are based on the concept of refreshing the victim
row with probability. After a row has been accessed the PARA [9] refreshes the neigh-
bouring rows with a certain probability. PRoHIT [10] uses a table to keep track of rows

2
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Figure 1.1: Protection method types

being accessed frequently, and refreshes the neighbouring rows with certain probability.
MRLoc [11] also keeps track of rows that are being accessed at a high rate and places
the neighbouring victim rows in a queue to be refreshed with certain probability. Row
refreshing restores the cell charge levels to their original state and if performed in time
will prevent bit errors. New DRAM technology is becoming increasingly vulnerable to
rowhammer causing the probabilistic methods to increase their probability to refresh
neighbouring victim rows. This in turn means that the DRAM will be refreshing its
rows more frequently, resulting in a higher energy consumption and overhead.

Counter based methods are designed to keep track of attacker rows and to take ac-
tive measures. Ideal-refresh-rate [6], CBT [12], TWiCe [13], Graphene [14], ARMOR
[15] and BlockHammer [16], use different data structures and schemes to keep track of
the attacker rows they all refresh the victim rows after reaching a certain threshold.
Meaning if an attacker row is accessed with a high frequency it will stand out and the
neighbouring rows will be refreshed.

The prevention based protection methods do not keep track of possible attacker rows
and no probabilistic refreshes are performed. Rather, it comes down to design and manu-
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facturing of the DRAM chip and/or the controller. Increased refresh rate [6] determines
the refresh rate depending on the lowest hammercount. Meaning before an attacker
row can even reach the number of activation-precharge cycles needed to flip a bit in
the victim row the whole memory bank is refreshed. Other preventive measures are to
manufacture the DRAM chip with other materials or with higher quality standards. In
[18] a proposal is made to perform hydrogen annealing as an extra step in the production
process. Here it is suggested that the cell resilience to rowhammering increases due to
this step. Reducing the wordline voltage as a protection method is discusses in [19]. This
might decrease the effects of capacitive cross talk and electron drift. Though decreasing
the wordline voltage will require a longer activation time and in turn lowers the possible
rowhammer rate.

1.3 Contributions

In this thesis several topics will be investigated regarding rowhammer. A protection
method is proposed and tested under certain circumstances. Before the protection
method is investigated a set of preceding experiments is executed in order to under-
stand the DRAM characteristics and the cell level impact of rowhammer. The main
contributions of this thesis are:

• A protection method based on the flipping of cell charge in the attacker rows during
rowhammer.

• Methods for characterizing specific DRAM devices by means of reverse engineering.

• Understanding the effect of neighbouring cell charge on victim cell resilience to
rowhammer.

• A performance indication of the proposed protection method.

1.4 Thesis layout

This thesis is structured out as follows. Chapter 2 introduces the basic concept of DRAM
and Rowhammer. Following this chapter 3 will propose the Row Flipper protection
method and will discuss its expected results against rowhammer. Chapter 4 describes
the methodology and design of the experimental setup. A few steps are proposed in
order to provide a pathway. Following this the experiment list is given and a design of
the experimental setup is discussed. Chapter 5 explains the experimental infrastructure

4
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implementation and the results of the experiments are shown. Nearing the end, Chapter
6 discusses the results and compares them to the findings in literature, some new findings
are discussed and the impact of the Row Flipper protection method is compared to state
of the art. Finally, chapter 6 starts with a summary of the thesis, followed by the final
conclusion and ending the thesis is a list of suggestions for future work.

5



Chapter 2

Background

This chapter discusses the basic concepts of DRAM and rowhammer. First DRAM is
explained and how it manages to store and retrieve data. Following this is the concept
of rowhammer and how it manages to flip bits in DRAM memory.

2.1 DRAM

At the hart of this thesis lies DRAM, which stands for Dynamic random-access-memory.
DRAM is often implemented between the processor and a larger storage medium such
as a hard drive. The reason why DRAM is an abbreviation with the word dynamic is
because this memory has to be refreshed within a certain time period to ensure data
integrity. Other than SRAM which stands for static random-access-memory which does
not require the refreshing of data after startup. On the other hand SRAM is faster and
uses less power, however it is more expensive compared to DRAM which is generally
cheaper due to a higher bit density per area.

2.1.1 Cells

DRAM is composed of memory cells. Each cell holds a single bit of information by means
of capacitance. Capacitors lose charge over time due to leakage and that is why DRAM
needs to be refreshed periodically. A cell in DRAM represented as having one capacitor
and one transistor. As described in [8] aside from this 1-transistor 1-capacitor there also
exist other designs such as the 3-transistor 1-capacitor design. Modern DRAM use this
1-transistor 1-capacitor concept. Figure 2.1 below shows the 1-transisor 1-capacitor de-
sign. Here the wordline can open the transistor and charge can flow from the capacitor
to the bitline or vica versa. Other sources use the word digitline in place of bitline and
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Chapter 2 Background

rowline instead of wordline.

Figure 2.1: A DRAM 1-transistor 1-capacitor cell.

The bitline itself has a capacitive nature. Before accessing the capacitor by opening
the transistor the bitline is charged to a voltage of Vcc/2. If this capacitor has a positive
potential compared to the bitline it is considered to store a bit of value 1 and in the case
it has a negative potential it is considered to store the value 0. As mentioned earlier
when opening the transistor charge will flow from the capacitor to the bitline or vice
versa. This will result in a change of voltage on the bitlines. Based on figure 1.26 in
[8] Figure 2.2 shows the voltages of the bitline and cell capacitor before opening the
transistor. Here the bitline is resembled as a capacitor due to its capacitive nature.

7
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Figure 2.2: Schematic illustrating charge sharing between cell and bitline.

Sense amplifiers are used to measure the voltage difference on the bitlines. Two bit-
lines are shared by one sense amplifier and the sense amplifier measures the difference in
voltage between the pair of bitlines. Before accessing any memory cells the bitlines both
are charged to Vcc/2, and in this case the sense amplifier will measure a difference of 0 V
between the bitline pair. Once a cell is accessed (wordline activated, bitline drained or
charged) only one bitline in the pair will have a changing voltage. The voltage between
the two bitlines will change positively or negatively and the sense amplifier will then
measure the contents of the cell. Figure 2.3 shows the sense amplifier (S0) with the bit-
line pair (B0, B0∗). In the DRAM model only one wordline (WL0, WL1, WL2, WL3)
can be enabled at a time.

8
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Figure 2.3: Bitline pair with sense amplifier.

When the sense amplifiers measure the bitline voltage difference rising above Vcc/2+Vth

a logical 1 is measured and conversely when the sense amplifiers measure the voltage
dropping under Vcc/2− Vth a logical 0 is measured. Here Vth is a threshold voltage.

2.1.2 Arrays and Banks

Multiple cells are placed in an array. As seen Figure 2.4 the DRAM cells are placed in an
array form. Multiple transistors can be enabled by a single wordline in a row, thus the
term rowline is also used. The bitlines are shared by multiple cells in a column. Also seen
are the sense amplifiers these are placed between the two arrays and are connected to
two bitlines each. When a row is activated (wordline) the sense amplifiers will measure
a voltage difference between the two bitlines and thus determine if a logical 0 or 1 was
stored in the cell.

9
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Figure 2.4: Open DRAM array with sense amplifiers [8].

The arrays can be implemented in different ways. [8] discusses the open and folded
array architecture. Figure 2.4 shows an open array architecture and Figure 2.5 is a folded
array. The more modern DRAM implementations use the folded array architecture.

10
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Figure 2.5: Folded DRAM architecture [8].

Multiple sub arrays form a larger memory array. These memory arrays reside in a
bank. DRAM chips have multiple banks within them. These banks are separate from
one another. It is possible to operate multiple banks at a time. It is prohibited to
activate two wordlines (rows) in a single bank though it is possible to activate multiple
wordlines in separate banks. During DRAM operation it is common practice to switch
between banks.

2.1.3 Control Logic

The DRAM arrays can be seen as a two-dimensional space. To access the information
in a specific location one needs two coordinates. These coordinates are the row number
and column number. Control logic is required to grant access to these specific locations.
The row control logic will enable and disable the wordlines whilst the column control
logic buffers the sense amplifier values and provides these to the output depending on the
selected column. In Figure 2.6 the basic architecture of the control logic is shown. Here
the a single location in the memory array is being accessed by asserting the row address
onto the row decoder and then selecting the desired column in the column mutex.
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Figure 2.6: Basic control architecture accessing a single location.

2.1.4 Operations

The sole purpose of DRAM is to store and retrieve information. This can be seen as
writing and reading from DRAM. A C program that accesses and changes contents in a
data array will probably have load word lw and save word sw instructions in its assembly
code. To execute these instructions the DRAM controller will have to perform numerous
memory commands in sequence. The basic commands are:

Activate is used to drive the cell contents in the rows to the row buffer and thus
requires the row address. During this operation the desired wordline is enabled and the
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bitline voltages starts to change. The sense amplifiers measure the voltage difference
and thus the cell contents. This operation is destructive to the cell contents in the row
and only one row can be active at a time in a single bank.

Read is used to select the column in the row buffer. The row buffer essentially holds
the values measured by the sense amplifiers. The selected column contents are forwarded
to the output.

Write is similar to read. The column selects the location where the new data should
be inserted. The cell contents are not directly changed during this operation and instead
the row buffer contents are altered at the specific column location.

Precharge is used to close the DRAM row. This is essentially the reverse of the activate
command. Here the bit values in the row buffer are driven back to the cells. Then the
wordline is closed and the bitline voltages are restored to Vcc/2.

Refresh is used to keep the the memory cell charges in the memory bank fresh. Mem-
ory cells lose their charge over time and and at some point will fall to a degree where the
sense amplifiers cannot measure the correct value. The refresh command ensures that
the cell charges are kept to a proper level. It is commen practice for DRAM to refresh
each bank every 64 ms. Refreshing essentially activates and precharges each row in the
bank consecutively.

The flow of these DRAM commands is represented in Figure 2.7 where the basic
DRAM commands are shown as transition between states. Some states transition with-
out an issued DRAM command such as precharge going to idle and activating going to
the bank active state. After reading or writing the DRAM will go into the bank active
state.
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Figure 2.7: State machine basic DRAM commands

It is important to note that it is possible to execute the activate and precharge com-
mands in sequence. Though, in practice this will not happen during the execution of a
C program as this will consist of read and/or write commands in between the activate
and precharge commands.

2.2 Rowhammer

As already stated in the introduction, Rowhammer is a security exploit that takes advan-
tage of a circuit level DRAM vulnerability where repeatedly accessing (i.e., hammering)
a DRAM row can cause bit flips in physically nearby rows. This allows an attacker to
manipulate data in the DRAM memory without having direct access to it.
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The basic concept of rowhammer relies on having an attacker row and a victim row.
These two rows are physical adjacent to one another. By repeatedly accessing the at-
tacker row bit flips will occur in the victim row. The victim row is not accessed by
the control logic during the rowhammer attack. The role of the row buffer is to store a
whole row for the control logic to select the desired column. If an attacker only accesses
a single row, the attacker row, the rowhammer attack will be unsuccessful. The reason
for this is that the contents of the attacker row are stored in the row buffer and therefor
a rowhammer attack is executed by alternating rows. There are mainly two types of
rowhammer attacks, a one-sided and two-sided attack. During a one-sided rowhammer
attack only one row is the attacker and multiple neighbouring rows can be the victim.
During this attack an attacker row and a random row must be selected in order to over-
write the contents in the row buffer. The two-sided rowhammer attack uses two attacker
rows that are neighbours to a victim row and by using two attacker rows in sequence
the row buffer will be rewritten during every row access. Figure 2.8 shows the difference
between a one-sided and two-sided rowhammer attack. Here the attacker row cells are
shown in black and the victim row cells are shown in orange.

Figure 2.8: One-sides vs Two-sided Rowhammer [4]

One of the first papers to discuss the phenomenon of rowhammer is [1]. The source
discusses the possibility to corrupt nearby DRAM rows by frequently accessing rows.
They managed to successfully flip bits on an Intel and AMD system and revealed that
multiple DRAM modules from different manufacturers where vulnerable to this problem.
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Assembly code was used to for executing DRAM memory access patterns. Here it
was revealed that two rows must be accessed to induce bit flips. The access patterns
that successfully induces bit flips are due to frequently opening and closing of a row
and not due to the frequency of reading and writing operations. This means that the
DRAM commands activate and precharge are responsible for causing bit flips while read
and write don’t seem to have much influence. This is understandable seeing that only
activate and precharge directly influence the contents of the DRAM cells (destruction
and restoration) whilst the read and write commands are limited to interacting with the
row buffer.

2.2.1 Data Pattern

Rowhammering with different data patterns show varying results. In [1] and [3] 4 types
of data patterns have been used in a rowhammer experiment with different DRAM
modules from varying manufacturers. The data patterns that were investigated are
Solid, Row stripe, Columnstripe and Checkered. These patterns were also inverted and
tested. In [3] it is shown that the number of occurring bit flips varies across data pattern
for different types of DRAM modules and manufacturers. As seen in Figure 2.9 some
data patterns induce more bit flips for different types of DRAM than others.

Figure 2.9: Bit flip coverage vs data patterns with different types of DRAM and 3 types
of manufacturers [3]
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A visual representation of data patterns is shown in Figure 2.10. These data patterns
are loaded into a memory bank before performing a rowhammer attack. The solid 0
and solid 1 are shown explicitly whilst the other three data patterns Checkerboard,
Columnstripe and Rowstripe are shown in a single form. The latter three can also be
inverted to cover the other bits in the memory array

Figure 2.10: Data pattern types. With black uncharged cells and white charged cells

2.2.2 Failure Mechanism

Bit flips are shown to be one way. Meaning that a bit cannot flip twice during a rowham-
mer attack. The [5] provides an insight into bit flips at the cell level. A logical bit flip
might occur from 0 → 1 or from 1 → 0 though according to the paper [5] vulnerable
cells can only lose charge during rowhammering. The reason that cells flip from 0→ 1 is
that these are anti-cells. These cells logically represent the opposite of their cell charge.
During the research the victim and attacker cell were tested with various cell charge
combinations. A rowhammer attack was performed with the victim and attacker cell
both being charged, both being uncharged and finally having an opposite charge. It
was shown that most successful flips occur when the attacker cell is uncharged and the
victim cell is charged. There were also successful flips when the attacker and victim
cell were both charged. No bit flips were found when the attacker and victim were
both uncharged and finally no flips were found when the attacker was charged while
the victim was uncharged. The reason provided was that during an activate-precharge
cycle electrons travel from the attacker to the victim cell and this only seems to occur
with a charged victim cell. A similar topic is covered in [17] where a trap-based failure
mechanism is discuss. Here electrons are trapped in the attacker row transistors after
disabling the wordline. These electrons become de-trapped after time and travel to the
victim cell capacitor. This shows that with each rowhammer the potential in the victim
capacitor drops. As seen in Figure 2.11 the path of the electron is shown to travel to
the victim capacitor.
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Figure 2.11: Electron transport from trap site to victim capacitor [17]

A cell’s retention time does not predict if a cell is vulnerable to rowhammer. In [5]
it is shown that there are cells that have a low retention time while having a higher
resilience to rowhammering and vice versa. Figure 2.12 shows 5 cells taken out from two
groups. In group A there are cells that have a high resilience to rowhammering while in
group B the cells have a high retention time.

Figure 2.12: Two groups showing cell retention time and Hammer resilience [5]

Wordline-to-wordline cross-talk is another possible reason for cells to lose their charge
during rowhammer as the neighbouring wordlines are somewhat capacitively coupled.
Under certain scenarios toggling a wordline might cause the voltage on neighbouring
wordlines to rise ever so slightly allowing the transistors to drain the capacitors. [7] goes
into great depth explaining this cross-talk. The takeaway from this paper is that the
newer generations of DRAM suffer most from this failure mechanism.
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Temperature is another factor that plays a role during rowhammer. In [6] it is ex-
plained that a higher temperature increases the bit-error-rate during rowhammer. The
following Figure 2.13 shows the trend of the bit errors during rowhammer for an increased
temperature. At least 3 of the 4 DRAM devices coming from different manufacturers
suffer from an increasing bit-error-rate (BER) for an increasing temperature.

Figure 2.13: Impact of temperature on BER (Bit-error-rate) for 4 manufacturers [6]

In the same paper [6] the impact of an increased attacker row activation time is shown
to increase the vulnerability of the victim row to rowhammering. As shown in Figure 2.14
the increase of the attacker row activation time results in a higher bit-error-rate in the
victim rows. What is interesting to note [6] also mentions that increasing the precharge
time decreases the vulnerability of the victim cells.

Figure 2.14: Impact increased attacker row activation time for 4 manufacturers [6]

Two types of failure mechanisms seem to cause these negative effects during rowham-
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mer. Namely the injection and capture of electrons during a repeated activation-
precharge cycle and the capacitive disturbance of wordline-to-wordline cross-talk. Fur-
thermore it is demonstrated that an increasing temperature and an increasing row acti-
vation time both have an impact on the vulnerability of a cell during rowhammer.
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Proposed Protection Method

In this chapter a protection method is proposed, where the goal is to prevent the negative
effects caused during rowhammer attacks by means of flipping the data in the attacker
row. First the protection method is discussed. After this three design options are
discussed for implementing the Row Flipper protection method.

3.1 Row Flipper Protection Method

Strong evidence suggests the success to flip a bit in a DRAM row during rowhammer is
due to specific cell contents of the victim and attacker rows. The chance to flip a charged
victim cell is higher when an attacking cell is uncharged. If a victim cell is uncharged
there is no possibility to flip it regardless of the attacking cell’s charge. Unfortunately
one cannot alter the victim row’s content preemptively before an attack, as one cannot
predict the targeted victim row easily and assume the attacking row’s content through-
out such an attack. The easier option is to alter the attacker row’s data in such a way
that rowhammering becomes unfeasible.

During a single-sided rowhammer there are two victim rows and one attacking row.
The attacking row will be accessed throughout the attack and will thus need to be
flipped by the protection method to prevent bit errors in the victim rows. To illustrate
this Figure 3.1 shows the transition of the attacker row during a single sided rowhammer
attack. Here the initial values of the attacking row as well as the victim rows are shown
in Figure 3.1a. Once the rowhammer attack has begun and the attacker row has been
accessed the method will flip the attacker row contents as seen in Figure 3.1b. The
attacker row is flipped again after the second access as seen in Figure 3.1c. This will
continue throughout the rowhammer attack.
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(a) Before attacker row access (b) After one attacker row access

(c) After two attacker row accesses

Figure 3.1: Attacker row content flipping during single-sided rowhammer

In the case of a two-sided rowhammer attack there are three victim rows adjacent
to the two attacking rows. There is one row specifically that will receive an extra hard
hammering as it sits in between the two attacking rows. As mentioned earlier to perform
this two-sided rowhammer the attacking rows must be accessed in alternating order to
ensure the row buffer is overwritten. Figure 3.2 shows the flipping of data in the attacking
rows throughout the rowhammer attack. The initial content is shown in Figure 3.2a,
here the attacking rows are spaced with one victim row in between and two victim rows
on the outside. After the first row has been accessed, Attacker 1, its contents are flipped
by the method, as shown in Figure 3.2b. The following access is performed on Attacker
2 and its contents are in turn flipped by the method as shown in Figure 3.2c.
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(a) Before attacker row accesses (b) After attacker 1 row access

(c) After attacker 2 row accesses

Figure 3.2: Attacker row content flipping during two-sided rowhammer

3.1.1 Expected Results

The aim of the Row Flipper protection method is to maintain the victim cell’s volt-
age level above the threshold voltage. To give an example Figure 3.3 shows the victim
cell losing charge during a rowhammer attack with and without the Row Flipper pro-
tection method. Also shown is the victim cell losing charge over time under normal
circumstances. The aim is to ensure that the cell’s voltage remains above the threshold
voltage, V th, for the sense amplifier to measure the correct cell contents within the
DRAM’s refresh period. The example shows the refresh period of 64 ms. When the vic-
tim is attacked without the Row Flipper protection method its charge drops below the
threshold within the 64 ms refresh interval. In this case the sense amplifier will measure
an incorrect value and thus the victim cell bit has been flipped. When the attacking row
data is flipped throughout the rowhammer attack the victim cell voltage will drop at a
lower rate and thus will keep its charge above V th within the 64 ms refresh interval.
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Figure 3.3: Victim cell discharge under different circumstances

Certain victim cells may be extremely vulnerable to rowhammer attacks and will fail
regardless. Even though the cell’s charge will drop under V th within the 64 ms the
protection method will still make it harder for the attacking row during rowhammer.
The attacker will have to increase their efforts by increasing the number of hammers
performed on the victim row to induce a successful bit flip in the victim row. This will
decrease the overall potential of inflicting bit errors in the memory. The Row Flipper
protection method could also be used in combination with other protection methods to
protect the memory, such as throttling of attacker row accesses or an increased refresh
rate (lowering refresh period time).

3.2 Exploring Row Flipper Design Implementations

The basic idea of the protection method has been proposed with the expected results.
In this section the implementation design criteria will be discussed. A software imple-
mentation concerning the CPU, memory controller implementation and on chip imple-
mentation are explored.
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3.2.1 Software Protection Method to run on CPU

The kernel is part of the operating system and sits between the user space applications
and hardware components. It has access to the memory controller MC as seen in Fig-
ure 3.4. The user processes run within the operating system and the kernel ensures
that memory operations are processed, and that each user process has access to its data
within memory. Furthermore it ensures that no other user process can access and alter
another processes data.

Figure 3.4: Kernel with processes and hardware

The software version of the Row Flipper protection method must be implemented
in the kernel. When a malicious user process is performing a rowhammer attack it is
expected to send memory requests very frequently. The malicious process only has to
request access to a single byte in memory as the DRAM module is designed to activate
an entire row providing access to the single byte. Not knowing the exact structure of the
DRAM module the kernel stands on very limited ground in order to protect the victim
cells. The row size of the DRAM module is usually unknown to the kernel as the oper-
ating system is created to run on multiple different devices possibly operating different
DRAM components from different manufacturers. To explain the issue in Figure 3.5
the attacker is accessing a specific byte in the DRAM. Here the kernel is limited to the
address of the byte and is not aware of the total number of bytes in a DRAM row, so
the kernel does not know which other victim locations are being affected. As the row
width is not known the attacker row data cannot be flipped entirely by the kernel. This,
together with many other issues discourages the protection method to be implemented
as a software solution.
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Figure 3.5: Attacker accessing byte in C1, Victim affected in C4

3.2.2 Memory Controller Modifications

The memory controller interacts with the DRAM module and sends DRAM commands
to read and write data. The memory controller being closer to the DRAM module has
a better understanding of the exact workings of the DRAM module. It is developed for
a specific type of DRAM (such as DDR3, DDR4, etc), knows the DRAM storage size,
the timing delays of certain command and so forth. The exact internal layout of the
DRAM module however is shielded from the memory controller. The memory controller
could perform specific tests on the DRAM device to get an understanding of its internal
memory array structure. For example a test to get the exact row size and a test to
discover true- and anti-cell locations.

There is however a limitation. The memory controller cannot flip an entire row in
DRAM instantly. This is because the memory controller is limited to performing specific
DRAM commands. For the memory controller to flip the attacker row data during a
rowhammer attack it will have to first read the entire attacker row, save it in a buffer and
then write the flipped data back into the attacking row. Figure 3.6 shows the memory
controller receiving a read or write operation from the CPU and the steps it takes to
perform the flipping of an attacker row. In Figure 3.6a at step 1 the memory controller
receives a read or write command from the CPU. Regardless of which of the two com-
mands the MC receives it will have to read the entire DRAM row. Continuing, in step
2 the MC activates the row and the columns c0 to cn are read with n being the last
column. The data is buffered in a register accessible by the MC. If the CPU had sent
a read request in step 1 it will receive the requested data, and if a write command has
been issued the data will be stored in the buffer. The data flipping of the attacker row
is performed in Figure 3.6b. Here the request of the CPU has been fulfilled and thus
the row can be closed. Before this step 3 shows that the MC sends write commands to
the DRAM with the original data being flipped. Finally in step 4 the row is closed by
a precharge command.
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(a) Activate and read whole row

(b) Write flipped contents back and precharge

Figure 3.6: Flipping attacker row contents in memory controller

This implementation does of course come with its drawbacks. A row will have to
be read entirely and have its contents flipped and written back. This will have a great
impact on the throughput of the device. Even if the CPU requests reading the data of an
entire DRAM row the overhead increase will be doubled as writing the flipped content
back to the DRAM row will require roughly the same amount of time as reading the
entire DRAM row (assuming a DRAM read operation takes the same amount of time
as a write operation). Aside from the extra overhead a choice must be made between
keeping track of attacking rows or keeping track of the flipped rows. Meaning that the
protection method can be implemented in two ways. The first is to identify and keep
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track of attacking rows, in this case only the attacking rows will be flipped. The second
option is to flip all rows being access regardless whether the memory requests are driven
by malicious or non-malicious CPU processes. To ensure proper functioning for all user
processes the memory controller must keep track of the flip status of all DRAM rows.
Modern DRAMmodules have 100,000 plus rows so extra internal memory must be added
to the memory controller.

3.2.3 Modified DRAM Chip Design

An option is to implement the Row Flipper protection method in the DRAM chip. The
DRAM row can be flipped in one instance, something that is not possible for a software
and memory controller design. This will be done by flipping the content in the row
after the row has been accessed. Then, once the row is being closed by the precharge
command the following happens. Instead of restoring the cells’ content to their original
value, they are logically inverted and the flipped content is written into the cells. To
clarify an example is given. As seen in Figure 3.7a, the attacker row R3 has the potential
to flip bits in the neighbouring rows R2 and R4. The attacker row is being activated and
its contents are stored in the row buffer. After this the row buffer contents are flipped
when the attacker row is precharged and the row will store the logical opposite of its
original contents as seen in Figure 3.7b.
Compared to the previous design options the DRAM module is fairly limited in terms

of flexibility. Where the other components could have the option to implement a mech-
anism to detect malicious memory access patterns adding this functionality to a DRAM
chip would not be feasible. The feasible option is to keep track of the flip status of each
row within the DRAM memory to ensure data correctness. Here a table keeps track
of the row’s flip status. The table value is a single bit per row that is 0 to indicate
the row is not flipped and 1 to indicate that the row has been flipped. When reading
a column from the data buffer the bits may need to be flipped in order to provide the
correct output value, this will depend on the table’s value corresponding to the row.
An example of this design is shown in Figure 3.8. The Flip Table is shown next to the
DRAM Array. The wordlines are connected from the Row Decoder through the DRAM
Array to the Flip Table. The Row Flipper component sits in between the DRAM Array
and the Row buffer. This Row Flipper component essentially flips every bit going to, or
coming from the row buffer depending on the Flip Register value.
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(a) Activating attacker row R3 (b) Flipping row buffer and precharging
row R3

Figure 3.7: Flipping attacker row contents in DRAM array

Figure 3.8: DRAM with flipping component and flip table
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The Row Flipper protection method will work as follows. When a row is activated the
corresponding Flip Table value is written into the Flip Register register. The value in
this register determines if the row buffer contents must be flipped or not. When a read
operation is performed the correct value is set to Data Out. When a precharge is issued
the Flip Register content is negated. This in turn determines whether the content in
the row buffer must be flipped. The Flip register value is stored in the corresponding
Flip Table index associated with the row, and the row buffer content (flipped or not) is
inserted in the memory array.

Some drawbacks are to be expected. For example, there will be extra overhead in
the form of area and performance. The flip table will require area, this could be area
that would otherwise be used for the main goal of the DRAM device (to store memory).
Adding hardware to flip the row content will increase the row access latency.
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Methodology & Design

This chapter will discuss the methodology and design. The methodology is the road-map
for investigating the thesis topic and explains the steps taken to evaluate the results. In
this section the experiments are discussed together with the metrics in order to measure
the results. After this the experimental infrastructure design is given. here the design
requirements are listed together with the hardware and software designs. The list of
experiments together with the design can be used as basis for other studies to follow.

4.1 Approach

To reach the goal of this thesis some essential steps need to be taken to understand the
problems evolving from rowhammer. There are several objectives that are essential for
reaching the conclusion. To illustrate this Figure 4.1 shows the steps that need to be
taken to provide a final conclusion. As seen some do not directly impact the conclusion,
they should rather be seen as parts of the puzzle. The following subsections will discuss
these objectives in detail.
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Figure 4.1: Steps leading to the conclusion

4.1.1 Characterize DRAM Module

Characterizing the DRAM module is the first step that needs to be taken as it is impor-
tant to understand what one is working with to be able to draw the correct conclusions.
During this step the DRAM module to be used is tested under normal working con-
ditions to make sure that the experimental setup functions. Thereafter, the physical
layout of the DRAM module is investigated. Here the DRAM datasheet together with
the reverse engineering of the DRAM module will provide the information required to
proceed with the experiments.
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4.1.2 Failure Mechanism Analysis

The literature discussed in the background has shone a light on the failure mechanisms
that are thought to cause the flipping of bits during rowhammer. Two of these will
be investigated, wordline-to-wordline cross-talk and electron de-trapping. The results
will provide an insight into the effects of the failure mechanisms that are at play during
rowhammer for the specific DRAM module used throughout the experimentation. This
will be achieved by performing rowhammer attacks with predetermined parameters.

4.1.3 Confirmation Literature Findings

After the failure mechanisms have been analysed the results will be compared to those
found in literature as it is important to understand if the DRAM module used during
the experiments is suitable to perform further tests on. If the results differ to what has
been found in literature this should be taken into consideration.

4.1.4 Cell-level Analysis

In this step experiments specifically investigating the victim and attacker cells are ex-
ecuted. This might result in new findings. Other than previous steps that analyse the
effects of rowhammer on a broader scale (for example row and column) this step will
analyse the effect on very specific cells during rowhammer. The aim will be to find the
minimum hammer resilience, to alter direct neighbouring cells of the attacker/victim
and to find any relation between them.

4.1.5 New Insights

The outcome of the cell-level analysis may reveal some new results not discussed before.
These might be usable for future work on the topic of DRAM and rowhammer. In the
case that there are new findings these will be discussed and proposed for future work.

4.1.6 Row Flipper Protection Analysis

The general idea of the Row Flipper protection method has been discussed. In this step
the Row Flipper protection method will be simulated in experiments, and the results
analyzed to obtain an indication of the effect of using this protection method.
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4.2 List of Experiments

The experiments are categorized in three sets. Experiment set 1 is used to character-
ize the DRAM memory module. Experiment set 2 investigates the cell level impact of
rowhammer together with the cells neighbouring the victim and attacker cell. These will
also play an important role. The final set 3 will investigates the proposed protection
method implemented in a memory controller.

4.2.1 Experiment set 1: Reverse Engineering

This set of experiments provides an understanding of the physical implementation of the
DRAM module. Without knowing the physical characteristics it is impossible to draw
correct conclusions. The experiments will provide a detailed insight into the following:

• The location of true- and anti-cells

• The exact row-size

• Rows neighbouring each other

• Columns neighbouring each other

• Hammerable cells within refresh period

Each experiment is created to provide information of a specific aspect of the DRAM
module. These results will be used throughout the other two experiment sets, namely
experiment set 2: cell-to-cell level experiments and experiment set 3: protection method
experiments

4.2.1.1 1a) True/anti-cell rows

True- and anti-cells are logically opposite to one another. When a true-cell has a charged
value it holds a logical 1 and discharged it holds the value 0. Anti-cells are the opposite,
charged is a logical 0 and discharged a logical 1. It is known that capacitors lose their
charge over time and that is why DRAM needs to be refreshed periodically (usually
within 64 ms). To find the true/anti-cells a solid data pattern will be loaded into
the memory bank, then the DRAM will be left idle for a fixed time with auto-refresh
disabled. After this the whole memory bank will be read and all the logical cell values
will be compared to the initial data pattern. The pseudo-code of this experiment is
shown below in algorithm 1.
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Algorithm 1 Find true/anti-cells

TrueCellRowSet← {}
AntiCellRowSet← {}
row ← #rows
DataPattern← 0xff ▷ Put solid data pattern all 1’s
WriteWholeBank(DataPattern) ▷ Function to write to whole bank
Sleep(300) ▷ Wait 5 minutes
MemoryArray ← ReadWholeBank()
while row ̸= 0 do

NrErrBits← CountErr(DataPattern,MemoryArray(row))
if NrErrBits ! = 0 then

AddToSet(TrueCellRowSet, row)
else

AddToSet(AntiCellRowSet, row)
end if
row ← row − 1

end while

This experiment can also be run with the solid 0 data pattern to find the anti-cells,
these will flip from 0 → 1 after reaching their retention time.

4.2.1.2 1b) Size of Rows

To verify the size of the rows in the DRAM bank an experiment is performed based on
the previous experiment. A column stripe data pattern is inserted into the bank (with
this data pattern there is no need to keep track of true/anti-cell row locations as both
row types will have charged cells in them) and only one row is set as active, auto-refresh
is disabled and the rest of the bank is left to discharge over a time period. When reading
the whole memory bank and comparing it to the initial data pattern only the chosen
row should show 0 bit errors. An example of the experiment is shown in algorithm 2.
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Algorithm 2 Size of rows

ErrFreeRowSet← {}
row ← #rows
DataPattern← 0x55 ▷ Column stripe data pattern
WriteWholeBank(DataPattern) ▷ Function to write to whole bank
Activate(ChosenRow)
Sleep(300) ▷ Wait 5 minutes
Precharge(ChosenRow)
MemoryArray ← ReadWholeBank()
while row ̸= 0 do

BitErrRow ← CountErrRow(DataPattern,MemoryArray(row))
if BitErrRow == 0 then

AddToSet(ErrFreeRowSet(row))
end if

end while

This experiment assumes that there will be at least one charged cell in every single
row to flip during the time period.

4.2.1.3 1c) Finding Neighbouring Rows

In this experiment the neighbouring rows will be found by performing a rowhammer
attack. A one-sided rowhammer attack will be performed for each row. Two rows must
be chosen to perform a rowhammer attack. The rows chosen are the row address and
the negated row address, assuming that these are not neighbours and are spaced far
apart. After each round the row address is incremented by one. For example, if the
row addresses input ranges from 0 to 511 the first round will hammer the rows 0 and
511, the next round 1 and 510 and so on. It is understood that the rowhammer attack
creates most bit errors in the victim rows when the attacker has discharged cells and the
victim has charged cells, so the attacker row will be loaded with a negated data pattern.
To run this experiment independently from 1a this experiment should be run with two
data patterns (namely, solid 0 and solid 1) and only the attacking rows should have an
opposite data pattern. The neighbouring rows will be determined by their bit error rate
being higher than 0. The code in algorithm 3 shows the basics of the experiment. The
result will be a set of rows with their neighbouring rows.
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Algorithm 3 Neighbouring rows Rowhammer

DataPatternSet← {0x00, 0xFF}
RowNeigbourSet← {}
for DataPattern in DataPatternSet do

row ← 0
while row < #rows/2 do

WriteWholeBank(DataPattern)
WriteRow(row,¬DataPattern)
WriteRow(#rows− row,¬DataPattern)
HammerCount← #MaxHammerCount ▷ Set for maximum interference
while HammerCount > 0 do

Activate(row)
Precharge(row)
Activate(#rows− row)
Precharge(#rows− row)
Hammercount← Hammercount− 1

end while
MemoryArray ← ReadWholeBank()
FirstErrorRowList← ListF irstHalfErrorRows(MemoryArray)
SecondErrorRowList← ListSecondtHalfErrorRows(MemoryArray)
AddToSet(RowNeigbourSet((row, F irstErrorRowList))
AddToSet(RowNeigbourSet((#rowsrow, SecondErrorRowList))
row ← row + 1

end while
end for

At the end of this experiment all rows impacting each other should be known. The
direct neighbours should have the highest bit-error-rate though second neighbours will
also be logged in this experiment.

4.2.1.4 1d) Finding Neighbouring Columns

The victim and attacker row location will be required for this experiment. Here the
attacker will perform a rowhammer attack with a walking 1/0 in its row. The victim
row will be loaded with a solid 1 or solid 0 data pattern (depending on the type of cells
in the row) and the attacking row will be loaded with the same pattern except for one
column cell that is used as an attacker cell. At the end of the rowhammer attack the
victim row will be analysed for bit flips. The next round will reset the victim and attacker
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rows to the set data pattern and have the next attacker column bit in the attacker row
inverted. The victim row could show 3 results after being attacked, namely:

1. No bit flips could occur during the rowhammer attack.

2. The column bit in the attacker row affects the exact same column in the victim
row.

3. A bit flip occurs in a different column location.

The following algorithm 4 is the basis for the walking 0 in the attacking row. This
algorithm can also be used with the Solid 0 data pattern to perform a rowhammer attack
with a walking 1 in the attacker row.

Algorithm 4 Rowhammer with Walking 0

DataPattern← 0xff ▷ Example with Solid 1
AttackerColumn← 0
while AttackerColumn < ColumnSize do

WriteDataToRow(V ictimRow,DataPattern) ▷ Write to entire row
WriteDataToRow(AttackerRow,DataPattern)
NegateBit(AttackerRow,AttackerColumn) ▷ Negate the attacker bit in the row

Rowhammer(V ictimRow) ▷ Perform rowhammer on victim

V ictimColumn← AnalyseRow(V ictimRow,DataPattern)

LogData(V ictimColumn,AttackerColumn) ▷ Log columns for further analysis
AttackerColumn← AttackerColumn+ 1 ▷ Increment attacker column

end while

4.2.1.5 1e) Hammerable Victim Cells within Refresh Period

This experiment provides a set of vulnerable cells in the memory bank that have the
potential to flip within the refresh period. Here the refresh period determines the max-
imum hammercount during the rowhammer attack. This experiment is very similar to
Section 4.2.1.3. However, that experiment ignores the refresh period and this exper-
iment will set the hammercount to a value that allows for the maximum theoretical
activate→ precharge hammer cycles within the refresh period time.
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4.2.2 Experiment set 2: Cell Level experiments

Once the reverse engineering has been performed this set of experiments will explore the
effects of rowhammering on a deeper level. The goal of these experiments is to under-
stand the interaction between attacker cells and victim cells. This will be explored on a
physical local level, meaning cells that neighbour one another directly.

These experiments will investigate the following:

• Verifying victim cell discharge during rowhammer

• Exploring victim cell and attacker cell combinations

• Exploring victim data pattern impact on rowhammer

• Exploring attacker data pattern impact on rowhammer

• Finding evidence of diagonal cell impact

• Finding evidence for horizontal cell impact

• Victim- and attacker cell symmetry

• The Hammer resilience of cells

Two points require more explanation. Other than just looking at the impact of the cell
charges between the victim cell and attacker cell during rowhammer a slightly broader
investigation will be undertaken. The victim cell has two neighbouring cells in the same
row (the same goes for the attacker cell). These neighbouring cells will also be taken
into the equation to see if their charge also impacts the victim cell’s hammer resilience.
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4.2.2.1 2a) Cell to Cell Data pattern

This experiment will cover all points except the symmetry. Here an attacker cell group
and a victim cell group are defined. These cell groups consist out of the two neighbouring
cells, and the cell of interest in the middle. To illustrate this Figure 4.2 shows the victim
and attacker cell groups. These, are physical local neighbours of one another. Here
V-Cell stands for victim cell (subsequently A-Cell stands for attacker cell). V-LN stands
for victim-left neighbour and V-RN for victim right neighbour.

Figure 4.2: Cell groups in victim and attacker row

Each group consisting of 3 cells will be tested with 8 different data patterns
{000, 001, 010, 100, 101, 110, 011, 111}. A total of 64 attacker and victim group combina-
tions will be tested in this experiment. The data patterns will be loaded into the groups
and the victim row will be hammered by the attacker. A binary search will find the
minimal hammercount of the V-Cell. Each round will be rerun numerous times in order
to account for disturbances. In Algorithm 5 the experiment is shown with the binary
search incorporated, this algorithm will be used during the following experiments listed
in set 2 and set 3.
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Algorithm 5 Cell data patter rowhammer

DataPatternSet← {000, 001, 010, 100, 110, 101, 011, 111}
V ictimCellGroup← V row, V col
AttackerCellGroup← Arow,Acol
for V ictimPattern in DataPatternSet do

for AttackerPattern in DataPatternSet do
WriteDataPattern(V ictimCellGroup, V ictimPattern)
WriteDataPattern(AttackerCellGroup,AttackerPattern)
Min← 0
Max←MaxHammercount
while Min ≤Max do

HammerCount← ⌊((Min+Max)/2)⌋
while HammerCount > 0 do

Hammer(Attacker(0))
if CellF lipped(V ictimCell) == True then

Max← Hammercount− 1
else

Min← Hammercount+ 1
end if

end while
end while
LogResults(V ictimPattern,AttackerPattern,Hammercount)

end for
end for

The results of this experiments will shine a light on multiple points. By running
this experiment for true- and anti-cell groups one can verify whether the victim cells
lose charge during rowhammer and for which attacker group data pattern. Secondly
diagonal cell interaction can be measured. For example understanding if the value of
A-RN has impact on the V-Cell. Perhaps neighbouring cells can impact resilience of the
V-Cell.

4.2.2.2 2b) Victim and Attacker Cell Symmetry

This experiment will be performed using the same algorithm as mentioned before with
the 8x8 data patterns and a specific cell set is required. Here, the attacker and victim
role will be reversed in that the attacker becomes the victim and the victim becomes
the attacker. The two neighbouring column cells have shown to impact one another
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when having the attacker role. The minimum hammercount of the neighbours will be
compared to one another.

4.2.3 Experiment set 3: Row Flipper Protection Method
Experiments

Basic principles of the proposed Row Rlipper protection method will be tested by means
of executing specific DRAM commands. The rowhammer sequence will be adjusted
to account for the flipping of data in the memory. This means that the rowhammer
command sequence will be expanded with write and read commands, and that the
impact of these commands must be investigated without flipping the data in the row.
The experiment will be executed on a cell level and performed similarly to that in set 2
(8x8 data pattern, victim group, attacker group and binary search). Instead of executing
the protection method for a whole DRAM row it will be limited to the flipping of the
attacker cell group. The experiment will be performed with the following rowhammer
command sequences:

• activate→ read→ precharge

• activate→ write→ precharge

• activate→ read→ write→ precharge

• activate→ write→ read→ precharge

The write command allows for the flipping of the attacker cell contents. The Row
Flipper protection method can only be implemented with rowhammer sequences con-
taining a write.

Algorithm 6 shows the rowhammer sequence with a read and write command. Here
the write command writes the data pattern to the attacker group, after this the data
pattern is negated and the next round the attackers cell contents are flipped.

The experiment will investigate the impact of the rowhammer command sequences
with and without flipping (except for the read only sequence). Meaning 6 + 1 rowham-
mer sequences will be tested on a limited set of victim cell groups with the 8x8 data
patterns.
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Algorithm 6 Rowhammer sequence with data flip

while HammerCount > 0 do
activate(Row)
read(Col)
write(Col,DataPattern) ▷ This writes to the column
precharge(Row)
DataPattern← ¬DataPattern ▷ This flips the data
activate(DummyRow)
read(DummyCol)
write(DummyCol, 0)
precharge(DummyRow)
HammerCount← HammerCount− 1

end while

4.3 Metrics

The metrics that will be used as measure are bit-error-rate and hammercount. these
are used to evaluate the results from the experiments. This helps understand if there
is a positive impact when implementing the Row Flipper protection method or if it is
insignificant compared to the baseline results.

4.3.1 Bit-error-rate

The bit error rate determines the number of flipped bits. For instance during reverse
engineering the bit error rate per row will help find the true and anti-cell locations in
the memory. When searching for the row neighbours the bit error rate will be high in
the rows adjacent to the attacking row. To calculate the bit error rate the memory data
after an experiment is compared to the initially inserted data pattern. Then the flipped
bits are located and counted. The bit-error-rate can be calculated for rows,columns,
banks, arrays, etc.

4.3.2 Hammercount

The hammercount is a measure that identifies the rowhammer resilience of a memory
cell. When a cell has a high hammercount it is considered to be resilient against rowham-
mering. Of course this will also depend on the data pattern of the victim and attacker,
though by running a rowhammer attack using ideal data patterns the minimum ham-
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mercount will be the determining factor of the victim cell resilience. The way this is
measured is by running a rowhammer attack, the hammercount is predetermined in the
experiment and after reading the memory, if the victim cell has been flipped it could be
concluded that for the hammercount the victim cell will flip. The minimum hammer-
count is the most important metric, this will define the worst case scenario. Experiment
set 2 shows an algorithm that searches for the minimum hammercount by using a binary
search method.

4.4 Experimental Infrastructure Design

Infrastructure will be composed from hardware and software components. The hardware
being an FPGA development board and the software being instructions assembled from
experiment algorithms. Data will be evaluated by a PC that is connected to the FPGA
development board via Ethernet.
First the design requirements of the infrastructure are discussed. This gives a clear

view of the necessary capabilities the setup must have. Following this the three compo-
nents of the experimental setup is discussed.

4.4.1 Infrastructure Design Requirements

The experiments require certain capabilities. These requirements are leading in the
design of the experimental infrastructure. The main requirements are listed below:

• Interface with SDRAM (e.g DDR3)

• Data transfer to and from a PC

• The execution of DDR commands in a tight sequence

DDR SDRAM commonly is used on user devices such as PC’s, laptops and mobile
phones. The first paper [1] discussing the flipping of bits in memory used a DDR3
SDRAM module. Later research also presented rowhammer being performed on DDR4.

The goal will be to repeat experiments with changing variables to understand the
effects of rowhammer. This will result in a large amount of data that needs to be pro-
cessed. A PC is responsible for this data processing as a PC can store large amounts of
data and process this data easily by means of software.
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If a simple experiment board such as a raspberry pi or even a light PC is used one
will not have the full control over the exact DRAM commands being executed. The
operating system might intervene, the processor can only perform read and writes to
specific memory locations and one does not have control over the exact timing of the
memory commands. The experimental setup thus requires a very specific type of memory
controller where the user can send a sequence of atomic DDR commands and have the
confidence that these are executed without any unnecessary delays in between.

4.4.2 Specialized Memory Controller

A specialized memory controller must be developed to execute exact DRAM commands.
Here the experimental infrastructure will consist out of three parts. The PC, an FPGA
development board and of course the DRAM module. The development board will be
designed to operate as a memory controller. The PC will have the responsibility of
sending instructions to the FPGA development board. The FPGA board will in turn
execute the instructions and send the results to the PC. Figure 4.3 shows the interactions
between the three main components. The PC interacts with the DDR3 components via
the FPGA.

Figure 4.3: Experiment environment with the FPGA acting as memory controller

4.4.2.1 FPGA design

The FPGA will be responsible for the following, memory data transfer to the PC, execu-
tion of instructions provided by the PC, interfacing with the DDR3 components. Seen
in Figure 4.4 are the FPGA components and their connections with one another.
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Figure 4.4: FPGA components

From left to right, the communication component interacts with the Ethernet PHY
and has a very basic communication protocol to send and receive commands from the
PC. The component receives memory data from the DDR3 PHY and sends it to the
PC. The instruction memory is loaded directly from the communication component and
the processor will receive a reset signal. The processor is responsible for fetching and
executing instructions and loading atomic DDR3 commands into the dispatcher. The
processor does this by fetching instructions from the instruction memory, executing the
instructions and in the case of memory specific DDR3 atomic instructions, it provides
the required data in the proper format for the dispatcher. The dispatcher receives these
atomic commands with the required data such as, opcode, row address, column address
and data to write. After this the DDR3 command is released in a timely fashion.
All DDR3 memory commands have a certain time requirement before a next DDR3
command can be issues. These timing requirements are dependant on the type of DDR3
module and the operating clock frequency of the module. The DDR3 PHY works in
tandem with the DDR3 module and is aware of the timing delays required for data
transfer between itself and the DDR3 module. During startup the DDR3 PHY starts
with memory initialization and calibration.

4.4.2.2 PC Design

The PC will assemble the experiments and send the instructions to the FPGA develop-
ment board. Once the FPGA development board is finished executing the experiments
the data is gathered and analysed by the PC. Experiments are run multiple times with
varying parameters (such as varying the data pattern for an experiment). That is why
the PC has the ability to adjust the experiment, reassemble it into instructions and
to send the new instructions to the FPGA development board. Figure 4.5 shows the
components that will be implemented on the PC. Here the experiment list provides the
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specific experiments in a template format. This allows certain parameters to be ad-
justed easily when rerunning the experiment. The assembler takes the experiment and
assembles it into machine code for the FPGA development board. The communication
protocol sends and receives data to and from the development board. The PC will send
machine code and receive raw memory data from the development board. This raw data
is the actual memory content of the DRAM module. This data is analysed and depend-
ing on certain conditions the parameters in the experiment will be adjusted accordingly.
The data is also logged and will be used later on to create statistics.

Figure 4.5: PC components
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Infrastructure Implementation &
Experimental results

This chapter will discuss the experimental infrastructure implementation and experi-
mental results. The experimental infrastructure is implemented following the design
requirements. An FPGA development board with DDR3 modules has been chosen to
implement a specialized memory controller. The results of each experiment is discussed
in the other half of this chapter. Here the specifics of executing the experiments will be
discussed in depth. The results will be shown in graphs and figures and an explanation
is given to clarify the findings.

5.1 Infrastructure Implementation

An FPGA development board is the preferred solution for creating a specialized DDR
memory controller. Supplemental components are implemented to accommodate the
execution of experiments and to ensure ease of use. The chosen development board is
the Digilent Genesys 2 [20] as seen in Figure 5.1.
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Figure 5.1: Genesys 2 Kintex-7 FPGA development board[20]

Listed below are the most important features of the Genesys 2 development board.
These are:

• 1 GiB of DDR3 memory composed from 2x512 MiB chips.

• 10/100/1000 Ethernet PHY

• Xilinx Kintex-7™ FPGA (XC7K325T-2FFG900C)

The Genesys 2 includes 2 Micron MT41J256M16HA-107 DDR3 memory components.
One of these components will be used as the main test subject during experimentation.

5.1.1 FPGA Implementation

The FPGA component implementation is discussed in this section. First the the speci-
fications of the DDR3 module are explained, following this the DDR3 PHY implemen-
tation will be discussed, after this the fucntion of the DDR3 command dispatcher will
be shown in depth, then the processor implementation is given and finally the commu-
nication module together with the communication protocol is presented.

5.1.1.1 DDR3 Module

The DDR3 module is the main test subject. The memory on the Genesys 2 develop-
ment board is composed of 2 Micron MT41J256M16HA-107 DDR3 [21] modules. The
functional diagram of the DDR3 DRAM module is shown in Figure 5.2. Here one can
see that the device consists of 8 memory banks containing exactly 64 MiB each. The
data input/output width of a single module is 16 bits.
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Figure 5.2: Functional diagram of the DDR3 modules [21]

Input and Output The DDR3 PHY is connected to the DDR3 modules. During
experimentation not all input- and outputs of the DDR3 chip need to dealt with directly.
The user is mostly concerned with the bank, row, column and data. Other input- and
outputs such as the clock, DQ, LDQS, UDQS, LDM/UDM and ODT are all handled by
the DDR3 PHY with its initialization and calibration functionality. Table 5.1 lists the
input- and outputs of a single DDR3 module and describes their basic functionality.
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Table 5.1: Inputs and outputs of DDR3 chip

Symbol Name Description
Reset# Reset This resets the DDR3 chip

CK,CK# Clock

This is the differential clock input.
All input signals are sampled on the
positive edge of CK and
the negative edge of CK#

CKE Clock Enable
Enables/disables the clock signal.
Used during configuration and power down.

CS# Chip select
This enables all input signals to the chip.
When disabled the input signals are ignored.

RAS# Row address strobe
CAS# Column address strobe
WE# Write Enable

These three inputs together with CS#
determine the DDR3 command.

A[15:0] Address input

Here the row or column address are
provided to the DDR3 chip as
input in combination with the
CS#,RAS#,CAS# and WE#.

BA[2:0] Bank address input This is the bank address input.

DQ[15:0] Data input/output

This is the data connection
to the DDR3 chip.
This is a bi-directional
connection to the DDR3 PHY.

LDQS, LDQS#
UDQS, UDQS#

Upper/lower byte
data strobe

During a read operation the data strobe is
set as an output and during a
write operation set as an input.
The data strobe is aligned with
the data on the DQ I/O.

LDM, UDM
Lower/upper byte

input mask
Is used to mask part of the
I/O data on the DQ.

ODT On-die termination
Input used for termination
resistance to the DDR3 SDRAM

Commands The basics of DRAM have been explained briefly in chapter 2. The most
important DDR3 commands have been listed below in Table 5.2. These will be the most
used DDR3 commands during experimentation. There are other commands that are
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used for initialization and calibration though these will be issued by the DDR3 PHY
after startup and the user will not have to concern themselves with these directly.

Table 5.2: DDR3 commands

Fuction Control input Requires
CS# RAS# CAS# WE#

Refresh L L L H Valid BA and A

Activate L L H H
Valid BA and
row address
on A

Precharge L L H L Valid BA and A

Read L H L H
Valid BA and
column address
on A

Write L H L L
Valid BA and
column address
on A

No
Operation

X H H H

All the commands, except the No Operation command must have a valid signal on the
BA and A inputs. When performing an Activate or Precharge command for example the
row address needs to be provided along with the bank address. The two other commands
that perform an operation on the column enable the CAS# input and require the column
address on the A input.

5.1.1.2 DDR3 PHY

The DDR3 PHY is the component that sends the command signals to the chip and en-
sures timely data transfer. Xilinx provides memory interface generation support known
as MIG [22]. MIG generates specific memory interfaces depending on the type of DRAM.
This interface provides simplicity for other components to access the DDR3 module and
limits them to the use of read and write interactions. The memory controller within the
interface generates the sequence of DDR3 commands for the DDR3 PHY shielding other
components from certain complexities. MIG is used to generate an interface specifically
for the DDR3 modules on the Genesys 2. After this the DDR3 memory controller within
the interface has been removed leaving the PHY together with initialization and cali-
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bration components. As seen in Figure 5.3 the components created by MIG. Encircled
in red is the memory controller that has been removed from the interface leaving only
the necessary components.

Figure 5.3: Memory interface with Memory controller, PHY and other components [22]

The guide [23] provides the required information needed to operate the PHY directly.
It explains that the PHY has two implementations options, the 4:1 and 2:1 implementa-
tions. These allow the PHY to operate on a different timescale compared to the DDR3
memory. The 4:1 implementation operates with a clock period four times greater than
the DDR3 memory and the 2:1 design twice as great. The 4:1 will have 4 slots to issue
a DDR3 command whilst the 2:1 only 2. The 4:1 design is chosen for the FPGA imple-
mentation. This allows for the processor and dispatcher to operate on a lower frequency
compared to the 2:1 design for a fixed DDR3 clock rate.

To explain the functionality of the time slots an example is provided. It is known
that the command signals CS#, RAS#, CAS#, WE# together with the A[15:0] and
BA[2:0] inputs determine the DDR3 commands. The PHY has 4 slots for each of these
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inputs, CS#[3:0], RAS#[3:0], CAS#[3:0], WE#[3:0], A[63:0] and BA[11:0] (width di-
visible by 4). For the sake of simplicity these command signals will be simplified as a
single input command CMD[3:0]. Figure 5.4 shows an example on how to use the slots
to issue commands. When issuing an activate (ACT ) command on slot 1 the DDR3
module will receive the command after 4 + 1 CK. Following this the PHY receives two
consecutive READ commands both issued on slot 3. These will be issued after 4 + 3
CK. The read commands are 4 CK apart. Finally, the precharge (PRE ) command is
issued on slot 1 and is issued 4+1 CK to the DDR3 module after being received by the
PHY. So by using the command slots in the PHY the DDR3 module receives commands
within a resolution of 1 CK

Figure 5.4: DDR3 PHY slot timing

5.1.2 DDR3 Command Dispatcher

The dispatcher uses the PHY command slots to issue DDR3 commands in a timely
fashion. This component is aware of the timing requirements for each command. These
requirements are listed in the memory datasheet [21]. The 4:1 PHY implementation
has been chosen meaning the dispatcher will have 4 slots to issue the DDR3 commands.
The dispatcher operates on the same clock frequency as the PHY and thus can issue
a command every 4 memory clock cycles. The dispatching of a command is shown
in Figure 5.5. Starting from idle, the dispatcher issues the command if the counter
CC counter is below 4 and a command is available. After issuing the command the
counter CC counter is set to the specific clock delay Command CC Delay for the DDR3
module to execute the command properly. When there is no command available or the
counter’s value is too high, the dispatcher will issue a NOP to the PHY and the counter
is lowered by 4. The counter cannot reach a value below 0 and is used to determines the
PHY slot on which the new command should be issued.
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Figure 5.5: State machine of DDR3 command dispatcher

The dispatcher is connected to the processor via an instruction FIFO. The processor
inserts the atomic DDR3 instructions into the FIFO, and the dispatcher takes these in-
struction from the FIFO. Table 5.3 shows the format of the instructions. The dispatcher
determines the type of instruction by its opcode. To keep things simple, the instruction
is split into its segments and each segment is inserted into the PHY as a separate input
signal, while taking the slot into account. These DDR3 instructions are 38 bits wide
and composed of the DDR3 command opcode, bank address, row/column address and
the data width equal in size to the DDR3 module data width.

Table 5.3: DDR3 atomic instruction format

Segment:
Opcode
[37:34]

Bank
Address
[33:31]

Address
[30:15]

Data
[15:0]

Composition: CS# RAS# CAS# WE# BA A
Reg
Data
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5.1.3 Processor

The processor provides functionality to run complex experiments on the FPGA. With-
out the processor each experiment would have to be assembled into a long list of DDR3
commands and sent to the FPGA development board. This would not be practical as
the FPGA has limited storage capacity. Aside from this many of the listed experiments
contain loops and conditions in their algorithms. This means that certain parts of the
experiment code will be run numerous times. That is why a processor is an essential
component. The processor will execute processor specific instructions and pre-process
the DDR3 commands to eventually insert them into the FIFO connected to the dis-
patcher.

The processor instruction set is based the Little Computer 3 (LC-3) instruction set.
The reason for this is because this instruction set is fairly barebones but powerful. This
will keep processor design time within bounds. The aim is to run the processor on a
higher clock frequency compared to the DDR3 command dispatcher and a complex pro-
cessor design might not allow for this.

Only the essentials of the LC-3 instruction set will be implemented. These are add,
and, not, br (branch). Together with these one extra arithmetic instruction is added,
namely sll (shift logic left). Without this, shifting will require adding a register to itself
numerous times as reg ∗ 2 == reg + reg. The instruction set for the processor has
been implemented while respecting the LC-3 instruction format. There are two types of
instructions, The processor instructions and the DDR3 atomic command instructions.
These instructions are listed in Table 5.4. The width of the processor instructions is 30
bits. The standard LC-3 4 bit wide opcode has been extend by 1 bit. This extra bit
distinguishes the processor specific instructions from the instructions used for the DDR3
command dispatcher. The 3 bit DR and SR fields allow for 8 data registers. The NZP
field allows for branching. N bit is set for branching on a negative value,Z is set for zero
and P for positive. The 1 bit Set imm field is used to indicate an immediate instruction,
the difference will be that the processor takes the value in the immediate field rather
than from SR2. An extra instruction, not previously mentioned, has been added. This
is the Sbr standing for set bank register. This instruction will load a 3 bit value into
a specific register used by the processor for assembling DDR3 dispatcher instructions.
The DDR3 specific instructions are similar in format to the processor specific instruction
format. This allows for the same data path to be taken in the processor. The DR/NZP
field is not used for the DDR3 instructions. The SR field is used for selecting the register
holding the address (row for activate/precharge and column for write/read) value. The
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Write instruction uses the SR2 field to point to the register holding the data to be
written to the memory location. The immediate field in NOP is sent to the dispatcher
to issue the immediate number of NOP instructions and REF is used to set the refresh
period.

Table 5.4: Processor instruction set

Segment:
OPCODE

5-bit
DR/NZP
3-bit

SR
3-bit

Set
imm
1-bit

SR2/IMM
8-bit

Processor specific instructions
Add 0 0 0 0 1 DR SR1 0 0 0 SR2 0 0 0

Add imm 0 0 0 0 1 DR SR1 1 IMM 8-bit
And 0 0 1 0 1 DR SR1 0 0 0 SR2 0 0 0

And imm 0 0 1 0 1 DR SR1 1 IMM 8-bit
Not 0 1 0 0 1 DR SR1 1 1 1 1 1 1 1 1 1
Sll 0 0 0 1 0 DR SR1 0 0 0 SR2 0 0 0

Sll imm 0 0 0 1 0 DR SR1 1 IMM 8-bit
Br 0 0 0 0 0 NZP Offset 12-bit
Sbr 0 1 1 1 1 000 000 1 0 0 0 0 0 Imm 3-bit

DDR3 specific dispatcher instruction
ACT 1 0 0 1 1 000 SR1 0 0 0 0 0 0 0 0 0
PRE 1 0 0 1 0 000 SR1 0 0 0 0 0 0 0 0 0

WRITE 1 0 1 0 0 000 SR1 0 0 0 SR2 0 0 0
READ 1 0 1 0 1 000 SR1 0 0 0 0 0 0 0 0 0
NOP 1 0 0 1 0 000 000 1 IMM 8-bit
REF 1 0 0 0 1 000 000 1 IMM 8-bit

The processor assembles the DDR3 dispatcher commands from the instruction opcode
and register values containing bank address, row/column address and data to be written.
The format shown earlier in Table 5.3. As mentioned before the dispatcher receives
instructions from the processor via a FIFO. This is shown in Figure 5.6. Here it is seen
that the processor writes to the FIFO and in the case that the FIFO is full the processor
is halted. The DDR3 command dispatcher reads from the FIFO if it is not empty. The
FIFO allows for the two components to operate at different clock frequencies, allowing
the processor to operate at a higher clock frequency ensuring that the DDR3 command
dispatcher will have DDR3 instructions available at all times during the execution of an
experiment.
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Figure 5.6: FIFO in between processor and dispatcher

5.1.4 Communication and Control

This component is responsible for receiving, transferring and loading instructions into the
processor instruction memory. To start this component is connected to an ethernet PHY.
The Genesys 2 features a RGMII interface. The communication component receives
ethernet packages and deconstructs these into destination, source, and payload segments.
These segments are forwarded to the communication handler. The handler functionality
is shown in Figure 5.7. The system starts in the idle state and sends a broadcast message
every second. This broadcast message is for the PC to see that the FPGA is online.
The PC sends a message to the FPGA and the communication handler will check the
payload and determine the validity. In case the package content is valid an ACK is sent
and if invalid a NACK is sent. Once a connection has been established memory data
can be sent to the PC. When the DDR3 modules memory is being read the DDR3 PHY
will fill the data buffer. Once this data buffer has reached a certain threshold the data
form the memory will be packaged and sent to the PC.
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Figure 5.7: Communication handler

The PC and FPGA communication packages are listed in Table 5.5. The PC initiates
the loading of an experiment by sending a Start program load package to the FPGA.
The FPGA ensures the processor is halted and that the instruction memory is loaded
with the data from the Program Instruction data segment. Once the FPGA receives a
End program load instruction the processor is reset starts executing the instructions.

An Ethernet frame ends with a frame check sequence. This check uses a 32 bit CRC. If
at any point during communication an Ethernet package becomes corrupt the Ethernet
controller will throw the package away due to failing the frame check. The PC knows
the number of DDR3 read commands in the experiment instructions. The PC will check
the number of bytes in the received memory data packages to ensure no Ethernet frame
loss has occurred during operation.
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Table 5.5: PC and FPGA communication packages

Command:
start
1-byte

Command
1-byte

Data size (N)
1-byte

Data
N-bytes

PC packages
Start program
load

0x01 0x02 0x00 -

End program
load

0x01 0x03 0x00 -

Program
Instruction

0x01 0x04 0x03
20-Bit instruction

in 3-Bytes
FPGA packages

ACK 0x01 0x06 0x00 -
NACK 0x01 0x15 0x00 -
Memory Data 0x01 0x05 #Bytes in buffer Memory Data

5.1.5 Experiment Infrastructure Summary

Summarizing, the experiment infrastructure is composed out of a PC and a Genesys
2 FPGA development board with DDR3 modules. The experimental infrastructure in-
terfaces with one DDR3 module. The experiments are assembled on the PC. The PC
communicates with the Genesys 2 and transfers the experiment instruction code to the
FPGA via an Ethernet connection. The FPGA handles the incoming data packets
and inserts the experiment instructions into the processor instruction memory. The
experiment code is composed of processor specific instructions and DDR3 instructions.
These DDR3 instructions are assembled by the processor and are inserted in a FIFO
for the DDR3 command dispatcher. The dispatcher takes commands from the FIFO
and dispatches these in a timely fashion to the DDR3 PHY. The PHY interacts with
the memory on a physical level and initializes the memory module and calibrates itself
during startup. The data read from the DDR3 modules is sent to the PC.

The PC specifications are listed below:

• PC with Ethernet connection running Ubuntu 20.04

• Communication and assembly programmed in: C and Python

The FPGA specifications:
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• Processor operation frequency: 200 Mhz.

• DDR3 PHY operation frequency: 100 Mhz.

• Communication operation frequency: 125 Mhz.

The DDR3 module specifications:

• Operating frequency: 400 Mhz.

• Data transfer speed: 800 MB/s.

5.2 Experiment Results

This section discusses the results from the experiments. First the results of experiment
set 1 are discussed, following this are the results from experiment set 2 and finally the
results are shown from experiment set 3.

5.2.1 Experiment set 1: Reverse engineering

These results will provide information on the specific DDR3 module test subject. The
results found in this section are essential to the other two experiment sets. Here the
true- and anti-cell locations are described, the neighbouring rows are given, the size of
the rows are verified, the column structure is discovered and finally a set of vulnerable
cells is composed.

5.2.1.1 True- and anti-cell locations

The true- and anti-cell locations have been found. This is done by first loading a solid
data pattern into the whole memory bank, after this the memory is left idle for 5 minutes
with self refresh disabled. During this time the charged memory cells lose their charge.
Once the 5 minutes have expired the whole memory bank is read out and compared to
the initial data pattern.

The solid 1 data pattern reveals the true-cells in the memory bank. As seen in
Figure 5.8 the bit errors are shown per row for the solid 1 data pattern. The x-axis shows
the row index number. This is essentially the row address. This figure shows that in
certain rows a high number of bit flips occur when a solid 1 data pattern is loaded while

61



Chapter 5 Infrastructure Implementation & Experimental results

others are unaffected. This is because the solid 1 data pattern charges the true-cells.
During the time period these cells lose their charge and thus their bit value flips.

Figure 5.8: True-cell locations with solid 1 data pattern

The solid 0 data pattern reveals the anti-cells in the memory bank. This is the
opposite of what has been shown in Figure 5.8. The bit flips that occur while using solid
0 are shown in Figure 5.9. These rows showed no bit flips with a solid 1 data pattern.
But when a solid 0 data pattern is loaded bit flips do occur. The solid 0 data pattern
charges the anti-cells. These cells lose their charge over time.
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Figure 5.9: Anti-cell locations with solid 0 data pattern

Solid 0 has a comparable error rate to solid 1. The two data pattern errors have
been combined in a single plot. Figure 5.10 shows the two data pattern errors per row
for the given retention time. It is visible that there is an alternating pattern between
the error locations. Where the solid 1 data pattern shows errors the solid 0 data pattern
shows none, and vice versa.
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Figure 5.10: Solid 1 and solid 0 data pattern errors per row

The total number of errors per data pattern is listed in Table 5.6. The bit error rate of
the two data patterns are compared to one another. Both data patterns seem to cause
roughly the same number of bit flips per row. There is no significant difference between
the true- and anti-cell error rate for the 300 second retention time.

Table 5.6: Solid 1 compared to Solid 0 total bit errors, average per row and difference

Data pattern
Total number
of bit errors

Average
bit errors
per row

Difference
compared to

Solid 1
Solid 1 6824529 20.34 -
Solid 0 6869236 20.47 0.66%

The true- and anti-cells rows are grouped. Rows that have true-cells are grouped
together whilst rows that have anti-cells are grouped together. The groups have a size
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of either 680 or 688 rows. To better explain Table 5.7 shows the first 4 groups. These
have been classified as true- and anti-cell groups and their group size is provided.

Table 5.7: True- and anti-cell groups

Row
Addresses

True/anti
cells

Group
size

0-679 True 680
680-1367 Anti 688
1368-2367 True 680
2368-3047 Anti 680

Excluding the first and last group in the memory bank a repetition of these group
sizes can be seen. A group size of 688 rows is followed by two groups of 680. With each
group alternating between true- and anti-cells. There are a total of 24 true-cell groups
as well as 24 anti-cell groups.

5.2.1.2 Size of rows

The row size has been verified by first inserting a columnstripe data pattern into the
memory bank, activating a single row, waiting 300 seconds and finally precharging the
row. By using the columnstripe data pattern there is no need to keep track of true- and
anti-cell location in the memory. Random rows where selected in the memory to verify
the row size. One example is shown in Figure 5.11, here the row is activated throughout
the retention test. The activated row has 0 bit errors whilst the other non active rows
show significant bit errors.
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Figure 5.11: Bit errors per row of activated row compared to others

This result shows that during the experiments only one row shows 0 bit errors. Mean-
ing that the row buffer only holds the exact row size, no other rows are hidden in the
row buffer.

5.2.1.3 Neighbouring rows

A single sided rowhammer attack is performed to find the neighbouring rows of the
attacking row. The data pattern is loaded into the memory (solid 0 or solid 1). After
this the attacking row is loaded with the opposite data pattern. This row is accessed
consecutively throughout the round together with its opposite row number in the other
half of the memory bank. Meaning row 0 together with row 215 − 1− 1 are accessed in
the first round. Row 1 and row 215−1−2 are accessed in the second round, and so forth.
The rows with bit errors in them are logged at the end of each round. The experiment
has been performed with a hammercount of 3 million hammers per row. Meaning each
round the attacking row has been accessed 3 million times. This high hammercount is
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chosen to also inflict bit errors in the neighbour’s neighbour, if possible. The results are
discussed below.

Each row has a single row affected by rowhammer. After each round the memory
array is read out and analysed. During the analysis of the memory only one row shows
bit flips, meaning that the attacking rows (n or 215− 1−n) only affect one single victim
row. To illustrate this Figure 5.12 shows the expectation based on the understanding
of a single sided rowhammer attack and the findings in the results. Figure 5.12a shows
the attacking row R3 with the two neighbouring rows R2 and R4 expected to have bit
flips. The reality is shown in Figure 5.12b where the attacking row R3 only seems to
flip bits in R2 whilst keeping R4 unaffected.

(a) Attacking row and expected
affected rows (R2 & R4)

(b) Attacking row (R3), actual affected
row (R2) and expected affected row

(R4)

Figure 5.12: Neighbour affected by attacker row

All the rows in the memory bank have been an attacker or a victim at some point in
the experiment. When the data pattern solid 0 or solid 1 is inserted into the memory
bank only one attacker row n or 215− 1−n seems to have an impact. This is due to the
fact that one of the attacking row addresses can be in a true- or anti-cell row region and
depending on cell charge only will affect one row. If a row shows bit flips it is paired
together with n or 215−1−n depending on its locality. Table 5.8 shows the first and last
4 attacker rows n impacting only one single neighbour local to them. This neighbour is
classified as the victim row and is paired together with the attacker row. It is interesting
to see that the attacker and victim roles are swapped at some point.
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Table 5.8: Attacker row n with neighbouring rows n-1 and n+1 showing only one row
being affected

Attacker row
address
(n)

Neighbour
address
(n-1)

Neighbour
address
(n+1)

Affected
Address

0 - 1 1
1 0 2 0
2 1 3 3
3 2 4 2
... ... ... ...

32764 32763 32765 32765
32765 32764 32766 32764
32766 32765 32767 32767
32767 32766 - 32766

Using the results a formula is composed to map the victim row to the attacker row
and vice versa. From the results shown above a formula is created in order to simplify
future experimentation. The Equation 5.1 shows the relation of the attacker and victim
row. The input row number n can be the attacker or victim row and the output of the
formula will be its antithesis. Each victim row has one attacker row mapped to it and
vice versa. No victim rows share the same attacker row and no attacker rows share the
same victim row.

V (n) =

{
n− 1, if n mod 2 = 1

n+ 1 otherwise
(5.1)

5.2.1.4 Neighbouring columns

The column order of two neighbouring rows is investigated. The victim row has been
loaded with a fully charged data pattern, solid 1 or solid 0 depending on the cell type,
while the attacker row has only a single bit charged at a time. The attacking row
performs a rowhammer attack with a walking 1 or 0 (depending on cell type) and the
impact on the victim row is recorded. Figure 5.13 has the results of 4 attacker and
victim rows. The plot shows that if a victim cell is flipped it is caused by an attacker
cell in the neighbouring row with the exact same column address. Meaning that the
attacker and victim cells are vertical neighbours.
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Figure 5.13: Bit flip in Victim column caused by Attacker column

5.2.1.5 Vulnerable cells within refresh period

Every row in the memory bank has been hammered and the vulnerable cell locations
have been logged. The hammer sequence is act→ pre. This will give an overestimation
as in practice read or write commands will be issued as well. The duration of a single
act → pre sequence is 47.91 ns. The memory clock is set to 2.5 ns. This means that
a single sequence takes 20 memory clock cycles as seen in Equation 5.2. However the
maximum hammercount has been set to 667000 to account for the theoretical maximum
hammercount within 64 ms.
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⌈
47.91

2.5

⌉
= ⌈19.164⌉ = 20 ck (5.2)

The data patterns that are chosen are solid 1, solid 0 and row-stripe (also negated).
The victim and attacker rows are loaded with the data pattern before executing the
rowhammer attack. After this the victim row is read in its entirety and saved for further
processing. Every victim row is attacked with these 4 different data patterns. Solid 1
and solid 0 mean that the attacker and victim have the same cell charges whilst rowstripe
(also negated) mean that these two rows have opposing cell charges.

Error rate of Data patterns The bit errors induced by the Solid 1 and Solid 0 data
patterns are shown in one plot, Figure 5.14. Here the errors per victim row are shown
being caused by the rowhammer attack. It is clearly visible that the two data patterns are
prone to bit flips in specific row locations. When comparing these results to Figure 5.10
shown previously it is clear that these bit flips occurring are dependant on the true- and
anti-cell row locations. Bit flips only occur when the victim cell is charged.
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Figure 5.14: Solid 1 and solid 0 errors per row caused by 667k rowhammer

The bit error rate of the two data patterns is compared in Table 5.9. It is clear that
the rowhammer attack causes a higher bit error rate in the Solid 0 data pattern. The
result is a 10.49% increase compared to solid 1.

Table 5.9: Bit error rate of solid 1 and solid 0.

Data pattern
Total
Bit

Errors

Bit
Error
Rate

Difference
Solid 1

Solid 1 9973 0.0297% -
Solid 0 11020 0.0328% 10.49%

The following plot in Figure 5.15 shows the errors per row caused by rowhammer for
the Rowstripe (victim 1 and attacker 0) and Rowstripe (victim 0 and attacker 1) data
patterns. Here the victim and attacker have opposing cell charges. It is immediately clear
that these data patterns have a significantly higher bit error count per row compared to
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the Solid data patterns. Once again, bit errors only occur in locations where the certain
data pattern has the victim cell initially charged. Meaning that Solid 1 and Rowstripe
cause flips in the true-cells during rowhammer and Solid 0 and Rowstripe cause flips in
the anti-cells. The plot also shows something not seen previously. There are two regions
where the bit errors per row are significantly higher compared to the adjacent rows.

Figure 5.15: Rowstripe and Rowstripe errors per row caused by 667k rowhammer

In Table 5.10 the bit error rate of Rowstripe and Rowstripe are compared to one
another. The results show that Rowstripe suffers from a higher bit error rate compared
to Rowstripe. The increase is 7.82%. This means that the charged victim true-cells
being attacked by uncharged true-cells are prone to a higher failure rate compared to
the charged anti-cells being attacked by uncharged anti-cells.

To summarize, victim cells only flip when they are initially charged. The charge of
the attacker also is a determining factor in the bit error rate. There is a higher bit error
rate for victim cells being attacked by uncharged attacker cells. Anti-cells suffer more
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Table 5.10: Bit error rate of Rowstripe and Rowstripe.

Data pattern
Total
Bit

Errors

Bit
Error
Rate

Difference
Rowstripe

Rowstripe 354929 1.06% -

Rowstripe 327193 0.98% -7.82%

when attacked by charged anti-cells, whilst true-cells suffer more when being attacked
by uncharged true-cells.

5.2.2 Experiment set 2: Cell Level

First, cells have been selected from the vulnerable cell set provided by Section 5.2.1.5.
The selection includes true- and anti-cells, cells in rows with a high bit error count and
cells in bytes with a high bit error count. Due to the extremely long execution time of
the experiments in set 2 and set 3 the vulnerable cell set is limited in size. The selected
rows are shown in Table 5.11. A total of 43 victim cells have been selected. Here there
are two categories namely True- and anti-cell rows. Two rows per group contain victims
cells neighbouring each other horizontally. All the cells have been named and their
exact locations can be found in Table A.1 and Table A.2. These cells will be referred to
throughout the following sections.

Table 5.11: Selected rows

Victim
row nr

Attacker
row nr

Nr of selected cells
Maximum

bit error per byte

Vulnerable
Neighbour

cells?
True-cell rows

15503 15502 6 3 No
16966 16967 5 3 Yes
30546 30547 13 1 No

Anti-cell rows
13069 13067 11 1 No
13655 13654 3 3 Yes
26939 26938 5 3 no

As mentioned in Section 4.2.2.1 the three cell data patterns vary for the attacker
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and victim cell groups. The minimal hammercount has been found using binary search.
Each victim/attacker data pattern pair has been retested 100 times with the data be-
ing logged. The binary search set a limit of 800000 hammers per row as the max-
imum and 0 hammers as the minimum. The data pattern format will be shown as
{0(0)0, 0(0)1, 0(1)0, 1(0)0, 1(0)1, 1(1)0, 0(1)1, 1(1)1} throughout this chapter. The 1/0
in between the parentheses indicates the bit value of the cell of most interest (victim
cell or attacker cell) whilst the two values to the left and right of the parentheses are
the horizontal neighbouring cell values. For example, when loading 0(1)1 into a victim
group, the victim itself will be loaded with a value 1, while its left neighbour is loaded
with a 0 and its right neighbour with a 1. As a reminder, V-LN and V-RN stand for
the victims left- and right-neighbours, these are adjacent to the victim cell in the same
row. Subsequently, A-LN and A-RN indicate the attackers neighbours.

5.2.2.1 Impact of Victim and attacker cell charges

All of the victim cells showed bit flips during rowhammer while being charged and at-
tacked by an uncharged attacker cell. To show an example the results of two victim cells
have been shown in Figure 5.16. Here Figure 5.16a shows that a true-cell flip occurs
when the victim cell is 1(1)1 and the attacker cell is X(0)X (with x being don’t care).
For the anti-cell the opposite is shown in Figure 5.16b, here the victim is loaded with a
0(0)0 and the attacker with a X(1)X. This shows that bit flips occur for charged victim
cells being attacked by uncharged attacker cells.

This verifies the point in Section 4.2.2 of victim cells losing their charge during
rowhammer. The results showed no evidence of bit flips caused by victim cells be-
ing uncharged during rowhammer.

Amongst the set of victim cells one particular cell has been found to flip during a
rowhammer attack with a charged attacking cell. In Figure 5.17 the boxplot shows the
victim cell hammercount with the attacker cell data patterns. The red line in the figure
shows the theoretical maximum hammercount allowed within a 64 ms time period. So
all hammercount values below this are considered to be successful. The results show
that the attacker cell can be uncharged as well as charged to cause a bit flip.
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Victim row: 30546 bit column: 167
Attacker row: 30547 bit column: 167

Victim data pattern loaded: 1(1)1

(a) True-cell with data pattern 1(1)1
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Victim row: 26939 bit column: 172
Attacker row: 26938 bit column: 172

Victim data pattern loaded: 0(0)0

(b) Anti-cell with data pattern 0(0)0

Figure 5.16: True- and anti-cell bit flip box-plot with varying attacker cell data patterns
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Figure 5.17: Victim cell bit flip with all attacker data patterns

Summarizing, for a bit flip to occur the victim cells need to be charged. While the
set of chosen victim cells mostly show bit flips occurring with uncharged attacker cells
there is also evidence of an attacker cell that causes a bit flip while being charged.
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5.2.2.2 Horizontal cell impact on hammer resilience

The horizontal neighbouring cells (V-LN & V-RN) seem to have an impact on the ham-
mercount of the victim cell. A few examples will be discussed. Starting with Figure 5.18.
Here a boxplot of the minimal hammercount is shown of a charged true-cell being ham-
mered by an uncharged attacker cell. The neighbouring attacker cells A-LN and A-RN
do not seem to have a large impact on the hammercount. However the neighbouring
victim cells do have an impact on resilience of the victim cell. When V-LN is uncharged
the hammercount of the victim cell is lower compared to when V-LN is charged. This
can be seen in Figure 5.18a where the victim cell pattern is 0(1)0 and in Figure 5.18c
where the victim pattern is 0(1)1. Compare this to the two other patterns 1(1)0 and
1(1)1 in Figure 5.18b and Figure 5.18d.
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(a) Victim data pattern 0,(1),0

--- 0(0)0 0(0)1 1(0)0 1(0)1
Attacker data pattern

460000

480000

500000

520000

540000

560000

580000

600000

620000

M
in

im
um

 h
am

m
er

co
un

t

Victim row: 30546 bit column: 1122
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(b) Victim data pattern 1,(1),0
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(c) Victim data pattern 0,(1),1
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(d) Victim data pattern 1,(1),1

Figure 5.18: Varying victim true-cell data pattern and minimal hammercount.

Statistics in Table 5.12 show the vulnerability of the victim cell in terms of the average
minimal hammercount. The table shows the average per victim/attacker combinations
and the total average of the victim or attacker data patterns. As stated earlier the V-LN
being uncharged shows a decrease in the resilience of the victim cell. To understand the
impact of the V-LN the average of the victim patterns with an uncharged V-LN (0(1)0
and 0(1)1) are compared to the data patterns with the V-LN being charged (1(1)0 and
1(1)1). There is a 12.6% decrease in minimum hammercount when the V-LN cell is
uncharged compared to the V-LN cell being charged.

77



Chapter 5 Infrastructure Implementation & Experimental results

Table 5.12: Average minimal hammercount of True-cell with left victim neighbour im-
pact

Victim
Attacker

0(0)0 0(0)1 1(0)0 1(0)1

Avrg.
victim
Min.
HC

0(1)0 507819.72 509126.38 509044.42 508202.26 508548.20
1(1)0 583824.89 583527.56 584195.52 582427.05 583493.80
0(1)1 516897.11 511015.98 514961.12 514243.58 514279.45
1(1)1 586923.0 588950.14 586158.78 586429.93 587115.46

Avrg. attacker min. HC 548866.18 548155.02 548589.96 547825.71 548359.22

There is a subset of cells in the selected cell set (Table 5.11) that show a significant
decline in resilience by one of their horizontal neighbours (V-LN or V-RN). Table 5.13
shows their average minimal hammercount and the impact that V-LN and/or V-RN
has on their resilience. The percentage of change is shown relative to the cells average
minimal hammercount. A negative percentage shows a decrease in resilience compared
to the average minimal hammercount of the cell, whilst positive percentage shows an
increase in resilience. The victim cell T:23 for example has a total average minimal
hammercount of 553475, when the cell’s left neighbour V-LN is uncharged the resilience
decreases 7.39% compared to the average minimal hammercount, whilst a charged V-LN
cell increases the resilience. The results show evidence of resilience decrease caused by
uncharged adjacent cells in the victim’s row. A total of 11 from the 43 victim cells show
this phenomenon.
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Table 5.13: Impact of neighbouring victim cells V-LN and V-RN on victim cell resilliance

Victim
Tag

Total
Avrg.

Min. HC

V-LN
Charged

%

V-LN
Uncharged

%

V-RN
Charged

%

V-RN
Uncharged

%
True-Cells

T:3 624719 2.04 -2.04 0.26 -0.26
T:10 548359 6.74 -6.74 0.43 -0.43
T:15 468011 4.98 -4.98 -1.04 1.04
T:17 490597 3.46 -3.46 0.11 -0.11
T:23 553475 7.39 -7.39 -0.45 0.45

Anti-Cells
A:5 576247 4.15 -4.15 0.05 -0.05
A:7 576247 0.23 -0.23 3.3 -3.3
A:9 558380 2.82 -2.82 -0.26 0.26
A:12 381161 3.60 -3.60 0.04 -0.04
A:15 642446 0.43 -0.43 2.48 -2.48
A:17 618959 2.82 -2.82 0.23 -0.23

5.2.2.3 Diagonal cell impact on hammer resilience

The results earlier showed evidence of horizontal impact. In this part the impact of the
neighbouring attacker cells will be discussed. Meaning that the attacker left neighbour
(A-LN) and right neighbour (A-RN) have a diagonal impact on the victim cell. In the
set of rows two attacking cell locations have been found to have a diagonal impact on the
victim cell resilience. In Table 5.14 the impact is shown regarding the diagonal impact.
In these two cases having a charged A-LN cell causes a negative impact on the victim
cell resilience. In the case of T:15 the (A-RN) cell being uncharged impacts the victim
cell resilience less.
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Table 5.14: Impact of neighbouring attacker cells A-LN and A-RN on victim cell resil-
liance

Victim
Tag

Total
Avrg.

Min. HC

A-LN
Charged

%

A-LN
Uncharged

%

A-RN
Charged

%

A-RN
Uncharged

%
True-Cells

T:15 468011 -7.61 7.61 1.43 -1.43
Anti-Cells

A:9 558380 -12.91 12.91 0.08 -0.08

The cell that shows the largest influence of the diagonal impact is A:9 as seen in
Figure 5.19. Here the anti-cell shows a decrease in resilience caused by an attacker
having patterns 0(1)0 and 0(1)1. Meaning that when A-LN is charged it has a diagonal
impact on the resilience of the victim cell. Let it also be clear that the average minimal
hammercount is influenced by the victim data pattern, this has already been discussed
earlier and is presented in Table 5.13.
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Figure 5.19: Attacker anti-cell neighbour diagonal impact on victim anti-cell

Seeing the results it becomes clear that aside from a victim cell being influenced by
its direct horizontal neighbours it can also be diagonally influenced by the horizontally
adjacent neighbours of the attacking cell.

5.2.2.4 Mirroring cell symmetry

In this part of experiment set 2 the results will be shown regarding the symmetry of
mirroring cells, meaning cells in the same column but in opposite neighbouring rows.
These cells have performed a rowhammer attack on each other on separate occasions
and have shown that is was possible to flip their opponent. This impact is vertical and
it is shown to be bi-directional. The cells locations are shown in Table B.1 and their
group tag will be referenced throughout this section.
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Horizontal impact is mirrored. The results show that both victim cells in the neigh-
bouring row pair are either influenced or not by their horizontal neighbour (V-LN or
V-RN ). Figure 5.20 shows an example of a mirroring cell pair. These two cells both
are influenced by their left neighbour V-LN. They do however show different average
minimal hammercounts.
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Figure 5.20: Victim cell pair SA:n hammercount influenced by horizontal neighbour V-
LN

This phenomenon has been found in other mirroring cell pairs. In Table 5.15 the
results show that either both cells in the mirroring cell pair suffer from their horizontal
neighbour or neither. See SE:1 and SE:2, these both suffer from their V-LN being
uncharged, whilst SD:1 and SD:2 show no significant difference regarding their V-LN
or V-RN cell charges. A total of 4 pairs shown to suffer from this phenomenon.
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Table 5.15: Comparison of mirroring cell groups with their horizontal neighbour impact

Mirroring
Victim pairs
Tag group:n

Total
Avrg.

Min. HC

Diff (n-1)
%

V-LN
Charged

%

V-LN
Uncharged

%

V-RN
Charged

%

V-RN
Uncharged

%
SA:1 564468 - 6.34 -6.34 0.07 -0.07
SA:2 460521 -18.42 4.31 -4.31 0.24 -0.24
SB:1 573309 - 0.02 -0.02 3.50 -3.50
SB:2 632380 10.30 -0.03 0.03 2.51 -2.51
SC:1 513554 - -0.16 0.16 -0.03 0.03
SC:2 499928 -2.65 0.14 -0.14 0.15 -0.15
SD:1 473420 - 0.08 -0.08 -0.08 0.08
SD:2 628628 32.78 0.00 0.00 0.00 0.00
SE:1 595047 - 2.69 -2.69 -0.02 0.02
SE:2 560042 -5.88 6.26 -6.26 0.05 -0.5
SF:1 558300 - 0.02 -0.02 6.04 -6.04
SF:2 729926 30.74 0.00 0.00 3.45 -3.45

There is limited evidence of diagonal impact on mirroring cells. Only one cell
was found to be influenced diagonally by the attackers right neighbour A-RN. This is
shown in Figure 5.21. Here the one victim cell SB:1 shows a significant difference in
hammercount by the attacking cell’s right neighbour whilst the other, SA:2 shows no
significant difference.
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Figure 5.21: Victim cell pair SB:n hammercount influenced by diagonal neighbour A-RN

Similar to Section 5.2.2.3 there is less evidence of cells showing diagonal impact on
victim cells compared to horizontal impact. Once again the results show the attacker
cell’s neighbour being charged decreases the resilience of the victim cell though. The
results for cell pair SB are shown in Table 5.16. Here it is shown that only A-RN has
influence on the resilience of the victim cell.

Table 5.16: Comparison of mirroring cell groups with their diagonal neighbour impact

Symmetric
Victim pairs
Tag group:n

Total
Avrg.

Min. HC

Diff (n-1)
%

A-LN
Charged

%

A-LN
Uncharged

%

A-RN
Charged

%

A-RN
Uncharged

%
SB:1 573309 - 0.07 -0.07 -4.47 4.47
SB:2 632380 10.30 0.09 -0.09 -0.09 0.09
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The average hammercount of mirroring cells varies between the pairs. Comparing
the minimal hammercount of the cells within the mirroring pairs shows that there is
significant difference in rowhammer resilience. One cell might be more resilient whilst
its mirroring cell might succumb to a rowhammer attack sooner. These differences
are shown in Table 5.15. There is as little as 2.65% difference in minimal average
hammercount in the cell pair SC, whilst one pair of mirroring cells, SD, shows a difference
of 32.78%.

5.2.3 Experiment set 3) Proposed Protection Method Results

The experiments that evolve around the protection method have been executed and the
results are discussed in this section. To start the impact of the DDR3 commands in the
rowhammer sequence are evaluated. These will act as the baseline when analysing the
impact of the proposed protection method.

5.2.3.1 Impact of read and write commands in rowhammer sequence

Previously in Section 4.2.2.1 the experiment is run with rowhammer sequences com-
posed of an an activate and precharge memory command. In this part the rowhammer
sequence has been extended with read and/or write operations in between the activate
and precharge commands.

The total number of memory clock cycles is shown in Table 5.17 for each type of
rowhammer sequence. Keep in mind that during the one-sided rowhammer attack the
row buffer in memory must be overwritten by performing an activate → precharge on
a dummy row. When calculating the maximum hammercount within the 64 ms refresh
period it is assumed that the same sequence of memory commands is performed on the
dummy row.

The timing delay of a read followed by a precharge is shorter compared to a write
followed by a precharge. This is due to the write command requiring a longer delay
before closing the row.

5.2.3.2 Read and/or write commands affect hammercount

The results show that the rowhammer sequence with the additional memory commands
does impact the hammercount. The average minimal hammercount only includes the
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Table 5.17: The duration of the rowhammer sequences (CK) and the maximum ham-
mercount within the refresh period

Rowhammer
Sequence

Duration in
clock cycles (CK)

Maximum
Hammercount
within 64 ms

(act→ read→ pre) 20 640000
(act→ write→ pre) 21 609523

(act→ read→ write→ pre) 34 376470
(act→ write→ read→ pre) 30 426666

results of charged victim cells and uncharged attacker cells as other combinations yield
no results in the baseline. These cell group patterns are shown in Table 5.18.

Table 5.18: The cell data patterns per True and anti victim/attacker group

Cell type
Victim
pattern

Attacker
pattern

True
0(1)0, 0(1)1,
1(1)0, 1(1)1

0(0)0, 0(0)1,
1(0)0, 1(0)1

Anti
0(0)0, 0(0)1,
1(0)0, 1(0)1

0(1)0, 0(1)1,
1(1)0, 1(1)1

The results are compared to those of the baseline, this being from the the activate→
precharge rowhammer sequences discussed earlier in Section 4.2.2.1. When including
read and/or write commands in the rowhammer sequence the impact on the minimal
hammercount does not seem to change much overall. Some read/write combinations do
impact the minimal hammercount somewhat. Though some cells do show significant
resilience increase or decrease when rowhammering with these combinations. Table 5.19
shows some of these examples. Here it victim cells T:1 and T:4 shows an overall im-
provement when being hammered by combinations including read and/or write. When
these cells are hammered with the sequences including read→ write and write→ read
their average minimal hammercount already exceeds the maximum allowed hammer-
count within the refresh period of 64 ms. This means that they would already be safe.
This however is not the case for the sequences including write or read alone. Two
cells, T:18 and A:13 show resilience decrease for some rowhammer sequences. For T:18
it is especially problematic as the resilience victim cell is particular vulnerable for the
rowhammer sequence including only a read command.
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Table 5.19: Some outlying results

Victim
cell Tag

Baseline
Average
Minimal

Hammercount

Difference
with
Read

Difference
with
Write

Difference
with

Read ->
Write

Difference
with

Write ->
Read

T:1 471739 5.62% 8.07% 4.41% 7.09%
T:4 528707 5.16% 11.08% 7.17% 5.16%
T:18 591110 -10.67% 0.13% -1.94% -0.55%
A:13 628429 -1.07% -0.80% -6.53% -10.62%

As mentioned earlier including the read and/or write commands increases the sequence
execution time and decreases the maximum hammercount allowed within the refresh
period. The set of victim cells that are hammerable within the refresh period has dropped
significantly for the two longest rowhammer sequences. A total of 40 victim cells have
been tested successfully. Following the experiment, 38 victim cells are hammerable using
the act→ read→ pre rowhammer sequence, 26 are hammerable by a act→ write→ pre
sequence, 6 are hammerable by a act → write → read → pre sequence and 4 are
hammerable by a act→ read→ write→ pre sequence.

5.2.3.3 Proposed Protection Method Results

The results regarding the rowhammer sequences without and with the proposed pro-
tection are compared. The attacking cell group is flipped throughout the rowhammer
sequence. A read command alone cannot flip the attacker cell group content and thus
cannot be tested. The 40 cells have been evaluated with the flipping method put into
practice. In many cases no minimal hammercount can be measured when introducing
the protection method. Meaning that the hammercount has been increased to a value
outside of the maximum bound of the binary search. The results for the victim cells
that are on the lower side of the resilience spectrum are shown in Table 5.20. Flipping
during the various rowhammer sequences influences the resilience of the victim cell dif-
ferently. In some cases the protection method eliminates the potential to flip the victim
cell entirely and for other cases it decreases the resilience.

The protection method is considered a success if the victim hammercount is increased
to a value above the maximum allowed hammercount that each sequence can perform.
As seen in Table 5.21 the act → write → pre rowhammer sequence causes 26 victim
cells to fail without the protection method, whilst only 9 successful failures occur when
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Table 5.20: Impact of protection method per rowhammer sequence

Victim
cell Tag

Avrg.
min
HC
write

Diff
write*

Avrg.
min
HC

read->write

Diff
read->write*

Avrg.
min
HC

write->read

Diff
write*->read

T:1 471739 - 492540 -6.79% 505179 -
T:9 386250 16.81% 361906 -9.76% 357012 44.56%
T:14 346695 17.81% 340453 0.02% 342125 42.30%
A:4 380977 3.25% 381242 - 381836 49.57%
A:5 582582 3.25% 549196 - 533544 22.16%

the protection method is put to use. The other two rowhammer sequences already have
a lower potential to cause failures in the victim cells within the refresh period. The pro-
tection method eliminates all victim cell failures during a act→ write→ read→ pre.

Table 5.21: Vulnerable victim cells without and with protection method

Hammer
Sequence

Max
HC

ref. per.
(64 ms)

Non-protection
failures

Protection
failures

Improvement
rate

(act→ read→ pre) 640000 38 - -
(act→ write→ pre) 609523 26 9 65.38%

(act→ read→ write→ pre) 376470 4 2 50.00%
(act→ write→ read→ pre) 426666 6 0 100%

All victim cells that are protected by the flipper protection method during an act→
write → pre rowhammer sequence are protected during the other two rowhammer se-
quences. The potential maximal hammercount of this sequence is highest compared
to the other two. However maximal potential hammercount together with the pro-
tection method does not indicate success as two victim cells have been found to fail
during the rowhammer attack with act→ read→ write→ pre while not failing during
act→ read→ write→ pre. These cells are T:9 and T:14.
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5.2.3.4 Victim cell flip under initially non-threatening circumstances

The ideal situation has been discussed previously. Here the victim/attacker cell combi-
nations have been selected (charged victim, uncharged attacker) to measure the impact
of the protection method compared to the baseline. However the protection method
does have an unwanted side effect. The baseline results show practically no bit flips
when the victim cell is charged and the attacker cell is uncharged. However the pro-
tection method results do show otherwise. The attacker cell initially may be charged
before rowhammer, however when the protection method is put into use the attacker
cell will also transition to, and, from an uncharged state throughout the rowhammer
attack. Figure 5.22 shows that the victim bit is flipped under initially non-threatening
circumstances. In Figure 5.22a the expected results are shown where a victim cell is
hammered by an act → write → pre sequence. Introducing the protection method
causes the victim cell to fail for all attacker cell data patterns as seen in Figure 5.22b.

This negative side effect has impacted at least 9 victim cells during an act→ write→
pre sequence and 2 during an act→ read→ write→ pre sequence. Meaning that these
cells could not be protected due to this negative side effect.
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(a) (act→ write→ pre) With no protection

(b) (act→ write→ pre) With flip protection

Figure 5.22: True- victim cell vulnerability without and with protection in place
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Discussion

In this chapter the results following the experiments are discussed. Comparisons to
literature are be made, new findings are discussed, an overview of victim cell influences
is shown and the Row Flipper protection method is compared to state of the art.

6.1 Comparison and Verification

To start off, the DDR3 module that is used during experimentation is limited to one-
sided rowhammer attacks. Because an attacking row only influences one single victim
row during a rowhammer attack. This differs to what the literature describes where a
one-sided rowhammer attack has the potential to inflict bit errors in two neighbouring
victim rows. Figure 6.1 shows an open memory array architecture. This architecture
has pairs of cells sharing the same potential, Vcc/2. This inhibits unwanted interaction
between the row pairs that share the same potential, meaning WL0 and WL1 could
disturb one another during rowhammer (as for WL2 and WL3 disturbing each other).
Understanding this, it is highly likely that the DDR3 test subject has this array struc-
ture implemented within its memory banks.
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Figure 6.1: Open memory array structure

The existence of both true- and anti-cells have been found in the DDR3 module.
These have been found using specific data patterns. There is no significant difference
in bit error rate for the two types of cells after a 300 second retention test. However,
there is a significant difference in bit error rate during rowhammer with solid patterns
compared to rowstripe data patterns. When rowhammering with the solid data patterns
the overall bit error rate is very low compared to the rowstripe data patterns. However,
comparing the cell types during rowhammer with a solid data pattern shows that the
anti-cells have an in increased bit error rate compared to the true-cells. Contrary when
rowhammering with rowstripe data patterns the true-cells show to have a higher bit
error rate compared to the anti-cells.

This is similar to findings in literature where victim cells only fail when they are
initially charged, this is the case for retention time and rowhammer. It is considered
possible to flip victim cells with charged attacker cells though, this is much less prevalent
compared to rowhammer with uncharged attacker cells. Consider the trap-based failure
mechanism that is described to accelerate capacitor discharge in the victim cell caused
by traveling electrons. These electrons have become trapped in the attackers transistor
during the closing of the attacker row and manage to escape to the victim cell. Since
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rowhammer induces a higher bit error rate when the attacker cells are discharged one,
could hypothesise that the direction in which these electrons flow through the transistor
is essential to the effect caused by this failure mechanism. Figure 6.2 shows the direc-
tion of the electrons travel depending on cell charge during activate and precharge. In
Figure 6.2a electrons travel from the bitline to the cell during activation, and in the
opposite direction when precharged.

(a) Electron travel when cell
initially charged

(b) Electron travel when cell
initially uncharged

Figure 6.2: Electron travel to and from bitline depending on cell charge and command.

Wordline-to-wordline cross talk is another failure mechanism that causes bit errors
to occur in victim rows during rowhammer. Under the assumption that the capacitive
coupling is stronger the further away the wordline reaches from the wordline driver it
would be expected that bit errors occur in cells furthest away from these components.
To fully verify this the exact memory array size and structure must be discovered.

6.2 New Findings

Experiment set 2 was conducted with the aim to investigate the impact of data patterns
on a cell level basis. The hammering of victim cells is performed including the victim
cell’s horizontal neighbours as well as, the attacker cell’s horizontal neighbours. The
victim cells resilience is measured by its minimal hammercount.

Results have shown that 19 of the 55 (Table A.1,Table A.2 and Table B.1 all included)
total tested victim cells not only suffer from vertical impact (attacker cell to victim cell),
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but are also significantly influenced by their adjacent neighbours in the same row. This
is seen as horizontal impact. The results show that 35.5% of the victim cells suffer due
to one of their uncharged neighbours. This is interesting considering that these cells do
not play an active role during rowhammer.

Diagonal impact on the victim cell coming from adjacent attacker cells also seems to
exist. However in a lesser form. Only 3 of the 55 (5.5%) victim cells have shown to
suffer from this phenomenon. The 3 cases have shown that a charged cell in the attacker
row, neighbouring the actual uncharged attacker has a negative impact on victim cell’s
resilience.

Pairs of cells that show vertical impact on one another have been tested in a similar
setting as discussed earlier. It was discovered that these cells mirror each other when it
comes to horizontal impact, meaning that they both suffer significantly or not at all. A
total of 4 pairs of the 6 showed to have this phenomenon. Since this is shown to happen
within pairs, it indicates that there is some kind of coupling between their bitlines.
Meaning that when the victim cell and adjoining uncharged cell are simultaneously
activated the voltage of the victim bitline decreases. Figure 6.3 shows the situation
where the bitlines are coupled. Consider Cv to be charged and Cv-rn to be uncharged
(as in the results). When WL is activated charge will flow from Cv to BLv and from
BLv-rn to Cv-rn. After rowhammer Cv already has a lower charge and struggles to stay
above the threshold voltage required by the sense amplifiers, due to the coupling effect
between the bitlines the voltage on BLv will be pulled down by BLv-rn, thus decreasing
the voltage of BLv below the threshold voltage.
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Figure 6.3: Potential vulnerability increase due to bitline coupling

The existence of these secondary effects need to be investigated with a larger test
group and a higher number of iterations to give it statistical value. The findings in this
thesis merely indicate the existence of these effects. In order to investigate the potential
of bitline coupling one should perform the provided experiments on multiple victim cells
within the same column.

6.3 Overview of Unwanted Influence on Victim Cell

An overview showing a number of unwanted influences on the victim cell is provided in
Figure 6.4, these could potentially impact the resilience of the victim cell to rowhammer.
The victim and attacker cell are marked separately. The image shows Bitline coupling
between neighbouring bitlines, causing the horizontal neighbours to pull down the bit-
line voltage. Electron De-trapping from the attacker transistor causes the victim cell to
lose charge during rowhammer. Crosstalk between the wordlines is shown, this causes
the transistors to open slightly accelerating discharge of the victim capacitor during
rowhammer. The victim cell suffers from Capacitor leakage and Transistor leakage. Fi-
nally Diagonal Cell Charge Impact is somewhat ambiguous, though has been discovered
during experimentation.
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Figure 6.4: An overview of the influence on the victim cell

6.4 Proposed Protection Method & State of the Art

The proposed Row Flipper protection method has been tested by means of executing
DDR3 commands. The write command is the actual command used to flip the attacker
cell content.

First, the hammer sequence determines maximal potential hammercount within the
refresh period. Certain rowhammer sequences require more clock cycles to execute and
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thus are limited to a lower maximal hammercount within the DRAM refresh period.
However, there are some cells that suffer regardless. The order of the write and read
command also seem to influence the resilience.

The Row Flipper protection method shows potential. Many cells with varying re-
silience have shown to be fully protected by the protection method. Of the 26 vic-
tim cells that are vulnerable to an activate → write → precharge rowhammer se-
quence 9 remain vulnerable when the protection method is used. When perform-
ing an act → read → write → pre the failure count drops from 4 to 2. Finally,
act → write → read → pre shows that all 6 cells no longer fail when the protection
method is used. All cells that where protected by the protection method during an
act → write → pre rowhammered sequence showed no failures when being hammered
by the other sequence. The results also suggest that performing a read as the last
command in a rowhammer sequence, while using the protection method gives the best
protection coverage. Understanding this, one should consider inserting a read operation
before a precharge for all other sequences in combination with the protection method
for the best coverage.

The Row Flipper protection method does come with a negative side effect. When in
use, it could potentially flip a victim cell under initially non-threatening circumstances.
Rowhammer is significantly less successful when the attacker cell is charged. However
due to the continuous flipping of data content the attacker cell will be discharged half
of the time during a rowhammer attack.

As a reminder the protection PARA [9], PRoHIT [10] and MRLoc [11] operate on a
probabilistic basis, whilst methods ideal-refresh-rate [6], CBT [12], TWiCe [13], Graphene
[14], ARMOR [15] and BlockHammer [16] actively detect the attacking row. These pro-
tection methods protect the victim row by refreshing it under certain conditions (prob-
abilistic or due to access patterns). The proposed Row Flipper protection method only
concerns itself with the attacking row. This is more beneficial in terms of overhead and
a plus side is that it can be implemented into DRAM chips.

With the understanding that newer DRAM technology is increasingly vulnerable to
rowhammer one should consider using the proposed Row Flipper protection together
with other protection methods. Using the protection method with those mentioned
above would allow for lower victim row refresh rates. Another option is to decrease
the refresh period in combination with the Row Flipper protection method. The Row
Flipper method increases the minimal hammercount of a victim cell, whilst increasing
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the refresh rate decreases the maximal allowed hammercount within the refresh period.
The closer the minimal and maximal values are, the better the protection coverage.
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Chapter 7

Conclusion

This is the concluding chapter of the thesis providing a short summary of the previous
chapter, a conclusion in and recommendations in for additional work in the future.

7.1 Summary

Chapter 1, the introduction, provides the motivation to investigate the subject of this
thesis. Modern DRAM technology is becoming increasingly vulnerable to rowhammer,
and existing protection methods are unable to keep pace with this trend. The section
State of the art discusses these protection methods. There are mainly 3 types of pro-
tection method, probabilistic, counter-based and prevention. The contributions of this
research are to propose the Row Flipper protection method, to investigate the effects
on the cells during rowhammer and to provide the basic results of the protection method.

Chapter 2, provides the basic background information needed to read this thesis and
covers the basics of DRAM and rowhammer alongside with topics such as failure mech-
anisms and data patterns.

In chapter 3 the Row Flipper protection method is proposed. The general idea is
presented and the expected results are discussed regarding the effects of the protection
method during rowhammer. In addition some recommendations to implement this pro-
tection method are provided.

Chapter 4 covers the methodology and design and the methods used throughout the
research are discussed. The list of experiments that are executed are discussed in a more
abstract sense, and the design for the experimental infrastructure is shown.
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Chapter 5 discusses the actual implementation of the experimental infrastructure and
experimental results. An FPGA development board with DDR3 modules is used to
execute the experiments and additional components are developed in order to execute
precise memory commands on the DDR3 module. The PC sends the experiment instruc-
tions and receives memory data from the FPGA. The results following the experiments
provide a characterization of the DDR3 module and show only a one-sided rohwammer
attack has effect. The cell level experiments shows the existence of horizontal and
diagonal interference aside from the expected vertical impact during rowhammer. The
propose protection method experiment results show that there is an increase in resilience
to rowhammer for most cells, with some suffering regardless.

Chapter 6 provides the results which are compared to, and verified with the findings
in literature. Some new findings have been made following the results provided by the
cell level experiments. The proposed Row Flipper protection method is compared to
state of the art and a possible combination is also discussed.

7.2 Conclusion

In this thesis the impact of rowhammer has been researched to properly understand the
impact of the Row Flipper protection method. Results have shown that victim cells
need to be initially charged in order for a rowhammer attack to be successful. Fur-
thermore, it is shown that attacking cells initially charged have a lesser impact on the
vulnerability of the victim cells and that uncharged attacker cells cause a significant
higher bit error rate during rowhammer. Specific victim cells have been analysed during
rowhammer and it was found that in a number of cases one of the uncharged horizon-
tal neighbouring cells caused a negative impact on the victim cell during rowhammer.
It was also shown that opposing vulnerable cells mirror this effect. Pairs of cells have
shown that both are impacted by their horizontal neighbours during rowhammer. Sig-
nificant diagonal impact between the attacking cell’s adjoining neighbour and the victim
cell is also present, though to a much lesser degree, and was not mirrored in the cell pairs.

The proposed Row Flipper protection method has been tested by flipping the data
in the attacker cell by using the write command. Increasing the rowhammer sequence
length, by adding read and/or write commands, shows that the potential to successfully
flip a victim cell drops even without applying the protection method. Applying the
protection method shows a success rate of 50% for the act → read → write → pre
hammer sequence, 65.38% success rate for the act→ write→ pre sequence and a 100%
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success rate for the act→ write→ read→ pre sequence. Adding a read command after
the write helps the Row Flipper protection method to increase its overall success rate.
The protection method does however come with a negative side effect in that it aids the
attacker cell under initially non-threatening circumstances.

In conclusion, the Row Flipper protection method has the potential to help current and
future DRAM technology protect itself against rowhammer. The strength of the Row
Flipper protection method is that it can be combined with other protection methods, and
adds minimal overhead when implemented on the DRAM chip. Both are key reasons
that applying the Row Flipper protection method should be investigated further on
newer DRAM devices.

7.3 Future Work

The results presented in this thesis have raised some points for future work as follows:

• Row Flipper Protection Method
The protection method has been proposed and some results show the impact it has
on rowhammer. However, the experiments have been limited to DDR3 memory
and a relatively small set of victim cells. Further work will be required to fully
understand the impact of this method on newer DRAM devices and in combination
with other protection methods.

• Horizontal cell impact
Results have shown the impact of uncharged cells adjacent to the victim cell within
the same row. Evidence of bitline coupling should be researched by experimenta-
tion on multiple victim cells within the same column.

• Diagonal cell impact
Evidence suggests that there is diagonal cell impact on the victim cell. It is shown
that charged adjacent cells next to the attacker cell have a diagonal impact on the
vulnerability of the victim cell. This should be investigated further.
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Selected cells for experiment set 2 and
3
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Table A.1: Vulnerable true victim cells selected for experimentation

True-cell
Tag

Victim location
(row,column)

Attacker location
(row,column)

T:0 (30546,167) (30547,167)
T:1 (30546,267) (30547,267)
T:2 (30546,448) (30547,448)
T:3 (30546,486) (30547,486)
T:4 (30546,556) (30547,556)
T:5 (30546,572) (30547,572)
T:6 (30546,615) (30547,615)
T:7 (30546,652) (30547,652)
T:8 (30546,892) (30547,892)
T:9 (30546,1012) (30547,1012)
T:10 (30546,1122) (30547,1122)
T:11 (30546,1227) (30547,1227)
T:12 (30546,1541) (30547,1541)
T:13 (16966,1233) (16967,1233)
T:14 (16966,1234) (16967,1234)
T:15 (16966,1238) (16967,1238)
T:16 (16966,1687) (16967,1687)
T:17 (16966,1994) (16967,1994)
T:18 (15503,428) (15502,428)
T:19 (15503,832) (15502,832)
T:20 (15503,1436) (15502,1436)
T:21 (15503,1664) (15502,1664)
T:22 (15503,1667) (15502,1667)
T:23 (15503,1670) (15502,1670)
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Table A.2: Vulnerable anti victim cells selected for experimentation

Anti-cell
Tag

Victim location
(row,column)

Attacker location
(row,column)

A:0 (26939,152) (26938,152)
A:1 (26939,170) (26938,170)
A:2 (26939,172) (26938,172)
A:3 (26939,175) (26938,175)
A:4 (26939,707) (26938,707)
A:5 (13655,2026) (13654,2026)
A:6 (13655,2028) (13654,2028)
A:7 (13655,2029) (13654,2029)
A:8 (13069,23) (13068,23)
A:9 (13069,194) (13068,194)
A:10 (13069,260) (13068,260)
A:11 (13069,760) (13068,760)
A:12 (13069,1106) (13068,1106)
A:13 (13069,1299) (13068,1299)
A:14 (13069,1324) (13068,1324)
A:15 (13069,1409) (13068,1409)
A:16 (13069,1724) (13068,1724)
A:17 (13069,1990) (13068,1990)
A:18 (13069,2003) (13068,2003)
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Selected symmetrical victim and
attacker cells

Table B.1: Selected symmetrical cells

Symmetrical
Cell

Tag (group:number)

Victim location
(row,column)

Attacker location
(row,column)

SA:1 (1924,1170) (1925,1170)
SA:2 (1925,1170) (1924,1170)
SB:1 (7074,685) (7075,685)
SB:2 (7075,685) (7074,685)
SC:1 (9774,1860) (9775,1860)
SC:2 (9775,1860) (9774,1860)
SD:1 (11096,1168) (11097,1168)
SD:2 (11097,1168) (11096,1168)
SE:1 (12896,202) (12897,202)
SE:2 (12897,202) (12896,202)
SF:1 (14068,1989) (14069,1989)
SF:2 (14069,1989) (14068,1989)
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