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1
Executive Summary

The air cargo industry is a challenging environment due to the high competition between the stakeholders
involved. This demands, as example, high efficiency from cargo airlines. Efficiency can be ensured by design-
ing loading strategies that fully exploit the available cargo volume. Unknowns in the booking dimensions and
flight information make this task challenging. This thesis proposes a framework that can improve cargo air-
lines’ decision-making when assessing whether a new booking is received. The model described in the thesis
forecasts unknowns of both the bookings and the flights and combines this information with a bin packing
heuristic. It is assessed whether the incoming booking should be accepted or not, and a risk associated with
the acceptance of the booking is also computed. The research questions (RQs) are defined as follows:

1. How to forecast the unknown characteristics of both the bookings and the flights (RQ1)?

(a) What are the length, width and height of cargo?

(b) What is the amount of must-fly cargo per flight?

(c) What is the volume loss per booking origin?

(d) What is the accuracy of the flight details?

2. How to palletise the ULDs for a future flight (RQ2)?

3. What is the risk of accepting a booking (RQ3)?

The bin packing problem (BPP) is researched extensively in different forms. However, to the best of our
knowledge, the combination with forecasting unknown characteristics of both the flight and the bookings
has not been investigated yet. This makes the research both innovative and feasible.

RQ1 defines the different forecasts. For these forecasts a random forest (RF) model is used. This is an
ensemble learning method used for both classification and regression. A classification outputs class labels
while a regression outputs continuous variables. Features are used as input. The dataset is divided in both a
training and testing set. Using a training set, generally based on historical data, decision trees are built, each
characterized by different parameters and a different quality of the solution. Decision trees all concur to the
computation of the final solution (i.e., weights of the different input features). The solution is then used to
evaluate the quality of the model using the testing set. Results applied to the historical dataset used in the
thesis are shown in Table 1.1.

Table 1.1: Final parameters for the random forest model.

Parameter: Value:
Test Size: 0.25

Number Decision Trees: 100
Quality Criterion: MSE

Random State: 42

Table 1.2: Results for the different forecasts.

Model: Error: Accuracy:
Dimensions: 9.89 cm 84.29 %

Must-Fly Cargo: 11.02 m3 83.30 %
Flight Details: 4.59 % 94.70 %

1
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Figure 1.1: An ULD with four loaded pieces.

An efficient loading strategy needs information on dimensions for every piece. This information is gener-
ally not available 24 hours before departure. This issue motivates the need for a forecasting model that esti-
mates dimensions of pieces. The RF model with the parameters as in Table 1.2 is applied to five months of hi-
storical data. Using the features AgentURN, BookingDestination, BookingOrigin, CommodityCode, PieceVol-
ume and ProductCode the dimensions are forecasted with an error of 9.89 cm per and an accuracy of 84.29
% per dimension. The most important feature is the BookingOrigin. This can be exlained by the fact that
the same commodities are generally transported from the same origin and they are generally packed in the
boxes with the same dimensions. Therefore it is advised to determine the accuracy per BookingOrigin and
use the inaccuracy (1 - accuracy) as volume loss. Volume loss is used by airlines to increase the volume of
a booking, this is done to make sure the booking will fit in the aircraft. The volume loss ranges between 7
and 30 %. Using the test dataset to compare predicted and actual dimensions, it was found that errors (per
booking origin) are, within a reasonable approximation margin, normally distributed. Therefore, the mean
and standard deviation (StD) per booking origin was determined. This information can be used to provide an
estimation of the risk (per ULD) that the actual shipment configuration, with the predicted dimensions, will
not be implementable. This is caused by the mismatch between predicted and actual shipment dimensions.

The RF model with the parameters in Table 1.1 is also used to forecast specifications of the flight. First the
amount of must-fly cargo that arrives before a flight is forecasted. It is usefull to forecast this, to determine
if there is still enough space in the ULDs when accepting a new non-must-fly booking. Must-fly cargo is the
cargo that may not be offloaded. Using a year of history data and features AircaftSubType, Arrival, Capaci-
tyVolume, CapacityWeight, FlightNumber and WeekDay leads to the results in Table 1.2. Second, the accuracy
of the flights capacity forecast is forecasted. Since most cargo is transported in passenger planes, passenger’s
bags has priority. This limits the capacity for cargo, however the cargo capacity is unknown until the moment
of departure. Therefore a cargo capacity forecast is performed by the airline but the accuracy of this forecast
is unknown. This accuracy can help the airline decide to accept more or less cargo than forecasted. Using
a year of history data and features AircraftSubType, Arrival, CapacityVolume, CapacityWeight, DayBeforeDe-
parture, FlightNumber, Month and Weekday leads to the results in Table 1.2. This concludes the forecasting
part.

The bin packing problem is tackled in three steps. First a variation of the one-dimensional bin packing
problem (1DBPP) is applied since it is the simplest BPP, second the two-dimensional bin packing problem
(2DBPP) is investigated since an extra dimension is added which comes closer to reality compared to the
1DBPP and last different heuristics are tested since the 2DBPP turned out to be computationally demand-
ing. The 1DBPP assigns pieces to ULDs considering the volume of both the pieces and the ULDs. Differently
than a classic 1DBPP, dimensions of packages are preliminary checked to make sure they can fit in the as-
signed container. Furthermore, perishables and radioactive pieces are prevented from being loaded in the
same ULD, which is a requirement of the air cargo industry. In addition, if a shipment is a car, no other ship-
ment can be assigned to the same ULD. This preliminary step leads to good load factors with a very short
computational time. The 2DBPP builds further on the basis of the 1DBPP. Differently than in the 1DBPP, di-
mensions (length and height) of all pieces are simultaneously considered to make sure geometric constraints
are satisfied. The 2DBPP routine stacks pieces on top of each other, it makes sure that all vertical vertices are
supported when the piece is not on the ground and It prevents overlap of the pieces. ULDs are not necessarily



3

rectangular shaped. One or more corners are cut to follow the shape of the aircraft fuselage. These cuts are
considered as well. Furthermore both vertical vertices of a piece are supported by either the ground floor,
a cut or another piece. The 2DBPP turned out to be computationally very demanding, which would hinder
the possibility to use such approach for real-time or quasi real-time application. Therefore three heuristics
are investigated. The first heuristic, called 1D2D, tries to speed up the 2DBPP by assigning each piece to
an ULD first, using the 1DBPP. Next, for every ULD a 2DBPP is solved with the pieces assigned to it by the
1DBPP. This leads to a consistent decrease in computational time. However a lot of volume is lost because
only two dimensions are considered. The second heuristic is called Layers and adds the third dimension to
the 2DBPP. The heuristic starts with the first ULD and all pieces. It solves the 2DBPP for this ULD. Some pieces
are loaded into this ULD and others are offloaded. When at least one of the offloaded pieces fits behind the
loaded pieces, the ULD is split along the dimension initially neglected by the 2DBPP into two layers. The first
layer width equals the maximum width of all the loaded pieces while the width of the other layer equals the
spare width. The 2DBPP is solved for the second layer considering its width and the offloaded pieces. This
process continues until all pieces are loaded or until none of the offloaded pieces fit in the remaining space of
the ULD. When this last case happens, the routine moves on to the second ULD and repeats this process for
this ULD. This will be repeated for all ULDs, one by one, until no ULDs or pieces are left. This leads to signif-
icant better load factors, however the computational time still remains an issue. Therefore it was decided to
combine both the 1D2D heuristic and the Layers heuristic. This heuristic is called 1D2D Layers. This results
in good load factors, while keeping the computational time within reasonable bounds.

The final model is called BRUNO, which stands for Better Revenue Using New Optimiser. In the first step,
the data is both loaded and cleaned. The first model that is added to BRUNO is the dimension forecast. The
model is loaded, and the unknown dimensions are predicted. Some bookings are characterised by a high
number of pieces and can be bundeld together. For example, ten boxes of salmon with the same dimensions.
Since every piece would be treated separately in the heuristic, this may increase the problem size signifi-
cantly. To prevent this, one (or more) bigger piece are created out of all these smaller pieces, considering
the ULD dimensions. This significantly reduces the model size, while being consistent with operations. This
concludes the adaptations to the booking part of the data. Next some adaptation to the flight part of the data
are performed. For every flight, the amount of must-fly cargo is forecasted. This forecast outputs a volume in
m3 that is subtracted from the overall available cargo volume. Next, the remaining must-fly volume (must-fly
volume forecast minus the must-fly volume from previous bookings), as well as the volume of the bookings
are substracted from the capacity. When a positive capacity remains, the heuristic continues. This concludes
the data-processing step. A slightly modified version of the heuristic 1D2D Layers is used. The basis of the
heuristic is the same, however when there are no more pre-assigned (by the 1DBPP) pieces to load in the
current ULD in the 2DBPP, but there is some space left in the ULD, the heuristic tries to load in the available
space the pieces which are offloaded by the 2DBPP (if any) in the previous ULDs. Furthermore, in some cases
it might happen that pieces are offloaded, but there are still empty ULDs. In this case the 2DBPP is solved
again with the empty ULDs and offloaded pieces only.

BRUNO is run three times with different costs functions. First the shipment contribution (SCb) is max-
imised, next the volume is maximised and last the commercial priority (CP) is minimised. As expected, the
best load factor is achieved when maximising the volume. When the total pieces volume consumes less than
50 % of the flight capacity, the solution does not change much in terms of load factor.

A case-study is performed for a Boeing 747-400 flight with three CTRs and four LDPs. 44 bookings arrived
during the booking period for this flight. Every time a booking arrives, BRUNO is run again. BRUNO accepts
the booking if the new booking and the previous accepted bookings are loaded. In the end BRUNO accepted
21.24 m3 while the airline accepted 28.52 m3. This is a difference of 7.28 m3. A few recommendations remain
to fix the gap between BRUNO and the airline. First of all, it is advised to make a better division between the
pieces and the ULDs types. Second it is advised to fill up gaps in the ULDs after the 1D2D Layers heuristic is
solved.



2
Introduction

The air cargo industry is a challenging environment due to the high competition between the stakeholders
involved. This demands, as example, high efficiency from cargo airlines. Efficiency can be ensured by de-
signing loading strategies that fully exploit the available cargo volume. Unknowns in the booking dimensions
and flight information make this task challenging. For every flight one knows the ULD configuration, but
this changes almost every day. Furthermore, each flight has an unknown percentage of must-fly cargo, cargo
that may not be offloaded, and an unknown volume loss, which is the unused space in an ULD. An opti-
misation and forecasting framework is proposed for ULD packing. Goal of the framework is to assist flight
analysts with their decision-making, when assessing whether a new booking should be accepted or declined.
Unknown booking dimensions and flight details are forecasted using an ensemble learning method. This
information is used as input for a bin packing heuristic, which assesses if the booking fits in the aircraft. In
addition, we propose a risk index that quantifies what are the chances the proposed loading configuration
(per ULD) is not feasible due to a mismatch between predicted and real booking dimensions. This leads to
the research question as defined below:

1. How to forecast the unknown characteristics of both the bookings and the flights (RQ1)?

(a) What are the length, width and height of cargo?

(b) What is the amount of must-fly cargo per flight?

(c) What is the volume loss per booking origin?

(d) What is the accuracy of the flight details?

2. How to palletise the ULDs for a future flight (RQ2)?

3. What is the risk of accepting a booking (RQ3)?

A visual overview of the research question can be found in Figure 2.1. The innovation in this research lies
in the combination of (i) forecasting the unknown characteristics of both the pieces and flight and (ii) the
definition of a palletisation strategy for the ULDs.

This Master’s thesis is part of a case study for Air France KLM Martinair Cargo (AFKLMP) in collaboration
with TU Delft, where AFKLMP delivers the data and TU Delft comes up with the model. Although results
shown are based on datasets provided by AFKLMP, the methodology can be applied by any airline.

AFKLMP is the specialised air cargo business of the Air France KLM group. It offers a worldwide network
with 457 destinations. The network is organised around their two main hubs, Amsterdam Airport Schiphol
(AMS) and Paris Charles de Gaulle (CDG). The freight is transported on long-haul flights internationally, and
on trucks within Europe. Almost all the freight goes via one of the hubs to its destination, in a classic hub-
and-spoke system.

Air cargo can be transported in three types of aircraft. The three types are passenger aircraft, freighters and
combis. Each type has its own advantages and disadvantages. Passenger aircraft have the advantage of the
passenger network in terms of destinations and frequencies. However, the passenger baggage always has pri-
ority. This limits the capacity for freight and makes the available capacity for the cargo uncertain. Freighters

4
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Figure 2.1: A visual overview of the research questions.

Table 2.1: The three types of AFKLMP aircraft used to transport freight and their types of pallets.

MDP: LDP: CTR:
Passenger Aircraft [−]: X X

Freighters [−]: X X X
Combis [−]: X X X

Volume [m3]: 18 10 4
Length [cm]: 318 318 196
Width [cm]: 224 224 147

Height [cm]: 300 160 157

have the advantage of having a very large capacity, since they are fully dedicated to air cargo transportation.
Furthermore, their schedule can be adapted to the customers and some goods may only be transported in
freighter aircraft. Combi aircraft are, as the name suggests, a combination of a freighter and a passenger air-
craft, so they share both the advantages and disadvantages of the two categories. AFKLMP is the only airline
to operate combi aircraft, since these aircraft are old, they will phase out in the near future.

The containers and pallets to load both luggage and freight are called ULD’s. These allow a large quantity
of cargo to be bundled into a single unit. This saves ground crew time and effort since fewer units needs to
be loaded. A container (CTR) is a closed box (not necessarily square/rectangular shaped) and a pallet is just
a plate. The pallets can be divided into two groups, the main deck pallets (MDP) and the lower deck pallets
(LDP). These two differ in the maximum height that is allowed. The maximum height is larger for MDPs than
for LDPs. Next to the pallets there are CTRs for both the lower deck and main deck. The ULD types that fits in
each aircraft type and the properties of each ULD type can be found in Table 2.1.

The rest of the thesis is organized as follows. Chapter 3 provides a brief literature review addressing (i) the
random forest method, which is used to tackle RQ1, and (ii) the bin packing problem framework, which is the
starting point to tackle RQ2. RQ1 is described thoroughly in Chapter 4, together with RQ3 which is based on
the outcome of the forecasting process. Chapter 5 describes the different models that could be used to tackle
RQ2. Chapter 6 describes how the forecasting and bin packing blocks are coupled in the final model that is the
core of the thesis. The final model is validated in Chapter 7. In Chapter 8, conclusions and recommendations
are discussed.



3
Literature Review

This Chapter provides a brief literature review that encompasses the two main research topics covered in the
thesis, i.e., (i) forecasting methods and (ii) the multi-dimensional bin packing problem. A more elaborate
literature study can be found in [12]. First, Section 1 discusses forecasting methods and Section 2 discusses
the bin packing problem.

1. Forecasting
This Section discusses different methods to analyse data as well as different forecasting methods. To be able
to forecast properties of flights and bookings a large dataset with history data is available. A dataset can be
summarised both graphically and numerically. This is discussed first. Next to summarising data, it can be
used for forecasting. Which is discussed second. These methods can be used to forecast parameters for both
flights and bookings.

Summarising a dataset graphically can be obtained by both a histogram and a scatterplot [4]. A histogram
divides the data in intervals (bins) and the area represents the fraction of the data. One should take care
while choosing the bin size, since a different bin size results in histograms that visually look very different.
When the bin size is too large, information is lost, while a too small bin size will make the plot difficult to
interpret. The other graphical representation is a scatterplot. A scatter plot is useful for a bivariate dataset
and plots each point with a different variable at both axes. From this, a relationship between two variables
can be extracted. To statistically represent the data the sample mean, sample median, sample variance and
the median of absolute deviations might be determined. The sample mean and sample median are measures
for the center location of the data. To measure the spread within the dataset, the sample variance and mean
absolute deviation (MAD) may be used. A combination of graphically and numerically representing the data
is a boxplot. The boxplot visually represents the minimum and maximum, the upper and lower quartile (25
% and 75 % empirical percentile) and the median. This gives a clear overview of the spread in the dataset.
These methods can be used in a first analysis of the forecasting part.

Next to summarising data, data can be used for forecasting. Forecasting can be performed using a least
squares method or using machine learning methods. The least squares method is a linear regression model
for slope α and intercept β [11]. These can be obtained by minimising the sum of the squared distance be-
tween the real value and the regression. Machine learning methods are more advanced methods and might
lead to better results. Examples of machine learning methods are artificial neural networks (ANN) and ran-
dom forests (RF) [17]. ANNs are based on the neural networks within a human brain, where action is taken by
processing input stimuli and forwarding the processed information until action is triggered. ANNs contain
neurons, and each neuron contains a local computation or function. The activation function determines the
output of the neuron and fires when a certain threshold is reached. The information is not stored at a partic-
ular location, but it is distributed over the complete network. This makes ANN, at least partially, a black box,
where all internal processes and decisions are not easy to track. However, the sensitivity of the model can
be tested. A RF builds multiple decision trees and merges them together to get a more accurate and stable
prediction. It can be used for both classification and regression. While growing the trees, the RF adds addi-
tional randomness to the model. It does not search for the most important feature, but it searches for the best
feature in a random subset of features. This results in a wide diversity, which leads to a better model and a

6
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better forecast.

2. Bin Packing Problem
This Section discusses the bin packing problem (BPP). Although BPPs can be studied for a generic number
n of dimensions, in practical problems only the one-, two- and three-dimensional BPPs are investigated. In
these three cases, objects to be stored and bins are, respectively, one-, two-, three-dimensional. The one-
dimensional bin packing problem (1DBPP) is also called the Knapsack problem (KP). A lot of research has
been performed on the 1DBPP. In practical problems, the single dimension is generally volume or weight.
Problems with a single knapsack [1, 3] or with multiple knapsacks [7, 14, 18, 21] are solved. Focusing on the
specific problem we want to tackle, since one aircraft contains more than one ULD (knapsack), the multiple
KP is more suitable to the research question. In addition, some models use stochastic values [1, 18, 21] while
others [3, 7, 14] use deterministic values. Differently from [1, 3, 7, 18, 21], [14] uses a particle swarm optimi-
sation to solve the KP. The KP can be solved in our context to obtain preliminary insights regarding how to
palletise shipments. As example, it can be used to make sure the shipments assigned to each ULD do not
exceed, overall, the available volume of the ULD. Switching to an approach with more dimensions, e.g., the
two-dimensional bin packing problem (2DBPP), can provide results closer to reality because the geometry of
shipments can be better represented. Models [2, 5, 8, 13] maximise the commercial value. [8] goes further and
adds a second objective, which is to balance the load within the bin. [9] tries to minimise the delivery costs.
All models can be extended with rotation constraints, however the drawback of this addition is that the com-
putational time increases because of more decision variables and constraints. [2] uses guillotine constraints
and [8, 9] use a memetic algorithm to solve the 2DBPP. The 2DBPP can also be used in our work. Since two di-
mensions are used, one approach is to fix the third dimension, and solve the palletisation from the front side
of each ULD. The three-dimensional bin packing problem (3DBPP) uses all the three dimensions to solve the
bin packing problem. This is the most realistic variant of this typical problem, however this is computational
very demanding. The sum of the commercial value is maximised in [10] while the volume loss is minimised
in [16, 19]. [6] maximises the density of the bottom layers and [20] optimises the load balance of the bin. Note
that according to the specifics, the assumptions and the goals of each model, decision variables might not be
the same. The different bin packing models are solved either exactly, mostly with a branch & bound algorithm
or with a heuristic. A heuristic is often used to reduce the computational time.



4
Forecasting

This Chapter discusses how a RF model is used to predict shipment dimensions and flight details. The gen-
eral framework of a RF model is discussed in Section 1, and it is applied in Sections 2 until 4. Section 2
discusses the dimensions forecast including the volume loss prediction and the risk, then Section 3 forecasts
the amount of must-fly cargo and Section 4 determines the accuracy of the flight details.

1. Random Forest
To forecast dimensions, must-fly cargo and the accuracy of the flight details a RF algorithm is used. This is
an ensemble learning method used for both classification and regression. It builds different decision trees
which come up with a solution all together. A random forest model is made in Python using the scikit-learn
package. In this section, the parameter choice that brought to the final model will be described and justified
in detail. Important drivers in the parameter choice are computational time, which should be minimised,
and accuracy, that should be maximised instead.

A RF can be used for both classification and regression. Since for all the three forecasts, integer values are
needed, a regression model is chosen. In forecasting models, part of the dataset is used to train the model,
while the remaining part of the dataset is later used to test the trained model. To be consistent with common
practice in the machine learning community, the test size is set to 0.25. This means that 75% of the data is
used to train the RF while the other 25% is used for testing. A random number generator is used to choose
the features to grow a decision tree. The random state seeds the random number generator. 42 is used as
random state and is fixed to make sure the same results can be obtained again. Two other variables, that need
some tweaking, are the number of decision trees that are grown, and the amount of data used to both train
and test the model. Five datasets are used to check the influence of the amount of data. These datasets and
their sizes can be found in Table 4.1 and contain booking information. The goal is to predict dimensions. For
each dataset the updated date of each booking should be between the date in the first row of this table and
2018/05/31. The second row shows the number of rows in each dataset. It was not possible to test the model
for more months, since this led to computer memory errors. For every dataset, three tests were executed, for
which the number of decision trees equals 1, 10 and 100. For some datasets, tests were performed with 250
and 500 decision trees. The different tests are compared by their mean error, accuracy and computational
time. The calculation of the mean error and accuracy can be found in Equations 4.1 and 4.2 respectively. The
influence of the number of decision trees on the mean error and accuracy can be found in Figures 4.1 and
4.2 respectively and the influence of the computation time and the number of decision trees and accuracy
can be found in Figures 4.3 and 4.4 respectively. Please note that in each of these figures, each colored line
represents a different dataset as in Table 4.1 and each data point represents a different number of decision
trees.

Table 4.1: Sizes of the different datasets used for testing the variables.

Minimum Update Date Data: 2018/01/01 2018/02/01 2018/03/01 2018/04/01 2018/05/01
Number of Rows: 632,825 508,079 389,464 251,008 124,301

8
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Figure 4.1: Analysis of the number of decision trees vs the
mean error.
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Figure 4.2: Analysis of the number of decision trees vs the
accuracy.
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Figure 4.3: Analysis of the number of decision trees vs the
computational time.
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Figure 4.4: Analysis of the number of computational time vs
the accuracy.

meanError = abs(predictedDimension− realDimension) (4.1)

accuracy = avg(100−mean(100 ·meanError/realValue)) (4.2)

As can be concluded from Figures 4.1 and 4.2 a better mean error and accuracy is obtained with more data
for the same number of decision trees. Furthermore, the mean error and accuracy keep improving up until
100 decision trees. An increase of decision trees would only cause an increase in the computational time,
without an actual accuracy improvement. Figure 4.4 shows that a better accuracy demands more computa-
tion time. Furthermore, dataset 2018/01/01 with ten decision trees results in a better accuracy compared to
dataset 2018/05/01 with 100 decision trees within almost the same computation time. From Figure 4.3 it can
be concluded that more decision trees lead to a longer computation time.

Another variable for the RF is the quality criterion, this can be either mean squared error (MSE) or mean
absolute error (MAE). All previous tests were performed with the MSE quality criterion. Next to these tests,
dataset 2018/05/01 was tested for the MAE quality criterion with one decision tree, however, this computation
did not finish within 30 minutes, while a solution was reached with the MSE within ten seconds. So the MAE
computation was stopped and deemed as computationally demanding.

The final parameters used for the RF models in the following Sections are summarised in Table 4.2.

2. Dimensions Forecast
In the air cargo supply chain, dimensions of packages to be loaded onto aircraft are generally not known a
priori. This translates into an issue for the flight planning, which motivates the need for a forecasting model
that estimates dimension of pieces. While forecasting these, an overall error of 15 cm is seen as acceptable by
the airline.
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Table 4.2: Final parameters for the RF model.

Parameter: Value:
Test Size: 0.25

Number Decision Trees: 100
Quality Criterion: MSE

Random State: 42

Table 4.3: The most important columns in the booking data and their description.

Column: Description:
AgentURN The unique reference number of the customer of the booking

BookingDestination Destination of the booking.
BookingOrigin Origin of the booking.

CommodityCode Code for the type of product.
PieceQuantity The amount of pieces with this properties.

PieceVolume The volume of each piece.
ProductCode The code of the product offered by AFKLMP.

ShipmentPieces The amount of pieces in the shipment.
ShipmentVolume The volume of the shipment.
ShipmentWeight The weight of the shipment.

In this Section the RF model is discussed in Section 2.1. This information is used to find both the volume
loss and the risk. These are discussed in Sections 2.2 and 2.3 respectively.

2.1. Forecast
This Section discusses the RF model for predicting the dimensions. First data is discussed, next the features
are determined and finally some conclusions are inferred and critically discussed.

The booking data consists of 2,252,037 rows and 37 columns. Every data row represents several pieces
with the same properties. The columns represent the properties of the pieces and every column is called
a feature. The most important columns can be found in Table 4.3. It may be noted that in this table the
column PieceWeight is missing. This column is present in the database, however it misses values for most
pieces. Therefore, it is left out for this analysis. Furthermore, every booking has different versions, every time
something is changed to the booking a new version ("data row") is created. The dataset only contains the
last version of the bookings which are updated between 2018/01/01 and 2018/05/31. The data is available
from 2016/01/01 onward, however this datafile is too large to be handled in Python. Therefore, it is chosen to
use the data from 2018/01/01 onwards. The end date 2018/05/31 was chosen because it is the end of the last
month before this project started. Therefore, no unknowns exist of the bookings.

The influence of the different columns used as input for the RF can be checked next. The results of this
test with one decision tree and a start date of 2018/05/01 can be found in Table 4.4. The first column in this
table present the features used to perform the tests in Section 1, which is considered the baseline for this test.
As can be concluded from this table the BookingOrigin is by far the most important column. When keeping
this column and the BookingDestination, the accuracy drops to 32.39 %, so more columns are needed for an
accurate solution. The most accurate solution is found in the fifth test, which is an improvement of 1.63 %
compared to the baseline. This equals to a reduction in mean error of 1.16 [cm].

The final features which results in the best solution for the RF can be found in Table 4.5. The algorithm
is run with these selected variables which resulted in a mean error of 9.89 cm and an accuracy of 84.29 %
within 06:22:23. The mean error and accuracy are computed using Equations 4.1 and4.2 respectively. This
is an improvement of 0.6 cm or 1.12 % compared to the previous best run. So, combining the best variables
leads to a significant better result. Finally a boxplot of the mean error is given in Figure 4.5. From this figure
it can be concluded that the lower quartile of the errors is at 0.58 cm and the upper quartile is at 10.34 cm.
This means that 75 % of the forecasted dimension has an error lower than 10.34 cm. Since an error of 15 cm
is acceptable, the model performs reasonably well. However, 17 % still has an error larger than 15 cm.
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Table 4.4: Results for the RF using different columns as input to train the data with a start date of 2018/05/01 and growing one decision
tree.

Data Column: Importances:
Test 1: Test 2: Test 3: Test 4: Test 5: Test 6: Test 7:

AgentURN 0.0 0.02 0.0 0.0 - - 0.0
BookingDestination - 0.03 - 0.05 0.0 0.0 0.04

BookingOrigin 0.69 0.66 0.73 0.68 0.0 0.0 0.68
CommodityCode 0.06 0.03 0.0 0.0 - 0.0 0.0

PieceQuantity - 0.0 - - - - -
PieceVolume 0.05 0.01 - 0.0 - - 0.0
ProductCode 0.06 0.03 0.09 0.0 - 0.0 0.04

ShipmentPieces - 0.0 - - - - -
ShipmentVolume 0.0 0.0 0.0 - - - 0.0
ShipmentWeight 0.0 0.0 - - - - -
Mean Error [cm] 14.76 14.53 14.13 13.6 30.63 27.43 14.03

Accuracy [%] 76.83 76.9 77.53 78.46 32.39 43.56 77.7

Table 4.5: Final variables used for the RF.

Test Size: 0.25
Number of Decision Trees: 100

Quality Criterion: MSE
Minimum Update Date: 2018/01/01
Maximum Update Date: 2018/05/31

Random State: 42
Features: AgentURN, BookingDestination, BookingOrigin,

CommodityCode, PieceVolume, ProductCode
Mean Error [cm]: 9.89

Accuracy [%]: 84.29
Computational Time: 06:22:28
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Figure 4.5: Boxplot of the mean error distribution.
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2.2. Volume Loss
Volume loss is the unused space in an ULD. Airliners use this factor to increase the volume of pieces with un-
known dimensions. This increase in size is a safety factor to estimate the shipment dimensions, to guarantee
shipments will fit in the ULD. At the moment 10, 15 or 30 % is used, depending on the flight. The one they pick
is based on experience of the flight analyst. It would be useful to have a better estimate of the volume loss.
This better estimate is discussed in this Section. Although this is something we do no explicitely consider in
the thesis, it could be useful for better decision-making if the strategy of using volume-loss was kept.

Section 2.1 discussed the dimensions forecast model. This model forecasts dimensions with an accuracy
of 84.29 %. Since the accuracy of the forecast is known, it would be strange to use something else as volume
loss than the accuracy of your dimension prediction. Since volume loss is used to increase the volume of a
piece, it is more accurate to increase this using the accuracy of the dimensions forecast. The accuracy of the
dimensions model results in a volume loss of 100−84.29 = 15.71 ≈ 16 %. So the volume is increased with a
factor of 1.16. From Table 4.4 it can be concluded that feature BookingOrigin is by far the most important.
Therefore, the volume loss can be more accurate when determining it per booking origin. In total there are
292 booking origins, however only the booking origins with more than 100 bookings are considered. This
results in 137 different volume losses, 136 for specific booking origins and a general one (16 %) for bookings
with a different booking origin. The volume losses per booking origin can be found in Table 4.6. As can be
concluded from this table, volume loss ranges from 7 %, for GUA, to 30 %, for ORD.

Table 4.6: The volume loss [%] per booking origin.

ABZ 25 BSL 9 FLR 25 IST 26 MIA 29 PEK 17 TLV 10
AMS 16 BUD 12 FMO 15 JFK 20 MMX 19 PEN 12 TPE 13
ARN 21 CAI 20 FRA 16 JNB 23 MNL 12 PER 26 TRN 23
ATH 15 CDG 16 GDL 12 KIX 16 MRS 16 PRG 13 TUN 12
ATL 21 CGK 17 GIG 13 KUL 15 MST 11 PTY 18 TXL 12

AUH 25 CGN 18 GLA 17 KWI 19 MTY 18 PVG 15 VCE 21
BAH 21 CMN 13 GOA 17 LAX 18 MUC 17 RTM 16 VCP 27
BCN 16 CPH 13 GOT 18 LCJ 10 MXP 21 RUH 16 VIE 18
BER 15 CPT 25 GRU 17 LHR 19 NBO 18 SCL 18 VRN 28
BEY 27 CTU 17 GRZ 19 LIL 15 NCE 15 SFO 17 WAW 15
BIO 20 DEL 22 GUA 7 LIM 8 NGO 10 SIN 14 YEG 20
BKK 13 DFW 15 GVA 12 LIS 22 NOU 19 SJO 7 YUL 22
BLL 16 DMM 21 HAJ 12 LNZ 17 NRT 19 SJU 16 YVR 21
BLR 20 DUB 16 HAM 18 LOS 17 NTE 17 SOF 18 YYC 23

BOD 17 DUS 14 HEL 12 LYS 17 NUE 16 STR 16 YYZ 22
BOG 9 DWC 20 HOH 13 MAA 18 OPO 25 SVG 21 ZRH 18
BOM 17 DXB 25 HYD 17 MAD 20 ORD 30 SVO 14
BQY 22 EIN 15 IAD 19 MAN 18 ORY 11 SWK 22
BRE 16 EZE 17 IAH 25 MCT 18 OSL 19 SXB 18
BRU 15 FCO 17 ICN 17 MEX 17 OTP 16 TLS 20

2.3. Risk
Forecasted shipment dimensions, Section 2.1, come with an error. This leads to a certain risk, since packages
might be larger than predicted and lead to loading strategies that do not fit the ULD dimensions. This Section
discusses an approach to find the risk associated to the forecasted dimensions and the position in an ULD.

To find the risk, a distribution of the dimensions and their probability is needed. The test dataset contains
the errors of the prediction for 142,493 pieces. From all these errors, a probability distribution can be found.
The errors of the test dataset are plotted as blue bars in Figures 4.6a until 4.6c. From these figures it can be
concluded that for all dimensions the distribution of errors can be approximated with a normal distribution.
A normal distribution for the corresponding mean and standard deviation (StD) is plotted in the same figures
with a green line. As concluded in Section 2.2 booking origin plays a crucial role. Therefore, every booking
origin with more than 100 datapoint has its own normal distribution. The mean and StD for every booking
origin can be found in Appendix A.

Since the probability distribution is known for every piece’s dimension, the next step is to translate this to
a risk for a complete ULD. Figure 4.7 shows an ULD with four pieces. Let’s assume that the dimensions for all



3. Must-Fly Cargo 13

(a) Length. (b) Height. (c) Width.

Figure 4.6: Distribution for all booking origin per dimension, where the blue bins represents the data and the green line represent the
corresponding normal distribution.

Figure 4.7: An ULD with four loaded pieces.

pieces are predicted and have a normal distribution that is booking origin-specific. In the length (x) direction,
pieces one and three are limiting while in the height (z) direction, pieces three and four are limiting. When
focusing on the length, the gap between pieces one and three is 10 cm. So the sum of both piece’s length
might be underestimated by a maximum error of 10 cm before leading to an infeasible loading configuration.
To determine what is the risk that such scenario will happen, the normal distributions for both piece’s lengths
are summed. This results in a new distribution which holds for both pieces when considered simultaneously.
The area below this distribution for an error which is greater than 10 cm can be used as an estimation of
the risk for this ULD-shipment configuration in length direction. Being the overall area of the probability
density function unitary, the area exceeding the limit value (10 cm in this case) multiplied by 100 provides an
estimate of the risk the two lengths will exceed the length of the ULD. The same procedure can be repeated
for the other two dimensions. Finally, the maximum value of the three risks (one for each dimension) is taken
as the risk for a complete ULD. This is an assumption of the model, since the goal is to provide a simple and
intuitive estimate of the risk. A more complicated approach might be chosen to provide a better estimate of
such a risk.

3. Must-Fly Cargo
Must-fly cargo cannot be offloaded and therefore it is useful for an airline to forecast how much must-fly
cargo arrives before every flight. This will be forecasted using a RF. All general information about RFs is given
in Section 1. This Section will focus on the RF model for must-fly cargo only.

Table 4.7 shows the importances for different features. The feature combination of test 3, i.e. Aircaft-
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Table 4.7: Importances of the different columns.

Column: Importance:
Test Number: 1 2 3 4

AircraftSubType 0.12 0.02 0.44 0.02
Arrival 0.44 0.01 0.18 -

CapacityVolume - - 0.01 -
CapacityWeight - - 0.0 -

FlightNumber 0.09 0.16 0.09 0.38
MustFlyWeightPreviousFlight 0.01 - - -

MustFlyVolumePreviousFlight 0.0 - - -
WeekDay 0.06 0.16 0.08 0.17

Mean Error Total Weight: 2905 2830 2742 2876
Mean Error Must-Fly Weight: 2827 2770 2820 2825

Mean Error Total Volume: 12.02 11.61 11.3 11.76
Mean Error Must-Fly Volume: 12.77 12.43 12.54 12.72

Table 4.8: Final variables and errors for the random forest when the parameters are optimised.

Test Size: 0.25
Number of Decision Trees: 100

Quality Criterion: MSE
Minimum Flight Date: 2017/05/01
Maximum Flight Date: 2018/05/31

Random State: 42
Mean Error Total Weight [kg ]: 2391

Mean Error Must-Fly Weight [kg ]: 2382
Mean Error Total Volume [m3]: 10.78

Mean Error Must-Fly Volume [m3]: 11.02
Computational Time: 0:00:04

SubType, Arrival, CapacityVolume, CapacityWeight, FlightNumber and WeekDay, lead to the lowest error and
highest accuracy. Combining these features with the parameters as found in Section 1 and 13 months of flight
data result in the results in Table 4.8. From this table it can be concluded that both the total weight and must-
fly weight can be forecasted with a mean error lower than 2400 kg and both volumes can be estimated with
a mean error of about 11 m3. The error range can be found in Figures 4.8 and 4.9. It can be noted that the
median is lower than the mean value of the error. This means that the larger part of the dataset has acceptable
errors. Furthermore, it can be concluded that the weight error ranges between 0-7800 kg while the volume
error ranges between 0-35 m3. The error is specified per aircraft sub-type in Tables 4.9 and 4.10 for weight
and volume respectively. The accuracies in this table are determined with Equation 4.3. From this tables it
can be concluded that the accuracies per aircraft type are in the range of 80-90 %.

accuracy = 100−100 · error

capacity
(4.3)

4. Flight Details Accuracy
For every flight the cargo capacity, both in weight and volume, is forecasted. This is relevant since capacity is
sold. An accurate estimate prevents the following two cases from happening. (i) Capacity is oversold, which
results in pieces being offloaded and thus a lower customer satisfaction. (ii) Capacity is undersold, which
results in a lower revenue. This forecast is updated every day, when more bookings and information are
available. For the specific case of AFKLMP, this process starts seventeen days before departure until one day
before departure. Discrepancies exist between the forecasted capacity and the capacity at the moment of
departure. To determine if a booking fits in the ULD or not, it could be useful to know the accuracy of the
capacity forecast. In this Section a method is shown to determine the accuracy of the capacity forecast for
every day before the departure.

To determine the accuracy of the capacity forecast a RF model will be used with the parameters as deter-
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Figure 4.8: Forecasted weight and must-fly weight error
distribution.
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Figure 4.9: Forecasted volume and must-fly volume error
distribution.

Table 4.9: The mean errors and accuracy of the random forest weight predictions per aircraft sub-type.

Aircraft Total Weight Total Must-Fly Weight Aircraft
Sub-Type: Error [kg ]: Accuracy [%]: Error [kg ]: Accuracy [%]: Sub-Type:

332 2150 90 1948 90 332
333 2224 82 2278 82 333
359 3917 81 4357 79 359
744 1759 90 1670 91 744
763 1662 80 1656 80 763
764 2587 84 2550 84 764
772 2547 87 2594 87 772

77W 2901 88 2993 87 77W
788 2380 86 2693 84 788
789 3047 87 3221 87 789

Table 4.10: The mean errors and accuracy of the random forest volume predictions per aircraft sub-type.

Aircraft Total Volume Total Must-Fly Volume Aircraft
Sub-Type: Error [m3]: Accuracy [%]: Error [m3]: Accuracy [%]: Sub-Type:

332 9.28 85 8.67 86 332
333 10.97 85 11.94 84 333
359 16.33 82 19.62 79 359
744 7.87 88 9.05 86 744
763 8.79 82 9.16 81 763
764 15.11 78 14.68 78 764
772 9.11 88 10.72 86 772

77W 10.77 90 12.40 89 77W
788 9.92 84 12.56 79 788
789 11.06 88 13.25 85 789
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Table 4.11: The influence of a different combination of features on the random forest results.

Data Column: Importances:
Test 1: Test 2: Test 3: Test 4: Test 5:

AircraftSubType 0.39 0.01 0.35 0.08 0.42
Arrival 0.15 0.32 0.13 0.3 0.15

CapacityVolume 0.0 - 0.0 - -
CapacityWeight 0.0 - 0.04 - 0.0

DayBeforeDeparture 0.14 0.0 0.14 0.0 0.05
FlightNumber 0.09 0.16 0.09 0.14 0.09

Month - - 0.0 0.01 0.0
Weekday 0.12 0.16 0.12 0.17 0.13

Mean Error Weight [%] 3.77 6.24 3.26 6.37 3.68
Accuracy Weight [%] 95.26 92.17 95.86 92.03 95.33

Mean Error Volume [%] 2.64 4.77 2.28 4.70 2.96
Accuracy Volume [%] 96.91 94.42 97.33 94.52 96.51

Table 4.12: Final variables used for the random forest.

Test Size: 0.25
Number of Decision Trees: 100

Quality Criterion: MSE
Minimum Flight Date: 2017/05/01
Maximum Flight Date: 2018/05/31

Random State: 42
Features: AircraftSubType, Arrival, CapacityVolume, CapacityWeight,

DayBeforeDeparture, FlightNumber, Month, Weekday
Mean Error Weight [%]: 6.28

Accuracy Weight [%]: 92.27
Mean Error Volume [%]: 4.59

Accuracy Volume [%]: 94.70
Computational Time: 00:06:34

mined in Section 1. For every flight the accuracy of both the weight and volume capacity are determined with
Equation 4.3. The error in this Equation is the absolute difference between forecasted capacity and the actual
capacity at the moment of departure.

Different combinations of features are tested and results can be found in Table 4.11. It can be concluded
that test 3 leads to the lowest error and highest accuracy of the RF model. Feature AircraftSubType is the most
important and features Arrival, DayBeforeDeparture and Weekday are important as well. Although the feature
CapacityVolume has a low weight, its removal (as seen in test 5) increases the error. Consequently, the feature
was not discarded.

The result of the final run with the selected parameters can be found in Table 4.12. The first conclusion
that can be inferred from this Table is that volume capacity is predicted more accurately than weight capacity.
This is justified by the fact that both have a different spread in historic data. This comes from the fact that
both capacities are determined differently. Each flight has a certain number of ULD positions, which results
in the capacity volume (ULD volume times number of positions). The capacity weight is forecasted by a
tool, which predicts the capacity weight based on historic data. This leads to the difference in accuracies of
both. Both have an accuracy higher than 95 %, which makes this model accurate. This can also be concluded
from Table 4.13 and Figures 4.10 and 4.11. The table shows the mean errors and accuracies for every day
before the departure, while the figures show the spread of errors. It can be concluded that the model has the
largest error spread seventeen days before departure for capacity weight and fifteen days before departure for
capacity volume. In general, performances increase as the departure date gets closer. This results in the day
before departure to be the most accurate, which is consistent with intuition.
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Table 4.13: Final variables used for the random forest.

Weight Volume
DayBeforeDeparture: Mean Error [%]: Accuracy [%]: Mean Error [%]: Accuracy [%]: DayBeforeDeparture:

1 2.75 96.85 1.15 98.72 1
2 5.52 93.50 3.74 95.84 2
3 5.67 93.25 3.93 95.63 3
4 5.85 92.93 4.09 95.42 4
5 6.12 92.64 4.35 95.09 5
6 6.40 92.16 4.62 94.81 6
7 6.32 92.31 4.74 94.65 7
8 6.38 92.29 4.81 94.45 8
9 6.51 92.12 5.01 94.30 9

10 6.52 91.97 4.91 94.45 10
11 6.59 91.90 5.06 94.32 11
12 6.83 91.63 5.26 93.99 12
13 6.80 91.65 5.28 93.97 13
14 6.97 91.44 5.28 94.00 14
15 7.13 91.17 5.58 93.49 15
16 7.16 90.54 5.39 92.56 16
17 7.56 89.79 5.11 93.66 17
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Figure 4.10: Distribution of the error for the accuracy of the
weight capacity.
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Figure 4.11: Distribution of the error for the accuracy of the
volume capacity.



5
Bin Packing Models

This Chapter discusses different models addressing the bin packing problem. First the one-dimensional bin
packing problem is discussed in Section 1, next the two-dimensional bin packing problem is discussed in
Section 2 and Section 3 discusses different heuristics.

1. One-Dimensional Model
This section discusses the variables and formulation for the one-dimensional bin packing model (1DBPP).
Generally speaking, for problems aiming at determining optimal loading configurations, the 1DBPP focuses
on volume or weight, rather than a physical dimension (e.g., length) of objects to be loaded. In our context,
one-dimensional means that the volume of the pieces is used to assign each piece to an ULD, without deter-
mining the exact position in the ULD. A check is added for every piece to make sure its dimensions do not
exceed the ULD dimensions. In other words, and additional check is performed to ensure that each piece can
physically fit into the assigned ULD when considered singularly.

Let P = (p1, p2, ..., pn) be the set of np pieces considered. The set of pieces is further divided into (i) generic
pieces Pg , (ii) perishable pieces Pp , (iii) radioactive pieces Pr and (iv) cars Pc such that P = Pg ∪Pp ∪Pr ∪Pc .
While generic pieces do not have special restrictions, a perishable and radioactive piece cannot be loaded
into the same ULD, while a car must be the only piece loaded into a ULD. In addition, a subset of P can be
flagged as must-fly. This subset is defined as Ps . Furthermore, each piece is characterised by a commercial
priority C Pi . Let U = (u1,u2, ...,unu ) be a set of nu ULDs. The decision variables are defined as follows:

pi j (binary) 1 if piece i is in ULD j , 0 otherwise.
zi (binary) 1 if piece i is not loaded at all, 0 otherwise.

ri ab (binary) 1 if side a of piece i is in side b of the ULD, 0 otherwise.

Decision variable pi j rewards the 1DBPP for loading pieces while zi penalises offloaded pieces. ri ab is
added to give the model the opportunity to rotate a piece, which might result in a piece that fits with a specific
orientation only. The objective function is defined as:

min  = ∑
i∈P

∑
j∈U

C Pi ·pi j + [4 ·max(C P )−C Pi ] · zi (5.1)

The main objective is to minimise the sum of C Pi . A lower C Pi results in a higher priority, so the cost
function as stated results in pieces with lower C Pi values being weighted more. Since the objective is min-
imised and offloading pieces is not preferred, an offloaded piece results in a penalty of 4·max(C P )−C Pi . This
penalty makes sure that a lower C Pi results in a higher penalty and that the penalty is always higher than the
C Pi . The constraints are defined as follow: ∑

j∈U
pi j + zi = 1∀i ∈ P (5.2)

∑
i∈P

VP ·pi j ≤VU∀ j ∈ U (5.3)

18
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pi j +pk j ≤ 1∀i ∈ Pp ,∀k ∈ Pr ,∀ j ∈ U (5.4)

pi j +pk j ≤ 1∀i ∈ Pc ,∀k ∈ P\i ,∀ j ∈ U (5.5)

−M · zi + lp · ri 11 +hp · ri 12 +wp · ri 13 ≤
∑
j∈U

L j ·pi j∀i ∈ P (5.6)

−M · zi + lp · ri 11 +hp · ri 12 +wp · ri 13 ≤
∑
j∈U

H j ·pi j∀i ∈ P (5.7)

−M · zi + lp · ri 11 +hp · ri 12 +wp · ri 13 ≤
∑
j∈U

W j ·pi j∀i ∈ P (5.8)

ri k1 + ri k2 + ri k3 = 1∀i ∈ N,∀k ∈ [1,2,3] (5.9)

ri 1k + ri 2k + ri 3k = 1∀i ∈ N,∀k ∈ [1,2,3] (5.10)

Equations 5.2 until 5.8 present the different constraints. The first constraint, Equation 5.2 makes sure
each piece is either loaded or not. Furthermore it makes sure that when a piece is loaded, it is loaded in one
ULD only. Equation 5.3 prevents the total volume of the pieces in the ULD exceeding the maximum volume
capacity of the ULD. The third constraint, Equation 5.4 prevents perishable and radioactive piece ending up
in the same ULD. Equation 5.5, makes sure every car has its own ULD. The three Equations 5.6 until 5.8, make
sure the piece fits physically in the ULD, so the dimensions of the piece do not exceed the dimensions of the
ULD. Equation 5.6 checks the length of the ULD is not exceeded, Equation 5.7 does the same for the height
and Equation 5.8 checks if the width is not exceeded. This also considers the possible rotations of the pieces.
Equation 5.9 makes sure each piece side is assigned to one ULD side only and Equation 5.10 makes sure each
ULD side is assigned to one piece side only. These two constraints prevent unfeasible rotations. The final
results of this model for different flights can be found in Table 5.1.

Table 5.1: Results for the one-dimensional BPP.

Flight Details 1DBPP
Load Factor

Nbr: ULDs: Pieces: Computational Time: Offloaded: Total: General: Pieces:
001 14 36 00:00:01 4 62 67 82
002 12 48 00:00:00 0 52 62 100
003 12 46 00:00:00 3 66 72 81
004 9 23 00:00:00 0 72 72 100
005 13 41 00:00:00 15 54 58 46
006 9 60 00:00:01 1 94 94 95
007 10 52 00:00:00 0 85 94 100
008 11 41 00:00:00 17 51 70 46
009 8 26 00:00:00 1 65 74 97
010 13 25 00:00:00 0 46 67 100
011 14 32 00:00:00 3 34 60 71
012 11 67 00:00:00 4 98 98 91
013 13 75 00:00:07 3 76 82 92
014 12 48 00:00:01 0 53 64 100
015 13 106 00:00:00 14 85 85 70
016 14 22 00:00:00 0 36 73 100
017 11 24 00:00:00 0 42 57 100
018 12 74 00:00:00 1 59 59 73
019 12 79 00:00:00 5 88 88 80

Table 5.1 shows the results for the 1DBPP for different flights. The gap optimality for all these solutions is
0 %. This means that the optimal solution for all flights has been found. When looking to the computational
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time, for some flights this one equals 00:00:00. The computational time is rounded to seconds, so a compu-
tational time of 00:00:00 means that the computational time took less than half a second. Three load factors
are displayed in Table 5.1, namely total, general and pieces. The total load factor is the volume of the loaded
pieces divided by the volume capacity, the general load factor is the volume of the loaded piece divided by the
volume of the used ULDs and the pieces load factor is the volume of the loaded pieces divided by the loaded
plus the offloaded pieces. As can be concluded by this table is that the 1DBPP produces quick results which
results in good load factors.

2. Two-Dimensional Model
This section discusses the model for the two-dimensional bin packing problem (2DBPP). This builds further
on the model discussed in Section 1, which discussed the 1DBPP. Where the 1DBPP only checks if the volume
of the ULD is not exceeded, the 2DBPP tries to find a position for every piece in a two-dimensional space.
This space consists of the length and height of the ULD, i.e., each ULD is seen from the front side. While
finding this position, the pieces should not overlap, and the solution should be vertically stable. This leads
to different variables and a substantial increase in the number of constraints. This Section is split into three
Subsections. First the different parameters, sets and decision variables are discussed in Section 2.1, next
Section 2.3 discusses the constraints and the results are discussed in Section 2.4. The model discussed, is
based on the formulation of [15, 16].

2.1. Parameters, Sets and Decision Variables
This Section discusses the parameters, sets and decision variables used in the 2DBPP. The 2DBPP uses the
following parameters:

ac Horizontal length of ULD cut c.
bc Angle of ULD cut c.

C Pi Commercial priority of piece i .
Dm Maximum length, height or width of all pieces. Used as big M.

fi Indicates if piece i is fragile or not.
li , hi , wi Length, height and width of piece i .

L j , H j , W j Length, height and width of ULD j .
N Total number of pieces.
M Total number of ULDs.
ri Indicates if piece i may be turned upside down or not.

SC Bi Shipment contribution of piece i .
Vi Volume of piece i .
V j Volume of ULD j .

The following sets are used:

P All pieces.
Pc All cars.
Pg All generic pieces.
Pp All perishable pieces.
Pr All radioactive pieces.
Ps All must-fly pieces.
U All ULDs.

Let P = (p1, p2, ..., pn) be the set of np pieces considered. The set of pieces is further divided into (i) generic
pieces Pg , (ii) perishable pieces Pp , (iii) radioactive pieces Pr and (iv) cars Pc such that P = Pg ∪Pp ∪Pr ∪Pc .
The decision variables can be found below:
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qi (binary) 1 when piece i is not loaded in an ULD, 0 otherwise.
pi j (binary) 1 when piece i is loaded in ULD j , 0 otherwise.

xi , zi , yi (integer) horizontal, vertical and diagonal position of the lower left corner of piece i .
xi k , zi k (binary) 1 when piece i is to the right of and respectively above piece k.

ri ab (binary) 1 when side a of piece i is alongside b of the ULD.
gi (binary) 1 when piece i lies on the ground.

hi k (binary) 0 when piece k has the suitable height to support box i , 0 otherwise.
oi k (binary) 0 when there’s a non-empty intersection between piece i and k, 0 otherwise.
si k (binary) 1 when piece k supports piece i and are in the same ULD, 0 otherwise.
η1

i k (binary) 0 when xk ≤ xi , 1 otherwise.
η2

i k (binary) 0 when x ′
k ≥ x ′

i , 1 otherwise.
βl

i k (binary) 1 when vertex l of piece i is supported by piece k.
γc

i (binary) 1 when piece i lays on cut c of the ULD in which it lies.

2.2. Objective Function
This Section discusses the objective function, which can be found in Equation 5.11. The main goal of the
model is to minimise the CP. This is done in the first term of the Equation. The second term penalises of-
floaded pieces. This is the same objective function as in the 1DBPP. Therefore a more elaborate explanation
can be found in Section 1.

max  = ∑
i∈P

∑
j∈U

C Pi ·pi j + [4 ·max(C P )−C Pi ] · zi (5.11)

2.3. Constraints
This section discusses the different constraints used for the 2DBPP in the paragraphs below. They are divided
into categories to provide a better picture of the problem. Some constraints are model-specific. Some others
depend on the shape/requirements of shipments, or on the shape of the ULDs.

General Constraints : Equation 5.12 is the first constraint and this one makes sure that each piece is either
loaded or offloaded adn when it is loaded, that it is loaded in one ULD only. Next Equation 5.13 prevents that
anything is stacked on top of a fragile piece.

qi +
∑
j∈U

pi j = 1∀i ∈ P (5.12)

ski ≤ fi (N −1)∀i ∈ P,∀k ∈ P (5.13)

No-Mix Constraints : Equations 5.14 and 5.15 are the no-mix constraint, where the first one prevents per-
ishable and radioactive pieces being loaded in the same ULD and the second one makes sure that a car has
its own ULD.

pi j +pk j ≤ 1∀i ∈ Pp ,∀k ∈ Pr ,∀ j ∈ U (5.14)

pi j +pk j ≤ 1∀i ∈ Pc ,∀k ∈ P\i ,∀ j ∈ U (5.15)

Rotation Constraints : The constraints in Equations 5.16 until 5.18 make it possible to rotate a piece. The
first two constraints assign each piece side to one ULD side only and an ULD side to one piece side only. The
third constraint prevents pieces being turned upside down when this is not allowed.

ri k1 + ri k2 + ri k3 = 1∀i ∈ N,∀k ∈ [1,2,3] (5.16)

ri 1k + ri 2k + ri 3k = 1∀i ∈ N,∀k ∈ [1,2,3] (5.17)

ri 21 + ri 23 ≤ ri∀i ∈ P (5.18)
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Lower Left Corner in ULD : Equations 5.19 and 5.20 make sure the lower left corner of the piece is placed
inside the ULD. The first constraint makes sure the piece is placed within the length direction, while the
second constraint makes sure the height direction is respected.

xi + li · ri 11 +hi · ri 12 +wi · ri 13 − [max(L)−max(li ,hi , wi )] ·qi −
∑

j∈M
L j ·pi j ≤ 0∀i ∈ P (5.19)

zi + li · ri 21 +hi · ri 22 ++wi · ri 13[h j ,max −max(li ,hi , wi )] ·qi −
∑

j∈M
H j ·pi j ≤ 0∀i ∈ P (5.20)

No-Overlap Constraints : Equations 5.21 until 5.25 are the no-overlap constraints. Pieces should not over-
lap at any of the axes, when both pieces are in the same ULD only. This is represented by Equation 5.21.
Equations 5.22 and 5.23 prevent that two pieces overlap horizontally while Equations 5.24 and 5.24 prevent
them to overlap vertically.

−xi k −xki − zi k − zki +pi j +p j i ≤ 1∀i ∈ P,∀k ∈ P,∀ j ∈ U (5.21)

xk + lk · rk11 +hk · rk12 +wk · rk13 −xi ≤ Dm(1−xi k )∀i ∈ P,∀k ∈ P (5.22)

xi − lk · rk11 −hk · rk12 −wk · rk13 −xk ≤ Dm(xi k +1)∀i ∈ N,∀k ∈ N (5.23)

zk + lk · rk21 +hk · rk22 +wk · rk23 − zi ≤ Dm(1− zi k )∀i ∈ N,∀k ∈ N (5.24)

zi − lk · rk21 −hk · rk22 −wk · rk23 − zk ≤ Dm(zi k +1)∀i ∈ P,∀k ∈ P (5.25)

Stacking Constraint : Equations 5.26 until 5.43 are the stacking constraints. They make sure a feasible
solution exists that guarantees stacking constraints between shipments are ensured. Equation 5.26 makes
sure that each vertical vertex of a piece is supported by the ground, another piece or a cut (if a cut is present).
Equation 5.27 defines that a piece is on the ground when gi equals one. Equations 5.28 until 5.33 define the
variables zi , which is the vertical position of the lower left corner. Equations 5.34 and 5.35 describe if the
piece overlap on the horizontal axis. Equations 5.36 and 5.37 make sure that when the bottom face of piece i
is supported by the top face of piece k, then hi k +oi k = 0. Equations 5.38 and 5.39 state that a piece can only
be supported by another piece if both are in the same ULD. Equation 5.40 states that piece k can support
a vertex of box i only if this one is supported by piece k. In other words βl

i k can only one when si k equals
one. When the left corner of piece i is supported by piece k, xk should be less or equal to xi , otherwise the
corner cannot be physically supported by piece k. This is implied by Equation 5.41 and implies that the piece
is supported in both height and length direction. The final constraints, Equations 5.42 and 5.43, define the
horizontal position of the lower left corner of each piece.

γi 1 +γi 2 +2gi +
∑
k∈P

β1
i k +β2

i k = 2∀i ∈ P (5.26)

zi ≤ Dm(1− gi )∀i ∈ P (5.27)

− zi + zk + lk · rk21 +hk · rk22 −νi k ≤ 0∀i ∈ P,∀k ∈ P (5.28)

zi − zk − lk · rk21 −hk · rk22 −νi k ≤ 0∀i ∈ P,∀k ∈ P (5.29)

zi − zk − lk · rk21 −hk · rk22 +νi k ≤ 2Dm(1−mi k )∀i ∈ P,∀k ∈ P (5.30)

− zi + zk + lk · rk21 +hk · rk22 +νi k ≤ 2Dm ·mi k∀i ∈ P,∀k ∈ P (5.31)

−νi k +hi k ≤ 0∀i ∈ P,∀k ∈ P (5.32)
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νi k −Dm ·hi k ≤ 0∀i ∈ P,∀k ∈ P (5.33)

xi k +xki ≥ oi k∀i ∈ P,∀k ∈ P (5.34)

xi k +xki ≤ 2oi k∀i ∈ P,∀k ∈ P (5.35)

−hi k −oi k − si k ≤−1∀i ∈ P,∀k ∈ P (5.36)

hi k +oi k +2si k ≤ 2∀i ∈ P,∀k ∈ P (5.37)

pi j −pk j + si k ≤ 1∀i ∈ P,∀k ∈ P,∀ j ∈ U (5.38)

−pi j +pk j + si k ≤ 1∀i ∈ P,∀k ∈ P,∀ j ∈ U (5.39)

βl
i k − si k ≤ 0∀i ∈ P,∀k ∈ P,∀l ∈ [1,2] (5.40)

βl
i k +ηl

i k ≤ 1∀i ∈ P,∀k ∈ P,∀l ∈ [1,2] (5.41)

−xi +xk −Dm ·η1
i k ≤ 0∀i ∈ P,∀k ∈ P (5.42)

xi −xk + li · ri 11 +hi · ri 12 +wi · ri 13 − lk · rk11 −hk · r k12+wi · ri 13 −Dm ·η2
i k ≤ 0∀i ∈ P,∀k ∈ P (5.43)

Cut Constraints : The last constraints, Equations 5.45 until 5.48, make sure cuts in ULDs are considered
when defining the loading strategy. These equations limit the vertical and horizontal position of the lower
left corner of a piece. Equation 5.45 takes into account a cut in the lower left corner, Equation 5.46 a cut in
the lower right corner, Equation 5.47 a cut in the upper right corner and Equation 5.48 a cut in the upper left
corner. Only the constraint(s) of the corresponding cut(s) in the ULD are added to the model. So when the
ULD has a cut in the lower left corner only, only Equation 5.45 is added. As example, AFKLMP only uses ULDs
with this specific cut. If the model was to be used by a different airline with ULDs characterized by more cuts,

the associated constraints should be activated. These constraints contain the term δ ·
√

1+a2
c , this term adds

a offset to the cut, which makes sure that integer solution which are δ cm away from the cut are still feasible.
This is added to have more feasible solution available, since the positions can only be integers. Lastly Cm

represents the so called big M, which is determined using Equation 5.44.

Cm = max(ac ) ·max(L j )+max(H j , li ,hi , wi )+max(bc ) (5.44)

−a0 · xi − zi +Cm ·pi j ≤Cm −b0 +δ ·
√

1+a2
0∀i ∈ P,∀ j ∈ U (5.45)

a1 · xi − zi +Cm ·pi j +a1 · li · ri 11 +a1 ·hi · ri 12 +a1 ·wi · ri 13 ≤Cm +b1 +δ ·
√

1+a2
1∀i ∈ P,∀ j ∈ U (5.46)

a2·xi+zi+Cm ·pi j+a2·li ·ri 11+a2·hi ·ri 12+a2·wi ·ri 13+li ·ri 21+hi ·ri 22+wi ·ri 23+δ·
√

1+a2
2 ≤Cm+b2∀i ∈ P,∀ j ∈ U

(5.47)

a3 · xi + zi +Cm ·pi j + li · ri 21 +hi · ri 22 +wi · ri 23 +δ ·
√

1+a2
3 ≤Cm +b3 (5.48)
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2.4. Results
This Section discusses the results of the 2DBPP. The model is tested for a flight of which the details can be
found in Table 5.2 and the results can be found in Table 5.3. From the last table it can be concluded that the
model has a computational time of about five minutes for up to 24 pieces. This is still acceptable for AFKLMP,
however 30 pieces already lead to a computational time of fourteen minutes. This is too much. Since this
flight has 580 pieces, a heuristic is necessary to speed up the packing process. Therefore different heuristics
are discussed in Section 3.

Table 5.2: Flight Details.

AircraftType: MDConfig: LDConfig: CTRConfig: Total Pieces:
789 0 7 3 580

Table 5.3: Results for 2DBPP.

Test
1: 2: 3: 4: 5: 6: 7:

Total Number of Pieces [−]: 10 20 21 22 23 24 30
Total Flying Pieces [−]: 10 20 21 22 23 24 NF

Total Non-Flying Pieces [−]: 0 0 0 0 0 0 NF
Total Must-Fly Pieces [−]: 2 2 2 2 2 2 NF

Total Flying Must-Fly Pieces [−]: 2 2 2 2 2 2 NF
Total Non-Flying Must-Fly Pieces [−]: 0 0 0 0 0 0 NF

Total Decision Variables [−]: 1190 4580 5040 5522 6026 6652 10170
Computation Time [s]: 00:00:01 00:00:17 00:00:34 00:01:19 00:01:14 00:05:25 00:14:00

Gap [%]: 0.00 0.00 0.00 0.00 0.00 0.00 113.02

3. Heuristics
The 2DBPP for a full flight is computational demanding and not consistent with operational needs. Different
heuristics are proposed to obtain a sub-optimal solution, where computational time is consistent with oper-
ational requirements and a good load factor is achieved. This Chapter discusses the different heuristics used
to both speed up and improve the 2DBPP model as discussed in Chapter 2. Section 3.1 discusses a heuristic
to speed up the 2DBPP using the 1DBPP, next Section 3.2 discusses a concept to transform the 2DBPP into
3DBPP, Section 3.3 combines both heuristics discussed in the previous two Sections and finally Section 3.4
discusses the results of the three heuristics.

3.1. 1D2D
This Section discusses a heuristic to speed up the 2DBPP by using the 1DBPP as a pre-step that split a single
2DBPP into multiple smaller 2DBPPs. In fact, one method to speed up the 2DBPP is by decreasing the number
of decision variables. The total number of decision variables highly depends on the number of pieces to be
loaded N and the number of ULDs M . So, when these are decreased, the 2DBPP is expected to find a solution
faster.

The 1DBPP is used to assign every piece to an ULD first, then M 2DBPP are solved separately, each con-
sidering the subset of shipments that the 1DBPP assigned to the current ULD. This leads to significantly fewer
decision variables.

3.2. Layers
This section discusses the layers heuristic. The 2DBPP is solved per ULD, as shown in Section 3.1, however the
difference is that the pieces are not assigned to a certain ULD, but all unloaded pieces are taken into account
and each ULD is divided into layers in the width direction.

The heuristic starts with the first ULD and all pieces. It solves the 2DBPP for the first ULD considering
the front side, i.e., the L-H two-dimensional space. Some pieces are loaded into this ULD and some are
offloaded. Given the current configuration, the ULD is now considered along the W-direction. Behind the
shipment with the maximum width among the ones loaded, the ULD is completely empty. This means that
the same ULD with the same L-H configuration, but a reduced width (the original width minus the maximum
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(a) Layer 0. (b) Layer 1. (c) Side.

Figure 5.1: Loading strategy for one ULD with six pieces divided over two layers.

width among the shipments loaded), can still be considered to load new shipments. When at least one of the
offloaded pieces fits behind the loaded pieces, the ULD is split along the W-dimension into two layers. The
first layer width equals the maximum width of all the loaded pieces (max(wp,l oaded )) while the width of the
new layer equals wu −max(wp,loaded ). The 2DBPP is solved for the second layer considering its width and
the offloaded pieces. This process continues until all pieces are loaded or until none of the offloaded pieces
fits in the remaining space of the ULD. When this is the case, the procedure moves on to the second ULD
and the process is repeated. This will be done for all ULDs, one by one, until no ULDs or pieces are left.
The sequence of ULDs is sorted from smallest to largest. This heuristic solves 2DBPPs sequentially, but takes
all the three dimensions into account since each new layer considers the space left given the width of the
previous layers. An example of the results for this heuristic can be found in Figures 5.1a until 5.1c. Figure 5.1a
shows the result of the first layer and Figure 5.1b shows the results for the second layer. The second layer is
behind the first layer. A side view of the ULD with two layers is shown in Figure 5.1c. This figure shows that
pieces belonging to different layers do not overlap as a result of the third dimension (width) being accounted
for when generating a new layer.

3.3. 1D2D Layers
This Section combines the heuristics of Sections 3.1 and 3.2. This heuristic first assigns shipments to ULDs,
as in Section 3.1. Then, a 2DBPP is solved per ULD. If all shipments are loaded, the heuristic moves to the
next ULD. Otherwise, a second layer is created as described in Section 3.2 and a 2DBPP is solved for that
layer with the offloaded shipments. The process, for the current ULD, is repeated until either all shipments
are assigned, or if none of the remaining pieces fit behind the loaded pieces. This heuristic better uses the
available space in an ULD without the complexity of a full 3DBPP while also reducing the problem size and
thus the computational time by adding the initial 1DBPP step.

3.4. Results
This section discusses the results of the different heuristic. These can be found in Table 5.4. From this Table
it can be concluded that the layers heuristic provides the best results in terms of offloaded pieces, however it
has the largest computational time. The 1D2D heuristic provides a quicker results but has significant more
offloaded pieces. Combining both heuristics leads to an improved result than the 1D2D in terms of offloaded
pieces, and also a faster result compared to both other heuristics. Therefore, it can be concluded that the
1D2D Layers heuristic performs the best out of the three heuristics, being a trade-off between computational
time and performance in terms of loaded pieces.
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Table 5.4: Results for the one-dimensional BPP.

Flight Details Offloaded Pieces Computational Time
Nbr: ULDs: Pieces: 1D2D: Layers: 1D2D Layers: 1D2D: Layers: 1D2D Layers:
001 14 18 0 0 0 00:00:20 00:01:16 00:00:03
002 12 42 6 1 1 00:03:24 00:05:19 00:03:06
003 12 31 2 2 2 00:03:19 00:04:23 00:01:12
004 9 16 0 0 2 00:01:02 00:01:03 00:00:02
005 13 28 2 1 1 00:01:17 00:02:10 00:00:07
006 9 41 3 3 3 00:04:08 00:06:19 00:03:21
007 10 53 11 0 0 00:05:15 00:07:47 00:01:57
008 11 8 0 0 0 00:00:12 00:00:01 00:00:01
009 8 26 10 1 1 00:00:02 00:05:07 00:00:04
010 13 21 0 0 0 00:01:03 00:01:03 00:00:11
011 14 28 4 0 8 00:01:05 00:02:35 00:01:04
012 11 52 7 0 0 00:05:25 00:10:03 00:02:10
013 13 69 23 2 13 00:04:22 00:15:37 00:01:38
014 12 47 3 0 0 00:03:59 00:06:59 00:03:05
015 14 33 9 0 0 00:01:04 00:09:50 00:00:05
016 11 19 1 0 0 00:01:06 00:01:10 00:01:03
017 12 66 1 1 1 00:06:14 00:14:32 00:07:43
018 12 56 8 6 6 00:06:35 00:09:33 00:05:05
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The Final Model

In the previous chapters, different models are discussed for both forecasting and bin packing. The final model
is a combination of these different models and is called Better Revenue Using a New Optimiser (BRUNO). This
chapter discusses the structure on BRUNO, and how the forecasting and optimisation blocks are merged to
lead to the final ULD loading strategy. BRUNO is visually represented by the flowchart in Figure 6.1.
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Figure 6.1: Flowchart for BRUNO.

In the first step, data is both loaded and cleaned. In the dataset, every row represents specifications of a
booking. This contains both the properties of the booking as well as information about the flight. The booking
information consists of information like booking origin, booking destination, agent number, commodity,
volume and weight while the flight data consists of information like flight number, departure date, origin,
destination, configuration and capacity.

The first block that is added to BRUNO is the volume loss prediction, as determined in Section 2.2 of Chap-
ter 4. Volume loss is not used further, but it can be stored and used by flight analysts for different needs. The
volume loss is determined per booking origin, so every booking origin is characterized by a specific volume
loss. The dimension forecast is carried out for those bookings where shippers did not specify a dimension,
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as described in Section 2.1 of Chapter 4. This concludes the first forecasting block. An intermediate step is
taken before running the ULD loading heuristic block. Some bookings are characterised by a high number
of identical pieces (e.g., high-tech devices) and can be bundled together. Since every piece would be treated
separately in the heuristic, this may increase the problem size significantly. To prevent this, one (or more)
bigger pieces are created out of all these smaller pieces, considering the ULD dimensions. This significantly
reduces the model size, while being consistent with real operations. Algorithm 1 explains this procedure in
more detail. This concludes the adaptations to the booking part of the data.

Algorithm 1 Combine smaller pieces to one larger piece.

initialise numberPiecesPacked to zero
initialise numberLeftPieces to the number of pieces that need to be packed
initialise maxPiecesInDimension to the number of pieces that fit in the length, width and height of the
ULD
if at least one piece fits in the ULD then

while numberLeftPieces > 0 do
if enough pieces are available to fill a complete ULD then

set the three dimensions of the new piece to maxPiecesInDimension ·Dimension.
add number of packed pieces to the numberPackedPieces
remove number of packed pieces from the leftPieces

else if enough pieces are available to fill the length and height dimension of the ULD then
set the length and height of the new piece to maxPiecesInDimension ·Dimension
set the width to the width of one piece
add number of packed pieces to the numberPackedPieces
remove number of packed pieces from the leftPieces

else
if enough pieces are available to fill the length dimension of the ULD then

set the length of the new piece to maxPiecesInDimension ·Dimension
set the width and height to the width and height of one piece
add the number of packed pieces to the numberPackedPieces
substract the number of packed pieces from the leftPieces

else
set the length of the new piece to numberLeftPieces ·Dimension
set the width and height to the width and height of one piece
add the number of packed pieces from the numberPackedPieces
substract the number of packed pieces from the leftPieces

end if
end if

end while
end if

Next, flight details are accounted for before running the loading heuristic. For every flight, the amount
of must-fly cargo is forecasted using the model as discussed in Section 3 of Chapter 4. This forecast outputs
the amount of must-fly cargo in m3 and the volume of the bookings labeled as must-fly is subtracted from
the forecast, this is called the remaining must-fly volume. Next, the remaining must-fly volume as well as
the volume of the bookings are subtracted from the capacity. When a positive capacity remains, the heuristic
continues.

This concludes the data-processing step, which is the intermediate step between the forecasting block
and the ULD loading heuristics block. A slightly modified version of the heuristic 1D2D Layers, as discussed
in Section 3.3, is used. The basis of the heuristic is the same, however when there are no more pieces to
pack in an ULD in the 2DBPP, but there is some space left in the ULD, BRUNO attempts to add the offloaded
pieces generated by the 2DBPP from previous ULDs (if any). Furthermore, in some cases the heuristic might
output a solution where some pieces are offloaded and some ULDs are left empty. In this case, a reduced-size
2DBPP is solved again with the empty ULDs and offloaded pieces only. This framework provides results with
good performances, while keeping the computational time within boundaries compatible with a real-time
implementation. Results are discussed in Chapter 7.
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Validation

This Chapter discusses the validation of BRUNO and the applicability of the model to a real case. First, a
sensitivity analysis is performed in Section 1. Next, a case study is discussed in Section 2.

1. Sensitivity Analysis
This Section performs a sensitivity analysis for BRUNO. For the sensitivity analysis, BRUNO is run three times
for every flight. In the first run the shipment contribution (SCb) is maximised, in the next run the volume
is maximised and in the third run the commercial priority (CP) is minimised. The corresponding objective
functions can be found in Equations 7.1 until 7.3 and results can be found in Table 7.1. This table shows the
load factor of the pieces, this is the percentage of the total pieces weight that is loaded.

From the table, it can be concluded that when the volume is maximised the best load factor is achieved,
as intuition would suggest. This also makes sense since volume and weight are dependent while weight is
independent from both SCb and CP. SCb can be CP dependent. For some bookings, customers pay more
(higher SCb) in order to increases the CP, however on the other side perishables, for example, have a high CP
due to their perishability but the SCb is generally low for these products. Therefore, the relation between the
SCb and CP is different for different products.

The next take-away that can be inferred from Table 7.1 is that when the total shipment volume consumes
less than 50 % of the flight capacity, the objective function does not really change the solution in terms of
load factor. This is the case for flights 003, 006 and 009. In general, all pieces are loaded. In other words,
for cases where capacity is severely under-utilized, all cost functions guarantee all shipments will be loaded,
although configurations might change depending on the cost function. Pieces may have a different position
in the same ULD, they might be loaded in different ULDs or may be offloaded. Depending on the objective
function a piece with a large volume and a high CP is loaded first when maximising volume while it is loaded
last when the CP is minimised.

On the other hand, it is concluded that the objective function influences the solution more significantly
when the overall volume gets closer to maximum capacity. Therefore, it is very important to choose the right
objective function depending on the specific needs of the airline.

max  = ∑
i∈P

∑
j∈U

SC bi ·pi j −10 ·SC bi · zi (7.1)

max  = ∑
i∈P

∑
j∈U

Vi ·pi j −10 ·Vi · zi (7.2)

min  = ∑
i∈P

∑
j∈U

C Pi ·pi j + [4 ·max(C P )−C Pi ] · zi (7.3)
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Table 7.1: Load factor of the pieces for different costs functions for different flights.

Costs Function
Nbr: ULDs: Pieces: max SCb: max Volume: min CP:
001 14 27 74 82 70
002 12 42 59 93 63
003 9 21 100 100 93
004 13 33 62 87 73
005 9 57 51 76 60
006 10 52 100 100 96
007 11 29 61 53 61
008 8 26 84 72 84
009 13 24 100 100 100
010 14 28 46 72 60
011 11 62 86 68 78
012 13 74 59 73 45
013 12 49 82 85 73
014 13 101 53 56 56
015 14 22 99 99 99
016 11 23 88 88 88
017 12 73 73 74 57
018 12 78 49 70 71

2. Case Study
This Section discusses the case study. For this case study, we simulate a real process where anytime a new
booking is received, flight analysts need to make a decision and accept or decline the incoming booking.
Using the chronologically ordered sequence of booking for a real flight, every time a booking is received,
BRUNO is run to check if the booking fits or not. If a new booking and all the previously accepted pieces are
loaded, the new booking is accepted. When one of the accepted bookings or the new booking is offloaded by
BRUNO, the new booking is declined. The underlying assumption is that the introduction of a new booking
should guarantee that previous bookings are not canceled.

All details about the specific flight can be found in Table 7.2. The flight considered is performed with a
Boeing 747-400 aircraft equipped with three CTRs and four LDPs. The must-fly forecast outputs that 26.40
m3 of must-fly cargo will be loaded. On the real flight, 24.03 m3 of must-fly cargo was loaded, so the forecast
provides an accurate estimate.

All the bookings can be found in Table 7.3. 44 bookings were received for this flight. The first column, Nbr,
shows the number of the booking in order of arrival. So, booking 00 was booked first, next booking 01, etc.
Sometimes a booking consists of more pieces. See, as example, bookings 00, 09, 13, 14 and 43. In these cases
a suffix is added to differentiate the different pieces for the same bookings. Bookings 02 and 41 consist of two
pieces with the same properties. This is indicated in the column pieces. The column Must-Fly indicates if the
piece is flagged must-fly or not. Columns Length, Height and Width indicate respectively the length, height
and width of the piece(s) and column Forecasted Dims indicates if these are forecasted or not.

Table 7.2: Flight details for the case study.

Must-Fly Forecast
Aircraft Type [−]: CTR [−]: LDP [−]: MDP [−]: Volume [m3]: Weight [kg ]:

744 3 4 0 26.4 3632
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Table 7.3: Booking details for the case study. L, H and W represent the dimensions of the piece (length, height and width respectively).

Nbr [−]: Pieces [−]: Origin [−]: Must-Fly [−]: Forecasted Dims [−]: L [cm]: H [cm]: W [cm]:
00.1 1 AMS True True 305 47 56
00.2 1 AMS True True 61 47 56

01 1 AMS True True 311 196 209
02 2 AMS True False 300 120 228
03 1 SYD False False 155 58 156
04 1 AMS True True 179 191 127
05 1 BOG True False 113 29 120
06 1 AMS True True 182 177 152
07 1 AMS True True 193 56 71
08 1 AMS True False 195 40 50

09.1 1 BOM False False 252 37 28
09.2 1 BOM False False 222 27 37

10 1 BKK False True 66 38 47
11 1 AMS True True 133 108 64
12 1 AMS True True 67 78 62

13.1 1 AMS True True 270 134 177
13.2 1 AMS True True 270 67 59
13.3 1 AMS True True 90 67 59
14.1 1 AMS True True 270 134 177
14.2 1 AMS True True 270 67 59
14.3 1 AMS True True 90 67 59

15 1 AMS False True 234 16 14
16 1 VCE False False 53 16 40
17 1 AMS False False 60 25 40
18 1 MUC False False 228 90 120
19 1 LHR False False 120 122 80
20 1 LBA False False 120 82 80
21 1 LOS False True 110 180 74
22 1 LNZ False True 228 25 33
23 1 BUD False False 119 114 90
24 1 HEL False False 120 95 80
25 1 MXP True False 45 140 45
26 1 BOM True False 66 28 15
27 1 YUL False True 207 141 132
28 1 AMS True True 286 87 198
29 1 AMS True True 290 176 186
30 1 AMS True True 322 193 222
31 1 BRU False False 42 43 41
32 1 VCE False False 77 34 53
33 1 IST True False 52 49 56
34 1 AMS True True 147 27 28
35 1 EIN False False 82 66 80
36 1 DXB False False 157 38 45
37 1 BCN True False 123 26 31
38 1 EIN False False 112 76 110
39 1 AMS True True 69 50 52
40 1 AMS True True 160 122 123
41 2 AMS True True 219 116 131
42 1 AMS True True 173 134 126

43.1 1 DXB True False 276 34 54
43.2 1 DXB True False 184 34 54
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Table 7.4: Results for the case study.

Nbr: 00.1 00.2 01 02 03 04 05 06 07 08 09.1 09.2 10
AFKLMP: True True True True True True True False False True True True True

BRUNO: True True False False True True True True False False False False True
Risk: 2.29 2.29 - - 2.29 2.29 2.29 50.61 - - - - 2.29
Nbr: 11 12 13.1 13.2 13.3 14.1 14.2 14.3 15 16 17 18 19

AFKLMP: False False False False False False False False False False True False False
BRUNO: True True False False False False False False False True True False True

Risk: 2.29 46.64 - - - - - - - 74.33 46.67 - 74.33
Nbr: 20 21 22 23 24 25 26 27 28 29 30 31 32

AFKLMP: True False True False False False True False True False False True False
BRUNO: True True False True False False False True False False False False True

Risk: 74.33 54.69 - 2.29 - - - 52.22 - - - - 30.43
Nbr: 33 34 35 36 37 38 39 40 41 42 43.1 43.2

AFKLMP: True True True True False True False False False False True True
BRUNO: False False False False False False False False False False False False

Risk: - - - - - - - - - - - -

Table 7.4 shows the results of the case-study. Label Nbr represents the number of the booking and this one
corresponds with the numbers used in Table 7.3. AFKLMP shows if the booking was loaded on the flight by
AFKLMP or not. When it was offloaded, it means that a booking was delayed, did not fit, was rebooked, or was
not loaded as initially agreed for a different reason. However, for this case study it is assumed that the booking
is declined because it did not fit. Note that, in real operations, many hidden causes might prevent a shipment
from being loaded (e.g., lack of personnel) that are not modeled in the framework we hereby present. The
BRUNO row indicates if the booking is accepted by BRUNO or not. The last row, Risk, shows the risk when
a booking is accepted by BRUNO, as discussed in 4. The final solution is visually represented in Figures 7.1
until 7.12.

When analysing Table 7.4 it can be concluded that BRUNO loaded 21.24 m3 on the flight and AFKLMP
loaded 28.52 m3. This is a difference of 7.28 m3. When analysing the bookings, bookings 00, 03, 04, 05, 06,
10, 17, and 20 are loaded by both AFKLMP and BRUNO, bookings 01, 02, 08, 22, 26, 28, 31, 33, 34, 35, 36,
38 and 43 are loaded by AFKLMP and are offloaded by BRUNO, while bookings 11, 12, 16, 19, 21, 23, 27 and
32 are offloaded by AFKLMP and are loaded by BRUNO. All other bookings are offloaded by both AFKLMP
and BRUNO. A more in-depth analysis will be performed on bookings that are loaded by AFKLMP and are
offloaded by BRUNO. Bookings 01 and 02 are offloaded because their dimensions exceed the dimensions of
the largest ULD. In real operations, shipments will be loaded anyway if dimensions only slightly exceed the
ULD dimensions. As example, shipments can be slightly tilted as long as this does not prevent stability, while
in BRUNO shipments have edges always aligned with the ULD sides. Furthermore, some space exist between
ULD positions. LDPs and MDPs are just a plate and do not have vertical walls. Therefore, in operations
pieces can slightly overlap LDPs and MDPs. These features are not implemented in BRUNO, therefore the
pieces are offloaded. Booking 01 has forecasted dimensions, however its real dimensions are not available
in the data, therefore it is unknown whether the forecast is highly inaccurate or not. Booking 08 is offloaded
in BRUNO because it is loaded in a CTR by the 1DBPP without any other bookings. Its length equals 195 cm
and this dimensions only fits in the length direction (196 cm) of the CTR. However due to the cut and the
lack of another piece to support the second vertex, it is offloaded. In real operations, tilting the shipment
might suffice to guarantee the correct loading of the shipment. Booking 22 is loaded in the 1DBPP in the
same ULD as booking 06. Due to their dimensions they need to be stacked on top of each other, however also
due to their dimensions only one vertical vertex can be supported. BRUNO only loads a booking when both
vertical vertices are supported by the ground, a cut or another shipment, therefore booking 06 is offloaded.
Since booking 06 is already accepted, booking 22 is declined. When trying to load booking 26, it is loaded in
a CTR. This results in another booking loaded in a CTR first, now being loaded on a LDP which results in no
more space for booking 11 on a LDP. Therefore booking 11 gets offloaded by BRUNO, but since it was already
accepted, booking 26 is declined. Booking 28, 31, 33, 34, 35, 36, 38 and 43 are offloaded for the same reasons.
They are either offloaded by BRUNO, or another already accepted piece gets offloaded. This last one might
happen since CP is minimised. When the new piece has a lower CP than some other pieces, it might happen
that an already accepted piece with higher CP gets offloaded.
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Figures 7.1 until 7.12 show the final results of BRUNO. From those figures it can be concluded that ULDs 0,
2, 3 and 5 are almost full, while ULDs 1 and 4 have lots of space for other bookings, for example bookings 26,
31, 33, 35 and 39. These are offloaded due to the assignment strategy of pieces to ULDs by the 1DBPP. They
get offloaded by the 2DBPP and the heuristic does not find an opportunity to load them somewhere else.
A recommendation would be to improve the quality of the 1DBPP, by preferring small pieces to be loaded
in CTRs for example, or improve the 2DBPP block, where empty gaps within ULDs are filled with offloaded
pieces, if possible.
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Figure 7.1: ULD 0 - Layer 0. Figure 7.2: ULD 1 - Layer 0. Figure 7.3: ULD 2 - Layer 0.

Figure 7.4: ULD 0 - Side. Figure 7.5: ULD 1 - Side. Figure 7.6: ULD 2 - Side.

Figure 7.7: ULD 3 - Layer 0. Figure 7.8: ULD 4 - Layer 0. Figure 7.9: ULD 5 - Layer 0.

Figure 7.10: ULD 3 - Side. Figure 7.11: ULD 4 - Side. Figure 7.12: ULD 5 - Side.
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Conclusions & Recommendations

This thesis discusses a framework whose goal is to assist cargo airlines in their cargo acceptance and loading
strategy. The model forecasts unknowns of both each new incoming booking and of flight details and com-
bines this information with a bin packing heuristic. Given the current list of accepted bookings, for every
new request it is assessed whether the incoming booking can be loaded in the aircraft without preventing the
already accepted bookings from being offloaded. In addition, given dimensions of most bookings are fore-
casted and are not known a priori, a risk index is provided which estimates what are the chances the loading
strategy will not be implementable because of an underestimation of booking dimensions.

For the forecasting part a random forest (RF) is used. This is an ensemble learning method used for both
classification and regression. Since, in this context, dimensions are predicted, a regression model is chosen.
A particular focus was put on the choice of the dataset size and the number of decision trees for the model.
To determine the more appropriate sizes, a trade-off between computational time and accuracy of the results
was chosen. A better accuracy is obtained with more data and the same number of decision trees. Never-
theless, processing a too large dataset will lead the RF model to encounter computer memory issues. As a
consequence, only five months of data are used to train the model. Since more data led to computer memory
issues, it was not possible to train the RF with more data. It is expected that the results improve when at least
one year of data is used to train the model, however the results obtained with the current dataset provided
results considered acceptable by the airline. On the other hand, accuracy keeps improving until 100 decision
trees. An increase in the number of decision trees would only cause an increase in the computational time
without a tangible increase in the performance. As a consequence, the model was trained setting the number
of decision trees to 100.

This RF model is initially used to forecast dimensions of bookings. The dimensions are predicted with an
mean error of 9.89 cm which results in an accuracy of 84.29 %. With an importance of 0.68, BookingOrigin is
the most important feature. This means that cargoes from different origins will generally be characterized by
considerably different dimensions, probably due to the different commodity type. This also suggests a strong
orientation of the air cargo industry towards specialized trade flows according to the specific airport origin-
destination pairs (e.g., flower trade from Kenya to the Netherlands). Other features that influence the results
are AgentURN, BookingDestination, CommodityCode, PieceVolume and ProductCode. The next forecast is
the volume loss. Volume loss is the unused space in an ULD. Airlines use this factor to increase the volume of
pieces with unknown dimensions. This increase in size is a safety factor to estimate the shipment dimensions,
to increase the chances shipments will fit in the ULD. Since the accuracy of the dimensions forecast is known,
it would be strange to use something else as volume loss than the accuracy of the dimension prediction. Since
volume loss is used to increase the volume of a piece, it is more accurate to increase this using the accuracy
of the dimensions forecast. The accuracy of the dimensions model results in a volume loss of 100−84.29 =
15.71 ≈ 16 %. So, the volume is increased with a factor of 1.16. Since BookingOrigin is the most important
feature, the volume loss is determined per booking origin. This gives the airline a more accurate estimate for
determining the volume loss. Forecasted shipment dimensions, being the outcome of a prediction, come
with an error. This leads to a certain risk, since packages might be larger than predicted and this might
lead to loading strategies that do not comply with the ULD dimensions. To find the risk, a distribution of
the dimensions and their probability is needed. The test dataset contains the errors of the prediction for
142,493 pieces. From all these errors, a probability distribution can be found. The errors follow a distribution

35



36

that strongly resembles a normal distribution. This made it possible to define an easy, yet intuitive way to
compute a risk per dimension (per ULD) that the designed loading strategy would not fit the ULD along the
specified dimension. The method identifies the critical shipments, sums their distributions and computes
the area of the distribution that exceeds the ULD dimension along that direction. The area is then translated
into a risk. This risk is very useful for airliners, since it provides a tangible indicator to decide whether to
accept or decline a booking.

The second forecast forecasts the amount of must-fly cargo that is expected to arrive for a specific flight.
Must-fly cargo cannot be offloaded and therefore it is useful for an airline to forecast how much must-fly cargo
is expected before every flight. Using the RF model discussed before, the must-fly cargo can be forecasted
with an error of 11 m3. The most important features are AircraftSubType and FlightNumber. This can be
explained by the fact that different aircraft types have different cargo capacities, which in turn are reflected
in different must-fly capacities. In addition, the same flight number is generally associated with the same
origin-destination airport pair. Consistently with what described for dimensions prediction, flights serving
the same airport pair at different times might have higher chances to display similar characteristics. Features
Arrival, CapacityVolume, CapacityWeight and WeekDay also influence the final result. The accuracies are
determined per aircraft sub-type as well. An outcome of this analysis is that must-fly cargo on aircraft used
by AFKLMP can be predicted more accurately, while the must-fly cargo on the partner aircraft is less accurate.
This is due to a higher accuracy of the dataset provided by AFKLMP. For future research it is recommended to
add Month as a feature since must-fly cargo is very seasonal. Furthermore, it is advised to create a risk profile,
like for the dimensions forecast, to have a better overview of the risk of your forecast.

The last forecast is the accuracy of the flight details. This is relevant since capacity is sold. An accurate
estimate prevents the following two cases from happening. (i) Capacity is oversold, which results in pieces
being offloaded and thus a lower customer satisfaction. (ii) Capacity is undersold, which results in a lower
revenue. The accuracy is forecasted with an accuracy of 93.49 %. This is very accurate and can be used by the
airline to decide to sell more or less capacity.

To determine if a booking fits into the aircraft, a bin packing problem (BPP) is solved. First a 1DBPP
is researched. Generally speaking, for problems aiming at determining optimal loading configurations, the
1DBPP focuses on volume or weight, rather than a physical dimension (e.g., length) of objects to be loaded.
In our context, one-dimensional means that the volume of the pieces is used to assign each piece to an ULD,
without determining the exact position in the ULD. It turns out that the 1DBPP produces quick results which
results in good load factors. However, the real problem is 3D, therefore the 2DBPP is investigated as well. The
2DBPP considers the length and height of the pieces and determines the exact position of each piece in a 2D-
space. A full 2DBPP turned out to be computationally demanding, therefore a full 3DBPP is not investigated
and instead heuristics are investigated. A heuristic called 1D2D Layers, performed the best. This heuristic
first solves the 1DBPP. Every piece is now assigned to a ULD or offloaded. It solves the 2DBPP for the first
ULD considering the front side, i.e., the L-H two-dimensional space. Some pieces are loaded into this ULD
and some are offloaded. Given the current configuration, the ULD is now considered along the W-direction.
Behind the shipment with the maximum width among the ones loaded, the ULD is completely empty. This
means that the same ULD with the same L-H configuration, but a reduced width (the original width minus
the maximum width among the shipments loaded), can still be considered to load new shipments. When at
least one of the offloaded pieces fits behind the loaded pieces, the ULD is split along the W-dimension into
two layers. The first layer width equals the maximum width of all the loaded pieces (max(wp,l oaded )) while
the width of the new layer equals wu −max(wp,loaded ). The 2DBPP is solved for the second layer considering
its width and the offloaded pieces. This process continues until all pieces are loaded or until none of the
offloaded pieces fits in the remaining space of the ULD. When this is the case, the procedure moves on to the
second ULD and the process is repeated. This will be done for all ULDs, one by one, until no ULDs or pieces
are left. This heuristic produces good load factor within an acceptable computational time.

The final model is called BRUNO, which stands for Better Revenue Using New Optimiser. BRUNO fore-
casts dimensions, predicts the amount of must-fly cargo, solves the 1D2D Layers heuristic and calculates the
risk of the loading strategy. A comparison between results (expressed as loaded volume in m3) of BRUNO
and results provided by AFKLMP showed that BRUNO is generally comparable in terms of loaded volume
with what happened in reality. In some cases the suggested loaded volume was higher than the one actually
loaded, while in some others BRUNO underperformed.

Along with the fact that BRUNO never solves a fully 3DBPP, which would be the natural environment for
such a problem, some additional causes were identified that make real case operations different with respect
to what BRUNO models. Sometimes one large piece is loaded in a container (CTR), and due to the cut in
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the CTR it cannot be placed on the ground. For this reason, it gets offloaded in the 2DBPP, since the 2DBPP
model wants both vertical vertices to be supported. This can be prevented by making a small adaptation to
the 1DBPP, where these pieces are not assigned to CTRs. As an alternative, the 2DBPP needs to be adapted in
a way that only one vertical vertex needs support or just the center of gravity of the piece needs support (or
the piece can be slightly tilted without having the sides perfectly aligned with the ULD sides). Furthermore, it
is recommended to fill up empty spaces in the ULDs, after the heuristic is solved, with a post-processing step
that checks if offloaded pieces might fit in the gaps left between layers.

Airliners can use BRUNO starting from the booking phase until the moment of departure. This model
provides them with insights into the loading strategy of the aircraft, solves the unknowns of both the booking
and the flight and provides a risk index that can help them decide whether to accept or decline bookings.
Every time something is added to the flight, which might be a new booking or a booking which was offloaded
from a previous flight, BRUNO can be run to help the airline decide to accept or decline the booking. In its
current form, the heuristic approach is fast enough for real-time or quasi real-time applications.



A
Table A.1 contains the parameters (both mean and StD) per booking origin. It contains only booking origins
with at least 100 datapoints available, other booking origins should use booking origin ALL. The parameters
for ALL represent the normal distribution for the complete dataset.

Table A.1: Parameters for the normal distributions per booking origin.

Booking Length Height Width Booking Length Height Width
Origin Mean StD Mean StD Mean StD Origin Mean StD Mean StD Mean StD

ALL 1.21 6.34 -0.29 4.15 0.17 3.79 LCJ 5.19 5.63 -4.36 4.63 1.01 3.97
ABZ 9.64 7.97 -4.85 4.35 2.1 4.12 LHR 1.17 7 0.98 4.49 -0.31 3.87

AMS 0.72 6.15 0.07 4.05 0.29 3.73 LIL -4.5 6.11 0.86 4.11 3.56 5.76
ARN -6.67 7.93 0.68 4.1 0.23 3.79 LIM -1.62 4.1 0.54 3.09 0.09 2.59
ATH 3.71 5.42 -1.48 3.63 -0.38 3.34 LIS 0.57 7.51 -0.87 4 0.77 4.27
ATL -0.84 6.09 -1.5 4.38 2.24 4.3 LNZ 1.04 7.12 -0.24 4.23 -0.38 3.56

AUH 9.18 7.14 -2.39 3.91 -0.78 3.73 LOS -2.97 4.48 0.1 3.7 0.58 3.13
BAH 2.6 5.78 -3.67 4.64 2.4 4.47 LYS 1.96 6.5 0.01 4.16 -0.81 3.71
BCN 2.14 6.31 -0.11 4.23 -0.03 3.61 MAA -4.35 4.82 -1.47 3.53 2.27 3.25
BER -2.69 6.3 -0.54 4.06 -1.54 3.59 MAD -0.77 6.72 1.02 4.59 -0.61 3.91
BEY 4.54 6.63 -0.34 4.13 0.49 4.21 MAN -2.9 6.72 0.98 4.26 0.66 3.57
BIO 9.03 8.7 -2.84 4.77 -2.17 4.3 MCT -2.62 5.31 -0.33 3.53 0.96 3.24
BKK -2.51 4.67 -0.03 3.47 2.57 3.94 MEX 9.75 8.79 -1.9 5.45 -1.34 4.65
BLL -0.12 6.2 0.71 4.1 -0.02 3.53 MIA 2.73 7.27 -1.27 4.5 -0.98 4.24
BLR -1.9 5.06 -0.85 3.68 1.35 3.33 MMX -1.46 7.2 0.08 3.78 -0.07 3.47

BOD 4.62 6.62 -1.51 4.03 0.19 3.64 MNL -3.78 5.63 1.97 2.96 -1.01 2.82
BOG 6.42 6.77 -1.93 3.41 -0.71 3.39 MRS 0.16 5.81 -0.26 4.05 0.05 3.54
BOM -0.85 5.19 -0.73 3.69 0.41 3.28 MST -0.95 5.07 1.42 3.81 -0.54 3.55
BQY 0.56 7.03 0.37 4.12 -0.09 3.84 MTY 8.05 6.85 -5.24 4.15 1.27 4.5
BRE -6.66 6.17 1.44 3.9 0.2 3.52 MUC 2.97 6.83 -0.52 4.19 -0.24 3.63
BRU 1.99 6.41 -0.36 4.17 -0.26 3.61 MXP 2.97 6.15 -0.15 3.89 -0.43 3.83
BSL -0.21 5.11 0.43 3.35 -0.24 2.89 NCE -1.65 5.33 0.97 3.77 0.18 3.42

BUD -2.83 5.28 1.5 3.83 0.05 3.09 NGO 1.62 4.25 -0.65 3.49 0.25 3.26
CAI -4.21 7.64 1.37 4.24 -0.55 3.44 NOU 5.31 5.94 0.39 3.22 -1.07 3.15

CDG 1.56 5.83 -0.33 4.08 0.35 3.6 NRT 1.34 6.04 -1.03 4.18 1.21 3.92
CGK 1.21 6 -0.08 4.17 0.8 3.98 NTE -6.88 5.74 5.55 4.84 -1.3 3.48
CGN 2.72 6.43 -0.3 4.23 -0.43 3.71 NUE 1.58 5.87 0.72 4.4 -1.08 3.63
CMN 0.21 4.67 -1.74 3.36 0.67 3.18 OPO 4.77 7.74 -1.06 4.78 -1.73 4.09
CPH -1.42 4.97 0.85 3.66 -0.44 3.02 ORD 3.37 7.94 1.35 5.52 1.81 5.06
CPT 12.96 7.51 -1.37 4.35 -1.64 3.97 ORY 0.83 4.87 -0.34 3.04 -0.73 2.72
CTU 0.45 4.54 -3.16 3.61 4.58 3.81 OSL 4.46 6.7 -0.37 3.84 -1.03 3.3

Continued on next page
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Table A.1 – continued from previous page
Booking Length Height Width Booking Length Height Width

Origin Mean StD Mean StD Mean StD Origin Mean StD Mean StD Mean StD
DEL 1.72 6.44 -0.22 3.37 0.07 3.36 OTP 1.31 6.11 -0.87 4.35 -0.72 3.68

DFW -2.84 6 0.76 3.66 1.64 3.66 PEK -1.06 5.42 -0.56 4.15 1.44 3.67
DMM 8.06 7.45 -1.68 4.21 -1.63 3.74 PEN 1.05 5.3 1.32 3.97 -1.23 3.25
DUB -1.7 5.53 3.55 5.17 -1.04 3.29 PER -1.68 7.05 0.17 3.83 3.5 4.39
DUS 1.78 6.1 -0.13 3.85 -0.26 3.34 PRG 1.75 6.23 0.1 4.21 -1.16 3.61

DWC 5.65 6.2 -2.36 4.02 0.25 3.91 PTY -14.28 4.81 3.84 3.73 7.61 4.02
DXB -0.13 6.05 0.21 4.21 0.45 4 PVG -3.04 4.8 -2.63 4 4.92 3.98
EIN 0.83 6.28 -1.42 4.28 0.46 3.43 RTM -1.87 5.91 0.87 3.77 -0.08 3.39
EZE -0.77 6.97 0.58 4.31 1.45 4.01 RUH -3.63 4.94 3.03 3.7 -1.43 3.47
FCO -0.48 5.43 1.19 3.29 -0.43 3.52 SCL -1.79 4.83 -2.18 3.96 3.88 4.12
FLR 7.66 7.24 -0.38 4.3 -0.7 4.6 SFO -2.36 5.23 0.36 4.41 0.85 3.87

FMO 4.51 6.31 -1.3 4.06 -0.9 3.48 SIN 0.21 4.98 -0.01 3.71 0.19 3.23
FRA 0.18 5.9 0.16 4.09 -0.21 3.45 SJO -2.15 4.04 0.62 3.21 0.65 3.07
GDL -4.88 5.09 0.69 3.94 3.44 3.44 SJU 14.08 4.13 2.61 4.11 4.64 3.21
GIG 0.08 4.71 1.28 3.5 0.2 3.2 SOF 1.28 6.11 0.62 3.99 -1.49 3.15
GLA 2.91 6.53 -0.55 4.34 -0.21 3.55 STR 1.88 5.86 0.13 4.13 -0.55 3.59
GOA -1.26 5.44 1.32 3.63 -1.43 3.3 SVG 6.85 6.28 -4.09 3.67 1.49 3.44
GOT 3.55 5.89 -0.65 4.27 -0.18 3.31 SVO 4.09 5.26 -2.16 3.43 0.38 3.22
GRU 2.21 5.2 -1.97 4.04 1.07 3.63 SWK 3.09 7.38 -0.29 4.48 0.67 4.24
GRZ 2.47 6.83 -0.58 4.23 -1.06 3.9 SXB -8.95 6.7 0.83 4.23 0.62 3.47
GUA -3.88 2.84 0.58 2.81 1.09 2.32 TLS 0.71 6.73 -0.74 4 0.76 3.8
GVA -0.26 4.56 0.45 3.41 -0.63 2.79 TLV -0.97 4.08 -0.74 3.08 2.01 3.28
HAJ 2.05 5.78 -0.57 3.52 -0.26 3.03 TPE -1.01 4.42 -0.91 3.63 1.78 3.67

HAM 1.62 6.15 0.12 3.79 -0.39 3.45 TRN 0.79 5.61 2.95 4.4 -2.2 3.87
HEL 4.4 6.17 -1.43 3.56 -0.33 3.22 TUN -1.4 4.78 -0.07 3.11 -0.57 3.02

HOH -0.38 5.55 1.61 3.59 -1.57 2.94 TXL -0.1 5.53 2.17 4.34 -1.55 3.5
HYD -6.67 3.25 0.85 2.96 3.45 2.96 VCE 2.37 6.33 -0.06 4.21 -1.29 3.71
IAD 2.08 6.09 -0.05 3.83 1.36 4.33 VCP 12.27 7.27 -2.32 4.62 -1.66 4.81
IAH -2.33 6.88 -3.4 4.47 -1.21 4.35 VIE -2.81 5.96 0.2 4.21 0.25 3.74
ICN 0.51 5.32 -0.17 3.66 0.62 3.67 VRN 3.27 8.36 1.78 5.01 -1.49 4.27
IST 2.88 7.24 -2.31 4.73 5.34 5.26 WAW 3.71 6.79 -0.36 4.18 0.18 3.43
JFK -0.03 6.04 -0.01 4.34 -0.65 3.91 YEG 8.34 6.46 -5.44 4.03 1.28 3.92
JNB 3.02 7.05 -1.15 4.12 -0.19 4.05 YUL 2.97 6.86 -1.79 4.52 0.27 4.1
KIX 3.35 5.91 -2.65 3.82 2.08 3.98 YVR -0.65 5.49 -1.24 4 1.64 3.78

KUL 0.02 5.01 1.04 4.07 -0.56 3.6 YYC -3.21 6.59 -1.29 4.1 3.44 4.27
KWI 8.61 7.02 -2.29 4.26 -0.85 3.86 YYZ 0.89 6.45 -0.21 4.58 0.92 3.81
LAX 2.85 6.84 -0.76 4.23 0.95 3.95 ZRH 7.47 6.84 -2.87 4.59 0.47 3.77
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