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Abstract: Low-weight codes have been proposed for efficiently synthesizing deoxyribonucleic acid
(DNA) for massive data storage, where a multiple of DNA strands are synthesized in parallel. We
report on the redundancy and information rate of maxentropic low-weight codes for asymptotically
large codeword length. We compare the performance of low-complexity nibble replacement (NR)
codes, which are designed to minimize the synthesis time, with the performance of maxentropic
low-weight codes. Finally, the asymptotic redundancy and information rate of codes with a runlength
limitation are investigated.

Keywords: code design; DNA synthesis; low-weight code; maximum runlength constraint; nibble
replacement (NR) code

1. Introduction

The pioneering experiments conducted by Church et al. [1] demonstrated the feasibility
to store data in synthetic deoxyribonucleic acid (DNA), promising a huge data capacity,
nil dissipation during storage, and very long-term stability. Natural DNA consists of four
types of nucleotides: adenine (‘A’), cytosine (‘C’), guanine (‘G’), and thymine (‘T’). Codes
are used for translating user data into sequences of digits in the quaternary alphabet {A, C,
G, T} that are suitable for the synthesis of DNA strands. Prior art studies have focused on
error-correcting codes for restoring various kinds of defects in DNA [2–4] or constrained
codes that avoid the generation of vexatious DNA sequences that are prone to error; see,
for example, [5–8].

The synthesis of DNA strands is a relative expensive part of the storage chain. In array-
based synthesis, multiple DNA strands are synthesized in parallel [9] by adding in each cy-
cle a single nucleotide to a subset of the DNA strands. Lenz et al. [10], Makarychev et al. [11],
Elishco and Huleihel [12], Immink et al. [13], and Nguyen et al. [14] presented and ana-
lyzed coding techniques for efficiently synthesizing multiple parallel strands so that overall
synthesis time can be shortened. Of specific interest in minimizing the synthesis time are
sets (codes) of words of low weight, which are dealt with in the next subsection.

1.1. Low-Weight Codes

Although our main interest is in the quaternary DNA case, we will consider q-ary
sequences for generality. For clerical convenience, we assume that the alphabet used is
{1, . . . , q}, where q > 1 is a positive integer. For the DNA case, we represent the quaternary
alphabet {A, C, G, T} by {1, . . . , 4}. Let a = (a1, . . . , an), ai ∈ {1, . . . , q}, be a sequence of n
symbols, called word of length n. The symbol sum

w(a) =
n

∑
i=1

ai (1)
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is termed the weight of the word a. Clearly, n ≤ w(a) ≤ qn. A constant-weight code of length
n, denoted by Sn(w), consists of all words of weight w, that is,

Sn(w) = {a ∈ {1, . . . , q}n : w(a) = w}. (2)

The size of Sn(w), denoted by |Sn(w)|, is found as the coefficient of zw of the generating
function [15] (

q

∑
i=1

zi

)n

. (3)

For synthesizing multiple words into physical sequences in parallel, we assume the
sequences are generated by adding symbols in cycles. In each cycle in the synthesis process,
one particular symbol from {1, . . . , q} is added to the sequences of the words waiting for
that symbol. Throughout this paper, we assume the symbol adding in the subsequent
cycles is in the order 1, 2, . . . , q, 1, 2, . . . , q, 1, 2, . . ., which has been shown to be optimal;
see [10,12]. In order to allow any word from {1, . . . , q}n to be synthesized, qn cycles are
needed. By restricting the set of words used for representing data, the number of required
synthesis cycles can be reduced, as explained next.

Let the low-weight code ∪t
w=nSn(w) be the union of the sets of words of weight

w ≤ t, where the integer t, n ≤ t ≤ qn denotes the maximum weight of the codewords.
As explained in [10,13], low-weight codewords y can be bijectively mapped to words
x = (x1, . . . , xn), xi ∈ {1, . . . , q}, by

xi = xi−1 + yi mod q, (4)

with x0 = q, such that the words x have a synthesis time of at most t cycles. Let the
low-weight code be denoted as Yn(γ), where γ = t/n, and the associated set of words x as
Xn(γ). From the synthesis perspective, we are interested in properties of the codes Xn(γ),
but because of the bijective mapping we can also study the low-weight codes Yn(γ).

1.2. Redundancy and Information Rate

The redundancy (in bits per symbol) of a low-weight code Yn(γ) is defined by

ρn(γ) = log2(q)− Rn(γ), (5)

where
Rn(γ) =

1
n

log2 |Yn(γ)|. (6)

Lenz et al. [10] also introduced the information rate (in bits per cycle) of a low-weight code
Yn(γ) as

Wn(γ) =
1

nγ
log2 |Yn(w)| = 1

γ
Rn(γ). (7)

Of course, ρn(γ) and Wn(γ) are also the redundancy and information rate, respectively,
of Xn(γ). Note that Wn(γ) is a measure for the synthesis efficiency of the codewords of
Xn(γ).

Using (3), we can straightforwardly compute ρn(γ) and Wn(γ) versus γ. Figures 1 and 2
show the results for n = 16, 32, 64, and q = 4. The curves suggest that ρn(γ) and Wn(γ)
have a lower bound and upper bound, respectively, for asymptotic large n. A major goal of
this paper is to determine these bounds.
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Figure 1. Redundancy ρn(γ) versus γ for n = 16, 32, 64, and q = 4.
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Figure 2. Information rate Wn(γ) versus γ for n = 16, 32, 64, and q = 4.

1.3. Contributions and Overview of the Paper

Besides introducing the framework as just described, Lenz et al. [10] also conducted a
brief performance analysis of DNA synthesis codes, mainly based on tools from the theory
of cost-constrained channels. Constructions of efficient DNA synthesis codes were further
explored in [13]. Here, in this paper, Section 2 deals with an extensive asymptotic analysis,
with a focus on the trade-off between redundancy and information rate. The results are
derived using Jaynes’ maximum entropy principle. In Section 3, we compare the obtained
theoretical optima with the performance of practical nibble replacement codes. Finally,
we extend the analysis to codes with a runlength constraint in Section 4 and conclude the
paper in Section 5.
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2. Asymptotic Analysis of Low-Weight Codes

In order to evaluate the sizes of large low-weight codes, we use the following approach.
Let Cn(w) be the set of compositions c = (n1, . . . , nq) of n, where ni are nonnegative integers
such that ∑

q
i=1 ni = n subject to the constraint ∑

q
i=1 ini = w. The number of q-ary words of

length n with ni symbols equal to i, 1 ≤ i ≤ q, denoted by Nc, equals

Nc =
n!

n1! . . . nq!
. (8)

The constant-weight code size, |Sn(w)|, is found by summing Nc for all possible
compositions c ∈ Cn(w) so that

|Sn(w)| = ∑
c∈Cn(w)

Nc. (9)

2.1. Asymptotic Analysis of Rn(γ)

We are specifically interested in Rn(γ) for asymptotically large n. So, let n → ∞ and
ni → ∞ for all i, while keeping pi = ni/n, 1 ≤ i ≤ q, the distribution of the symbol
values, fixed. It then follows (see Wallis argument in Section 11.4 of [16]), using Stirling’s
approximation, that

1
n

log2 Nc → Hc, (10)

and thus
1
n

log2 |Sn(w)| → max
c∈Cn(w)

Hc, (11)

where

Hc = −
q

∑
i=1

pi log2 pi. (12)

In a similar vein, we find

Rn(γ) → max
n≤w≤γn

1
n

log2 |Sn(w)| → max
n≤w≤γn

max
c∈Cn(w)

Hc. (13)

Since 1
n log2 |Sn(w)| is monotonically increasing with w, n ≤ w ≤ γn, if 1 ≤ γ ≤

(q + 1)/2, with a maximum log2(q) at w = n(q + 1)/2, we infer

Rn(γ) →
{

maxc∈Cn(γn) Hc, 1 ≤ γ < (q + 1)/2,
log2(q), (q + 1)/2 ≤ γ ≤ q.

(14)

The problem of determining R∞(γ) = limn→∞ Rn(γ), and thus the asymptotic redun-
dancy ρ∞(γ) = log2(q)− R∞(γ) and the asymptotic information rate W∞(γ) = 1

γ R∞(γ),
is now a matter of finding, for asymptotically large n, a c in Cn(γn) that maximizes Hc.
The composition c = (n1, . . . , nq) in Cn(γn) is characterized by

q

∑
i=1

ni = n and
q

∑
i=1

ini = γn, (15)

which can be conveniently rewritten as

q

∑
i=1

pi = 1 and
q

∑
i=1

ipi = γ. (16)

In the next subsection, we maximize Hc by a judicious choice of the distribution of the
symbol values, pi, under these conditions.
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2.2. Principle of Maximum Entropy

We change the above setting of finite-length codewords and now assume a station-
ary information source that transmits symbols of (integer) magnitude i, i ∈ {1, . . . , q},
with probability distribution p = (p1, . . . , pq), where pi ∈ R and ∑ pi = 1. The information
content per symbol sent, or entropy, denoted by H, defined by Shannon [17], is

H = −
q

∑
i=1

pi log2 pi. (17)

Although the variable Hc in (12) and Shannon’s entropy H share the same expression
in p, the background of the expressions is different [16]. Note that in (12), the pi’s are
rational numbers, while in (17) the pi’s are assumed to be real numbers.

We are interested in maximizing the entropy H. Define

Ĥ(γ) = max
p1,...,pq

H, (18)

1 ≤ γ ≤ q, where the maximization over the pi is under the conditions (16). Jaynes [18]
concluded that the entropy, H, is maximized subject to these constraints by the maxentropic
probability distribution

p̂i = 2α−βi, 1 ≤ i ≤ q, (19)

where the parameters α and β, α, β ∈ R, satisfy the conditions

α = − log2

q

∑
i=1

2−βi (20)

and
q

∑
i=1

i2α−βi = γ. (21)

After substituting (19) to (21) into (17), we find

Ĥ(γ) = βγ − α. (22)

For the case q = 2, we may easily find that p1 + p2 = 1 and p1 + 2p2 = γ, so that
p1 = 2 − γ, p2 = γ − 1, and

Ĥ(γ) = −(2 − γ) log2(2 − γ)− (γ − 1) log2(γ − 1), (23)

1 ≤ γ ≤ 2. For q > 2, no simple closed-form expression could be found, and we use
numerical methods for solving (20) and (21).

2.3. Asymptotic Redundancy and Information Rate

From (14), we obtain

R∞(γ) =

{
Ĥ(γ), 1 ≤ γ < (q + 1)/2,
log2(q), (q + 1)/2 ≤ γ ≤ q.

(24)

As a result, the asymptotic redundancy is

ρ∞(γ) =

{
log2(q)− Ĥ(γ), 1 ≤ γ < (q + 1)/2,
0, (q + 1)/2 ≤ γ ≤ q.

(25)

Figure 3 depicts, for q = 2, 4, and 6, the relationship between the asymptotic redun-
dancy ρ∞(γ) and γ.
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Figure 3. Redundancy ρ∞(γ) versus γ, q = 2, 4, and 6.

The asymptotic information rate, W∞(γ), equals

W∞(γ) =

{
Ĥ(γ)/γ, 1 ≤ γ < (q + 1)/2,
log2(q)/γ, (q + 1)/2 ≤ γ ≤ q.

(26)

Figure 4 shows W∞(γ) versus γ for q = 2, 4, and 6.
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Figure 4. Information rate W∞(γ) versus γ, q = 2, 4, and 6.

The maximum asymptotic information rate, denoted by

Ŵ∞ = max
γ

W∞(γ),

can be found after an analysis of (22). We write (22), using (20) and (21), as a function of β
and conclude that the largest (real) root of
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q

∑
i=1

2−iβ = 1, (27)

denoted by β̂, maximizes W∞(γ). We obtain, see (20), α = 0 and hence, see (22), we
infer that

Ĥ∞ = Ĥ(γ̂) = β̂γ̂, (28)

where

γ̂ =
q

∑
i=1

i2−β̂i, (29)

and
Ŵ∞ = β̂. (30)

Note that Equation (27) is equivalent to the characteristic equation ∑
q
i=1 z−i = 1 of

a binary source under the constraint that the maximum runlength is q [19]. The capacity
of binary sequences with a maximum runlength constraint of q equals log2(ẑ), where ẑ
is largest (real) root of the characteristic equation [17]. Hence, the maximum asymptotic
information rate Ŵ∞ = β̂ of q-ary low-weight codes is equal to this capacity. Numerical
values of the latter have been listed for selected values of q in [19]. Since the capacity
approaches unity for increasing values of q, the same holds for the information rate Ŵ∞,
which is achieved for γ̂ → 2. In other words, for large values of n and q, the maximum
information rate is achieved by setting the maximum weight of the low-weight code equal
to (roughly) 2n. The corresponding redundancy is log2(q)− γ̂β̂ → log2(q)− 2. For any
q, the asymptotic redundancy can be lowered from log2(q)− γ̂β̂ to zero by increasing γ
from γ̂ to (q + 1)/2, which implies that the asymptotic information rate decreases from β̂
to 2 log2(q)/(q + 1). This trade-off between redundancy and information rate is further
explored for the case q = 4 in the next subsection.

2.4. Case Study for q = 4

In this subsection, we consider the case q = 4, which is of particular interest since it is
the alphabet size for DNA synthesis codes. For q = 4, we find using numerical methods that
Ŵ∞ = β̂ = 0.947, γ̂ = 1.766, and Ĥ∞ = 1.672. The probability distribution at maximum
entropy is p̂ = (0.519, 0.269, 0.140, 0.072). Figure 5 shows the parametric representation
of W∞(γ) versus ρ∞(γ) with γ as a parameter for the case q = 4. The curve is a typical
price/performance curve, where we may observe that a higher W∞(γ) comes with a higher
penalty in redundancy ρ∞(γ).

0 0.5 1 1.5 2
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0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
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n=32
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n=

Figure 5. Parametric relationship between maxentropic information rate Wn(γ) versus redundancy
ρn(γ), q = 4. As a comparison, we plotted Wn(γ) versus ρn(γ) for n = 16, 32, 64.
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It is the difficult task of a system designer to trade the costs and benefits of the con-
flicting parameters. Note that in the range γ ≥ 5/2 we have ρ∞(γ) = 0, a zero-redundant
system, while in the range γ < γ̂ we may achieve the same information rate W∞(γ) with
a smaller redundancy. For example, we may notice that we can achieve W∞(γ) = 0.8 for
zero redundancy cost or for roughly 0.9. In practice, we prefer the smaller redundancy
alternative so that in this range of practical interest, we have 4/5 ≤ W∞(γ) ≤ Ŵ∞ = 0.947
and 0 ≤ ρ∞(γ) ≤ 2 − Ĥ∞ = 0.328. Figure 6 displays W∞(γ) versus ρ∞(γ) in the range of
practical interest γ̂ ≤ γ < 5/2.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

n=

n=16

n=32

Figure 6. Parametric relationship between (maxentropic) information rate Wn(γ) versus redundancy
ρn(γ), n = 16, 32, ∞, q = 4, in the range of practical interest. The black circles refer to the NR codes
compiled in Table 1.

Table 1. Results of the NR coding method for selected values of subword length m and maximum
subword cycle count, tm, q = 4.

m tm mh L ρ(t) W(t)

8 17 14 3 0.2917 0.8039
10 22 18 16 0.2062 0.8153
12 25 21 56 0.2515 0.8393
14 31 26 2 0.1786 0.8226
14 29 25 2 0.2500 0.8448
14 28 24 13 0.2912 0.8544

3. Comparison with Implemented Codes

In this section, we compare the performance of implemented codes with that of
maxentropic low-weight codes. In [13], various code implementations have been assessed.
Here, we focus on the nibble replacement (NR) algorithm [13,20], which is an efficient method
for encoding/decoding with small complexity and redundancy.

In the NR format, an n-symbol strand is divided into L subwords of length m, so that
n = Lm. Let tm be the maximum allowed cycle count of an m-symbol q-ary word, then the
maximum cycle count of the n-symbol q-ary word is t = Ltm. Let

M =
tm

∑
w=m

|Sm(w)| (31)
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denote the number of low-weight m-symbol codewords. Define mh = ⌈log2 M⌉ and

L =

⌊
2mh−1

2mh − M

⌋
. (32)

The NR algorithm translates Lmh − 1 source bits into L mh-bit words. Each mh-bit word
is translated, using a look-up table, into a q-ary m-symbol word that satisfies the tm-cycle
count constraint. The NR encoding method requires data storage of L mh-bit words,
the execution of the encoding algorithm [13], and a look-up table for translating an mh-bit
wide word into a word of m q-ary symbols so that very large, n-symbol wide, look-up
tables are avoided. The overall redundancy per symbol, ρ(t), and information rate, W(t),
of the n-symbol word are

ρ(t) =
L(log2(q)m − mh) + 1

n
(33)

and
W(t) =

Lmh − 1
t

. (34)

Table 1 shows numerical results selected from Table I in [13].
The scattered points (black circles) in Figure 6 are found by plotting the redundancy,

ρ(t), and information rate, W(t), of the NR codes shown in Table 1.

4. Runlength Limitation

It is known that homopolymer runs, i.e., adjacent repetitions of the same nucleotide,
make DNA-based data storage more error prone [12]. Therefore, it could be advantageous
to use strands in which long runs are avoided. Of course, this comes at the expense of an
increased redundancy. In this section, we perform an asymptotic analysis of codes aiming at
(i) small redundancy, (ii) high information rate, and (iii) small maximum runlength. These
are conflicting goals resulting into trade-off considerations. Again, we start by investigating
q-ary codes and then focus on the q = 4 case.

We say that a code is r-RLL (runlength limited) if within any codeword any run of
identical symbols is of length at most r, where 1 ≤ r ≤ n. When r = n, there is actually no
constraint with respect to the runlength. Here, we focus on the other extreme, r = 1; i.e., we
consider codewords in which any two adjacent symbols are different. We investigate the
asymptotic redundancy and information rate of q-ary 1-RLL codes. The same notation as
before is used, where we indicate with a tilde that the r = 1 constraint is in place.

Let X̃n(γ) denote the q-ary code consisting of all 1-RLL sequences that can be synthe-
sized in at most t = γn cycles. The codewords ỹ = (ỹ1, . . . , ỹn) of the associated low-weight
code Ỹn(γ) are obtained from the codewords x̃ = (x̃1, . . . , x̃n) of X̃n(γ) by the bijective
mapping

ỹi = x̃i − x̃i−1 mod q (35)

with x̃0 = q. Note that due to the 1-RLL property of x̃, it holds that x̃i ̸= x̃i−1 and thus
ỹi ̸= q for all 2 ≤ i ≤ n. Hence, Ỹn(γ) = ∪γn

w=nS̃n(w), where

S̃n(w) = {ỹ ∈ {1, . . . , q}n : w(ỹ) = w ∧ ỹi ̸= q∀i ≥ 2} (36)

and the range for γ is in this case 1 ≤ γ ≤ q − 1 + 1/n, since the maximum number of
cycles is (q − 1)n + 1 rather than qn due to the runlength constraint.

Similarly to what we did before, we next evaluate

R̃n(γ) =
1
n

log2 |Ỹn(γ)|. (37)

Since the symbol distribution (p̃1, . . . , p̃q) satisfies, for any codeword in the low-weight code,
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p̃q ≤ 1
n
→ 0 (38)

as n → ∞, we can conclude that the value of R̃∞(γ) in the q-ary case is equal to the value
of R∞(γ) in the (q − 1)-ary case. Hence, it easily follows that

• The asymptotic redundancy ρ̃∞(γ) in the q-ary 1-RLL case equals log2(q/(q − 1))
plus the asymptotic redundancy ρ∞(γ) in the (q − 1)-ary case without runlength
restriction;

• The asymptotic information rate W̃∞(γ) in the q-ary 1-RLL case equals the asymptotic
information rate W∞(γ) in the (q − 1)-ary case without runlength restriction.

As an illustration, we consider the case q = 4. By applying the results from (25) and
(26) for q = 3, we find ρ̃∞(γ) and W̃∞(γ) for q = 4. These 1-RLL results are compared to the
corresponding results without runlength limitation from Section 2 in Figures 7–9. Results
for r-RLL codes, 1 < r < ∞, will be in between the lower and the upper curves in these
figures. Various trade-off possibilities can be considered. Note that, for small values of γ,
imposing the runlength limitation comes at hardly any price, but that for larger values of γ
we considerably pay in terms of redundancy and information rate. Fixing the asymptotic
redundancy at, e.g., 0.5, it follows from Figure 9 that the asymptotic information rate drops
from about 0.93 (∞-RLL, i.e., no runlength limitation) to about 0.87 (1-RLL).
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Figure 7. Asymptotic redundancies ρ∞(γ) (∞-RLL) and ρ̃∞(γ) (1-RLL) versus γ for the case q = 4.
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Figure 8. Asymptotic information rate W∞(γ) (∞-RLL) and W̃∞(γ) (1-RLL) versus γ for the case
q = 4.
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Figure 9. Parametric relationship between the asymptotic information rate and asymptotic redun-
dancy for the ∞-RLL and 1-RLL cases, q = 4.

5. Conclusions

We have analyzed coding techniques for efficiently synthesizing multiple parallel DNA
strands. We have computed the maxentropic redundancy and information rate of low-
weight codes, ρn(γ) and Wn(γ), for asymptotically large codeword length n using Jaynes’
maximum entropy principle. We have compared the performance of low-complexity
NR codes, which are designed to minimize the synthesis time, with the performance
of maxentropic low-weight codes. Finally, the performance of codes with a runlength
limitation has been evaluated. All the presented results allow for making trade-offs between
synthesis time and redundancy for long codes.
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