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Summary

Layman’s summary
This thesis is about the wave equation. The wave equation describes waves that propagate through a certain
medium. The solution of the wave equation is a mathematical description of what that wave looks like. There
are many fields of study where the wave equation is used to model processes that behave like travelling waves.
For instance, a vibrating string or membrane can be modelled by the wave equation very well. Furthermore,
the wave equation can be used to model light or sound waves and how they reflect and refract when travelling
through different materials.

Because the wave equation is such an important tool to model these phenomena, there are many people
working on solving the wave equation in different contexts, i.e. finding a solution. However, it is difficult (of-
ten impossible) to find an exact solution. Therefore, people usually calculate a ’solution’ that is approximately
correct.

An important question to ask is: ’Does the wave equation always have a solution? And is there only one
solution?’. Physically, the answer is clear. If a string is vibrating, it clearly cannot vibrate in two ways at
the same time and it will always vibrate in some particular way. Even though the answer is clear physically,
answering this question mathematically is more difficult. It is good to remember that the wave equation is
just a mathematical model of propagating waves, and it could very well be that the wave equation has more
than one solution or no solution at all in some particular context.

The answer of this question is important for the people calculating approximate solutions to the wave equa-
tion. If there does not exist a unique solution, the process of calculating the approximate solution may break
down.

Answering that question is the subject of this thesis. We will first introduce the necessary mathematical tools,
after which we will use existing research to find out under which conditions the wave equation has one, and
only one solution. Finally, we will extend our results to more general equations than just the wave equation.

Summary
The wave equation is a partial differential equation with many applications, such as vibrating strings and
membranes, or reflecting light or sound waves. In this thesis, we investigate what regularity conditions on
the boundary conditions, initial conditions and right-hand side term f we have to assume, so that the wave
equation, given below, with a Dirichlet boundary condition has a unique solution in the Sobolev space H 1(Q),
which is a space in which solutions of the wave equation make natural sense.



∂2u

∂t 2 −∆u = f for (x, t ) ∈Q =Ω× (0,T ),

u(x,0) = u0(x) for x ∈Ω,
∂u
∂t (x,0) = u1(x) for x ∈Ω,

u = g for (x, t ) ∈Σ := ∂Ω× (0,T ).

Here we assume that Ω⊆Rn satisfies the Lipschitz condition (page 10).

In order to answer this question, we first introduce the necessary theory, about Sobolev spaces, interpolation
between Banach spaces (and in particular, Sobolev spaces) and anisotropic Sobolev spaces in Chapter 2. By
reframing existence-uniqueness theorems for the wave equation by Lasiecka, Lions & Triggiani [6], we find
the following result. Given that f ∈ L2(Q), u0 ∈ H 1(Ω) (Sobolev space of order 1), u1 ∈ L2(Ω) and g ∈ H 1(Σ)
along with a compatibility condition, the wave equation has a unique solution u ∈ H 1(Q).

v



vi Preface

Furthermore, using interpolation between the above result and a weaker result, we investigate what we can
say about the regularity of the unique solution u if we have boundary data g in H 1/2(Σ). It turns out that,
given that f ∈ L2(0,T ; (H 1/2

00 (Ω))′), u0 ∈ H 1/2(Ω), u1 ∈ (H 1/2
00 (Ω))′ and g ∈ H 1/2(Σ), the unique solution u is in

H 1/2(Q), which is not yet the desired H 1(Q)-regularity, in which the solution would make natural sense. Here
(H 1/2

00 (Ω))′ is the dual space of a space introduced in Subsection 2.2.4.

Finally, we extend our first result to more general wave equations with a wave speed c and to general second
order hyperbolic partial differential equations. However, for the general second order hyperbolic equations,
we only prove existence, and not uniqueness.
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1
Introduction

The wave equation is a hyperbolic partial differential equation that describes a wide range of physical phe-
nomena involving waves. For instance, the wave equation can be used to model vibrating strings or light
and sound waves travelling through the air (see Haberman [4, Chapter 4]). Furthermore, the wave equation
shares a lot of similarities with other hyperbolic partial differential equations, modelling for example seismics
and electro-magnetics.

In this thesis, we will study the wave equation with a non-homogeneous Dirichlet boundary condition, given
below by (1.1). Here Ω⊆Rn is a Lipschitz domain (see Subsection 2.2.2).



∂2u

∂t 2 −∆u = f for (x, t ) ∈Q =Ω× (0,T ),

u(x,0) = u0(x) for x ∈Ω,
∂u
∂t (x,0) = u1(x) for x ∈Ω,

u = g for (x, t ) ∈Σ := ∂Ω× (0,T ).

(1.1)

Equation (1.1) is a strong formulation of the wave equation. Strong formulations of partial differential equa-
tions require that solutions are differentiable in the standard sense. Often, this is too strong of an assump-
tion, as it could rule out realistic and experimentally found solutions (see Example 2.3). In the study of partial
differential equations, we often consider weak formulations of problems. Weak formulations are generally
derived by multiplying the equation with a differentiable test function and integrating the equation over the
domain Q. For example, a weak formulation of (1.1) using test function φ would be

[∫
Ω
φ
∂u

∂t
d x

]
t=T

− (
φ,u1

)
Ω−

(
∂φ

∂t
,
∂u

∂t

)
Q
−

(
φ,
∂g

∂n

)
Σ

+
∫ T

0

∫
Ω
∇φ ·∇u d x d t = ( f ,φ)Q , (1.2)

where (·, ·)Z denotes the L2(Z )-inner product (to be defined in Section 2.1). All the functions present in (1.2)
are contained in some function space, to be introduced in Chapter 2.

Using weak formulations and a weaker sense of derivatives (see Subsection 2.1.2) allows us to consider a
wider range of problems, because we do not have to assume as much regularity in the boundary and initial
conditions and the function f . Furthermore, using the weaker sense of derivatives, we can also work with
solutions that are not differentiable in the classical sense (see Example 2.3 on page 4).

Moreover, certain widely used numerical methods, such as the finite element method or the boundary el-
ement method (see [11] and [10] respectively) solve the weak formulations of partial differential equations,
instead of the strong formulations. These kinds of numerical methods (that are part of a larger class of meth-
ods called Galerkin methods) lead to a linear system of algebraic equations, given by

Ax = b (1.3)

for some matrix A and vector b. The vector x is the numerical solution obtained by solving (1.3) with a com-
puter. It is important to be able to guarantee that a solution of (1.3) exists, is unique, and approximates the
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2 1. Introduction

true solution of (1.2) well. For this, we need existence and uniqueness of the true solution in the correspond-
ing energy spaces, which will be introduced in Chapter 2.

If we are not able to guarantee that the solution of (1.2) exists and is unique, standard boundary element
methods (see Steinbach & Urzúa-Torres [10]) fail to be stable, which causes the numerical solutions to be
inaccurate. Hence, in order to improve the current numerical methods, it is important to study under which
conditions the wave equation has a unique solution in a corresponding energy space. This is the subject of
the thesis.

The structure of this thesis is as follows. In Chapter 2, we will introduce the necessary tools to study existence
and uniqueness of solutions of the wave equation, such as Sobolev spaces, real interpolation methods and
anisotropic Sobolev spaces. Then, Chapter 3 is about the existence and uniqueness results and their proofs.
Chapter 3 is essentially a re-interpretation from a paper by Lasiecka, Lions & Triggiani [6], which proves exis-
tence and uniqueness in different spaces than Sobolev spaces.



2
Preliminaries

In this first chapter, we will define the important concepts and theorems that we will use for the proof of the
main result. This Chapter has the following structure:

Section 2.1: Sobolev spaces and distributions. When looking for (weak) solutions of differential equations,
we find the solutions in Sobolev spaces. In Sobolev spaces, a weaker notion of the derivative is used,
for which the notion of (Schwartz) distributions is also needed.

Section 2.2: Interpolation between Banach spaces. Interpolation is a tool we will need in order to extend
existing results on existence-uniqueness of the wave equation to Sobolev spaces. In particular, Theo-
rem 2.20, applied to solution operators (to be defined in Chapter 3) is an important tool.

Section 2.3: Anisotropic Sobolev spaces. In evolution problems, such as the wave equation or the heat equa-
tion, anisotropic Sobolev spaces are typically used as the space we find our solutions in. Here, we may
have a different regularity in time than in space.

2.1. Sobolev spaces and distributions

2.1.1. The space Lp (Ω) and the Sobolev space

In order to give a definition of Sobolev spaces, we first briefly recall the spaces Lp (Ω) of p-integrable functions.
Here, Ω is a subset of Rn . Ω will be the space-domain of (1.1) and eventually, it will have to satisfy the strong
local Lipschitz condition (Definition 2.22). However, for now we will only need that Ω is open.

Definition 2.1 (Carothers [2, page 342]). Consider the measure space (Rn ,B(Rn),λ) (Lebesgue measure on
Rn). IfΩ⊆Rn is open and 1 ≤ p <∞, then we say that a function u :Ω→R is in L p (Ω) if it is measurable
and

∥u∥p =
(∫
Ω
|u|p dλ

) 1
p <∞

The space Lp (Ω) then consists of all equivalence classes of functions u ∈ L p (Ω) that are equal almost
everywhere.

Although Lp (Ω) is technically a space containing equivalence classes, we will frequently say that a function
u ∈ Lp (Ω). This means that ∥u∥p is finite. Because Lp (Ω) has a much nicer structure than L p (Ω), it is conve-
nient to use this notation. This nice structure is given by Theorem 2.2.

3



4 2. Preliminaries

Theorem 2.2 (Theorem 19.10 in Carothers [2, page 346]). Riesz-Fischer
Let 1 ≤ p <∞ and let Ω ⊆ Rn be open. Then the normed space (Lp (Ω),∥ · ∥p ) is a Banach space. Further-
more, if p = 2, then (L2(Ω),∥ ·∥2) is a Hilbert space with inner product

(u, v)2 =
∫
Ω

u · v dλ (2.1)

for any u, v ∈ L2(Ω).

Using Lp -spaces, and more specifically L2-spaces, we can now define Sobolev spaces. First, however, we will
motivate why Sobolev spaces are commonly used as a space in which solutions to differential equations live.

Roughly speaking, a Sobolev space contains all solutions of differential equations that use a finite amount
of energy. For instance, a solution of the wave equation whose amplitude - which corresponds to potential
energy - diverges to infinity is generally not in the relevant Sobolev space.

In the context of solutions of differential equations, using Sobolev spaces makes sense physically, for differ-
ential equations that model physical processes, because the entire universe contains only a finite amount of
energy. Then it is logical to assume that our models of reality, the differential equations, have solutions that
have a finite amount of energy as well.

Sobolev spaces are also less restrictive than other spaces in which solutions may live. For instance, looking
for solutions of the wave equation in C 2(Q), the space of twice continuously differentiable functions on Q,
where Q is the domain in time and space, would rule out solutions that are not differentiable in the standard
sense, but have been experimentally shown to exist. An example of this is Example 2.3.

Example 2.3. Consider the one-dimensional wave equation
∂2u
∂t 2 = ∂2u

∂x2 for (x, t ) ∈ (0,∞)× (0,T ],

u(x,0) = ∂u
∂t (x,0) = 0 for x ∈ (0,∞),

u(0, t ) = 1(0,π)(t )sin(t ) for t ∈ (0,T ].

(2.2)

It can be shown that the function u(x, t ) = 1(0,π)(t − x)sin(t − x) solves Problem (2.2). However, this solution is
clearly not differentiable, because of the sharp turns in its graph. This can be seen in Figure 2.1.

Because of these sharp turns, this solution cannot be differentiable nor twice continuously differentiable, i.e.
u ̸∈C 2(Ω). However, because we only consider a finite amount of time, the total potential and kinetic energy of
this solution is finite, so u(x, t ) is in the relevant Sobolev space.

We can make use of so-called distributional derivatives to circumvent this problem with non-differentiabilty.
First we will define Sobolev spaces. Then, we discuss how the distributional derivatives are constructed in
Subsection 2.1.2. Since energies of solutions can usually be represented using integrals, we define Sobolev
spaces as follows (the definition is combined from Lions & Magenes [8, page 1] and Evans [3, page 258]).

Definition 2.4. Let Ω ⊆ Rn be open, let 1 ≤ p < ∞ and m ∈ N. The Sobolev space of order m on Ω is
defined by

W m,p (Ω) = {u ∈ Lp (Ω) : ∀|α| ≤ m : Dαu ∈ Lp (Ω)},

where for any multi-index α= (α1,α2, . . . ,αn), Dαu is given by

Dαu = ∂|α|

∂xα1
1 · · ·xαn

n
u with

|α| =α1 +α2 +·· ·+αn ,

where the derivatives are distributional derivatives. Furthermore, if p = 2, then we use the notation

H m(Ω) =W m,2(Ω).
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Figure 2.1: Solution u(x, t ) of (2.2) for t = 1 (above) and t = 5 (below).

In other words, a function u :Ω→R is in the Sobolev space W m,p if it is in Lp (Ω) and all of its (distributional)
derivatives up to and including degree m are in Lp (Ω) as well.

Studying the wave equation (1.1), we will assume that solutions are contained in the Sobolev space H 1(Q),
since the only relevant energies are the potential energy and the kinetic energy. The potential energy is only
dependent on the value of the solution itself, and the kinetic energy is a function of the velocity, the first
derivative of the solution. Note that Q is again the domain in space and time.

Using these new kinds of derivatives not only allows us to work with solutions that have sharp turns, but it
also causes W m,p (Ω) to be a Banach space (see Subsection 2.1.3).

2.1.2. Distributional derivatives

As we have seen in Example 2.3, it is easy to find an initial-boundary value problem that has a non-differentiable
solution. In order to solve this apparent paradox, we will need to introduce a weaker concept of derivatives,
such that these sharp turns do not cause problems. More precisely, we want to consider a notion of deriva-
tives so that non-differentiability on a set of measure zero is not an issue.

The precise definition of a distribution makes use of so-called test functions - which will be defined shortly -
and dual spaces. Hence, we proceed to introduce these objects.

Definition 2.5 (Lions & Magenes [8, page 2]). Let Ω⊆Rn be open. The function φ :Ω→ R is called a test
function if it is infinitely differentiable on Ω and if it has compact support, i.e.

supp(φ) = {x ∈Ω :φ(x) ̸= 0}

is compact. The space of all test functions φ on Ω is denoted by D(Ω).

Essentially, a test function φ is a smooth function that is zero everywhere except on a closed and bounded
set. These test functions are generally used if we want to determine the value of a function not in a single
point, but as a kind of average over a compact set. If f :Ω→R, we do this by integrating the product f (x)φ(x)
over the support of φ. Considering the values of functions on compact sets of non-zero measure instead of
single points allows us to disregard issues with differentiability if these issues occur on a set of measure zero,
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because sets of measure zero do not contribute to the value of integrals. Still, test functions may measure the
value of functions quite accurately, as the support may have an arbitrarily small measure.

A distribution then maps a test function - a sort of measuring device, as we have seen previously - to a real
number. Thus, a distribution assigns a value to every test function.

To give a precise definition of distributions, we have to introduce the concept of dual spaces.

Definition 2.6 (Lions & Magenes [8], page 2). Let X be a normed vector space over R. A functional is
a map from the normed space X to the field R. The dual space of X , denoted by X ′, is the space of all
continuous linear functionals f : X →R.

Definition 2.7 (Lions & Magenes [8], page 2). LetΩ⊆Rn be open. Then the space of (Schwartz) distribu-
tions onΩ is the dual space of D(Ω). A distribution is an element T ∈D′(Ω). If T ∈D′(Ω) is a distribution
and φ ∈Ω is a test function, then we define the value of T at φ, denoted as

〈
T,φ

〉
, by〈

T,φ
〉= T (φ).

The value
〈

T,φ
〉

is commonly called a duality pairing.

Note that the space of distributions, the dual of D(Ω), is denoted by D′(Ω) instead of D(Ω)′, as one would
expect. The notation D′(Ω) is commonly used in the references (see for example all throughout the two
volumes of Lions & Magenes [8] and [9]). Therefore, we will use D′(Ω) in this thesis as well.

In Example 2.8, two examples of distributions will be given.

Example 2.8. (a) The Dirac delta ’function’ δ is a distribution on R. Indeed, for any φ ∈D(R), we have that〈
δ,φ

〉=φ(0).

(b) If f : Ω→ R is integrable on all compact subsets K ⊆ Ω, then there is a corresponding distribution T f ∈
D′(Ω) defined by 〈

T f ,φ
〉= ∫

Ω
f (x)φ(x) d x

In fact, if this is the case, we can interpret f as being a distribution itself, i.e. f ∈D′(Ω).

Using distributions, we can now define the distributional derivatives that will solve our problems with non-
differentiability on sets of measure zero.

Definition 2.9 (Lions & Magenes [8], page 3). Let T ∈D′(Ω) be a distribution. Then we define the distri-
butional derivative ∂T

∂x j
of T by

∀φ ∈D(Ω) :

〈
∂T

∂x j
,φ

〉
=−

〈
T,

∂φ

∂x j

〉
.

The distributional derivative is itself a distribution. DαT is defined by iteration.

Example (2.10) shows that we can calculate distributional derivatives even for highly irregular functions.

Example 2.10. The zero function on R is the distributional derivative of the indicator function of Q. Note that
the indicator function 1Q can be interpreted to be a distribution as in Example 2.8 (b). Indeed, for anyφ ∈D(R),∫

R
1Q(x)

d

d x
φ(x) d x = 0

because 1Q = 0 almost everywhere. Furthermore, we obviously have

−
∫
R

0 ·φ(x) d x = 0.

We conclude that the zero function on R is the distributional derivative of 1Q.
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It can be shown that the distributional derivative is unique up to a set of measure zero, i.e. the equivalence
class of functions in L2(Ω) that is assigned to the distributional derivative is unique. In fact, if v1 is a distri-
butional derivative of u, then v2 is also a distributional derivative of u if v1 = v2 almost everywhere. Applying
this notion to Example (2.10), we see that 1Q is a distributional derivative of itself.

2.1.3. Completeness of Sobolev spaces

The following theorem shows that Sobolev spaces not only make sense physically (using finite energy), but
also have a very nice mathematical structure.

Theorem 2.11 (Theorem 2 in Evans [3, page 262]). Let Ω ⊆ Rn be open. If 1 ≤ p < ∞ and m ∈ N, then
W m,p (Ω) equipped with the norm

∥u∥W m,p (Ω) =
( ∑
|α|≤m

∥Dαu∥p
p

) 1
p

(2.3)

is a Banach space. Moreover, if p = 2, H m(Ω) is a Hilbert space with inner product

〈u, v〉H m (Ω) =
∑

|α|≤m
〈Dαu,Dαv〉2 (2.4)

for any two functions u, v ∈ H m(Ω).

For the proof of this theorem we refer to Evans [3, page 262].

Moving forward, we will not use the general Sobolev space W m,p (Ω) anymore. Instead, we will state all defi-
nitions and results using the notation H m(Ω), where p = 2, because most of the references state results only
for H m(Ω) and not for W m,p (Ω), since H m(Ω) is not only a Banach space, but also a Hilbert space.

2.2. Interpolation between Banach spaces
We will now build up some theory about interpolation (primarily based on Chapter 7 of Adams [1]). The
general idea of interpolation between two Banach spaces X0 and X1 is that we find a new space X that is
somehow ’between’ X0 and X1 based on a parameter θ ∈ [0,1]. Here θ determines how ’close’ the intermediate
space is to either X0 or X1.

First we will discuss the general theory of interpolation for two Banach spaces X0 and X1 in Subsection 2.2.1.
In Subsection 2.2.2 we will apply these ideas to Sobolev spaces and Subsection 2.2.3 will discuss the trace
theorem; a result that tells us how smooth functions are on the boundary of their domain. Finally, Subsection
2.2.4 will discuss how we can define Sobolev spaces for negative orders as well.

2.2.1. General theory

In order to make sense of interpolation between spaces, we first have to make sense of what we mean by
saying that a space is ’between’ two other spaces. We will make this notion precise using continuous embed-
dings.

Definition 2.12. Let (X ,∥ · ∥X ) and (Y ,∥ · ∥Y ) be two normed spaces. We say that X is (continuously)
embedded in Y if X ⊆ Y and the identity map I : X → Y is continuous, i.e.

∥x∥Y ≤C∥x∥X

for some constant C > 0. If X is (continuously) embedded in Y , then we write X ,→ Y .

Intuitively, if X ,→ Y , then elements x0, x1 ∈ X being close to each other in the norm ∥ · ∥X implies that they
are also close to each other in the norm ∥ ·∥Y .
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Definition 2.13 (Adams [1, page 208]). Let (X0,∥ · ∥X0 ) and (X1,∥ · ∥X1 ) be two Banach spaces. A Banach
space X with norm ∥ ·∥X is an intermediate space between X0 and X1 if

X0 ∩X1 ,→ X ,→ X0 +X1,

where
X0 +X1 := {u = u0 +u1 : u0 ∈ X0 and u1 ∈ X1}.

Here we choose the sum X0+X1 instead of the union X0∪X1 because the union is generally not even a vector
space. In all of the situations we will study, we will have X1 ,→ X0, so that X0 ∩ X1 = X1 and X0 + X1 = X0. In
that case, a space X is intermediate between X0 and X1 if X0 ,→ X ,→ X1.

Interpolation is a way to find such intermediate spaces X . We will discuss two methods of interpolation in
this thesis: the K-method and the J-method. It will turn out that both methods are equivalent. In other words,
using each method will result in the same space with equivalent norms. The K-method and J-method make
use of the aptly named K-functional and J-functional.

Definition 2.14 (Adams [1, page 208]). Let t > 0. Then the K-functional K on X0+X1 and the J-functional
J on X0 ∩X1 define norms on X0 +X1 and X0 ∩X1 and are given by

K (t ,u) = inf{∥u0∥X0 + t∥u1∥X1 : u = u0 +u1,u0 ∈ X0,u1 ∈ X1}, (2.5)

J (t ,u) = max{∥u∥X0 , t∥u∥X1 }. (2.6)

Using the value t > 0 in the definition allows us to skew the value of the norms either toward the X0-norm or
the X1-norm. For instance, if t is close to zero, the values of the functionals are closer to the X0-norm than
the X1-norm. If t is large, then the X1-norm contributes more to the values of the functionals.

Using these functionals, we can introduce interpolation methods.

Theorem 2.15 (7.9 and 7.10 in Adams [1, page 209]). The K-method
Let 0 < θ < 1 and 1 ≤ q <∞ or 0 ≤ θ ≤ 1 and q =∞. We say that an element u ∈ X0 + X1 is in the space
(X0, X1)θ,q ;K if

∥u∥θ,q ;K =


(∫ ∞
0 (t−θK (t ,u))q d t

t

)1/q
if q <∞

esssup
0<t<∞

(
t−θK (t ,u)

)
if q =∞ (2.7)

is finite. The space (X0, X1)θ,q ;K is a non-trivial Banach space with norm ∥ · ∥θ,q ;K . Furthermore, it is
intermediate between X0 and X1.

In the integral we divide by t to make sure that the X1-norm does not contribute that much more to the
integral than the X0-norm. If we would not do this, there would be no balance between the norms, since
the interval where the X1-norm contributes more has infinite Lebesgue measure and the interval where the
X0-norm contributes more has a Lebesgue measure of one.

Furthermore, if we increase θ, we also increase the contribution of the X0-norm in the integral. Indeed, if t
is small, i.e. the X0-norm contributes more to the value of the K-functional, then the value of the function
t 7→ t−θK (t ,u) is larger than the value of the K-functional for larger t .

Note that we use the essential supremum esssup0<t<∞
(
t−θK (t ,u)

)
to disregard sets of measure zero in deter-

mining the supremum.
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Theorem 2.16 (7.12 and 7.13 in Adams [1, page 211]). The J-method
Let 0 < θ < 1 and 1 < q ≤∞ or 0 ≤ θ ≤ 1 and q = 1. We say that an element u ∈ X0 + X1 is in the space
(X0, X1)θ,q ;J if it can be written as u = ∫ ∞

0 f (t ) d t
t for some function f that takes values in X0 ∩ X1, such

that f (t )/t is integrable with respect to the norm ∥ ·∥X0∩X1 and if the quantity∫ ∞

0
(t−θ J (t , f ))q d t

t

is finite. Here ∥ · ∥X0∩X1 is given by ∥ · ∥X0∩X1 = J (1, ·). Then (X0, X1)θ,q ;J is a nontrivial Banach space with
norm

∥u∥θ,q ;J = inf
f ∈S(u)

(∫ ∞

0
(t−θ J (t , f ))q d t

t

)1/q

, (2.8)

with

S(u) =
{

f : u =
∫ ∞

0
f (t )

d t

t

}
,

with all f ∈ S(u) satisfying the same requirements of f as above. The space (X0, X1)θ,q ;J is intermediate
between X0 and X1.

For similar reasons as the K -method, increasing θ increases the contribution of the X0-norm in the integral.
However, instead of using u in the integral, we use this function f that is associated with u. The function f is
used because u is generally not in the intersection X0 ∩X1, so taking the J-functional would be ill-defined.

Also note that the integral of f (t ) is a Bochner integral (see Adams [1, page 206]). The Bochner integral is a
generalization of the Lebesgue integral where functions may take values in any Banach space, instead of only
in R or C.

Theorem 2.17 shows that it does not matter which interpolation method we use.

Theorem 2.17 (Theorem 7.16 in Adams [1, page 215]). If 0 < θ < 1 and 1 ≤ q ≤∞, then

(X0, X1)θ,q ;K ,→ (X0, X1)θ,q ;J and (X0, X1)θ,q ;J ,→ (X0, X1)θ,q ;K ,

so (X0, X1)θ,q ;K = (X0, X1)θ,q ;J with both spaces having equivalent norms.

Because the K-method and the J-method are equivalent, we can omit the subscript K or J specifying which
interpolation method we use. We will write (X0, X1)θ,q for both interpolation methods. If, additionally, q = 2
(as it will always be in this thesis), we write [X0, X1]θ following the notation of Lions & Magenes [8, page 10].

In the remainder of this subsection, we include some useful results - mainly some inequalities - about inter-
polation between Banach spaces. The proofs of these results can be found in of Adams [1, Chapter 7].

Theorem 2.18 (Theorems 7.18 and 7.20 in Adams [1, page 216,217]). Let 0 < θ < 1 and 1 ≤ q ≤∞. Then
for any u ∈ (X0, X1)θ,q and v ∈ X0 ∩X1, we have that

K (t ,u) ≤C1tθ∥u∥θ,q ,

∥v∥θ,q ≤C2t−θ J (t , v),

where C1 and C2 are positive constants and the norm ∥ ·∥θ,q can either be the K -norm or the J-norm.

Theorem 2.20 relates the X0- and X1-norms to the norm of the intermediate space. To state this theorem, we
first need another definition.
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Definition 2.19 (7.22 in Adams [1, page 220]). Let P = {X0, X1} and Q = {Y0,Y1} be two pairs of Banach
spaces. Let T : X0 + X1 → Y0 +Y1 be a continuous linear operator such that T is also continuous from Xi

to Yi with operator norm at most Mi for i = 0,1, i.e. for any ui ∈ Xi we have

∥Tui∥Yi ≤ Mi∥ui∥Xi .

If X and Y are intermediate spaces for P and Q respectively, then we call X and Y interpolation spaces of
type θ (θ ∈ [0,1]) if every such operator T is also continuous from X to Y with operator norm M satisfying

M ≤C M 1−θ
0 Mθ

1 . (2.9)

Here C ≥ 1 is independent of the operator T . The interpolation spaces X and Y are exact if (2.9) holds with
C = 1.

Theorem 2.20 (Theorem 7.23 in Adams [1, page 220]). Let P = {X0, X1} and Q = {Y0,Y1} be two pairs of
Banach spaces. If 0 < θ < 1 and 1 < q < ∞, then the intermediate spaces (X0, X1)θ,q and (Y0,Y1)θ,q are
exact interpolation spaces of type θ for P and Q.

One final theorem we will need is the reiteration theorem (Theorem 2.21). This result described how we can
apply interpolation methods multiple times.

Theorem 2.21 (7.21 in Adams [1, page 218]). The Reiteration Theorem
Let 0 ≤ θ0 < θ1 ≤ 1 and let X0 and X1 be two Banach spaces. Suppose that Xθ0 = (X0, X1)θ0,q and Xθ1 =
(X0, X1)θ1,q for 1 ≤ q ≤∞. Finally, let 0 <λ< 1. Then, if θ = (1−λ)θ0 +λθ1, we have that

(Xθ0 , Xθ1 )λ,q = (X0, X1)θ,q .

2.2.2. Application to Sobolev spaces

In this subsection, we will apply the above interpolation techniques to Sobolev spaces. First, however, we
will define a property of our domain Ω ⊆ Rn . Although the strong local Lipschitz property is only indirectly
connected to interpolation of Sobolev spaces, we will need it as an assumption in many results later on.
Furthermore, in our main result we will assume that our domain satisfies this condition.

Definition 2.22 (Definition 4.9 in Adams [1, page 83]). A subsetΩ⊆Rn satisfies the strong local Lipschitz
condition if it is open and there exist δ, M > 0, a locally finite open cover {U j : j ∈ J } of ∂Ω for some index
set J , and for each j ∈ J a real-valued function f j of n−1 variables such that the following four conditions
hold.

1. For some finite R ∈N, every collection of R +1 subsets U j is disjoint.

2. For every pair of points x, y ∈Ωδ = {x ∈Ω : d(x,∂Ω) < δ} with |x − y | < δ there is a j ∈ J such that

x, y ∈ {u ∈U j : d(u,∂U j ) > δ}.

3. Each function f j is Lipschitz continuous with constant M, i.e. for any α,β ∈Rn−1 we have that

| f j (α)− f j (β)| ≤ M |α−β|.

4. For some Cartesian coordinate system (ζ j ,1,ζ j ,2, . . . ,ζ j ,n) in U j ,Ω∩U j is represented by the inequality

ζ j ,n < f j (ζ j ,1, . . . ,ζ j ,n−1).

If these conditions hold, we call Ω a Lipschitz domain.

First, if Ω is a bounded set, then Definition 2.22 can be reduced to the following: For each point x ∈ ∂Ω, there
is a neighbourhood U of x such that the intersection ∂Ω∩U is the graph of a Lipschitz continuous function.
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Intuitively, we can imagine Lipschitz-domains as follows: Suppose that the boundary of Ω is piecewise Lip-
schitz continuous. Then for every point x on the boundary, we can draw an open ball such that locally (in
some rotated or scaled coordinate system), Ω consists of all the points that are below a Lipschitz continuous
function (namely the boundary). Figure 2.2 gives an example of a subset Ω ⊆ Rn that does not satisfy the
strong local Lipschitz condition.

A

Ω

Figure 2.2: A domain that does not satisfy the strong local Lipschitz condition. The point A is a point where condition (4) in Definition
2.22 does not hold.

Having defined Lipschitz domains, we can interpolate between Sobolev spaces. Following the notation of
Lions & Magenes [8, page 40], we give a definition of the space H s (Ω) for real s ≥ 0.

Definition 2.23 (Lions & Magenes [8, page 40]). Let Ω ⊆ Rn be a Lipschitz domain, let 0 < θ < 1 and let
m ∈N. Suppose that s = (1−θ)m. Then we set

H s (Ω) = [H m(Ω),L2(Ω)]θ .

Here we requireΩ to be a Lipschitz domain to make sure that H s (Ω) is the same space as in Definition 2.4 if s
is integer. Furthermore, by setting Ω to be Lipschitz we make H s (Ω) independent of the choice of m, as long
as (1−θ)m = s. For proofs of these statements, see Lions & Magenes [8, page 40].

The space H s (Ω) for non-integer s is also commonly called a Besov space. See Adams [1, page 230] for a more
general definition of Besov spaces where we interpolate between Sobolev spaces W m,p (Ω).

Using the Reiteration Theorem (Theorem 2.21), we can also interpolate between the spaces H s (Ω).

Theorem 2.24 (Lions & Magenes [8, page 43]). If Ω⊆Rn is a Lipschitz domain, then

[H s1 (Ω), H s2 (Ω)]θ = H (1−θ)s1+θs2(Ω)

for any 0 < θ < 1, s1 > s2 > 0 (with equivalent norms).

A useful result concerning these fractional order Sobolev spaces H s (Ω) states that the space of test functions
on the closure of Ω is dense in H s (Ω).

Theorem 2.25 (Theorem 9.3 in Lions & Magenes [8, page 41]). Let Ω be an open Lipschitz domain and
let s ∈R≥0. Then D(Ω̄) is dense in H s (Ω).

The last result of this subsection relates the norms of fractional order Sobolev spaces H s (Ω) with the norms of
the neighboring integer order Sobolev spaces. This result follows almost directly from the Rellich-Kondrachov
embedding theorem (Theorem 2.26), but we provide an alternative proof using only the tools studied so far.
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Theorem 2.26 (Proposition 4.4 in Taylor [12, page 334]). Rellich-Kondrachov embedding theorem.
Let Ω⊆Rn be a Lipschitz domain. For s ≥ 0 and σ> 0, we have that

H s+σ(Ω) ,→ H s (Ω).

Lemma 2.27. Let Ω⊆ Rn be a Lipschitz domain and let s and θ ∈ (0,1) be such that (1−θ)⌈s⌉+θ ⌊s⌋ = s.
Then for any u ∈ H ⌈s⌉(Ω), we have that

C∥u∥H ⌊s⌋(Ω) ≤ ∥u∥H s (Ω) ≤ ∥u∥H ⌈s⌉(Ω),

for some constant C > 0.

Proof. First note that by Theorem 2.24, H s (Ω) = [H ⌈s⌉(Ω), H ⌊s⌋(Ω)]θ. Then it follows from Theorem 2.18 that
there is a constant C > 0 such that for all t ∈ (0,∞)

∥u∥H s (Ω) ≥C t−θK (t ,u).

In particular,
∥u∥H s (Ω) ≥C K (1,u).

Now, let u0 ∈ H ⌊s⌋(Ω) and u1 ∈ H ⌈s⌉(Ω) be such that u = u0 +u1. Then

∥u∥H ⌊s⌋(Ω) = ∥u0 +u1∥H ⌊s⌋(Ω) ≤ ∥u0∥H ⌊s⌋(Ω) +∥u1∥H ⌊s⌋(Ω) ≤ ∥u0∥H ⌊s⌋(Ω) +∥u1∥H ⌈s⌉(Ω),

since the H ⌈s⌉(Ω)-norm is the sum of the H ⌊s⌋(Ω) and other non-negative numbers. Then, as

K (1,u) = inf
{∥u0∥H ⌊s⌋(Ω) +∥u1∥H ⌈s⌉(Ω) | u = u0 +u1,u0 ∈ H ⌊s⌋(Ω),u1 ∈ H ⌈s⌉(Ω)

}
,

and since we chose an arbitrary pair u0,u1 with u = u0 +u1, we also have that

∥u∥H ⌊s⌋(Ω) ≤ K (1,u).

Therefore, we have that
∥u∥H s (Ω) ≥C∥u∥H ⌊s⌋(Ω).

Now we prove the other inequality. Let T be the identity operator. Then T is continuous from H ⌊s⌋(Ω) to
H ⌊s⌋(Ω) and it is continuous from H ⌈s⌉(Ω) to H ⌈s⌉(Ω). Furthermore, the operator norm of T is equal to 1 in
both cases. Then by Theorem 2.20, T is also continuous from H s (Ω) to H s (Ω) with

∥u∥H s (Ω) ≤ ∥u∥1−θ
H ⌊s⌋(Ω)

∥u∥θ
H ⌈s⌉(Ω)

≤ ∥u∥1−θ+θ
H ⌈s⌉(Ω)

= ∥u∥H ⌈s⌉(Ω).

2.2.3. The trace theorem

In this final subsection, we will discuss the trace theorem for Sobolev spaces. Essentially, the trace theorem

states that functions u that are in H s (Ω) in the interior of Ω, are in H s− 1
2 (Γ) on the boundary Γ of Ω. The

precise statement (from Lions & Magenes [8, page 41]) is given in Theorem 2.28.
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Theorem 2.28 (Theorem 9.4 in Lions & Magenes [8, page 41]). The trace theorem
LetΩ⊆Rn be an open Lipschitz domain with boundary Γ. Define the trace operator γ on D(Ω̄) (the space
of test functions on the closure of Ω) as the restriction of a test function φ ∈D(Ω̄) to the boundary Γ:

γφ=φ|Γ.

This mapping from D(Ω̄) to D(Γ) extends by continuity to a continuous trace operator γ from H s (Ω) to
H s−1/2(Γ). Furthermore, the trace operator γ is surjective.

Note that we can only extend this mapping continuously because D(Ω̄) is dense in H s (Ω) for any s ≥ 0 (see
Theorem 2.25).

Furthermore, this theorem shows us that interpolation and fractional order spaces are not just mathematical
curiosities, but also arise naturally in the study of partial differential equations.

2.2.4. Negative order Sobolev spaces

The need for negative order Sobolev spaces is best illustrated using an example. Example 2.29 shows when
these kinds of spaces are needed.

Example 2.29. Consider the Poisson equation on a Lipschitz domain Ω⊆Rn

−∆u = f (2.10)

with homogeneous Dirichlet boundary conditions u = 0 on the boundary Γ of Ω. We are interested in what
kind of regularity the function f must have, for a solution to exist. We find a weak formulation of (2.10) by
multiplying with a test function and integrating over the domain (assuming the test function vanishes at the
boundary): ∫

Ω
∇u ·∇φ d x =

∫
Ω

f φ d x. (2.11)

As we can see, as long as u ∈ H 1
0 (Ω), we really only need that φ ∈ H 1

0 (Ω); we don’t need infinite differentiability.
Now, we can interpret the function f as a linear functional acting on a test functionφ ∈ H 1

0 (Ω). Therefore, using

the same logic as Example (2.8) (b), we will assume that f ∈ (
H 1

0 (Ω)
)′ = H−1(Ω).

Had we chosen our test function φ ∈D(Ω) infinitely differentiable, we would only need to assume that f corre-
sponds to a distribution.

Definitions 2.30 and 2.31 make negative order Sobolev spaces precise.

Definition 2.30 (Lions & Magenes [8, page 54]). Let Ω⊆Rn be an open Lipschitz domain. Then for s ≥ 0
we set H s

0(Ω) to be the closure of D(Ω) in H s (Ω). It can be shown (see Lions & Magenes [8, page 62]) that a
function u is in H s

0(Ω) if and only if u ∈ H s (Ω) and the normal derivatives vanish on the boundary:

∂ j u

∂n j
= 0

for any integer 0 ≤ j ≤ s − 1
2 .

Definition 2.31 (Lions & Magenes [8, page 70]). Let Ω ⊆ Rn be an open Lipschitz domain and let s > 0.
Then we define the negative order Sobolev space H−s (Ω) by

H−s (Ω) = (
H s

0(Ω)
)′ .

In Section 3.3, we will have to interpolate between positive and negative order Sobolev spaces. In some spe-
cific cases (such as the one that will be discussed in Section 3.3), the resulting intermediate space is not the
obvious one, where we use linear interpolation of the numbers s. To this end, we introduce the following
space.
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Definition 2.32 (See Theorem 11.7 in Lions & Magenes [8, page 66]). LetΩ be a Lipschitz domain and let
s1, s2 ≥ 0 be such that s1 > s2 and s2 ̸∈ {k + 1

2 |k ∈Z}. Suppose that for θ ∈ (0,1), we have that

(1−θ)s1 +θs2 =µ+ 1

2

for some integer µ≥ 0. We define the space

H
µ+ 1

2
00 (Ω) = [H s1

0 (Ω), H s2
0 (Ω)]θ.

The space H
µ+ 1

2
00 (Ω) is independent of s1, s2 and θ.

We can make the space H
µ+ 1

2
00 more explicit by introducing a class of functions ϱ : Ω̄→ R with the following

properties (see Lions & Magenes [8, page 57]:

• ϱ is infinitely differentiable on Ω̄, positive on Ω, vanishing on Γ of the order of d(x,Γ), which is the
distance from the point x ∈Ω to the boundary Γ, i.e. such that

lim
x→x0

ϱ(x)

d(x,Γ)
= d ̸= 0,

if x0 ∈ Γ.

The functions ϱ−s are exactly those functions that, when multiplied with an H s
0(Ω)-function f for 0 ≤ s ≤ 1,

convert the function f to an L2(Ω)-function (see Theorem 11.2 in Lions & Magenes [8, page 57]). In fact, the
mapping f 7→ ϱ−s f is continuous and linear from H s

0(Ω) to L2(Ω). This fact also provides a way to visualize
H s

0(Ω)-functions for non-integer s.

In Figure 2.3, an example function ϱ : (0,1) →R is plotted along with an H 1(0,1)-function f , given by

f (x) =
{

3
10 sin(2πx)+ 7

10 if 0 < x < 2
3 ,(

18+9
p

3
20

)
x − 9

p
3−2

20 if 2
3 ≤ x < 1,

and along with the functions ϱ f and ϱ−
1
2 f to illustrate what multiplication by ϱ looks like. In this specific

case, ϱ is given by

ϱ(x) =


x if 0 < x < 1

3 ,

−3(x − 1
2 )2 + 5

12 if 1
3 ≤ x < 2

3 ,

1−x if 2
3 ≤ x < 1,

which is technically not infinitely differentiable, but it does provide an accurate representation of the shape
of a function ϱ that is infinitely differentiable, since it vanishes at the boundary of the order of d(x,Γ).

Using this class of functions ϱ, we can characterise the space H
µ+ 1

2
00 (Ω). This characterisation is given by

Theorem 2.33

Theorem 2.33 (Theorem 11.7 in Lions & Magenes [8, page 66]). If Ω is a Lipschitz domain and µ ≥ 0 is

an integer, the space H
µ+ 1

2
00 (Ω) is given by

H
µ+ 1

2
00 (Ω) =

{
u | u ∈ H

µ+ 1
2

0 (Ω),∀α : |α| =µ : ϱ−
1
2 Dαu ∈ L2(Ω)

}
,

where α is a multi-index.

This definition of H
µ+ 1

2
00 (Ω) makes sense, because - very roughly speaking - one can imagine multiplying Dαu

by ϱ−
1
2 as transforming Dαu so that it is in Hµ−|α|(Ω) instead of Hµ−|α|+ 1

2 (Ω).

The space H
1
2

00(Ω)-space is often referred to as a Lions-Magenes space, as it was first introduced by Jacques-
Louis Lions and Enrico Magenes.
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Figure 2.3: The functions ϱ, f ,ϱ f ,ϱ−
1
2 : (0,1) →R.

H
µ+ 1

2
00 (Ω) is used often in the world of boundary integral equations, where it is denoted by H̃µ+ 1

2 (Ω) (Equation
(4.3.10) in Hsiao & Wendland [5, page 190]).

The interpolation between positive and negative order Sobolev spaces involves these H
µ+ 1

2
00 -spaces in some

cases.

Theorem 2.34 (Theorem 12.4 in Lions & Magenes [8, page 73]). LetΩ be a Lipschitz domain. Let s1, s2 ≥ 0
be such that s2 ̸∈ {k + 1

2 |k ∈Z}. Let θ ∈ (0,1).

• If (1−θ)s1 −θs2 ̸= − 1
2 −µ for some integer µ≥ 0, then

[H s1 (Ω), H−s2 (Ω)]θ = H (1−θ)s1−θs2 (Ω).

• If (1−θ)s1 −θs2 =− 1
2 −µ for some integer µ≥ 0, then

[H s1 (Ω), H−s2 (Ω)]θ =
(

H
µ+ 1

2
00 (Ω)

)′
.

2.3. Anisotropic Sobolev spaces
In this final part of the introduction of the theory, we will introduce anisotropic Sobolev spaces. The idea
is that the time derivatives can be of a different order of smoothness than the space derivatives. Roughly
speaking, we would assume that the time derivatives are in H m(0,T ) and the space derivatives in H k (Ω) for
possibly different non-negative real numbers m and k.
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In evolution problems (like the heat- or wave equation), the time variable is often treated differently than the
space variables. For instance, in the method of lines for solving time-dependent partial differential equations
numerically (see Van Kan et al. [7, page 100]), one treats the discretisation in time in a different way than the
discretisation in space.

The method of separation of variables (see Haberman [4, page 32]) is an analytic example of time and space
being treated differently. Here, one assumes that the solution of a partial differential equation can be written
as a product of a function of time and a function of space.

Because time and space are used in different ways, it is logical to assume that solutions of differential equa-
tions may have different regularity properties in time than in space as well.

In the previous sections we have considered Lipschitz domains Ω ⊆ Rn . Moving forward, we will consider a
domain that involves both time and space, the space-time cylinder. This domain and some notation about the
domain will be defined in Subsection 2.3.1. Subsection 2.3.2 will define the anisotropic Sobolev spaces on the
space-time cylinder. After the definition, we will discuss a related function space that is useful for the results
in the next chapter. The last Subsection is about interpolation between these anisotropic Sobolev spaces.

2.3.1. A note about the domain

As has been said before, our main result will be defined on a domain involving both space and time. For a
Lipschitz domain Ω, and a time interval (0,T ) for some T <∞, we define

Q =Ω× (0,T ). (2.12)

Note that Q is a Lipschitz domain, becauseΩ and (0,T ) are as well. The different boundaries of Q are denoted
below.

• The boundary of Ω is denoted by Γ.

• The lateral boundary of Q is defined as Σ= Γ× (0,T ).

• The initial boundary of Q is defined as Σ0 =Ω× {0}.

• The final boundary of Q is defined as ΣT =Ω× {T }.

Figure 2.4 visualizes the domain Q for a circular domain Ω⊆R2.

Q

t = 0

t = T

Σ0

ΣT

Σ

Figure 2.4: The domain Q =Ω× (0,T ) and its boundaries.

Note that the initial and boundary conditions of the wave equation (1.1) require that the trace γu of the
solution u, restricted to the initial boundary Σ0 and lateral boundary Σ respectively, is equal to the initial and
boundary data, i.e.

γu|Σ = g and γu|Σ0 = u0.

The trace theorem (Theorem 2.28) then states that, given that the solution u of (1.1) satisfies u ∈ H 1(Q), the
initial and boundary data u0 and g satisfy u0 ∈ H 1/2(Σ0) and g ∈ H 1/2(Σ).
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2.3.2. Bochner spaces and anisotropic Sobolev spaces

The remainder of this section is primarily based on the second volume of Lions & Magenes [9, page 6-9]. The
definition of the Bochner space is adapted from Adams [1, page 207].

Anisotropic Sobolev spaces are defined in terms of Bochner spaces. A Bochner space consists of functions f :
(a,b) → X , where (a,b) is an interval and X is a Banach space. Solutions of time-dependent partial differential
equations are also of this type. Indeed, if u(x, t ) is a solution of a partial differential equation on the domain
Q = Ω× (0,T ), then the mapping f : (0,T ) → L2(Ω) defined by f (t ) = u(x, t ) (for each t ∈ (0,T ) there is an
L2(Ω)-function u(x, t )) is equivalent to the solution u : Q → R defined by u(x, t ). As we will shortly see, we
then denote f ∈ L2(0,T ;L2(Ω)).

Definition 2.35. Let (X ,∥·∥X ) be a Banach space. For 1 ≤ p ≤∞ we say that a function f is in the Bochner
space Lp (a,b; X ) if ∥ f ∥Lp (a,b;X ) <∞ where

∥ f ∥Lp (a,b;X ) =


(∫ b

a ∥ f (t )∥X d t
) 1

p
if p <∞

esssup
a<t<b

∥ f (t )∥X if p =∞.

First, we shall state some useful results about Bochner spaces themselves, since we will need these results
later in Chapter 3. After stating the results, we will proceed with defining anisotropic Sobolev spaces.

Theorem 2.36 is a useful result about interpolation between two Bochner spaces Lp (a,b; X ) and Lp (a,b;Y ).

Theorem 2.36 (Remark 14.4 in Lions & Magenes [8, page 96]). Let X and Y be two Banach spaces such
that X ⊆ Y . Then for any 1 ≤ p ≤∞ and θ ∈ (0,1), we have

[Lp (a,b; X ),Lp (a,b;Y )]θ = Lp (a,b, [X ,Y ]θ).

If we know the regularity of a function and the m-th derivative, we can relate the j -th derivatives for 1 ≤ j ≤
m −1 with the intermediate Sobolev spaces defined in Definition 2.23.

Theorem 2.37 (Theorem 2.3 in Lions & Magenes [8, page 15]). Intermediate derivatives theorem.
Let X and Y be two Hilbert spaces such that X ⊆ Y . If u ∈ L2(a,b; X ), u(m) ∈ L2(a,b;Y ) for m ∈N and j ∈N
is such that 1 ≤ j ≤ m −1, then

u( j ) ∈ L2(a,b; [X ,Y ] j /m).

Moreover, the mapping u 7→ u( j ) is linear and continuous.

For example, if a function u is in L2(0,T ; H 2(Ω)) and its second time derivative u′′ is in L2(0,T ;L2(Ω)), then
Theorem 2.37 implies that the first time derivative u′ is in L2(0,T ; [H 2(Ω),L2(Ω)]1/2) = L2(0,T ; H 1(Ω)).

Now, we continue with the definition of anisotropic Sobolev spaces. To this end, we first define the following
(see Lions & Magenes [9, page 6]).

Definition 2.38. Let (X ,∥ · ∥X ) be a Banach space. For m ∈N we define H m(a,b; X ) for an interval (a,b)
(possibly infinite) as follows.

H m(a,b; X ) =
{

u : u,
∂u

∂t
,
∂2u

∂t 2 , . . . ,
∂mu

∂t m ∈ L2(a,b; X )

}
.

For any real s ≥ 0 with θ ∈ [0,1] such that (1−θ)m = s, we define

H s (a,b; X ) = [H m(a,b; X ),L2(a,b; X )]θ .

Using the spaces L2(a,b; X ) and H s (a,b; X ), we can define anisotropic Sobolev spaces.
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Definition 2.39 (Lions & Magenes [9, page 6]). Let r, s ≥ 0. If Ω ⊆ Rn is an open Lipschitz domain, we
define the anisotropic Sobolev space H r,s (Ω) by

H r,s (Q) = L2(0,T ; H r (Ω))∩H s (0,T ;L2(Ω)).

It can be shown that H r,s (Q) is a Hilbert space with norm

∥u∥H r,s (Q) =
(∫ T

0
∥u(t )∥2

H r (Ω) d t +∥u∥2
H s (0,T ;L2(Ω))

) 1
2

.

For integer r and s, the definition of the H r,s (Q)-norm is easier to grasp. Indeed, if r, s ∈N, then

∥u∥2
H r,s (Q) =

∫ T

0

∑
|α|≤r

∥Dα
x u(t )∥2

2 d t +
s∑

k=0

∫ T

0

∥∥∥∥∥∂k u

∂t k

∥∥∥∥∥
2

2

d t

= ∑
|α|≤r

∫ T

0

∫
Ω
|Dα

x u|2 d x d t +
s∑

k=0

∫ T

0

∫
Ω

∣∣∣∣∣∂k u

∂t k

∣∣∣∣∣
2

d x d t .

As we can see, a function u is in the anisotropic space H r,s (Q) if its spatial derivatives up to order r and its
time derivatives up to order s are square integrable on Q. The norm for any non-negative r and s is derived
from a real interpolation method (see for example Theorem 2.15 on page 8).

2.3.3. A related space

The first space of this subsection is used a lot in Lasiecka, Lions & Triggiani [6]. We will reference this paper
many times in Chapter 3, as it provides existence-uniqueness results for the wave equation in slightly different
situations.

Definition 2.40 (Evans [3, Page 301]). Let (X ,∥ · ∥X ) be a Banach space. Then C ([a,b]; X ) is the space of
all continuous functions u : [a,b] → X . We endow C ([a,b]; X ) with the norm

∥u∥C ([a,b];X ) = max
a≤t≤b

∥u(t )∥X .

Note that the norm ∥u∥C ([a,b];X ) is always finite, because continuous functions on compact intervals are
bounded and attain their maximum. This also means that C ([a,b]; X ) is a subset of the space L∞(a,b; X )
as defined in Definition 2.35.

A very useful theorem from Lions & Magenes [8] can relate these spaces with Sobolev spaces. The theorem is
given by Theorem 2.41.

Theorem 2.41 (Theorem 3.1 in Lions & Magenes [8, page 19]). Let u ∈ L2(a,b; X ) and u(m) ∈ L2(a,b;Y )
for m ∈N. Then, as long as −∞< a < b <∞ and j ∈N is such that 0 ≤ j ≤ m −1, we have that

u( j ) ∈C ([a,b]; [X ,Y ]( j+1/2)/m).
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2.3.4. Interpolation between anisotropic Sobolev spaces

Since the theory of Section 2.2 was built up for any Banach space, all the theorems and methods in that
section also apply to interpolation between anisotropic Sobolev spaces, since H r,s (Q) is a Banach space for
any r, s ≥ 0. In particular, Theorem 2.20 is of importance for the main result.

Theorem 2.42 (Proposition 2.1 in Lions & Magenes [9, page 7]). Let r1,r2, s1, s2 ≥ 0 and let θ ∈ [0,1]. Then

[H r1,s1 (Q), H r2,s2 (Q)]θ = H (1−θ)r1+θr2,(1−θ)s1+θs2 (Q).





3
Results

This Chapter is about the existence-uniqueness results for the wave equation. We will try to find assumptions
on the regularity of the boundary- and initial conditions, and the right-hand side function f of the wave
equation (1.1) so that there is a unique solution u ∈ H 1(Q).

The paper by Lasiecka, Lions and Triggiani [6] contains a few theorems about existence-uniqueness of solu-
tions of the wave equations. However, most of their results imply existence and uniqueness in C ([0,T ]; H m(Ω))-
spaces. Essentially, this Chapter will be an interpretation of the results of Lasiecka, Lions and Triggiani, so that
we obtain existence and uniqueness in H 1(Q). Note that the reason we are proving existence and uniqueness
in H 1(Q) is that (weak) solutions of the wave equation make natural sense in H 1(Q); we have to have finite
potential and kinetic energy.

Proving existence and uniqueness of solutions of the wave equation - a hyperbolic partial differential equa-
tion - is difficult, compared to proving existence-uniqueness for other types of partial differential equations,
such as the Poisson equation (an elliptic equation). This is illustrated by Example 3.1, where we try to prove
uniqueness for the wave equation using a standard approach that works for the Poisson equation.

Example 3.1. Consider the wave equation (1.1). Suppose that (1.1) has two solutions u0 and u1. Define v :=
u0 −u1. Note that

∂2v

∂t 2 −∆v = ∂2u0

∂t 2 −∆u0 − ∂2u1

∂t 2 +∆u1

= f − f = 0.

Similar calculations show that the difference v satisfies the following partial differential equation.
∂2v
∂t 2 −∆v = 0 for (x, t ) ∈Q,

v(x,0) = 0 for x ∈Ω,
∂v
∂t (x,0) = 0 for x ∈Ω,

v = 0 for (x, t ) ∈Σ.

(3.1)

Now, multiply the partial differential equation by v and integrate over the domain Q1. We obtain∫ T

0

∫
Ω

(
v
∂2v

∂t 2 − v∆v

)
d x d t = 0 (3.2)

1This essentially also the process by which we derive weak formulations of initial-boundary value problems. Here we pick the test
function v itself. See Example 2.29 for the derivation of the weak formulation of a Poisson equation.

21
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Using the identities (3.3) and (3.4):

v∆v =∇· (v∇v)−∇v ·∇v, (3.3)

∂

∂t

[
v
∂v

∂t

]
=

(
∂v

∂t

)2

+ v
∂2v

∂t 2 , (3.4)

and Gauss’ divergence theorem, we can rewrite the above expression to the following.

[∫
Ω

v
∂v

∂t
d x

]
t=T

−
∫ T

0

∫
Ω

(
∂v

∂t

)2

d x d t +
∫ T

0

∫
Ω
∥∇v∥2 d x d t = 0, (3.5)

where ∥ · ∥ denotes the Euclidean norm. The goal of this approach is to prove that (3.2) implies that v = 0.
However, the issue here is that the terms of (3.5) may cancel with each other, giving us no information about v.
Therefore, we will need another approach to prove uniqueness of solutions of the wave equation (1.1).

The sequel of this Chapter will be subdivided as follows. In the first section we will prove existence and
uniqueness for relatively strong regularity assumptions on the initial- and boundary data. The second section
contains a proof for a weaker result using weaker regularity assumptions. Thirdly, we will use interpolation
between the results of the first two sections. Finally, we will discuss some extensions and discuss the obtained
results.

3.1. Strong regularity assumptions
As has been stated before, this section contains the proof for an existence-uniqueness result using rela-
tively strong regularity assumptions on the data. This stronger existence-theorem corresponds to the first
existence-uniqueness result in the paper by Lasiecka, Lions & Triggiani [6, page 151].

In order to translate that result to a standard Sobolev space, we will use two lemmas - stated and proved in
Subsection 3.1.1. These two lemmas will also be useful for the weaker regularity assumptions. Since proving
existence will require a different approach to uniqueness, we will divide these to proofs into two subsections:
Subsection 3.1.2 and Subsection 3.1.3.

3.1.1. Reframing lemmas

The two lemmas that are stated and proved in this subsection will be essential in reframing the results of
Lasiecka, Lions and Triggiani [6] to results in terms of standard (isotropic) Sobolev spaces.

Lemma 3.2 is useful for reframing existence-uniqueness results in C ([0,T ]; X )-spaces to Sobolev spaces.

Lemma 3.2. Let m ∈N. Suppose that u ∈C ([0,T ]; H m(Ω)) and u(m) = d m u
d t m ∈C ([0,T ];L2(Ω)), with T <∞.

Then u ∈ H m,m(Q).

Proof. Let u satisfy the requirements of Lemma 3.2. We will first show that for any integer k with 1 ≤ k ≤ m−1,
u(k) ∈ L2(0,T ; H m−k (Ω)).

Since u : [0,T ] → H m(Ω) and u(m) : [0,T ] → L2(Ω) are continuous on a compact interval, there exist constants
0 < M0, Mm <∞ such that

∀t ∈ [0,T ] : ∥u(t )∥H m (Ω) ≤ Mm and∥u(m)(t )∥L2(Ω) ≤ M0.

Hence,

∥u∥L2(0,T ;H m (Ω)) =
∫ T

0
∥u(t )∥2

H m (Ω) d t ≤ M 2
m <∞,

and

∥u(m)∥L2(0,T ;L2(Ω)) =
∫ T

0
∥u(m)(t )∥2

L2(Ω) d t ≤ T M 2
0 <∞,

so u ∈ L2(0,T ; H m(Ω)) and u(m) ∈ L2(0,T ;L2(Ω)). Then by the intermediate derivatives theorem (Theorem
2.37), we have that for any integer k such that 1 ≤ k ≤ m −1, u(k) ∈ L2(0,T ; H m−k (Ω)), since

[H m(Ω),L2(Ω)]k/m = H (1−k/m)m(Ω) = H m−k (Ω).
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Define the numbers Mk for 1 ≤ k ≤ m −1 by

Mk := ∥u(k)∥L2(0,T ;H m−k (Ω)) <∞.

Mm and M0 were defined earlier. We will now show that u ∈ H 1,1(Ω) = L2(0,T ; H m(Ω))∩H m(0,T ;L2(Ω)). Note
that for any integer k ≤ m and for all t ∈ [0,T ], we have that

∥u(k)(t )∥H m−k (Ω) ≥ ∥u(k)(t )∥L2(Ω).

It suffices to show that u ∈ H m(0,T ;L2(Ω)), since we have already shown that u ∈ L2(0,T ; H m(Ω)). Now,

∥u∥2
H m (0,T ;L2(Ω)) =

m∑
k=0

∫ T

0
∥u(k)(t )∥2

L2(Ω) d t

≤
m∑

k=0

∫ T

0
∥u(k)(t )∥2

H m−k (Ω)
d t

=
m∑

k=0
∥u(k)∥2

L2(0,T ;H m−k (Ω))

=
m∑

k=0
M 2

k <∞.

Hence, u ∈ H m(0,T ;L2(Ω)). We conclude that u ∈ H m,m(Ω).

An extension of Lemma 3.2 to fractional order Sobolev spaces H s,s (Q) might also be useful in re-interpreting
existence-uniqueness theorems. However, we expect that a statement and proof of such an extension would
require good definitions of fractional derivatives, which are outside the scope of this thesis.

The second lemma allows us to identify the anisotropic space H s,s (Q) with the isotropic space H s (Q) for any
0 ≤ s ≤ 1.

Lemma 3.3. Let Ω⊆ Rn be an open Lipschitz domain and let s be a real number with 0 ≤ s ≤ 1. Then, if
Q =Ω× (0,T ), we have H s,s (Q) = H s (Q).

Proof. We first treat the case s = 1. If u ∈ H 1,1(Q), then u ∈ L2(0,T ; H 1(Ω))∩H 1(0,T ;L2(Ω)). Then u ∈ L2(Q).
Furthermore, for any space variable x j , du

d x j
∈ L2(Q) as well. This applies to the time variable t as well. Then,

because we only consider first derivatives (so no mixed derivatives between time and space), we conclude
u ∈ H 1(Q). Using the definitions, the converse inclusion also holds, so H 1,1(Q) = H 1(Q).

If s = 0, then H 0,0(Q) = H 0(Q) = L2(Q), because

∥u∥2
H 0,0(Q) = ∥u∥2

L2(0,T ;L2(Ω)) =
∫ T

0

∫
Ω
|u|2d x d t =

∫
Q
|u|2dλ= ∥u∥2

L2(Q).

The case 0 < s < 1 then follows by interpolation. Suppose that θ ∈ (0,1) is such that 1−θ = s. Then

H s,s (Q) = [H 1,1(Q), H 0,0(Q)]θ = [H 1(Q),L2(Q)]θ = H s (Q).
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3.1.2. Existence

In all the proofs of Lasiecka, Lions & Triggiani [6], a solution operator is used to prove existence and unique-
ness. The term solution operator refers to an operator S, mapping the data - the initial and boundary condi-
tions and force term f - to the solution of the problem (1.1). If this operator S is continuous, then we know
that the wave equation (1.1) has a unique solution2.

In the case of Theorem 3.4, we would say that the solution operator S is continuous from L1(0,T ;L2(Ω))×
H 1(Ω)×L2(Ω)×H 1(Σ) to C ([0,T ]; H 1(Ω)).

In the remainder of this thesis, every existence-uniqueness theorem that states that - under a certain set of
assumptions - there exists a unique solution in some space, will always be seen as the solution operator being
continuous.

Using the lemmas from the previous subsection, we can now start with reframing the existence-uniqueness
result of Lasiecka, Lions & Triggiani [6, page 151]. The original result we will reframe is given by Theorem 3.4.

Theorem 3.4 (Theorem 2.1 in Lasiecka, Lions & Triggiani [6, page 151]). Consider the wave equation
(1.1). Suppose that 

f ∈ L1(0,T ;L2(Ω)),

u0 ∈ H 1(Ω),

u1 ∈ L2(Ω),

g ∈ H 1(Σ),

(3.6)

with the compatibility condition
g |t=0 = u0|∂Ω. (3.7)

Then the unique solution of (1.1) satisfies
u ∈C ([0,T ]; H 1(Ω)),

ut ∈C ([0,T ];L2(Ω)),
∂u
∂n ∈ L2(Σ),

(3.8)

where ∂u
∂n denotes the inward normal derivative along the boundary Σ.

The compatibility condition (3.7) essentially states that the Dirichlet boundary condition g ’agrees with’ the
initial condition u0 on the boundary of Ω, illustrated in Figure 3.1.

Q

t = 0

t = T

∂Ω

Figure 3.1: The boundary ∂Ω. In the compatibility condition (3.7), the boundary condition g and initial condition u0 have to be equal
here.

Existence of a solution in H 1(Q) now immediately follows by applying Lemmas 3.2 and 3.3 to (3.8).

2In fact, existence and uniqueness already follows from the well-posedness of the solution operator. Indeed, every input, i.e. set of data,
would then have a unique output.
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Corollary 3.5. Consider the wave equation (1.1). Suppose that assumptions (3.6) and compatibility con-
dition (3.7) are satisfied. Then there exists a solution u ∈ H 1(Q) that solves (1.1).

Proof. Suppose that (3.6) and (3.7) hold. Then we know that there exists a unique solution u such that{
u ∈C ([0,T ]; H 1(Ω)),

u′ ∈C ([0,T ];L2(Ω)).

But then by Lemma 3.2, we know that u ∈ H 1,1(Q). Then by Lemma 3.3, we see that u ∈ H 1(Q). Thus, there
exists a solution u ∈ H 1(Q) of the wave equation (1.1).

It should be noted that we cannot conclude that the solution u ∈ H 1(Q) is unique yet, since the set

H (Q) := {
u|u ∈C ([0,T ]; H 1(Ω)),u′ ∈C ([0,T ];L2(Ω))

}⊆ H 1(Q).

Indeed, from Lemmas 3.2 and 3.3 it follows that H 1(Q) is a larger space than H (Q). Therefore, uniqueness
in H (Q) does not imply uniqueness in H 1(Q), since there could exist a solution that is in H 1(Q) but not in
H (Q). It is clear that we have to work some more to obtain uniqueness in H 1(Ω).

3.1.3. Uniqueness

We will use an existence-uniqueness theorem that applies to more partial differential equations than just the
wave equation. The following context applies (see Lions & Magenes [8, page 265]).

Let (V ,∥ · ∥V ) and (H ,∥ · ∥H ) be two Hilbert spaces such that V ⊆ H and V is dense in H . Let a(t ;u, v) be a
continuous bilinear form (linear in both its arguments) on V , such that the mapping t 7→ a(t ;u, v) is once
continuously differentiable in [0,T ] with T <∞ for all u, v ∈V and there is λ and α> 0 such that for all v ∈V
we have

a(t ; v, v)+λ∥v∥2
H ≥α∥v∥2

V . (3.9)

Let A(t ) be the operator defined by
a(t ;u, v) = 〈A(t )u, v〉 , (3.10)

with A(t )u ∈V ′.

We consider the equation 
∂2u
∂t 2 + A(t )u = f for (x, t ) ∈Q,

u(x,0) = u0(x) for x ∈Ω,

u′(x,0) = u1(x) for x ∈Ω,

u = 0 for (x, t ) ∈Σ.

(3.11)

Examples 9.6.1, 9.6.2 and 9.6.3 in Lions & Magenes [8, pages 292-296] show that the wave equation with
a homogeneous Dirichlet boundary condition, corresponding to A(t ) = −∆, is a special case of this more
general context.

Theorem 3.6 (Theorem 8.1 in Lions & Magenes [8, page 265]). Suppose that
f ∈ L2(0,T ; H),

u0 ∈V ,

u1 ∈ H .

(3.12)

Then there exists a unique solution u satisfying (3.11) with

{
u ∈ L2(0,T ;V ),

u′ ∈ L2(0,T ; H).
(3.13)

If we apply this to the wave equation with homogeneous boundary conditions, we obtain Corollary 3.7.
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Corollary 3.7. Consider the wave equation (1.1) with g = 0. Assume that f ∈ L2(Q), u0 ∈ H 1(Ω) and
u1 ∈ L2(Ω). Then there exists a unique solution u of (1.1) with u ∈ H 1(Q).

Proof. Let V = H 1(Ω) and H = L2(Ω). Since H 1(Ω) and L2(Ω) are both Hilbert spaces and since H 1(Ω) is dense
in L2(Ω), it follows by Theorem 3.6 that there is a unique solution u with u ∈ L2(0,T ; H 1(Ω)) and u′ ∈ L2(Q).
Therefore, u ∈ H 1,1(Q) = L2(0,T ; H 1(Ω))∩H 1(0,T ;L2(Ω)). By Lemma 3.3, we conclude that u ∈ H 1(Ω).

In the remainder of this subsection, we will prove that the wave equation (1.1) with non-homogeneous bound-
ary conditions also has a unique solution u ∈ H 1(Q). This proof follows along exactly the same lines as the
proof of Theorem 2.1 in Lasiecka, Lions & Triggiani [6, pages 152-161], but substituting the spaces corre-
sponding to Corollary 3.7 for C ([0,T ]; H m(Ω))-spaces. That means that the proof of Proposition 3.8 will have
the same level of detail as the proof of Theorem 3.4 by Lasiecka, Lions & Triggiani [6, pages 152-161].

Proposition 3.8. Consider the wave equation (1.1). Suppose that
f ∈ L2(Q),

u0 ∈ H 1(Ω),

u1 ∈ L2(Ω),

g ∈ H 1(Σ),

(3.14)

and that compatibility condition (3.7) holds. Then there exists a unique solution u ∈ H 1(Q).

The proof in Lasiecka, Lions & Triggiani [6] uses a set of four Lemmas to prove the existence-uniqueness
result. We will adapt three of those Lemmas in order to prove Proposition 3.8 (the first lemma in Lasiecka,
Lions & Triggiani is replaced by Corollary 3.7).

Lemma 3.9 (Adapted from Lemma 2.2 in Lasiecka, Lions & Triggiani [6, page 157]). Suppose that
f ∈ L2(0,T ; H−1(Ω)),

u0 ∈ L2(Ω),

u1 ∈ H−1(Ω),

g ∈ L2(Σ).

(3.15)

Then the unique solution u of (1.1) satisfies u ∈ L2(Q) and u′ ∈ L2(0,T ; H−1(Ω)).

Proof. Let (·, ·)Z denote the L2(Z )-inner product. We first assume that f = 0.

1. If all data are smooth (we can then later extend the solution operator by continuity), and if u is the
solution of the wave equation (1.1) and ϕ is the solution of

ϕ′′−∆ϕ=ψ in Q,

ϕ(x,T ) =ϕ′(x,T ) = 0 in Ω,

ϕ= 0 on Σ,

(3.16)

we compare ( f ,ϕ)Q with (ϕ′′,ϕ)Q by integration by parts. We obtain

0 = ( f ,ϕ)Q +
(
∂u

∂n
,ϕ

)
Σ

=
∫
Σ

g
∂ϕ

∂n
dΣ− (u1,ϕ(0))Ω+ (u0,ϕ′(0))Ω+ (u,ψ)Q .

2. By virtue of Corollary 3.7, the mapping

ψ 7→ (u1,ϕ(0))Ω− (u0,ϕ′(0))Ω−
∫
Σ

g
∂ϕ

∂n
dΣ

is continuous on L2(Q) and according to (3.16) the above right-hand side equals (u,ψ)Q . Therefore, u
belongs to the dual space of L2(Q), i.e. L2(Q).
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3. It follows that
u′′ =∆u ∈ L2(0,T ; H−2(Ω))

and by the intermediate derivatives theorem (Theorem 2.37) we have that

u′ ∈ L2(0,T ; H−1(Ω))

and the case f = 0 is proved.

4. The same conclusion holds when f ̸= 0 and

f ∈ L2(0,T ; H−1(Ω)).

Indeed, one has only to add to the u obtained above the solution of
Ψ′′−∆Ψ= f in Q,

Ψ(x,0) =Ψ′(x,0) = 0 in Ω,

Ψ= 0 on Σ,

which exists and is unique (by application of Theorem 3.6 with H = H−1(Ω) and V = L2(Ω); note that
L2(Ω) is dense in H−1(Ω)).

Lemma 3.10 (Adapted from Lemma 2.3 in Lasiecka, Lions & Triggiani [6, page 158]). Consider the wave
equation (1.1) with f = 0. We assume that{

g , g ′ ∈ L2(Σ),

u0 ∈ H 1(Ω),u1 ∈ L2(Ω),
(3.17)

and that compatibility condition (3.7) holds. Then{
u,u′ ∈ L2(Q),

u′′ ∈ L2(0,T ; H−1(Ω)).
(3.18)

Proof. Let u be the solution of (1.1) with f = 0. We assume all data to be smooth and then extend by continu-
ity. Set v := u′; it satisfies 

v ′′−∆v = 0 in Q,

v(x,0) = u1(x) in Ω,

v ′(x,0) =∆u0(x) in Ω,

v = g ′ on Σ.

(3.19)

and we can extend by continuity as long as the condition (3.7) holds. By applying Lemma 3.9 to (3.19) we
have that

v ∈ L2(Q), v ′ ∈ L2(0,T ; H−1(Ω)).

Therefore, the result follows from u′ = v .
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Lemma 3.11 (Adapted from Lemma 2.4 in Lasiecka, Lions & Triggiani [6, page 159]). Let Γ := ∂Ω. Con-
sider again the wave equation (1.1) with f = 0. Suppose we have all the assumptions of Lemma 3.10 and,
moreover

g ∈ L2(0,T ; H 1/2(Γ)) (3.20)

Then one also has
u ∈ L2(0,T ; H 1(Ω)).

Proof. According to Lemma 3.10 one has

∆u = u′′ ∈ L2(0,T ; H−1(Ω)),

and by construction and the assumption on g ,

u|Γ = g ∈ L2(0,T ; H 1/2(Γ)).

The classical Dirichlet problem with parameter t implies the result.

Using these three lemmas, we can now prove Proposition 3.8.

Proof of Proposition 3.8. By the same logic as in the proof of Lemma 3.9, it suffices to consider the wave equa-
tion (1.1) with f = 0. Since g ∈ H 1(Σ), we have that

g ∈ L2(0,T ; H 1(Γ)), g ′ ∈ L2(0,T ;L2(Γ)).

Then by Theorem 2.41, g satisfies (3.20). Therefore, the solution of (1.1) is unique in H 1(Q). This is exactly
what we were aiming to prove.

Proposition 3.8 is not yet as strong as we would like. Because Proposition 3.8 requires H 1(Σ)-boundary data,
the trace theorem (Theorem 2.28) might indicate that the solution u - which has its trace (restricted to Σ) in

H 1(Σ) - has a higher regularity than H 1(Q), namely H
3
2 (Q). Unfortunately, the trace operator is only surjec-

tive, and not injective; we know that there exists some φ ∈ H
3
2 (Q) that has g ∈ H 1(Σ) as its trace (restricted to

Σ), but we cannot conclude that this φ then also solves the wave equation (1.1).

Furthermore, it is clear from the proof of our main reframing lemma (Lemma 3.2) that we cannot reach a
higher degree of regularity using the translation methodology we developed in Subsection 3.1.1. For in-

stance, if u ∈ C ([0,T ]; H m(Ω)) and u(m) ∈ C ([0,T ];L2(Ω)), we cannot conclude that u ∈ H m+ 1
2 (Q), because

u ∈C ([0,T ]; H m(Ω)) does not provide any information about the H m+ 1
2 (Q)-norm of u.

There is another way in which Proposition 3.8 may not yet be as strong as possible. Note that in order to obtain
uniqueness in H 1(Q), we had to strengthen the assumption on the force term f in (1.1)3. Indeed, in Corollary
3.5 we had to assume f ∈ L1(0,T ;L2(Ω)) and in Proposition 3.8 we had to assume f ∈ L2(Q) = L2(0,T ;L2(Ω)).
As of yet, it is unclear to us why Lasiecka, Lions & Triggiani [6] only have to assume that f ∈ L1(0,T ;L2(Ω)) in
their existence-uniqueness result. We suspect that it has something to do with L1(0,T ;L2(Ω)) being the dual
space of L∞(0,T ;L2(Ω)), which is very closely related to C ([0,T ];L2(Ω)).

3For bounded domains Q ⊆ Rn , we have that L2(Q) ⊆ L1(Q). Indeed, if a function has a finite L2(Q)-norm, the square of its absolute
value is integrable. The L1(Q)-norm, the integral over Q of the absolute value itself, is less than the L2(Q)-norm (and thus finite), since
squaring a large number makes it even larger. On bounded domains, the only way for a function to not be integrable is by growing too
quickly.
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3.2. Weak regularity assumptions
This section will be an adaptation of another result by Lasiecka, Lions & Triggiani [6, page 153], with weaker
regularity assumptions on the data, but also with lower regularity of the solution.

A large part of the proof of this Section has already been done in Section 3.1. Therefore, we will not subdivide
this section into separate subsections for existence and uniqueness. The result we will reinterpret is given by
Theorem 3.12

Theorem 3.12 (Theorem 2.3 in Lasiecka, Lions & Triggiani [6, page 153]). Consider the wave equation
(1.1). Suppose that


f ∈ L1(0,T ; H−1(Ω)),

u0 ∈ L2(Ω),

u1 ∈ H−1(Ω),

g ∈ L2(Σ).

(3.21)

Then, the unique solution u of (1.1) satisfies


u ∈C ([0,T ];L2(Ω)),

ut ∈C ([0,T ]; H−1(Ω)),
∂u
∂n ∈ H−1(Σ).

(3.22)

Note that every regularity assumption and conclusion in Theorem 3.12 has been shifted down by one degree
as compared to Theorem 3.4.

One might also note that no compatibility condition like (3.7) is required. This can be explained using a
Proposition from Lions & Magenes [9, page 11].

Proposition 3.13 (Proposition 2.2 in Lions & Magenes [9, page 11]). Let u ∈ H r,s (Q) for some r, s > 0 with
1− 1

2

( 1
r + 1

s

)> 0 and consider the compatibility relation

∂k

∂t k

([
∂ j u

∂n j

]
Σ

)
t=0

= γ j

(
∂k u

∂t k
(x,0)

)
, (3.23)

where γ j denotes the j -th degree normal derivative along the boundary Γ of Ω (similarly defined as the
trace operator in Theorem 2.28). The compatibility relation (3.23) is valid for all integer couples j ,k such
that

j

r
+ k

s
< 1− 1

2

(
1

r
+ 1

s

)
. (3.24)

Since the initial condition u0 in Theorem 3.12 is in L2(Ω) = H 0,0(Ω), 1− 1
2

( 1
r + 1

s

)
actually tends to −∞ if we

approach 0 from above. Therefore, no compatibility condition is needed, since (3.24) does not make sense in
this case. Indeed, if we are working in L2(Ω), we are actually working with equivalence classes of functions
that are equal almost everywhere. Therefore, pointwise evaluation at the boundary Γ does not really make
sense, as Γ has measure zero if it is seen as a subset of Q.

Now, we can reframe Theorem 3.12 to a result in which the solution is contained in L2(Q).
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Proposition 3.14. Consider the wave equation (1.1). Suppose that
f ∈ L2(0,T ; H−1(Ω)),

u0 ∈ L2(Ω),

u1 ∈ H−1(Ω),

g ∈ L2(Σ).

(3.25)

Then the unique solution u of (1.1) satisfies u ∈ L2(Q).

Proof. According to Theorem 3.12, the unique solution u of (1.1) satisfies u ∈ C ([0,T ];L2(Ω)). Then Lemma
3.2 with m = 0 implies that u ∈ L2(Ω) as well. Lemma 3.9 shows that this solution u is unique in L2(Q).

3.3. Interpolation between the results
When working with boundary integral equations corresponding to the wave equation with zero initial condi-
tions (see for example Steinbach & Urzúa-Torres [10]), one usually has boundary data in H 1/2(Σ). Therefore,
it would be interesting and useful to investigate what can be said about the regularity of solutions of the wave
equation (1.1) if one has boundary data in H 1/2(Σ). This result can be achieved by interpolation between
Propositions 3.8 and 3.14. Note that we actually need the Lions-Magenes space H 1/2

00 (Ω) here, as stated in
Subsection 2.2.4.

Corollary 3.15. Consider the wave equation (1.1). Set

M := H
1
2

00(Ω).

Suppose that 
f ∈ L2(0,T ; M ′)
u0 ∈ H

1
2 (Ω),

u1 ∈ M ′,
g ∈ H

1
2 (Σ).

(3.26)

Then the unique solution u of (1.1) satisfies u ∈ H
1
2 (Q).

Proof. Let S1 : L2(Q)× H 1(Ω)×L2(Ω)× H 1(Σ) → H 1(Q) be the solution operator of Proposition 3.8 defined
by ( f ,u0,u1, g ) 7→ u. By Proposition 3.8, this operator is continuous. Similarly, let S2 : L2(0,T ; H−1(Ω)) ×
L2(Ω)×H−1(Ω)×L2(Σ) → L2(Q) be the solution operator of Proposition 3.14 defined by ( f ,u0,u1, g ) 7→ u. By
Proposition 3.14, S2 is continuous. We will interpolate this operator using parameter θ = 1/2.

By Theorem 2.36 and Theorem 2.34, we have that

[L2(Q),L2(0,T ; H−1(Ω))]θ = L2(0,T, M ′).

Note that we introduce the Lions-Magenes space M , since we are in the special case of Theorem 2.34 where
(1−θ)s1 −θs2 =−1/2.

By definition, we have that

[H 1(Ω),L2(Ω)]θ = H
1
2 (Ω) and [H 1(Σ),L2(Σ)]θ = H

1
2 (Σ).

Finally, by Theorem 2.34 we have that
[L2(Ω), H−1(Ω)]θ = M ′.

Combining all this with Theorem 2.20, the solution operator S : L2(0,T, M ′)×H 1/2(Ω)×M ′×H 1/2(Σ) → H 1/2(Q)
is also continuous. Therefore, with assumptions (3.26), there exists a unique solution u ∈ H 1/2(Q).
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Note that we also do not need any compatibility condition here, since

1− 1

2

(
1

1/2
+ 1

1/2

)
=−1 < 0,

where we used the fact that H 1/2(Q) can be identified with H
1
2 , 1

2 (Q) (see Lemma 3.3).

It would be interesting to take a different approach to interpolating the results with strong and weak regularity
assumptions. In this approach, one would first interpolate between Theorems 3.4 and 3.12 and then apply the
translation lemmas (Lemmas 3.2 and 3.3). However, we would need a version of Lemma 3.2 that works with
fractional order Sobolev spaces as well. As of yet, proving such a result has been unsuccessful. If such a result
were found, we may be able to draw stronger regularity conclusions for the solution u. As has been stated
before, the wave equation only really makes sense for solutions in H 1(Q), so our conclusion u ∈ H 1/2(Q) is
not yet as strong as we would like it to be.

Like in Section 3.1, the boundary data being in H 1/2(Σ) and the trace theorem (Theorem 2.28) indicate that it
may be possible to prove H 1(Q)-regularity for our solution u.

3.4. Extensions
Wave equation (1.1) is only a specific case of the wave equations that are used in practice. Indeed, wave
equation (1.1) only provides solutions with a wave speed of 1. A more general wave equation with a Dirichlet
boundary condition is given by (3.27).


∂2v
∂t 2 − c2∆v = f for (x, t ) ∈Q,

v(x,0) = v0(x) for x ∈Ω,

v ′(x,0) = v1(x) for x ∈Ω,

v = g for (x, t ) ∈Σ.

(3.27)

Proposition 3.8 can be extended to wave equations like (3.27) using a coordinate transformation.

Corollary 3.16. Let Ω be a Lipschitz domain and consider wave equation (3.27). Suppose that all the
assumptions (3.14) and compatibility condition (3.7) hold. Then there exists a unique v ∈ H 1(Q) that
solves (3.27).

Proof. Let u ∈ H 1(Qc ) be the solution of (1.1) on Qc =Ωc × (0,T ) with

Ωc := {cx | x ∈Ω}.

Note that u exists and is unique because we transform the domain continuously (so the Lipschitz condition
still holds for Ωc ); the transformation is given by z = cx. Then it follows that v = u(z, t ) solves (3.27) on Q and
v ∈ H 1(Q).

Another interesting extension is the extension to more general second order hyperbolic partial differential
equations. The paper by Lasiecka, Lions & Triggiani [6, page 184] contains a section about these kinds of par-
tial differential equations. Proposition 3.8 cannot yet be extended to these more general differential equations
fully; we can extend existence in H 1(Q), but not uniqueness in H 1(Q).

Consider the following differential equation.


u′′+ Au = f for (x, t ) ∈Q,

u(x,0) = u0(x) for x ∈Ω,

u′(x,0) = u1(x) for x ∈Ω,

u = g for x ∈Σ,

(3.28)

where the differential operator A is given by

A =−
n∑

i=1

n∑
j=1

∂

∂xi

(
ai j (x, t )

∂

∂x j

)
. (3.29)
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Here we assume that Ω⊆Rn and{
ai j = a j i ∈ L∞(Q) ∀i , j ,

ai j (x, t )ξiξ j >αξiξi ∀ξi ∈R,α> 0 a.e. in Q.
(3.30)

Note that (3.29) can also be written as
A =−div(α(x, t )∇) , (3.31)

whereα(x, t ) is a matrix with entriesαi j (x, t ) = ai j (x, t ). Assumptions (3.30) then state thatα(x, t ) is bounded
and positive definite. This guarantees that the operator A satisfies assumptions (3.9) and (3.10).

Lasiecka, Lions & Triggiani [6, page 185] conclude the following about existence and uniqueness of solutions
of (3.28).

Theorem 3.17 (Theorem 4.1 in Lasiecka, Lions & Triggiani [6, page 185]). Consider (3.28). Assume that
f ∈ L1(0,T ;L2(Ω)),

u0 ∈ H 1(Ω),

u1 ∈ L2(Ω),

g ∈ H 1(Σ),

(3.32)

and assume that compatibility condition (3.7). In addition, assume that for any integer 0 ≤ k ≤ n, we have

∂ai j

∂t
,
∂ai j

∂xk
∈ L∞(Q).

Then there exists a unique solution u satisfying{
u ∈C ([0,T ]; H 1(Ω)),

u′ ∈C ([0,T ];L2(Ω)),
(3.33)

as a continuous map with respect to f ,u0,u1 and g .

Corollary 3.18. Consider the hyperbolic differential equation (3.28) and suppose that all assumptions of
Theorem 3.17 are satisfied. Then there exists a solution u ∈ H 1(Q) of (3.28).

Proof. The result follows directly from applying Lemma 3.2 to the conclusion of Theorem 3.17.

It is likely that uniqueness can be obtained using the same process as Subsection 3.1.3. However, one would
have to check whether the proof of Theorem 3.17 is compatible with the spaces from Theorem 3.6.

3.5. Discussion

To be able to conclude existence and uniqueness of solutions u of the wave equation (1.1) in H 1(Q) requires
f ∈ L2(Q), u0 ∈ H 1(Ω), u1 ∈ L2(Ω) and g ∈ H 1(Σ). There are some indications that the result is not sharp and
we may be able to strengthen the conclusion, or weaken the assumptions.

The trace theorem (Theorem 2.28) implies that H 3/2(Q)-functions have H 1(Σ)-traces. This indicates that it
may be possible that the solution u of (1.1) is actually in H 3/2(Q). Likewise, H 1(Q)-functions have H 1/2(Σ)-
traces, so it is possible that in the case of Corollary 3.15, we actually have H 1(Q)-regularity for the solution
u, which is the desired regularity for solutions of the wave equation. If this were true, we would be able to
weaken the assumptions of Proposition 3.8 to the assumptions of Corollary 3.15 and still be able to conclude
existence and uniqueness in H 1(Q).

Secondly, if one were to find out why Lasiecka, Lions & Triggiani [6] are able to only assume L1(0,T ;L2(Ω))-
regularity of f , instead of the L2(Q)-regularity we have to assume (in the case of Proposition 3.8), one could
be able to slightly strengthen Proposition 3.8 by weakening the assumptions a little.

The above two remarks provide interesting avenues of further research. Three other directions would be the
following:
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1. Investigate whether the proof of Theorem 3.17 can be adapted to u ∈ H 1(Q), in order to extend the re-
sults of this thesis to arbitrary second order hyperbolic differential equations with a Dirichlet boundary
condition.

2. Find a non-integer extension of Lemma 3.2 in order to interchange translation and interpolation in the
order of the proof of Corollary 3.15. It is possible that a stronger conclusion can be drawn.

3. As a final avenue of further research, one could try to translate different existence-uniqueness theorems
altogether, following a similar approach as in this thesis.





4
Conclusion

The wave equation (1.1) - given below for convenience - is a partial differential equation that is relatively
difficult to work with. In this thesis, we have tried to find suitable assumptions on the initial- and boundary
conditions and force term f , so that the wave equation has a unique solution u that is in H 1(Q), the energy
space in which solutions of the wave equation make sense.



∂2u

∂t 2 −∆u = f for (x, t ) ∈Q =Ω× (0,T ),

u(x,0) = u0(x) for x ∈Ω,
∂u
∂t (x,0) = u1(x) for x ∈Ω,

u = g for (x, t ) ∈Σ := ∂Ω× (0,T ).

To this end, we have adapted two existence-uniqueness theorems from a paper by Lasiecka, Lions & Triggiani
[6], so that we can draw conclusions about existence and uniqueness of solutions in H 1(Q).

In order to conclude that the wave equation has a unique solution in H 1(Q), we have determined that a
sufficient set of assumptions is the following: 

f ∈ L2(Q),

u0 ∈ H 1(Ω),

u1 ∈ L2(Ω),

g ∈ H 1(Σ),

along with a compatibility condition given by

g |t=0 = u0|Γ,

i.e. the initial condition and the boundary condition agree on the boundary Γ of Ω. Since, in the context
of boundary integral equations (see Steinbach & Urzúa-Torres [10]), one usually works with boundary data
in H 1/2(Σ), we have investigated what can be said in this case as well. By interpolating between a weaker
existence-uniqueness theorem (see Proposition 3.14) and the stronger existence-uniqueness theorem stated
above, we arrived at Corollary 3.15. Corollary 3.15 states that with boundary data in H 1/2(Σ) (and other corre-
sponding assumptions on initial conditions and force term f ), one may conclude that the wave equation has
a unique solution in H 1/2(Q), which is not yet the desired regularity in which solutions of the wave equation
make sense. However, the trace theorem (Theorem 2.28) suggests that it may be possible to prove H 1(Q)-
regularity in this case as well, since H 1(Q)-functions have H 1/2(Σ)-traces.

The stronger existence-uniqueness theorem (Proposition 3.8) can be extended to more general wave equa-
tions (3.27) with wave speed c. Furthermore, it may also be partially extended to arbitrary second order hyper-
bolic partial differential equations with Dirichlet boundary conditions. The existence-part can be extended
to the general hyperbolic differential equations, but it is unclear whether the uniqueness may be extended as
well.
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