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Abstract

Adversarial Training has emerged as the most reliable technique to make neural
networks robust to gradient-based adversarial perturbations on input data. Besides
improving model robustness, preliminary evidence presents an interesting consequence
of adversarial training – increased explainability of model behaviour. Prior work has
explored the effects of adversarial training on gradient stability and interpretability,
as well as visual explainability of counterfactuals. Our work presents the first quan-
titative, empirical analysis of the impact of model robustness on model explainability
by comparing the plausibility of faithful counterfactuals for both robust and standard
networks. We seek to determine whether robust networks learn more plausible deci-
sion boundaries and representations of the data than regular models, and whether the
strength of the adversary used to train robust models affects their explainability. Our
finidngs indicate that robust networks for image data learn more explainable decision
boundaries and representations of data than regular models, with more robust models
producing more plausible counterfactuals. Robust models for tabular data, however,
only conclusively exhibit this phenomenon along decision boundaries and not for its
overall data representations, possibly due to its high robustness-accuracy trade-off and
the difficulties associated with traditional adversarial training due to its innate prop-
erties. We believe our work can help guide future research towards improving the
robustness of machine learning models keeping their explainability in mind.

1 Introduction
Neural networks are vulnerable to adversarial attacks, small and often imperceptible pertur-
bations to inputs engineered to elicit misclassifications by the network [1]. Such a vulnerabil-
ity can lead to security threats [2, 3] when neural networks are deployed in critical scenarios,
which necessitates developing defense mechanisms for neural networks. Adversarial training
– augmenting the training set with adversarial examples – has been shown to improve the
robustness of neural networks to adversarial attacks [4, 5].

Counterfactual Explanations (CEs) allow us to intuitively explain the decision-making of
machine learning models by exploring how inputs to a model have to change for it to predict
a different outcome [6]. A variety of desiderata guide the counterfactual search process
and are used to measure the suitability of counterfactuals generated. Existing research has
emphasized the plausibility [7] of counterfactuals, i.e. consistency with the underlying data
distribution, and faithfulness, i.e. consistency with the model’s learned representation of the
data [8].

Adversarial training forces the network to generalize to both regular and perturbed
points, implicitly smoothing the loss gradients, steering the network towards differentiating
between classes based on robust features. Adversarially trained neural networks therefore
produce more visually interpretable loss gradients compared to standard networks, since
adversarial training restricts gradients closer to the data manifold [9]. Interestingly, coun-
terfactual generators [7, 6] function similarly to gradient-based adversaries: strategically
perturbing inputs by navigating along their loss gradients. It therefore intuitively follows
that adversarial training on gradient-based attacks can steer the counterfactual search along
relevant and robust features, thereby making networks more explainable. Augustin et al. [10]
demonstrate this qualitatively, showing that counterfactuals produced from adversarially
robust models exhibited class-specific features more evidently than standard models.

However, to the best of our knowledge, the systematic and quantitative exploration of
how adversarial robustness of neural networks impacts their explainability via counterfac-

1



tuals is an under-explored research direction. We perform a series of experiments on both
the MNIST [11] and California Housing [12] datasets to investigate this link, generating
faithful counterfactuals from both robust and regular neural networks. Using the plausibil-
ity of faithful counterfactuals generated as the explainability measure, we seek to determine
whether robust neural networks are more explainable than standard networks,
and among robust models, whether the strength of adversary used during train-
ing affects their explainabilities. We observed that:

• Faithful counterfactuals for robust neural networks generated along the decision bound-
ary are more plausible than those generated for standard neural networks for both
datasets, demonstrating that robust networks differentiate between classes more
plausibly than regular models.

• Robust MNIST models generate starkly more plausible counterfactuals beyond the
decision boundary than standard models, showing that robust networks learn more
plausible representations of classes than regular networks. However, a similar
trend is not observed for the tabular California Housing dataset, likely because for
tabular data, adversarial training moves the region of maximum likelihood
away from the data manifold to accommodate for adversarial examples,
further evidenced by its high robustness-accuracy tradeoff.

• Among robust MNIST networks, those trained on stronger adversaries pro-
duced more plausible counterfactuals both along the decision boundaries
and beyond, indicating a positive relation between model robustness and model ex-
plainability.

We hope our work can help encourage future research on developing robust neural net-
works that consider both the desirable objectives of robustness against gradient-based ad-
versarial perturbations, and explainability of model decisions.

Our paper is organized as follows: Section 2 provides the relevant background on ad-
versarial machine learning and counterfactual explanations, Section 3 details our research
objectives and methodology, followed by a thorough description of our experimental setup
in Section 4. Section 5 describes our findings, assessments and key takeaways, and Section 6
highlights the steps we took to ensure our research was carried out responsibly. A transpar-
ent discussion of our limitations and our suggestions for future work can be found in Section
7, and Section 8 concludes our paper.

2 Background
In this section, we present an overview of relevant research, detailing prior work in adversar-
ial machine learning and the concept of robustness in background:adversarialrobustness, fol-
lowed by the counterfactual approach to model explainability in background:counterfactual.

2.1 Adversarial Machine Learning
Given the vulnerability of neural networks to adversarial attacks [1], an illustration of which
can be found in Figure 1, a large body of work has been dedicated towards developing
mechanisms to defend neural networks against adversarial examples [4, 5, 13], and to evaluate
the adversarial robustness of neural networks [14, 15].
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Figure 1: Left: A clean MNIST [11] datapoint correctly classified by a neural network as
an ’8’. Right: A Fast Gradient Sign Method (FGSM) attack [4] applied to it, causing the
network to misclassify it as a ’0’

Adversarial training, augmentation of the training data with adversarial examples, has
emerged as the most reliable and empirically validated defence mechanism for neural net-
works against adversarial attacks. Given a network fθ parameterized by θ, a dataset (xi, yi),
a loss function ℓ, and a threat model ∆ representing the type of ℓ-norm to bound the ad-
versarial perturbations, adversarial training is typically formulated as the following robust
optimization problem:

min
θ

∑
i

max
δ∈∆

ℓ(fθ(xi + δ), yi) (1)

where the threat model is expressed as ∆ = {δ : ∥δ∥p ≤ ϵ} for some ϵ > 0 and p
representing the norm.

Prior work has explored the usage of single-step adversaries such as the Fast Gradient
Sign Method (FGSM) [4] to generate adversarial examples during training, which computes
an adversarial example based on the sign of the loss gradient with respect to the input:

x+ ϵ sgn(∇xL(θ, x, y)) (2)

On the other hand, Madry et al. [5] introduced the multi-step Projected Gradient
Descent (PGD) attack:

xt+1 = Πx+S (xt + α sgn(∇xL(θ, x, y))) (3)

repeated across steps to determine the final adversarial example. The PGD attack is
essentially FGSM carried out across multiple iterations with a smaller step size α.

Madry et al. [5] empirically observed that the variability of the loss landscape for ad-
versarially trained models trained with the PGD attack was significantly lower than that
of standard models. This smoothening of the loss landscape implies the loss gradients of
robust models are more stable, uniform and consistent than in standard models, leading to
predictable and stable model behavior despite slight perturbations to inputs.

Evaluation of a model’s adversarial robustness entails measuring the degree to which
it resists misclassifying adversarial examples. Robustness can be measured by performing
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heuristic evaluations of model performance on adversarial examples [5, 15], or by identifying
and formally proving robustness up to a lower bound of input perturbation for a specific set
of examples [16]. Carlini et al. provide a comprehensive set of principles that should guide
defense evaluations, and a checklist to avoid common evaluation pitfalls [14].

2.2 Counterfactual Explanations
Counterfactual explanations (CEs) for classification models explore how the inputs to the
model have to change, for the model to classify it differently. Modifying factual input in-
stances intohypothetical counterfactuals allows us to better understand how the underlying
model makes its predictions, by observing the feature modifications necessary to elicit a
different prediction by the model [17]. Counterfactuals offer the possibility of algorithmic
recourse [18], empowering people to carry out changes to alter unfavorable outcomes deliv-
ered by automated decision-making systems, such as those involved with loan approvals and
hiring.

Figure 2: Generating a counterfactual of class ’2’ from a factual of class ’1’ for a conventional
binary classifier, using a generic gradient-based counterfactual generator, from [19]

Most counterfactual generators perform gradient descent with respect to the original
input to navigate it from the original class to the target class by minimising a loss function,
modifying the input at every iteration. Figure 2 demonstrates a gradient-based counter-
factual generator in action. While this describes the simplest gradient-based generator,
researchers have proposed variations to the counterfactual search objective to guide the
counterfactual search to satisfy certain desiderata. Wachter et al. [6], for instance, added
a distance-based penalty term to the search objective as a regularizer, emphasizing close-
ness to the original factual as a desideratum. Other desiderata explored in research include
sparsity [20] and plausibility [7].

Plausibility describes how well a counterfactual adheres to the underlying distribution
of the data. While the proximity of plausible counterfactuals to target class data may in-
centivise a plausible-first approach to counterfactual search, Altmeyer et al. [8] argue that
doing so can produce counterfactuals that seem plausible but need not describe the opaque
model’s behavior faithfully. They introduce the notion of faithfulness as a desideratum,
which describes how well the counterfactual adheres to the model’s learned representation
of the data. They developed the Energy-Constrained Conformal Counterfactuals (ECCCo)
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generator which leverages advances in energy-based modelling to produce faithful counter-
factuals. Its search objective is as follows:

min
Z′∈ZL

{
ℓ(f(Z ′);Mθ, y

+)+λ1 · cost(f(Z ′))+λ2 ·Eθ(f(Z
′) | y+)+λ3 ·Ω(Cθ(f(Z

′);α))
}

(4)

Here, ℓ represents any standard classification loss, f(·) maps from the counterfactual
state space to the feature space, y+ represents the target class, Mθ the underlying model
parametrized by θ and Z ′ denotes a counterfactual from an L-dimensional array of counter-
factual states. The penalty terms involving λ1, λ2 and λ3 induce closeness [6] by constraining
distance from the factual, faithfulness by constraining the counterfactual’s energy [21], and
low predictive uncertainty via conformal predictions [22] respectively.

3 The Effect of Robustness on Model Explainability
Prior research has explored the effect of adversarial training on the interpretability of loss
gradients [9] and the plausibility of counterfactual explanations generated [10]. However,
these works investigated the aforementioned effects only for image classification tasks, and
the latter work solely relied on a qualitative analysis of counterfactuals by visually inspecting
them to identify class-specific features.

Through this paper, we seek to expand upon past research to answer the following
research questions:

Research Question 1: Are neural networks made robust to gradient-based
adversaries through adversarial training more explainable than a regularly trained
neural network?

Research Question 2: Among adversarially robust neural networks, are those
trained with a stronger gradient-based adversary more explainable than those
trained with a weaker gradient-based adversary?

Our work, to the best of our knowledge, is the first attempt at quantitatively deter-
mining the effect of adversarial robustness on model explainability via counterfactuals. We
experiment across both tabular and image data, training models with varying strengths of
adversaries to systematically and comprehensively determine the robustness-explainability
connection. Moreover, we leverage a counterfactual generator [8] that produces counterfac-
tuals in line with the underlying model’s learned representation of the data, ensuring that
they faithfully describe model behavior.

The following subsections will further describe our methods of adversarial training and
robustness evaluation, as well as our notion of model explainability and our counterfactual
generation process.

3.1 Adversarial Training
Adversarial training can be formulated as the robust min-max optimization problem defined
in Equation 1, with adversarial attacks approximating the inner maximization problem.
Gradient-based adversarial attacks can either take a single step along the loss gradient,
such as the Fast Gradient Sign Method (FGSM) [4] described in Equation 2 that perturbs
the input based on the sign of the loss gradient w.r.t the input, or multiple steps like
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the Projected Gradient Descent (PGD) attack [5], where multiple smaller FGSM steps are
carried out iteratively.

While adversarial training based on FGSM or its variations provides robustness against
single-step adversaries, they were shown to be vulnerable to more sophisticated multi-step
attacks [23]. We choose to carry out PGD-based adversarial training as it has been shown to
learn models resistant to both single- and multi-step adversaries [5]. Moreover, we limit our
scope to the ℓ∞ threat model, which means the ℓ∞-norm (Chebyshev distance) is used as
the distance measure to bound the perturbations.

To answer our second research question, we configure three PGD adversaries with in-
creasing step sizes, number of iterations and perturbation bounds. The adversary with the
highest measure for these three attributes is our strongest and leads to the best robust-
ness, while the opposite is true for the adversary with the lowest measures. The standard
(non-robust) model is subjected to the regular training process.

To quantitatively determine the robustness of our neural networks, we measure the ac-
curacy score on adversarial examples generated with FGSM [4] and PGD [5] to cover both
single- and multi-step robustness. An alternate strategy to measure robustness of a model is
neural network verification, in which robustness within a certain bound of perturbations for
a set of examples is formally proven [24, 25]. However, formal verification is computationally
intractable for even modestly sized neural networks and only provides guarantees under a
narrow subset of examples, hence we do not consider it.

3.2 Measuring Model Explainability
Once we train our standard and robust models, the next step involves generating many
faithful counterfactual explanations for each model, measuring their plausibility to assess
model explainability.

We use an adapted version of the Energy-Constrained Conformal Counterfactuals (EC-
CCo) generator [8] whose counterfactual search objective is described in Equation 4. We
modify it by removing the conformal set penalty (the λ3 penalty in the equation). Our gen-
erator (hereinafter referred to as ECCo) still retains its closeness [6] (λ1) and faithfulness
[8] (λ2) inducing constraints. The faithfulness constraint is especially important in our case.
Faithful counterfactuals are those in line with the model’s learned representation of the un-
derlying data [8]. Modelling faithfulness as a counterfactual search objective ensures that
those we obtain truthfully represent the underlying model’s behavior and can be assessed
to ascertain the model’s properties.

In this work, we define the explainability of a model as the degree to which faithful coun-
terfactuals generated for the model are also plausible. The plausibility of a counterfactual
refers to its consistency with the underlying (target class) data [7, 8]. To quantitatively
determine the extent of plausibility, we use the implausibility metric initially proposed by
Guidotti [26] and later adapted by Altmeyer et al. [8]:

impl
(
x′,Xy+

)
=

1∣∣Xy+

∣∣ ∑
x∈Xy+

dist (x′,x) (5)

It measures the average distance between the counterfactual x′ and its nearest neighbors
Xy+ in the target class y+. The further a point is from its nearest neighbors in the target
class, the less consistent it is with the underlying data, therefore it is more implausible.
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3.3 Effect of Adversarial Training on Gradients and Counterfactual
Search

Madry et al. [5], who framed the robust optimization approach to adversarial training (Equa-
tion 1), performed an elaborate empirical comparison of the loss landscape of adversarially
robust models with those of standard, non-robust models. Their key takeaway was that the
inner maximization problem of the adversarial training objective was tractable, with the
loss values increasing consistently with an increase in adversary strength (iterations). This
indicates that adversarial training stabilizes the gradient landscape, making the underlying
model less susceptible to perturbations along random, irrelevant directions. Kim et al. [9]
further demonstrated that adversarial training leads to more interpretable loss gradients
than standard training both qualitatively and quantitatively.

Most counterfactual generators (including ECCo) are gradient-based, which means they
rely on variations of gradient descent to modify a factual input to a counterfactual belonging
to a different class. Since adversarial training stabilizes the gradient landscape of models,
one can intutively reason that it guides the gradient descent process towards meaningful
modifications, i.e. along more robust features, rather than along irrelevant directions. When
the counterfactual search is steered towards more relevant features, it naturally follows that
we obtain counterfactuals that are more plausible representations of their intended target
classes.

This overall line of reasoning leads us to believe that adversarial training has a positive
effect on model explainability, and that explainability is directly proportional to robustness.
The observations of Augustin et al. [10] demonstrate this phenomenon qualitatively, observ-
ing that counterfactuals generated for robust models consisted of class-specific features to a
greater extent than regular models. Our goal with this paper is to subject this hypothesis
to a rigorous and systematic analysis, quantitatively exploring the robustness-explainability
link.

4 Experimental Setup
This section of the paper will comprehensively describe our experimental process, elaborating
on the datasets and models used, configurations of adversaries for training and robustness
evaluations, and the counterfactual search and evaluation process. Finally, we describe the
software we utilized to carry out our experiments. The source code for our experiment can
be found online 1

4.1 Datasets
We experiment with MNIST [11] as our vision dataset, and California Housing [12] as our
tabular dataset. In addition to the quantitative analysis we conduct for both datasets, using
MNIST allows us to qualitatively assess the counterfactual examples generated for both
the standard and adversarially trained models, through visual inspection of class-specific
features.

1https://github.com/JuliaTrustworthyAI/what-makes-models-explainable/tree/rithik-adv-ml
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4.2 Models and Adversaries
For both our datasets, we initialize and train multi-layer perceptrons (MLPs). While con-
volutional neural networks (CNNs) like LeNet-5 [11] exhibit better performance on MNIST
than regular MLPs, adversarially training them was computationally prohibitive since gen-
erating a single Projected Gradient Descent (PGD) adversarial attack necessitates multiple
gradient computations [5].

For MNIST, our neural networks consisted of a 784 neuron input layer, a 128 neuron
hidden layer and 10 output neurons. For California Housing, our networks consisted of an
8 neuron input layer, a 10 neuron hidden layer and 2 output neurons. Rectified Linear Unit
(ReLU) [27] was used as the activation function for the hidden layer in all modes. The
models were trained using the cross-entropy loss, and Xavier initialization (using a normal
distribution) [28] was used to initialize weights.

We use three different PGD [5] adversaries varying in strength to train our robust models:

• Strong Adversary: PGD with ϵ = 0.3, 40 iterations and 0.01 step-size.

• Medium Adversary: PGD with ϵ = 0.1, 13 iterations and 0.01 step-size.

• Weak Adversary: PGD with ϵ = 0.05, 7 iterations and 0.01 step-size.

This altogether gives us four neural networks for each dataset: one regularly trained and
three adversarially trained.

We measure the robustness of models as accuracy on an unseen test set perturbed by
the Fast Gradient Sign Method (FGSM) adversary [4], with ϵ = 0.2, and a PGD adversary
with ϵ = 0.2, 26 iterations and 0.01 step size.

4.3 Counterfactual Search and Analysis
Our counterfactual search leverages the ECCo generator [8] with a distance penalty (λ1) and
energy constraint (λ2) of 0.01 and 0.5 respectively for MNIST, and 0.1 and 0.5 respectively
for California Housing. Across both datasets, we prioritized the energy constraint over
closeness to encourage generating counterfactuals that faithfully represent the underlying
model’s behavior. The lower closeness penalty for MNIST is based on the understanding that
unlike for tabular data, minor distortions in images do not significantly affect interpretability,
allowing for a broader range of counterfactuals that retain the digit’s essence.

An experimental run consists of randomly selecting 100 factual datapoints from the
unseen test set and generating one counterfactual for each factual with pre-determined
target classes kept the same across all models for each dataset. We then measure their
implausibilities as per Equation 5 with 100 nearest neighbors, relying on Euclidean distance
for tabular data and the Structural Similarity Index (SSIM) [29] for image data. Finally, we
average their implausibilities. This run is repeated five times, each with a different selection
of factuals. We report the mean and standard deviation of implausibilities across the five
experimental runs.

To add another dimension to our analysis, we generate two distinct types of counter-
factuals: those along the decision boundaries and those in the underlying model’s region
of maximum likelihood for the classes. The former kind is generated by setting a Decision
Threshold Convergence criterion, concluding search once the counterfactual is predicted to
belong to the target class with probability over 0.5. The latter kind is generated by setting a
Generator Conditions Convergence criterion, concluding search once the loss of the gradient
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Table 1: Clean and robust accuracies, and average implausibilities ± one standard devia-
tion for both decision-boundary counterfactuals (DTC - Decision Threshold Convergence)
and maximum likelihood counterfactuals (GCC - Generative Conditions Convergence) for
standard and robust models trained on MNIST [11] and California Housing [12] datasets.
Lowest average implausibility for each dataset and type of counterfactual marked in bold.

Dataset Training
Accuracies Model Implausibilities

Clean FGSM PGD Impl. (DTC) Impl. (GCC)

MNIST

Standard 0.981 0.032 0.002 0.437 ± 0.002 0.390 ± 0.004

Strong-AT 0.969 0.714 0.653 0.412 ± 0.002 0.221 ± 0.005

Medium-AT 0.984 0.379 0.298 0.411 ± 0.002 0.236 ± 0.005

Weak-AT 0.983 0.248 0.062 0.416 ± 0.003 0.262 ± 0.006

California

Housing

Standard 0.857 0.211 0.217 1.673 ± 0.072 2.358 ± 0.124

Strong-AT 0.771 0.644 0.647 1.196 ± 0.072 2.762 ± 0.149

Medium-AT 0.810 0.563 0.572 1.224 ± 0.070 2.884 ± 0.188

Weak-AT 0.840 0.337 0.350 1.390 ± 0.074 2.632 ± 0.122

w.r.t the counterfactual (for the target class), reduces below a threshold of 0.01 or under-
goes a maximum of 1000 descent steps. Generating decision boundary counterfactuals can
help us determine whether the model learned plausible ways to differentiate be-
tween classes, while generating gradient minimisation counterfactuals helps us determine
whether the model learned plausible representations of the classes themselves.

4.4 Software
Our experiments are carried out in Julia, with our datasets obtained from the TaijaData.jl2
package, neural networks initialized and trained using the Flux.jl3 package and counter-
factuals generated via the CounterfactualExplanations.jl4 package, all of which are open
source.

5 Results and Discussion
In this section, we present and discuss the results of our experiments, outlining how they
answer the research questions we investigated and providing explanations. Our aim was to
explore whether robustness to gradient-based adversaries makes neural network decisions
more explainable, and whether the strength of network robustness plays a role. Table 1
demonstrates the quantitative results we obtained, consisting of both robustness and ex-
plainability evaluations of regular and adversarially trained models. The robust accuracies
indicate that adversarial training worked as intended, with the robustness of networks di-
rectly proportional to the strength of adversary they were trained on.

2https://github.com/JuliaTrustworthyAI/TaijaData.jl/tree/main
3https://fluxml.ai/Flux.jl/stable/
4https://juliatrustworthyai.github.io/CounterfactualExplanations.jl/stable/

9



We generated counterfactuals both along the model’s learned inter-class decision bound-
aries and per-class maximum likelihood regions to assess how robust training impacts the
network’s ability to (1) differentiate between classes, and (2) learn plausible representations
of the classes.

5.1 Explainability of Decision Boundaries
To generate counterfactuals in the vicinity of the inter-class decision boundaries, we defined
a Decision Threshold convergence criteria for the search. It returns the first counterfactual it
generates that the underlying network predicts as being in the target class with a confidence
of at least 0.5, which represents a certain crossing of the decision boundary.

The results demonstrate that across both MNIST and California Housing datasets,
robust neural networks generated decision boundary counterfactuals closer to its nearest
neighbors, i.e. more plausible, than the regularly trained model. We observe that the
difference in decision-boundary explainability between robust models is not significant (as
indicated by their standard deviations), but all three robust models clearly generated more
plausible counterfactuals than the regularly trained model. This shows that even weak
adversarial training on neural networks can enable it to differentiate between classes more
robustly than regular training, but there are diminishing returns with an increase in training
adversary strength.

Our findings are corroborated by the observations of Ilyas et al. [30], who argue that
models trained in the standard manner tend to establish decision boundaries by learning
non-robust, non-interpretable features, while adversarial training causes networks to lever-
age robust, human-interpretable features to differentiate between classes. Our empirical
assessment using decision boundary counterfactuals demonstrates exactly this point.

5.2 Explainability of Class Representations
Faithful counterfactuals generated beyond the decision boundary give us insights into the
model’s learned representation of the data distribution. By specifying the Generator Con-
ditions convergence criteria based on minimizing the gradients below a threshold of 0.01 (or
stopping after 1000 iterations), we produced counterfactuals within or close to the network’s
learned representation of the target class. Unlike decision boundary counterfactuals, here we
observe stark differences in explainability trends between MNIST and California Housing
networks.

MNIST results demonstrate that adversarially trained networks produced counterfactu-
als significantly more plausible than the standard network. This is an encouraging result,
indicating that adversarial training causes models to learn more plausible representations
of the classes. Figure 3 demonstrates this observation for a random factual from the test
set. Even among robust networks, we observe that as we increase the strength of adversary
during training, the counterfactuals they produce tend to be closer to its nearest neighbors
in the target class, implying that more robust networks are also more explainable.

For neural networks trained on the California Housing dataset, however, we do not
notice the same results. In fact, we observe that the standard model generates more plausible
counterfactuals for the opposite class to its factual than any of the robust models, and among
robust models there does not seem to be a noticeable proportionality between robustness
and explainability.

A potential explanation for this discrepancy is that adversarial training with the Califor-
nia Housing data significantly moved the region of maximum likelihood further away from
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Figure 3: A factual datapoint of class ’3’ (left) and counterfactual ’8’s produced by the
standard model (middle) and most robust model (right), using the Generator Conditions
convergence criterion. The robust model produced a counterfactual visually far more plau-
sible than the standard model.

the data manifold to satisfy the demands of adversarial robustness. We can also observe this
in the trade-off between clean and robust accuracies in California Housing models, which
was significantly more drastic than in MNIST models.

More importantly, these results also underscore drawbacks with traditional deep-
learning techniques and adversarial training with tabular data compared to image
data, due to the innate characteristics of both these data types and the differences in their
structures. Tabular data consists of heterogenous features – dense numerical data and sparse
categorical features, and the correlations between individual features in tabular data are gen-
erally not as well-defined as in image data with its spatial relationships. Effectively dealing
with tabular data remains a challenge to deep learning models [31, 32]. While a small per-
turbation does not affect an image’s essence and human-interpretability, the same cannot be
said as easily for tabular data, for which a perturbation can produce a datapoint that can
be interpreted completely differently. Therefore, the benefits conferred onto image classifi-
cation neural networks by adversarial training [5, 4], which aims to minimize susceptibility
to perturbations, need not translate into similar effects in tabular data.

6 Responsible Research
Given the focus of our research on the robustness and explainability of machine learning
models, domains which have a variety of ethical considerations [18, 2, 3],we made concerted
efforts to ensure our research adheres to accessibility and reproducibility standards.

With regards to accessibility, our data is obtained from the open-source TaijaData.jl
package which is under the MIT free license and properly anonymized. The Julia pack-
ages we use to instantiate and train neural networks (Flux.jl), and generate counterfactuals
(CounterfactualExplanations.jl) are both open-source, and so is the language of Julia which
we use to conduct our experiments. The source code of our experiments can also be found
online under the JuliaTrustworthyAI organization on GitHub.

Concerning reproducibility, we take special care to perform multiple runs for each exper-
iment across multiple initializations of models, finally averaging results to ensure mitigation
of biases. We make sure to report the hyperparameter values and exact training and ex-
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periment procedures to ensure reproducibility. Our work adheres to the standards of trans-
parency associated with experimental and dataset details as specified in the Netherlands
Code of Conduct for Research Integrity [33].

7 Limitations and Future Work
Despite considerable efforts to ensure the reliability of our methodology and research, we
can identify certain limitations.

Firstly, our notion of adversarial robustness for neural networks was limited to robust-
ness towards adversaries exploiting access to the network’s gradients to craft perturbations
[5, 4]. These adversaries are white-box in nature, as the attack algorithm assumes access to
model parameters. However, there exist black-box adversaries [34, 35], which learn about
the model by repeatedly querying it. Moreover, robustness evaluation metrics explored in
research have relied on ensemble adversarial attacks, where multiple attacks are attempted
for each datapoint to prevent an overestimation of adversarial robustness. A popular ro-
bustness metric that leverages this technique is RobustBench [15], which uses AutoAttack
[36], an ensemble of four attacks consisting of both white- and black-box attacks. We hope
future work exploring the robustness-explainability connection considers both black-box at-
tacks and attack ensembling techniques to provide a more realistic and accurate robustness
estimate avoiding overestimation.

For both our datasets, we explored the robustness-explainability connection for one neu-
ral network architecture each. Moreover, for the MNIST image dataset, we relied on a reg-
ular multi-layered perceptron architecture, although convolutional neural networks (CNNs)
exhibit state-of-the-art performance on image data. An interesting direction for future re-
search can be measuring the impact of robustness on explainability across a richer spectrum
of models to paint a complete picture.

In terms of our counterfactual generation process, our notion of plausibility was based on
the distance between a counterfactual and its nearest neighbors in the target class. Although
it is intuitive to use distance-based metrics for image data, it may not be applicable to tabular
data, especially due to the heterogeneity associated with its features. Identifying universally
applicable plausibility measures can help future work.

Finally, we identified limitations associated with traditional deep learning techniques and
adversarial training with tabular data. Due to the heterogeneity of features and potentially
weak correlations between features in tabular data, learning shallow neural networks to
tabular data representations is a greater challenge than with image or speech data, for which
spatial or semantic similarities can be exploited. Unlike for image data, slight perturbations
can severely impact the interpretability of tabular datapoints. An interesting direction for
future research to address these concerns is by leveraging tree-based models such as Deep
Neural Decision Trees [37] that combines the benefits of neural networks and decision trees
and are known to perform better on tabular data than regular shallow neural networks.

8 Conclusions
In this work, we investigate whether neural networks robust to gradient-based adversaries
learn more plausible representations of data than standard networks. Training neural net-
works on adversarial attacks has been shown to stabilize gradients [5], causing networks
to learn more robust features [30]. We perform the first quantitative study across both
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image and tabular data, empirically determining whether faithful counterfactuals produced
for robust networks are more plausible than those for standard networks, and whether the
strength of adversary used to train robust networks impacts the plausibility of their faithful
counterfactuals. Our results indicate robust models for image data are more explainable
than regular models, learning more plausible inter-class decision boundaries and class rep-
resentations. For tabular data, robustness did not lead to better explainability of class
representations, possibly due to its high robustness-accuracy trade-off and innate properties
which make it difficult to apply traditional adversarial training and deep learning principles
on it. We believe our findings can encourage future work on improving model robustness in
ways that promote model explainability.
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