
 
 

Delft University of Technology

Singular perturbations of Volterra equations with periodic nonlinearities
Stability and oscillatory properties
Smirnova, Vera B.; Proskurnikov, Anton V.

DOI
10.1016/j.ifacol.2017.08.812
Publication date
2017
Document Version
Accepted author manuscript
Published in
IFAC-PapersOnLine

Citation (APA)
Smirnova, V. B., & Proskurnikov, A. V. (2017). Singular perturbations of Volterra equations with periodic
nonlinearities: Stability and oscillatory properties. In D. Dochain, D. Henrion, & D. Peaucelle (Eds.), IFAC-
PapersOnLine: Proceedings of the 20th IFAC World Congress (Vol. 50-1, pp. 8454-8459). (IFAC-
PapersOnLine; Vol. 50, No. 1). Elsevier. https://doi.org/10.1016/j.ifacol.2017.08.812
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.ifacol.2017.08.812
https://doi.org/10.1016/j.ifacol.2017.08.812


Singular Perturbations of Volterra
Equations with Periodic Nonlinearities.
Stability and Oscillatory Properties. ⋆

Vera B. Smirnova ∗,∗∗ Anton V. Proskurnikov ∗∗,∗∗∗,∗∗∗∗,†

∗ St. Petersburg State University of Architecture and Civil Engineering,
St. Petersburg, Russia

∗∗ St. Petersburg State University, St. Petersburg, Russia
∗∗∗ Institute for Problems of Mechanical Engineering of the Russian

Academy of Sciences, St. Petersburg, Russia
∗∗∗∗ Delft Center for Systems and Control (DCSC) at Delft University

of Technology, Delft, The Netherlands
† ITMO University, St. Petersburg, Russia

Abstract: Singularly perturbed integro-differential Volterra equations with MIMO periodic
nonlinearities are considered, which describe synchronization circuits (such as phase- and
frequency-locked loops) and many other “pendulum-like” systems. Similar to the usual pen-
dulum equation, such systems are typically featured by infinite sequences of equilibria points,
and none of which can be globally asymptotically stable. A natural extension of the global
asymptotic stability is the gradient-like behavior, that is, convergence of any solution to one
of the equilibria. In this paper, we offer an efficient frequency-domain criterion for gradient-
like behavior. This criterion is not only applicable to a broad class of infinite-dimensional
systems with periodic nonlinearities, but in fact ensures the equilibria set stability under singular
perturbation. In particular, the proposed criterion guarantees the absence of periodic solutions
that are considered to be undesirable in synchronization systems. In this paper we also discuss
a relaxed version of this criterion, which guarantees the absence of “high-frequency” periodic
solutions, whose frequencies lie beyond a certain bounded interval.

Keywords: Singular perturbation, gradient-like behavior, periodic solution, integro-differential
equation, phase synchronization systems .

1. INTRODUCTION

Singular perturbation theory is a powerful tool to examine
natural and engineered systems, in which slow and fast
processes (or two different time scales) co-exist (Fridrichs,
1955; Dyke, 1964; Cole, 1968; Imanaliev, 1972, 1974;
Kokotovic et al., 1986; O’Malley, 1991; Naidu and Calise,
2001). Mathematically, a “singularly perturbed” system
is a family of systems, parameterized by a small scalar
parameter µ ≥ 0. The system, corresponding to µ = 0, is
treated to as an original (unperturbed) system, whereas
the systems indexed by µ > 0 are considered to be
its perturbations. Although the system’s coefficients are
continuous in µ, its structure is changed as the parameter
vanishes µ = 0, e.g. the dimension of the state may reduce
and a system of ODE may turn into a descriptor system.

In analysis of singular perturbations for various types of
dynamical systems two parallel lines can be distinguished.
The first of these lines, started by (Tikhonov, 1948), is
focused on proving convergence of the perturbed solu-
tions to unperturbed ones as µ → 0 (Lizama and Prado,
2006b,a; Parand and Rad, 2011). The main concern of the

⋆ The results were obtained at Institute for Problems of Mechanical
Engineering of the Russian Academy of Sciences (IPME RAS) and
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second direction is to find conditions that guarantee global
asymptotical stability of the unique equilibrium point un-
der sufficiently small values of the parameter (Klimushev
and Krasovskii, 1961; Khalil, 1981; Kokotovic et al., 1986).

Unlike globally asymptotically stable equilibria, well stud-
ied in the literature, the behavior of more complicated
attractors under singular perturbations remains uncovered
by the existing results. In this paper, we consider singular
perturbations of a Lur’e-type system, represented as the
feedback interconnection of a linear integro-differential
equation and a periodic MIMO nonlinearity. Special cases
of such a model are pendulum-like systems (Stoker, 1950)
and synchronization systems (e.g. phase- and frequency-
locked loops), arising in electrical and communication en-
gineering (Margaris, 2004; Leonov et al., 2015; Leonov,
2006; Hoppensteadt, 1983). Singular perturbations in such
systems may describe the effects of relaxation oscilla-
tions (O’Malley, 1991) or “weak” filtering (Hoppensteadt,
1983) (the parameter determines the filter bandwidth).

The presence of periodic nonlinearity in the system usually
leads to an infinite sequence of equilibria (which may be
stable or unstable), as exemplified by a usual pendulum.
One of main questions regarding the dynamics of synchro-
nization system is the convergence of any solution to one



of the equilibria. This property is sometimes referred to as
the gradient-like behavior (Leonov, 2006). Efficient suf-
ficient “frequency-algebraic” conditions for the gradient-
like behavior, based on the periodic Lyapunov functions
and integral quadratic constraints, have been established
in (Leonov, 2006; Leonov et al., 1996; Perkin et al., 2012).

If the system is not gradient-like, a natural question arises
whether it has periodic solutions. Existence of periodic
solutions of some prescribed frequency in phase locked
loops (PLL) was studied in (Shakhil’dyan and Lyakhovkin,
1972; Evtyanov and Snedkova, 1968). In (Leonov and Sper-
anskaya, 1985) a general nonexistence criterion was ob-
tained, employing the Fourier series method. It was shown
that a relaxed version of the condition for the gradient-
like behavior guarantees absence of periodic solutions with
sufficiently high frequencies. The results of (Leonov and
Speranskaya, 1985) were extended to discrete-time sys-
tems (Leonov and Fyodorov, 2011) and infinite dimen-
sional systems (Leonov et al., 1996). These latter results
were further improved in (Perkin et al., 2015; Smirnova
and Proskurnikov, 2016; Smirnova et al., 2016b) with
tightening of the frequency-domain conditions.

In this paper we consider singularly perturbed integro-
differential equations with periodic nonlinearities. We of-
fer a frequency-domain criterion of gradient-like behavior
under small values of the parameter. In the case where
the frequency-domain condition is valid only for suffi-
ciently large frequencies, it ensures the absence of the
high-frequency periodic oscillations. Unlike the previous
works (Smirnova et al., 2016a,b), we consider the case
of MIMO nonlinearities and though the methods are the
same the technique is much more complicated.

2. PROBLEM SETUP

Consider a system of singularly perturbed integro-differential
Volterra equations as follows

Mσ̈M (t) + σ̇M (t) = b(t) +Rξ(t− h)−
t∫

0

γ(t− τ)ξ(τ) dτ,

ξ(t) = φ(σM (t)), t ≥ 0.
(1)

Here σM (t), ξ(t) ∈ Rl and the MIMO nonlinearity φ is
input-output decoupled: φ(σM ) = (φ1(σM1), . . . , φl(σMl)).
The map φj is C1–smooth and ∆j–periodic for any j
and has simple and isolated roots on [0;∆j) (being thus
non-constant). The matrix R ∈ Rl×l, delay h ≥ 0, ker-
nel γ : [0; +∞) → Rl×l and b : [0; +∞) → Rl×l are
known. The function b(·) is continuous, the function γ(·)
is summable. The matrix M is diagonal and given by

M =

(
0l1 0
0 µIl2

)
, l1 + l2 = l, µ ≥ 0. (2)

where Im, 0k stand for m×m identity matrix and for the
k × k null matrix respectively and µ is a small parameter.
To determine a solution of (1) uniquely, initial conditions
have to be fixed

σM (t) ≡ σ0(t)∀t ∈ [−h; 0], σ0 ∈ C1[−h; 0],

σM (0 + 0) = σ0(0), σ̇M (0 + 0) = σ̇0(0),
(3)

hence the solutions of (1) are continuously differentiable.
We impose the additional assumptions that

|b(t)|+ |γ(t)| ≤ Ce−rt, C, r > 0. (4)

We also introduce the constants m1j and m2j as follows

m1j
∆
= inf

ζ∈[0,∆j)

dφj(ζ)

dζ
,m2j

∆
= sup

ζ∈[0,∆j)

dφj(ζ)

dζ
. (5)

Since φj is periodic and non-constant, m1j < 0 < m2j ∀j.
The criteria, proposed in this paper, do not require to know
the exact values of m1j , m2j . It is assumed, however, that
they belong to a certain finite interval [α1;α2] (that is, φj

satisfies a conventional slope restriction)

−∞ < α1j ≤ m1j ≤ m2j ≤ α2j < ∞ ∀j. (6)

We introduce the matrices of lower and upper bounds

Ai
∆
= diag {αi1, . . . , αil} (i = 1, 2).

The system (1) arises as a singular perturbation of the
following system (corresponding to µ = 0)

σ̇0(t) = b(t) +Rξ(t− h)−
t∫

0

γ(t− τ)ξ(τ) dτ,

ξ(t) = φ(σ0(t)), t ≥ 0.

(7)

In papers Perkin et al. (2012), Perkin et al. (2015) the
conditions for gradient–like behavior of (7) as well as
the conditions for the absence of periodic solutions are
obtained. They are formulated in terms of the transfer
matrix of its linear part from the input to the output (−σ̇):

K0(p) = −Re−ph +

+∞∫
0

γ(t)e−pt dt (p ∈ C), (8)

In this paper we extend the frequency–algebraic criteria
for asymptotic behavior of unperturbed system (7) to
singular perturbed system (1).

Solving the Cauchy problem for functions σ̇Mj(t) with
j = l1 + 1, . . . , l one can reduce the system (1) to the
system

σ̇M (t) = bM (t) + R̄ξ(t− h)−
t∫

0

γM (t− τ)ξ(τ) dτ,

ξ(t) = φ(σM (t))

(9)

where R̄ is a l1 × l–matrix, bM (t) and γM (t) satisfy the
estimate

|bM (t)|+ |γM (t)| < C1e
−rt (C1 > 0). (10)

The transfer matrix for system (1) from the input ξ to the
output −σ̇M (t) is as follows

KM (p) = Q(p)K0(p), Q(p) =

(
Il1 ; 0

0;
1

1 + µp
Il2

)
. (11)

3. THE CONVERGENCE OF SOLUTIONS OF
SINGULARLY PERTURBED SYSTEM

The results of this section are based on the following
technical lemma, proved in (Smirnova et al., 2014).

Lemma 1. Suppose there exist diagonal matrices κ >
0, ε > 0, δ > 0, τ > 0 such that for all ω ∈ R one has



Ω(ω) := Re
{
κKM (iω)− (KM (iω)+

+A−1
1 iω)∗τ(KM (iω) +A−1

2 iω)−
−K∗

M (iω)εKM (iω)
}
− δ > 0 (i2 = −1)

(12)

Then the quadratic functionals IT [σM (·), ξ(·)], defined by

IT
∆
=

∫ T

0

{σ̇M (t)∗κξ(t) + ξ(t)∗δξ(t) + σ̇M (t)∗εσ̇M (t)+

+ (σ̇M (t)−A−1
1 ξ̇(t))∗τ(σ̇M (t)−A−1

2 ξ̇(t))} dt
(13)

are uniformly bounded along any solution of (1):

Q := sup
T≥0

IT [σM (·), ξ(·)] < ∞. (14)

Henceforth the diagonal entries of matrices κ, δ, ε, τ are
denoted by, respectively, κj , δj , εj , τj . For each j = 1, . . . , l
we introduce the following constants and functions

Φj(ζ)
∆
=
√

(1− α−1
1j φ

′
j(ζ))(1− α−1

2j φ
′
j(ζ)),

νj =

∆j∫
0

φj(ζ)dζ

∆j∫
0

|φj(ζ)|dζ
, ν0j =

∆j∫
0

φj(ζ)dζ

∆j∫
0

Φj(ζ)|φj(ζ)|dζ
,

ν1j(x, y) =

∆j∫
0

φj(ζ)dζ

∆j∫
0

|φj(ζ)|
√
1 + x

yΦ
2
j (ζ)dζ

.

Henceforth we use ReH = 1
2 (H + H∗) to denote the

Hermitian part of a square matrix H.

Our first result gives a condition for the convergence of
solutions to equilibria points.

Theorem 2. Suppose that positive definite diagonal matri-
ces κ, δ, ε, τ and numbers ak ∈ [0, 1] (k = 1, . . . , l) exist,
satisfying the following conditions:
1) for all ω ≥ 0 the inequality (12) is true;
2)the quadratic forms

Wj(ξ, η, ζ) := εjξ
2 + δjη

2 + τjζ
2 + κjajνjξη+

+κj(1− aj)ν0jηζ (j = 1, . . . , l)
(15)

are positive definite.
Then the solutions of (1) converges

σ̇M (t) −−−→
t→∞

0, σM (t) −−−→
t→∞

q, (16)

to some equilibrium point q, where φk(qk) = 0 ∀k.

Proof. Recalling the definition of Φj , the functional (13)
can be represented in the following way

IT =

l∑
j=1

T∫
0

{
κjξj(t)σ̇Mj(t) + δjξ

2
j (t)+

+εj σ̇
2
Mj(t) + τjΦ

2
j (σMj(t))σ̇

2
Mj(t)

}
dt.

(17)

Introducing the functions Fj(ζ)
∆
= φj(ζ) − νj |φj(ζ)|,

Ψj(ζ)
∆
= φj(ζ)− ν0jΦj(ζ) |φj(ζ)|, it can be shown that

IT =

l∑
j=1

T∫
0

{
κjajνj |ξj(t)|σ̇Mj(t) + εj σ̇

2
Mj(t)+

κja0jν0j |ξj(t)|Φj(σMj(t))σ̇Mj(t) + τjΦ
2
j (σMj(t))σ̇

2
Mj(t)+

+δjξ
2
j (t)

}
dt+

l∑
j=1

 T∫
0

κjajFj(σMj(t))σ̇Mj(t)dt+

+

T∫
0

κja0jν0jΨ0j(σMj(t))σ̇Mj(t)dt

 ,

(18)

where a0j
∆
= 1− aj . By noticing that

∆j∫
0

Fj(ζ)dζ =

∆j∫
0

Ψj(ζ)dζ = 0 ∀j, (19)

it can be shown that the integrals
T∫
0

Fj(σMj(t))σ̇Mj(t)dt

and
T∫
0

Ψj(σMj(t))σ̇Mj(t)dt are uniformly bounded. Us-

ing (14), one arrives at the following inequality

l∑
j=1

T∫
0

{κjajνj |ξj(t)|σ̇Mj(t) + κja0jν0j |ξj(t)|·

·Φj(σMj(t))σ̇Mj(t) + εσ̇2
Mj(t) + δjξ

2
j (t)+ (20)

+τjΦ
2
j (σMj(t))σ̇

2
Mj(t)

}
dt < C0 ∀T ≥ 0,

where C0 is a constant. Condition 2) and (20) entail that

+∞∫
0

ξ2j (t)dt < +∞,

+∞∫
0

σ̇2
Mj(t)dt < +∞. (21)

Using the Barbalat lemma (Leonov et al., 1996) it can be
shown that φj(σMj(t)) → 0 and, due to (1), σ̇Mj → 0,
which implies convergence of σM (t) as t → ∞ to one of
the isolated equilibria points.�
Theorem 3. Suppose there exist diagonal matrices κ >
0, ε > 0, δ > 0, τ > 0 such that (12) holds for all ω ∈ R
and ν1j = ν1j(τj , εj) satisfy inequalities

2
√

εjδj > |ν1j |κj (∀j = 1, . . . , l). (22)

Then the solutions converge in the sense of (16).

Proof. Introducing the following diagonal matrix Φ(σM )
∆
=

diag{Φ1(σM1), . . . ,Φl(σMl)}, one may notice that

IT =

∫ T

0

[σ̇M (t)∗κξ(t) + ξ(t)∗δξ(t)+

+σ̇M (t)∗(ε+ τΦ2(σM ))σ̇M (t)]dt.

Additionally, we introduce the functions

Yj(ζ)
∆
= φj(ζ)− ν1j |φj(ζ)|Pj(ζ), Pj(ζ)

∆
=

√
1 +

τj
εj

Φ2
j (ζ)

and notice that ξj = Yj(σMj) + ν1j |ξj |Pj(σMj) and

the integrals
∫ T

0
Yj(σMj)σ̇Mj(t)dt are uniformly bounded.

Lemma 1 now implies the uniform boundedness of integrals∫ T

0

[κjν1j |ξj |σ̇MjPj(σMj) + δj |ξj |2 + εj σ̇
2
MjP

2
j (σMj)]dt,



entailing that σ̇Mj ∈ L2[0;∞], ξj ∈ L2[0;∞] due to (22) .
The proof is ended by applying the Barbalat lemma.�

In the following two theorems we establish frequency–
domain conditions, providing convergence of the solutions
of (1) under small parameter. They employ the transfer
function K0(p) of unperturbed system (7).

Theorem 4. Suppose there exist positive definite diagonal
matrices ε, δ, τ,κ and numbers aj ∈ [0, 1] (j = 1, . . . , l)
such that the following conditions are satisfied :
1) the frequency inequality

Ω0(ω) := Re
{
κK0(iω)− (K∗

0 (iω)εK0(iω)−

−(K0(iω) +A−1
1 iω)∗τ(K0(iω) +A−1

2 iω)
}
− δ > 0,

(23)
is true for all ω ≥ 0.
2) the quadratic forms (15) are positive definite.
Then there exists µ0 > 0 such that for all µ ∈ (0, µ0) the
solutions of (1) converge in the sense of (16).

Proof. It follows from Theorem 2 that (16) holds if the
frequency-domain inequality (12) holds for all ω ≥ 0.
Recalling (11) the function Ω(ω) may be decomposed as

Ω(ω) = Ω0(ω)− Ω̄(ω), (24)

where, by definition

Ω̄(ω)
∆
= Re

{
κQ1(iω)K0(iω)−K∗

0Q
∗
1(iω)τ(K0(iω)+

+iωA−1
2 )− (K∗

0 (iω) + iωA−1
1 )τQ1(iω)K0(iω)+

+K∗
0 (iω)Q

∗
1(iω)(τ + ε)Q1(iω)K0(iω)−
−2(K∗(iω)εQ1(iω)K0(iω)

}
,

(25)
and the diagonal matrix Q1(p) stands for

Q1(p)
∆
=

(
0 0

0
µp

1 + µp
Il2

)
.

A straightforward computation shows that

Ω̄(ω) = O(µ)T1(ω) +O(µ2)T2(ω),

where Ti(ω) (i = 1, 2) are continuous functions. Since
|K0(iω)| is bounded for ω ∈ R, the inequality (12) is
equivalent to

−A−1
1 τA−1

2 ω2 + P1(ω)ω + P2(ω)+
+µ(P3(ω) + P4(ω)ω

2) + µ2(−A−1
1 τA−1

2 ω4−
−δω2) > 0 (A−1

1 τA−1
2 < 0),

(26)

where Pi (i = 1, 2, 3, 4) are bounded for ω ∈ [0,+∞). So
we can fix µ̄ > 0 and choose the positive value ω0 such
that the inequality (26) is valid for all ω ∈ [ω0,+∞) and
all µ < µ̄. Next step we choose µ0 < µ̄ so small that Ω(ω)
is positive for ω ∈ [0, ω0] and all µ < µ0 (this is possible
due to (25)). Theorem 4 is proved. �
Theorem 5. Suppose where exist positive definite diagonal
matrices ε, δ, τ,κ such that for all ω ≥ 0 the frequency
inequality (23) is satisfied. Suppose also that for varying
parameters εj , δj , τj ,κj the inequalities

2
√

εjδj > |ν1j(τj ; εj)|κj (j = 1, . . . , l) (27)

are valid. Then the conclusion of Theorem 4 is true.

Proof. The proof is similar to the proof of Theorem 4,
using Theorem 3 instead of Theorem 2. �

4. FREQUENCIES OF PERIODIC SOLUTIONS

Definition 6. We say that a solution σM (t) of (1) has the
period TM > 0 or the frequency ωM = 2π/TM if there
exists a set of integers Ij (j = 1, . . . , l) such that

σMj(t+ TM ) = σMj(t) + Ij∆j (j = 1, 2, . . . , l). (28)

In this section we establish the conditions for the absence
of periodic solutions with certain frequencies under suffi-
ciently small values of the parameters µ < µ0.

We shall need some preliminaries Leonov and Speranskaya
(1985); Leonov et al. (1996). Suppose σM (t) is a TM–
periodic solution of (1). Then φ(σM (t)) is a TM–periodic
function. Indeed it follows from (28) that

φj(σMj(t+ TM )) = φj(σMj(t) + Ij∆j) = φj(σMj(t)).
(29)

Consider the Fourier series of this periodic function

φ(σM (t)) =

+∞∑
k=−∞

Bke
iωkt, Bk ∈ Rl (i2 = −1), (30)

By substituting (30) in (9) we have

σ̇M (t) = bM (t) + β(t)−
+∞∑

k=−∞

KM (iωk)Bke
iωkt, (31)

where the function β(t) is defined as follows

β(t)
∆
=

+∞∫
t

γM (τ)φ(σM (t− τ)) dτ. (32)

The restrictions (10) imply that that bM (t) + β(t) −−−→
t→∞

0.

Since σ̇M (t) is TM–periodic, bM (t) + β(t) ≡ 0 and thus

σ̇M (t) = −
+∞∑

k=−∞

KM (iωk)Bke
iωkt. (33)

Theorem 7. Suppose there exist ω̄ > 0, positive definite
matrices κ, τ , ε, δ and numbers aj ∈ [0; 1] (j = 1, ..., l),
such that the following conditions are valid:
1) for ω = 0 and all ω ≥ ω̄ the inequality (12) is true;
2) the quadratic forms (15) are positive definite.
Then (1) has no periodic solution with frequency ω ≥ ω̄.

Proof. Using the functions Fj(ζ),Ψj(ζ) from the proof

of Theorem 2, denote F (σ)
∆
= (F1(σ1), ..., Fl(σl))

T and

Ψ(σ)
∆
= (Ψ1(σ1), ...,Ψl(σl))

T . Introduce the diagonal ma-
trices A = diag{a1, ..., al}, A0 = diag{1− a1, ..., 1− al}.
Let σM (t) be a TM–periodic solution of (1) and

G(t)
∆
= σ̇∗

M (t)εσ̇M (t) + σ̇∗
M (t)κφ(σM (t))+

+φ∗(σM (t))δφ(σM (t))− F ∗(σM (t))Aκσ̇M (t)−
−Ψ∗(σM (t))A0κσ̇M (t)+
+(σ̇M (t)−A−1

1 φ̇(σM (t)))∗τ(σ̇M (t)−A−1
2 φ̇(σM (t)))

(34)
and consider the function

J(Θ) =

∫ Θ

0

G(t) dt (Θ > 0). (35)

Substituting Θ = TM and using (19), we have



J(TM ) =

∫ TM

0

l∑
j=1

{
εj σ̇

2
Mj(t) + κjφj(σMj(t))σ̇Mj(t)−

−ajκjFj(σMj(t))σ̇Mj(t) + δjφ
2
j (σMj(t))−

−(1− aj)κjΨj(σMj(t))σ̇Mj(t)+
+τj(σ̇Mj(t)− α−1

1j φ̇j(σMj(t)))·
·(σ̇Mj(t)− α−1

2j φ̇j(σMj(t)))
}
dt =

=

∫ TM

0

l∑
j=1

{
εj σ̇

2
j (t) + δjφ

2
j (σMj(t))+

+τj σ̇
2
Mj(t)Φ

2
j (σMj(t)) + κjajνj |φ(σMj(t))|σ̇Mj(t)+

+κj(1− aj)ν0j |φ(σMj(t))|σ̇Mj(t)Φj(σMj(t))
}
dt =

=

∫ TM

0

l∑
j=1

Wj(σ̇Mj(t), |φ(σMj(t))|, σ̇Mj(t)Φj(σMj(t))).

(36)
Condition 2) implies that

J(TM ) > 0. (37)

Suppose now that σM (t) has the frequency ω ≥ ω̄. Let
us transform the functional J(TM ) using expansions (31)
and (33) under the following obvious equalities:

B−k = B̄k (k ∈ Z), (38)

where the symbol − is used for complex conjugation;∫ TM

0

eiωMkteiωMmt dt =

{
0, if k ̸= −m,
TM , if k = −m,

(k,m ∈ Z).

(39)
Accordingly to Definition 6 the equalities are valid

TM∫
0

Fj(σMj(t))σ̇Mj(t) dt =

σMj(TM )∫
σMj(0)

Fj(ζ) dζ = 0, (40)

∫ TM

0

Ψj(σMj(t))σ̇Mj(t) dt = 0. (41)

We may decompose the integral J(Θ) from (35) as follows

J(Θ) =
4∑

k=1

Jk(Θ), (42)

J1(Θ) =

∫ Θ

0

σ̇∗
M (t)κφ(σM (t)) dt,

J2(Θ) =

∫ Θ

0

φ∗(σM (t))δφ(σM (t)) dt,

J3(Θ) =

∫ Θ

0

σ̇∗
M (t)εσ̇M (t) dt,

J4(Θ) =

∫ Θ

0

(σ̇M (t)−A−1
1 φ̇(σM (t)))∗τ ·

·(σ̇M (t)−A−1
2 φ̇(σM (t))) dt.

(43)

Now we are going to calculate Jj(TM ) using the formu-
las (31) and (33). We obtain

J1(TM ) = −TM

{
B∗

0K
∗
M (0)κB0+

+2

+∞∑
k=1

(
B∗

kRe(κKM (iωk))Bk

)}
,

(44)

J2(TM ) = TM{B∗
0δB0 + 2

+∞∑
k=1

B∗
kδBk}, (45)

J3(T ) = TM{B∗
0K

∗
M (0)εKM (0)B0+

+2

+∞∑
k=1

B∗
kK

∗
M (iωk)εKM (iωkBk}.

(46)

For integral J4(TM ) we use the formula

φ̇(σM (t)) =

+∞∑
k=−∞

iωkBke
iωkt. (47)

From (31), (33), (47) it follows that

J4(TM ) = TMB∗
0K

∗
M (0)τKM (0)B0+

+2TM

+∞∑
k=1

B∗
kRe{(KM (iωk) +A−1

1 iωk)∗·

·τ(KM (iωk) +A−1
2 iωk)}Bk.

(48)

From (44), (45), (46), (48) we get that

J(TM ) = −TMB∗
0{κKM (0)−K∗

M (0)(ε+ τ)KM (0)−

−δ}B0 − 2TM

+∞∑
k=1

B∗
k{Re(κKM (iωk)−

−(KM (iωk) + iωkA−1
1 )∗τ(KM (iωk) + iωkA−1

2 ))−

−δ −K∗
M (iωk)εKM (iωk)}Bk.

(49)
Condition 1) of the Theorem guarantees that all the terms
B∗

kΩ(ωk)Bk ≥ 0 (k = 0, 1, 2, ...) and hence

J(T ) ≤ 0. (50)

The contradiction with (37) implies that (1) has no peri-
odic solution with frequency ω ≥ ω̄. Theorem 7 is proved.

Theorem 8. Suppose there exist ω̄ > 0, positive definite
matrices ε, δ, τ , κ and numbers aj ∈ [0, 1] (j = 1, . . . , l)
such that the following conditions are valid :
1) for ω = 0 and all ω ≥ ω̄ the inequality (23) is true
2) the quadratic forms (15) are positive definite.
Then there exists µ0 > 0 such that system (1) has no
periodic solutions with frequencies ω ≥ ω̄ for µ ∈ (0, µ0).

Proof. Following the arguments of Theorem 4, under
condition 1) there exists µ0 > 0 such that inequality (12)
is true for ω = 0 and ω ≥ ω̄ for µ ∈ (0, µ0). Theorem 7
can now be applied to system (1) with µ ∈ (0, µ0).

Counterparts of Theorem 3 and Theorem 5, ensuring the
absence of high-frequency oscillations, can be derived in
the same way. We omit these extensions due to the page
limit.

5. CONCLUSION

The paper is devoted to asymptotic behavior of singu-
larly perturbed infinite dimensional phase synchronization
systems (PSS), described by integro–differential Volterra
equations with periodic nonlinear functions and a small
parameter at the higher derivative. First of all the problem
of gradient–like behavior is considered. It is shown that



for sufficiently small value of the parameter frequency–
algebraic stability criteria can by extended from unper-
turbed PSS to singularly perturbed ones. In this pa-
per we demonstrate also that the relaxation of stability
frequency–algebraic conditions guarantees nonexistence of
periodic solutions of high frequency. The upper bound for
the frequency of periodic solutions is uniform with respect
to the small parameter.
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