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Summary
The behaviour of the dilute Curie-Weiss model has been analysed for Gaussian, bounded and sub-
Gaussian couplings. This model is an abstraction of the Curie-Weiss model which is a model of a spin
configuration where instead of a constant coupling between spins the spin coupling is a realisation of
a random variable. To analyse this behaviour first the behaviour of the standard Curie-Weiss model
is depicted. A notable part from this behaviour is the presence of a phase transition., indicating that
this model can be used for a study of phase transitions. After having analysed the behaviour of the
standard Curie-Weiss model theorems, stating the closeness between the standard Curie-Weiss model
and the randomly dilute Curie-Weiss model for Gaussian, bounded and sub-Gaussian couplings, will
be proven. Indicating that the models behave approximately the same way. These theorems will be in
the form of a bound for the on randomly dilute Curie-Weiss model as an exponential multiplied by the
standard Curie-Weiss model with the probability of this bound being a sub-Gaussian distribution.
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1
Introduction

An important branch of physics is the statistical mechanics. In statistical mechanics the behaviour of
physical systems is studied not by looking at the system itself but by looking at the combined behaviour
of all the individual particles that make up the system. So instead of looking at a clump of gas and
describing its pressure and volume, we look at it via all the individual molecules in the gas. This branch
of physics has produced many important results. Most notably it goes hand in hand with solid state
physics this gave rise to very important theories that are at the basis of modern computers.

In this paper we look at a model that is used to model magnets from the viewpoint of statistical me-
chanics, i.e. the Curie-Weiss model. This model is a first step to understanding how magnets behave
at high and low temperatures.

The Curie-Weiss model is constructed from the spin state of all the individual atoms in a magnet.
In this model there are two interactions that are taken into account. The magnetic interaction between
different atoms and the interaction between atoms and an external magnetic field. The behaviour of
the system will be determined from these two interactions and known laws from statistical mechanics.

An important part that will be noticed from this behaviour is the presence of a phase transition. A
phase transition is an transition in our model from one physical phase to another. In the Curie-Weiss
model we will see that this transition is from paramagnetism to ferromagnetism. However in other sys-
tems a phase transition may be from a liquid to a solid state or some other phase transition. As the
Curie-Weiss model is a basic model in which a phase transition is present. Studying this model could
help us understand other phase transitions better.

An important fault in the Curie-Weiss model is that it has some unjustifiable assumptions. One of
these assumptions is that in the Curie-Weiss model all the interactions between different atoms have
the same strength. However since most atoms have different distances between each other it is not
a well grounded assumption. So in this project we will look at an extension of the Curie-Weiss model
in which an abstraction of this assumption is considered. The abstraction that we will consider is the
randomly dilute Curie-Weiss model. In this model we will look at a system similar to the Curie-Weiss
model, where we can set the interaction strengths between different atoms. By setting this interaction
strengths one can for example take this distance into account and greatly improve the accuracy of the
model. However setting all the interaction values to a specific value makes the model very difficult to
solve. Thus we will consider the case where the interactions are random variables. In this paper we
prove a result which establishes that the randomly dilute Curie-Weiss model behaves like the corre-
sponding system where the random couplings are replaced with their averages.

By obtaining this result we can determine if the presence of the phase transition. Remains for the
more general Curie-Weiss model. And thereby we get to know how good of an approximation the Curie-
Weiss model is for the actual physical system. And this result could help understand other systems
that contain a phase transition.
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To compare these two models we will first take a closer look at the behaviour of the Curie-Weiss
model. After having seen how the Curie-Weiss model behaves we will prove the closeness of the Ran-
domly Dilute Curie-Weiss model to the standard Curie-Weiss model.

After having proven the closeness of the dilute to the non dilute model for Gaussian random vari-
ables we will prove in a similar way the closeness for bounded and sub-Gaussian random variables.

With these results we can show that the presence of a phase transition is not that of a special
occurrence and can be expected in more models that somewhat resemble the Curie-Weiss model



2
Some basic concepts of Statistical

Mechanics
In this report we study a model that arose from statistical physics. In this chapter a short discussion
of the basic concepts of statistical mechanics will be included, together with an important result form
statistical mechanics from which the Curie-Weiss model will be constructed.This discussion will be
based on [5].

Statistical mechanics is a branch of physics where statistical properties are used to derive properties
of matter. These properties are mostly thermodynamical properties such as temperature and entropy.
In statistical mechanics these macroscopic properties are derived from a microscopic state, to which a
probability is assigned. By calculating macroscopic properties from these microscopic states we can
link them, thereby creating a probability measure for macroscopic properties.

From this probability measure averages can be calculated as approximations of the real value.
Now to use this framework of statistical mechanics we need to have a way to give a probability

value to each micro state. The probabilistic ensemble we will use for the Curie-Weiss model will be the
Canonical ensemble, which will be explained in the next section.

To explain the Canonical ensemble we will have to use two definitions from statistical mechanics.
Firstly we will define the thermodynamical entropy, as follows

S = k log(Ω). (2.1)
Here S is the entropy, k is the Boltzmann constant and Ω is the amount of micro states with which

the overall system behaves the same thermodynamically. Thus the entropy can be computed by count-
ing the amount of possible micro states. This counting is a technique that is often used in statistical
mechanics and we will also use it later in this report. This entropy satisfies the following thermodynamic
identity.

dS =
1

T
(dU + PdV − µdN), (2.2)

where we describe the change in entropy as a function of T temperature, dU change in energy,
P pressure, dV change in volume,µ chemical potential and dN change in number of particles in the
system.

2.1. The canonical ensemble
The Canonical ensemble is a statistical ensemble where we assume that the system is in equilibrium
with a large reservoir. This reservoir will be held at a fixed temperature and the reservoir and the system
will be confined in a fixed volume. Also both the reservoir and our system will have a fixed number of
particles.

To define a probability measure we will see that the probability of finding the system in a state is
proportional to the amount of micro states that the reservoir can have if the system is in that state, or
in formulas

3



2.1. The canonical ensemble 4

P (state1)

P (state2)
=

ΩR(state1)

ΩR(state2)
(2.3)

where ΩR(statei) is the amount of possible states in the reservoir corresponding to state i in the
system, for i ∈ {1, 2}

Using the definition of entropy we can obtain a proportion related to entropy as follows

P (state1)

P (state2)
=

eSR(state1)/k

eSR(state2)/k
= e(SR(state1)−SR(state2))/k. (2.4)

Now for the canonical ensemble we assume that the amount of particles in the model that we study
is fixed and that the change in volume is negligible compared to the change in energy. Under these
assumptions we can integrate the change in entropy to obtain the following

SR(state1)− SR(state2) =
UR(state1)− UR(state2)

T
. (2.5)

By noticing that the system and the reservoir are only in contact with each other and no other parts,
we can conclude that the difference of the energy of the reservoir and the difference of the energy of
the system must compensate each other to comply to the conservation of energy. After some rewriting
we then obtain

P (state1)

eU(state1)/kT
=

P (state2)

eU(state2)/kT
. (2.6)

From this equation the distribution can be obtained, by observing that both sides must be a constant.
From this we have the distribution up to a constant, so that by normalising this distribution we obtain
the final distribution

P (state) =
1

Z
eE(state)β , (2.7)

where Z is the normalisation constant and β is a conventional way to write 1
kT . Most importantly E

is the energy of our system in this particular state. This energy is sometimes called the Hamiltonian of
the system. Now that we have obtained a distribution for an abstract thermodynamic system we can
use this for the model we want to study.



3
The Curie-Weiss model

3.1. The spin model
In this chapter we will explain and discuss the behaviour of the standard Curie-Weiss model. The
Curie-Weiss model is a model from statistical physics used to describe magnets. This explanation will
be detailed such that later generalizations of the model will be understood too.

In the Curie-Weiss model to model the magnet each individual atom of the magnet is considered
as a small magnetic dipole with magnetic dipole moment σi. As a simplification we will assume that
the magnetic moment of each of these magnets is restricted to two options. Namely pointing up and
pointing down. This assumption can be justified by noticing that by choosing our frame of reference
these are the stable states for each atom. Now, by choosing the right units of measure we have that
for each atom its dipole moment is either +1 or −1, and therefore

∀i, σi ∈ {−1,+1}.

With these assumptions we can fully describe the state of our model as a spin configuration. A spin
configuration of N atoms is given by σ = (σ1, σ2, .., σN )T .

By taking into account the interactions of these atoms we can introduce an Hamiltonian. By using
this Hamiltonian we can use the canonical ensemble to obtain a probability measure for any configura-
tion of the system

Each atom has 2 types of interactions a magnetic interaction with all the other atoms. With strength
1
N and an interaction with a constant external magnetic fields. From this the following Hamiltonian can
be introduced,

HCW
N (σ) = − 1

N

∑
1≤i<j≤N

σiσj − h

N∑
i=1

σi, (3.1)

here h is the external magnetic field. From this Hamiltonian the following Gibbs measure can be
obtained for any σ ∈ SN where SN = {−1,+1}N is the set in which the spin configurations are defined

µCW
β,N (σ) =

e−βHCW
N (σ)

ZCW
β,N

. (3.2)

Here ZCW
β,N is the normalization constant, sometimes referred to as the partition function, and it

implies that ∑
σ∈SN

µCW
β,N (σ) = 1 (3.3)
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3.2. Mean magnetisation 6

3.2. Mean magnetisation
In the above section the standard Curie-Weiss was constructed. An important part of this construction
is the assumption that all interactions between two atoms have interaction strength 1

N . This assumption
makes the Curie-Weiss model a relatively easy model to solve. However by making this assumption
we disregard the distance between two atoms . This makes the assumption not physically realistic.
One can also see this model as being of N atoms on a fully connected graph depicted in Picture 3.1.

Figure 3.1: A fully connected graph as which the Curie-Weiss model can be seen since all interaction strengths are equal.
Source:[6]

As seen in the previous section with this assumption we have the following Gibbs measure for the
Curie-Weiss model

µCW
β,N (σ) =

1

ZCW
β,N

exp
(
− β(− 1

N

∑
1≤i<j≤N

σiσj − h

N∑
i=1

σi)

)
. (3.4)

To see how this model behaves we will not look at all the spin configurations but at the magnetisation
defined as the empirical average of all the spins

mN (σ) =
1

N

N∑
i=1

σi. (3.5)

The magnetisation belongs to the set ΓN = {−1,−1 + 2
N , ..., 1 − 2

N , 1}. Indeed. if all the spins
are pointing down m = −1, and a new possible element of ΓN can be reached by flipping one spin
from down to up, thereby adding 2

N to the magnetisation. Until all spins are pointing up and have a
magnetisation of 1.

From this the Hamiltonian of the Curie-Weiss model can be greatly simplified. Because we no longer
have to look at the entire spin configuration but only at the magnetisation. And the magnetisation lives
on a much simpler set. Thus we have

HCW
N (σ) = −N

(1
2
m(σ)2 + hm(σ)

)
. (3.6)

Now the probability distribution according to m can be written as

QCW
β,N (M) = µCW

β,N (m ∈ M) =
∑
m∈M

∑
σ:m(σ)=m

e−βHN (σ)

ZCW
β,N

. (3.7)

Now if M has only 1 element with a combinatorial argument one can write the following mesoscopic
measure
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QCW
β,N (m) =

(
N

1+m
2 N

)
eβN( 1

2m
2+hm)

ZCW
β,N

. (3.8)

Here it is used that by having a magnetisation of m an amount of 1+m
2 N spins must be pointing up.

This is because m can be written as,

m =
# ↑ −# ↓

N
=

# ↑ −(N − # ↑)
N

, (3.9)

where # ↑ is the amount of spins pointing up and # ↓ is the amount of spins pointing down. By
rearranging we indeed get that the amount of spins pointing up is given by 1+m

2 N . Therefore there are(
N

1+m
2 N

)
spin configurations that have magnetisation m.

Figure 3.2: plot of the distribution of the Curie-Weiss model for 30 particles with an external field of 0.01. Left β = 0.8 and right
β = 1.2. one can clearly see the existence of 1 local maximum on the left and two local maxima on the right. Indicating the

phase transition at β = 1. These plots are obtained by numerically calculating equation (3.7).

Now we have obtained a formula for the distribution of the Curie-Weiss model depending on the
magnetisation, thereby reducing the degrees of freedom. We can see how it behaves. For this we will
have a heuristic argument in this section and in the next section we will look at this distribution as N
goes to infinity, since magnets consist of many atoms.

In Figure 3.2 the distribution is plotted for 30 atoms with an external field of h=0.01 and 2 different
values of β namely β = 0.8 and β = 1.2. One can clearly observe that for the smaller beta only one
local maximum is present while for the bigger beta 2 local maxima are present. This difference between
the distributions points at a phase transition occurring at β = 1 The specifics of this behaviour will be
discussed in Section 3.3, while an interpretation of this transition will be given in Section 3.4

3.3. Phase transition
In the previous section we introduced the distribution of the magnetisation of the Curie-Weiss model
for an arbitrary amount of particles. However if we take the limit as N goes to infinity the behaviour of
this model becomes more obvious.

According to Stirling’s approximation (see Appendix A.1), we can write the distribution of (3.7) as
an exponential function, such that no summation terms are present.

QCW
β,N (m) =

e−N j(m)

ZCW
β,N

. (3.10)

Here, according to Stirling’s approximation, j which we from now on we will call the free energy of
the Curie-Weiss model, is defined as

j(m) = −βm2

2
− βhm+

1−m

2
log 1−m

2
+

1 +m

2
log 1 +m

2
. (3.11)

Now as we take the limit of N to infinity, the distribution will concentrate around the global min-
ima of the free energy. This happens because the probability of any other magnetisation decreases
exponentially compared to the probability of the global minima, when we take the limit of N to infinity.
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In order to find the places of these minima we will have to differentiate the free energy and set it
equal to zero. After some calculations which we will reserve for the Appendix (see A.2) it is obtained
that the places where the derivative of the free energy is zero are the solutions of the following equation,

tanh(βm+ βh) = m. (3.12)

Depending on the value of beta this equation will have 1 or 3 solutions .
For β ≤ 1 there will be one solution of the above equation corresponding with 1 local and also

a global minimum of the free energy. For β > 1 there will be 2 solutions corresponding with 2 local
minima and 1 local maximum.

Now from equation (3.10) the distribution as N → ∞ will concentrate around the global minima of
the free energy. From the four graphs in figure 3.3 we can understand how the global minima behave
for four situations.

Figure 3.3: Plots of the free energy of the magnetisation.Here four cases are plotted. Top left h = 0, β ≤ 1, top right
h = 0, β > 1, bottom left h ̸= 0, β ≤ 1 and bottom right left h ̸= 0, β > 1

We can see that for three of the four situations there is only one global minimum. Here in the limit
N to infinity the distribution is a delta distribution at this minimum.

For the situation h = 0 and β > 1 since the two local minima have by symmetry the same free
energy, the distribution will be two delta peaks at these two minima.

The clear distinction between these behaviours depicts different phases. The transition of one to
another phase is called a phase transition. The presence of this phase transition in the Curie-Weiss
model makes the Curie-Weiss model an interesting model to study.

3.4. Physical interpretation
Now that a mathematical depiction of the Curie-Weiss model is described a physical interpretation of
the result can be given. As a piece of metal has many atoms this can be considered as the Curie-Weiss
model in the limit of large N . Now since β = 1

Tkb
we can see that for large Temperature the metal does

not have it’s own magnetisation, but does react to a external magnetic field. So in this case we have
paramagnetic behaviour.

This happens because at large temperature the direction of the spins of each atom oscillates very
quick. Therefore all the interactions between the atoms can be neglected. However some will line up
with an external magnetic field therefore shifting the minimum a bit.
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At lower temperature these oscillations become less energetic and the interactions become more
important making it that most of the spins line up and showing ferromagnetic behaviour.

The presence of these two phases also indicates a phase transition. This physically manifests
as the existence of a temperature where below this temperature we have ferromagnetic behaviour
and above this temperature paramagnetic behaviour. The transition between these phases should
behave somewhat the same as the standard phase transitions we know of, such as liquid-vapour phase
transition. Since the Curie-Weiss model is mathematically a treatable model and still shows a phase
transition, the study of the Curie-Weiss model could teach us things about other phase transitions.



4
The dilute Curie-Weiss model with

Gaussian random variables
The randomly dilute Curie-Weiss model is a generalisation of the Curie-Weiss model described in the
previous section. In this section we will first introduce the randomly dilute Curie-Weiss model and after
that we will prove a theorem stating the closeness of the randomly dilute Curie-Weiss model to the
standard Curie-Weiss.The proof of this theorem will generally follow the same strategy used to proof
the same closeness for Bernoulli random variables in ”Bovier-Marello-Pulvirenti” [2]. An extra addition
in this report compared to ”Bovier-Marello-Pulvirenti” is that in this report all constants will be calculated
exactly.

4.1. The dilute model
The randomly dilute Curie-Weiss model is a modification of the Curie-Weiss model, where instead of
setting the interaction strengths Jij equal to 1 we will consider them as random variables. In our case
we will look at i.d.d. Gaussian random variables.

Let again σ = (σ1, ..., σN )T ∈ SN be the spin configuration. Let all the interaction strengths
(Jij)1≤i<j≤N in the triangular array of interaction strengths be such that Jij ∼ N (A,B2) and all of
them are independent. The Hamiltonian of the randomly dilute Curie-Weiss model can be defined as

HRDCW
N (σ) = − 1

AN

∑
1≤i<j≤N

Jijσiσj − h

N∑
i=1

σi, (4.1)

and its mean is therefore

EJ [H
RDCW
N (σ)] = − 1

AN

∑
1≤i<j≤N

EJ [Jij ]σiσj − h

N∑
i=1

σi

= − 1

AN

∑
1≤i<j≤N

Aσiσj − h

N∑
i=1

σi = HCW
N (σ)

(4.2)

where EJ is used to represent the average due to the random variables Jij . From this we can split the
Hamiltonian into the known Curie-Weiss model part and a random part.

HRDCW
N (σ) = EJ [H

RDCW
N (σ)] + ∆N,A(σ) (4.3)

where setting Ĵij = Jij −A implies that

∆N,A(σ) = − 1

AN

∑
1≤i<j≤N

Ĵijσiσj (4.4)

10



4.2. The main result 11

From this a distribution for the randomly dilute Curie-Weiss model can be introduced in the same
way as it was introduced in the previous chapter,

QRDCW (m) =
e−βH̃N (m)

ZRDCW

( ∑
σ∈SN

m(σ)=m

e−β∆(σ)
)

(4.5)

Where ZRDCW is a normalisation constant such that.∑
m∈ΓN

QRDCW (m) = 1 (4.6)

This is themesoscopic measure of the randomly dilute Curie-Weiss model, which has now been split
into a deterministic part that behaves like the Curie-Weiss model, and a random part. In the following
parts of this chapter we will proof a theorem stating the closeness of the randomly dilute Curie-Weiss
to the Curie-Weiss model, thereby proving that they behave in similar ways.

4.2. The main result
Theorem 3.1. For any s > 0,β > 0,h ≥ 0 any function g(m) : ΓN → [0,∞) and positive constants
k1, k2. Then as N goes asymptotically to infinity the following bounds hold.

PJ

( ∑
m∈ΓN

g(m)QRDCW (m) ≤ eα+s ZCW

ZRDCW

( ∑
m∈ΓN

g(m)QCW (m)
)
(1 + o(1))

)
≥ 1− k1e

−k2s
2

(4.7)

PJ

( ∑
m∈ΓN

g(m)QRDCW (m) ≥ eκ−s ZCW

ZRDCW

( ∑
m∈ΓN

g(m)QCW (m)
)
(1 + o(1))

)
≥ 1− k1e

−k2s
2

(4.8)

Where α, κ, ZRDCW and ZCW are defined in respectively (4.24),(4.40), (4.6) and (3.3)
thus

α =
β2

4A2
B2

κ = max
η∈(0,1)

(
α+ log(η)− 2

2β∆

A

√
α+ log(2)− log(1− η)

)
.

(4.9)

In our result the function g(m) is an arbitrary function that can be used to determine what information
we want from the eventual distribution QRDCW .

So now our main theorem tells that if we want to know any information about the randomly dilute
Curie-Weiss we can compare it to the Curie-Weiss with a correction term of eαZCW

N,β (1+o(1))

ZRDCW
N,β

which is a
lower bound. If we increase this lower bound with a factor es for an arbitrary positive s the probability
that our bound is correct increases with k1e

k2∗s2 where k1 and k2 are positive constants.

The same reasoning as above can be said for the lower bound with factors eκZCW
N,β (1+o(1)

ZRDCW
N,β

and e−s

Thus any information about the randomly dilute Curie-Weiss model can be bounded by the same infor-
mation for the standard Curie-Weiss model together with a correction term. By increasing this bound
exponentially in variable s the probability that the bound is correct behaves as a sub-Gaussian distri-
bution in s.

4.3. Concentration inequality
To prove the theorem we will first introduce the following notation.
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Z =
∑

m∈ΓN

g(m)
∑

σ∈SN

m(σ)=m

e−β∆(σ) (4.10)

F = log(Z) (4.11)

Where here g : ΓN → [0,∞) is a function with which we can choose what information we want from
the distribution.

With this we can split Z into two parts, a deterministic part and and a random part that will take
values close to 1,

Z = eE(F )eF−E(F ). (4.12)

Now that the randomly dilute Curie-Weiss model has been split in a random and non-random part
the random part can be bounded by a concentration inequality.In order to do this from [1] we will recall
the following theorem [5.6].

Theorem 3.2 LetX = (X1, ..., Xn) be a vector of n independent standard normal random variables.
Let f : R → Rn be an L-Lipschitz function. Then for all t > 0.

P
(
f(X)− E(f(X)) ≥ t

)
≤ e

−t2

2L2 (4.13)

This theorem will be used on the function F defined in (4.11) and dependent on N2 i.d.d. standard
Gaussian random variables X = (X11, ..., X1N , ..., XN1, ..., XNN )

F (X) = log(
∑

m∈ΓN

g(m)
∑

σ∈SN

m(σ)=m

exp
(
β

B

AN

∑
1≤i<j≤N

Xijσiσj

)
). (4.14)

Hereby the following probabilistic bounds can be determined,

1−P
(
F (X)− E(F (X)) ≤ t

)
≤ e

−t2

2L2

P
(
F (X)− E(F (X)) ≤ t

)
≥ 1− e

−t2

2L2

P
(
exp

[
F (X)− E(F (X))

]
≤ et

)
≥ 1− e

−t2

2L2 .

(4.15)

Since F is L-Lipschitz, −F is L-Lipschitz as well, and the following bound can be obtained.

1−P
(
E(F (X))− F (X) ≤ t

)
≤ e

−t2

2L2

P
(
F (X)− E(F (X)) ≥ −t

)
≥ 1− e

−t2

2L2

P
(
exp

[
F (X)− E(F (X))

]
≥ e−t

)
≥ 1− e

−t2

2L2 .

(4.16)

The Lipschitz-constant L will be determined in Section 4.6

4.4. Upper bound on the deterministic term
Now that we have bounds for the random part of Z, we are left with the deterministic part, eE(F ), of
which we will construct a lower and an upper bound. For the upper bound first E(Z) will be calculated
and then by Jensen’s inequality an upper bound will be obtained in the form

E(log(Z)) ≤ log(E(Z)). (4.17)

To calculate this upper bound we will have to use the moment generating function of Ĵij , defined as
follows

MĴij
(x) := E(exĴij ). (4.18)

Performing a Taylor expansion of the moment generating function we obtain the following
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MĴij
(x) = MĴij

(0) + xM ′
Ĵij

(0) +
x2

2
M ′′

Ĵij
(0) + o(x2)

= MĴij
(0) + xE(Ĵij) +

x2

2
E(Ĵ2

ij) + o(x2)

= 1 + 0 +
x2

2
B2 + o(x2)

(4.19)

SinceMĴij
(x) is always positive awe can use the expansion log(1+x) = x+o(x) in order to rewrite

the moment generating function as

MĴij
(x) = exp

(
log(MĴij

(x)
)
= exp

(x2

2
B2 + o(x2)

)
. (4.20)

By using the fact that all the Ĵij are independent, the expectation of Z can be written as a product.

E(Z) =
∑

m∈ΓN

g(m)
∑

σ∈SN

m(σ)=m

E
(
exp( β

AN

∑
1≤i<j≤N

Ĵijσiσj

)

=
∑

m∈ΓN

g(m)
∑

σ∈SN

m(σ)=m

∏
1≤i<j≤N

E
(
exp( β

AN
Ĵijσiσj

) (4.21)

In this equation the expectation can be recognised as themoment generating functionMĴij
( β
AN σiσj).

Now since σi, σj ∈ {−1,+1} a result independent of any random variables is obtained,

E(Z) =
∑

m∈ΓN

g(m)
∑

σ∈SN

m(σ)=m

∏
1≤i<j≤N

exp
( β2

A2N2

2
B2 + o(

β2

A2N2
)

)
. (4.22)

Using the facts that Π multiplies over N(N−1)
2 entries and that the second

∑
sums over

(
N

1+m
2 N

)
entries as seen in the previous chapter, we can come to the following bound.

E(Z) =
∑

m∈ΓN

g(m)

(
N

1+m
2 N

)
exp

(
β2

2A2N2
B2 + o(

1

N2
)

)N(N−1)
2

=
∑

m∈ΓN

g(m)

(
N

1+m
2 N

)
exp

(
β2N(N − 1)

4A2N2
B2 + o(1)

) (4.23)

Now since we used some expensions in this derivation this holds asymptotically for β
AN → 0 and

this case can be accomplished by letting N → ∞. Then the following bound is obtained,

E(log(Z)) ≤ log(E(Z)) = log
( ∑
m∈ΓN

g(m)

(
N

1+m
2 N

))
+

β2

4A2
B2 + o(1)

= log
( ∑
m∈ΓN

g(m)

(
N

1+m
2 N

))
+ α+ o(1),

(4.24)

where α = β2

4A2B
2 such that later results can be written down easier.

4.5. Lower bound
An important tool in the calculation to obtain a lower bound is the Paley-Zygmound inequality. It states
that for any non negative random variable X and any constant η ∈ (0, 1) the following holds.

P
(
X ≥ ηE(X)

)
≥ (1− η)2

E(X)2

E(X2)
. (4.25)

This inequality will be used on the random variable Z and together with the concentration inequality,
two events will be constructed of which the sum of their probabilities will be bigger then 1. This will
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imply that there is an overlap in these two events. From the fact that we know that this overlap exists
a lower bound for Z will be constructed.

Using the Payley-Zygmound inequality, we obain for Z

P
(
Z ≥ ηE(Z)

)
= P

(
log(Z) ≥ log(ηE(Z)

)
=P

(
log(Z) ≥ log(η) + log(E(Z)

)
≥ (1− η)2

E(Z)2

E(Z2)

(4.26)

Where for the last part we have to calculate an upper bound for E(Z2) which will be done with a
similar calculation as for the upper bound of E(Z).

E(Z2) = E
( ∑

m,m′∈ΓN

g(m)g(m′)
∑

σ(1),σ(2)∈SN

m(σ(1))=m,

m(σ(2))=m′

exp
( ∑
1≤i<j≤N

β

NA
Ĵij(σ

(1)
i σ

(1)
j + σ

(2)
i σ

(2)
j )

))

=
∑

m,m′∈ΓN

g(m)g(m′)
∑

σ(1),σ(2)∈SN

m(σ(1))=m,

m(σ(2))=m′

E
(
exp

( ∑
1≤i<j≤N

β

NA
Ĵij(σ

(1)
i σ

(1)
j + σ

(2)
i σ

(2)
j )

))

=
∑

m,m′∈ΓN

g(m)g(m′)
∑

σ(1),σ(2)∈SN

m(σ(1))=m,

m(σ(2))=m′

∏
1≤i<j≤N

E
(
exp

( β

NA
Ĵij(σ

(1)
i σ

(1)
j + σ

(2)
i σ

(2)
j )

))
.

(4.27)

Here we can again recognise the part that looks the same as the moment generating function
MĴij

( β
AN (σ

(1)
i σ

(1)
j +σ

(2)
i σ

(2)
j ). Substituting this into the equation and by using that (σ(1)

i σ
(1)
j +σ

(2)
i σ

(2)
j )2

is at most 4, we obtain

E(Z2) =
∑

m,m′∈ΓN

g(m)g(m′)
∑

σ(1),σ(2)∈SN

m(σ(1))=m,

m(σ(2))=m′

∏
1≤i<j≤N

exp
(

β2B2

2N2A2
((σ

(1)
i σ

(1)
j + σ

(2)
i σ

(2)
j )2 + o(

β2

N2A2
(σ

(1)
i σ

(1)
j + σ

(2)
i σ

(2)
j )2)

)
≤

∑
m,m′∈ΓN

g(m)g(m′)
∑

σ(1),σ(2)∈SN

m(σ(1))=m,

m(σ(2))=m′

∏
1≤i<j≤N

exp
(
β2B22

N2A2
+ o(

4β2

A2N2
)

)
.

(4.28)

Using the same cardinality rules as used in the proof for the upperbbound of E(Z), we can rewrite
this as

E(Z2) ≤
∑

m,m′∈ΓN

g(m)g(m′)

(
N

1+m
2 N

)(
N

1+m′

2 N

)
exp

(
β2B2(N − 1)

NA2
+ o(1)

)
. (4.29)

In this we can recognise the expression for E(Z) found in (4.23), and using the constant α defined
in (4.24), we have

E(Z2) ≤
∑

m∈ΓN

(
N

1+m
2 N

)
E(Z) exp

(
3β2B2(N − 1)

4NA2
+ o(1)

)

= E(Z)2 exp
(
β2B2(N − 1)

2NA2
+ o(1)

)
= E(Z)2 exp(2α+ o(1)).

(4.30)

Now plugging this in the Payley-Zygmound inequality the following probabilistic bound is found
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P
(
log(Z) ≥ log(η) + log(E(Z))

)
≥ (1− η)2

exp(2α+ o(1))
. (4.31)

Thus we have constructed the first probabilistic bound and we will now construct the second proba-
bilistic bound. This bound will be constructed from the concentration inequality namely from the follow-
ing inequality from equations (4.15)

P
(
log(Z) ≤ E(log(Z)) + t

)
≥ 1− e−

t2

2L2 . (4.32)

If the probabilities from (4.31) and (4.32) added together are greater then 1 the events overlap. This
overlap would imply

log(η) + log(E(Z)) ≤ log(Z) ≤ E(log(Z)) + t (4.33)

which is contained in:

log(η) + log(E(Z) ≤ E(log(Z)) + t (4.34)

which implies

E(log(Z)) ≥ log(η)− t+ log(E(Z). (4.35)

We can notice that this is a deterministic bound. The only part that now remains is to see when
this overlap occurs and what then the bound becomes since in the above expression η and t are still
arbitrary constants. Since the added probability has to be greater then 1 a condition is,

e−
t2

2L2 <
(1− η)2

exp(2α+ o(1))
. (4.36)

Since t, η, L and exp(2α+ o(1)) are all positive the, following condition is easily obtained.

t >
√
2L2(2α+ o(1)− 2 log(1− η)). (4.37)

Combining all the parts found above we find the following lower bound depending on η ∈ (0, 1)

E(log(Z)) ≥ log
( ∑

m∈ΓN

g(m)

(
N

1+m
2 N

))
+ α+ o(1) + log(η)− 2L

√
α− log(1− η) (4.38)

Here we have thus constructed a lower bound that holds for all η ∈ (0, 1). The best bound is such
that the lower bound is maximised, thus we can write the lower bound as

E(log(Z)) ≥ log
( ∑

m∈ΓN

g(m)

(
N

1+m
2 N

))
+ κ+ o(1) (4.39)

with

κ = α+ max
η∈(0,1)

(
log(η)− 2L

√
α− log(1− η)

)
(4.40)

4.6. Lipschitzianity condition
To justify the use of Theorem from Section 4.3, the Lipschitz constant L has to be found for the function
F in (4.14).

For this we will first consider the following part of the above mentioned function.

K(X) =
βB

AN

∑
1≤i<j≤N

Xijσiσj (4.41)
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This can be seen as the inner product between the vectorsX = (X11, ..., XNN ) and V = βB
AN (σ1σ1, ..., σNσN ),

with indices such that 1 ≤ i < j ≤ N . If we have 2 random variables X,Y distributed according to X
we can say that,

|K(X)−K(Y )| = |V ·X − V · Y | ≤ ∥V ∥2d(X,Y ) (4.42)

where in the last part we use the Cauchy Schwarz inequality i.e. |ab| ≤ ∥a∥2∥b∥2
From this we can perform the following calculations.

F (X) = log
( ∑

m∈ΓN

g(m)
∑

σ∈SN

m(σ)=m

exp
(
β

B

AN

∑
1≤i<j≤N

Xijσiσj

))

≤ log
( ∑

m∈ΓN

g(m)
∑

σ∈SN

m(σ)=m

exp
(
β

B

AN

∑
1≤i<j≤N

Yijσiσj

)
exp

(
∥V ∥2d(X,Y )

))

= F (Y ) + ∥V ∥2d(X,Y )

(4.43)

Doing the same calculations but swapping X an Y we obtain the following result.

|F (X)− F (Y )| ≤ ∥V ∥2d(X,Y ) (4.44)

Thus F is a ∥V ∥2-Lipschitz function and therefore to calculate the Lipschitz constant the only part
left to do is calculate ∥V ∥2. We have

∥V ∥2 =

√ ∑
1≤i<j≤N

( βB
AN

σiσj

)2
=

βB

AN

√ ∑
1≤i<j≤N

σ2
i σ

2
j

=
βB

AN

√
N(N − 1)

2
≤ βB

A
√
2
= L

(4.45)

where in the last part we use that σ2
i = 1. Thus we have obtained the Lipschitz constant L that is

used in the final result. And have thereby also shown that the Theorem 3.2 can be used.

4.7. Proof of the main theorem
With all the results that have been proven in the above sections we can finally prove Theorem 3.1. We
will first start with the first bound of the main theorem. We first recall the definition of Z and the form
given in (4.12) ∑

m∈ΓN

ḡ(m)
∑

σ∈SN

m(σ)=m

eβ∆(σ) = eE(F )eF−E(F ) (4.46)

Now multiplying both parts in the concentration inequality found in (4.16) with eE(F ) we obtain

P
( ∑
m∈ΓN

ḡ(m)
∑

σ∈SN

m(σ)=m

eβ∆(σ) ≤ eteE(F )
)
≥ 1− e

−t2

2L2 (4.47)

by using the upper bound for E(log(Z)) = E(F ) we find that

P
( ∑

m∈ΓN

ḡ(m)
∑

σ∈SN

m(σ)=m

eβ∆(σ) ≤ et+α
( ∑
m∈ΓN

ḡ(m)

(
N

1+m
2 N

))
(1 + o(1)

)
≥ 1− e

−t2

2L2 . (4.48)
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Now by choosing ḡ(m) to be a a specific function namely e−βH̃N (m)

Z g(m) and recognising previous
definitions we can finish the proof

P
( ∑

m∈ΓN

e−βH̃N (m)

Z
g(m)

∑
σ∈SN

m(σ)=m

eβ∆(σ) ≤ et+α
( ∑
m∈ΓN

e−βH̃N (m)

Z
g(m)

(
N

1+m
2 N

))
(1 + o(1)

)
≥ 1− e

−t2

2L2

P
( ∑

m∈ΓN

g(m)QRDCW (m) ≤ et+α ZCW

ZRDCW

( ∑
m∈ΓN

g(m)QCW (m)
)
(1 + o(1)

)
≥ 1− e

−t2

2L2 ,

(4.49)
with L = βB

A
√
2

The same procedure can be used to find the second part of the main theorem. A detail to realise
is that the only part in this proof where we used that the random variable had to be Gaussian is in the
concentration inequality thus this proof can be used similarly for any other random variable that has a
concentration inequality that looks like the one we used.



5
Extension for bounded and

sub-Gaussian random variables
In the previous chapter we compared the Curie-Weiss model to the Dilute Curie-Weiss model with
Gaussian variables. In this chapter the same techniques will be used to derive a similar theorem for
bounded and sub Gaussian random variables, since most of the proofs consist of the same calcula-
tions but with some extra constants. We will skip these calculations and only indicate where the extra
constants come up. The places where the proofs differ will also be discussed.

5.1. Bounded random variables
In this section, (Jij)ij will be a triangular arry of bounded random variables, meaning that ∃M > 0 such
that ∣∣∣∣Jij∣∣∣∣ ≤ M (5.1)

For the rest we will describe the mean and variance of Jij the same way as for the Gaussian case
i.e. E(Jij) = A and V ar(Jij) = B2.

For this random variable we can split the Curie-Weiss model the same way as for the Gaussian
case obtaining

QRDCW (m) =
e−βH̃N (m)

ZRDCW

( ∑
σ∈SN

m(σ)=m

e−β∆(σ)
)
=

e−βH̃N (m)

ZRDCW

( ∑
σ∈SN

m(σ)=m

e

β
AN

∑
1≤i<j≤N

(Jij −A)σiσj )
. (5.2)

Where ZRDCW is a normalisation constant.
From this split we again have to obtain an concentration inequality and the upper and lower bounds

for the deterministic parts.

5.1.1. Random part
For the concentration inequality we again will use the function,

F = log(Z) = log
( ∑
m∈ΓN

g(m)
∑

σ∈SN

m(σ)=m

e−β∆(σ)
)
. (5.3)

From this we again can use the same calculations for the upper and lower bound as in the calcula-
tions for the upper and lower bounds where some extra factors come in.

To calculate the random part we will use the theorem 6.2 from [1] Where a function f of random
variables x1, ..., xn has the bounded difference property if for some nonnegative constants c1, ..., cn

18
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sup
x1,...,xn

∣∣∣∣f(x1, ..., xn)− f(x1, ..., xi−1, x
′
i, xi+1, ...xn)

∣∣∣∣ ≤ ci 1 ≤ i ≤ n, (5.4)

here x′
i is a random variable that is i.i.d. to xi

Theorem 5.1. Assume that the function f satisfies the bounded differences assumption with con-
stants c1, ..., cn and denote

v =
1

4

n∑
i=1

c2i . (5.5)

Let Z = f(X1, ..., Xn) where the Xi are independent. Then

P{Z − E(Z) > t} ≤ e−t2/2v (5.6)

Note that since the bounded differences assumption is symmetric, Z also satisfies the lower-tail
inequality

P{f − E(f) > t} ≤ e−t2/2v (5.7)

To calculate these ci we will rewrite the above expression as∣∣∣∣f(x1, ..., xn)− f(x1, ..., xi−1, x
′
i, xi+1, ...xn)

∣∣∣∣ = ∣∣∣∣fX − fX′

∣∣∣∣ (5.8)

Thus in order to apply this theorem to our case of bounded random variables we will have to prove
(5.4) on the function F specified above, where F is dependent of Ĵ which is J −A.

The most important step in calculating this is writing the difference as an integral,∣∣∣∣FĴ − FĴ ′

∣∣∣∣ = ∣∣∣∣ ∫ 1

0

d

dt
F
(
Ĵ t+ (1− t)Ĵ ′)dt∣∣∣∣, (5.9)

where Ĵ ′ is an independent copy of Ĵ This statement can be easily checked by calculating the
integral on the right side.

By differentiating the expression we now have left we can obtain the bounded difference constants
ci, here we will write ∆Ĵ(σ) to make clear the ∆ depends on Ĵ ,
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∣∣∣∣ ∫ 1

0

d

dt
F
(
Ĵ t+ (1− t)Ĵ ′)dt∣∣∣∣

=

∣∣∣∣ ∫ 1

0

d

dt
log

(
Z(Ĵ t+ (1− t)Ĵ ′)

)
dt

∣∣∣∣
=

∣∣∣∣ ∫ 1

0

1

Z
d

dt

( ∑
m∈ΓN

g(m)
∑

σ∈SN

m(σ)=m

e−β∆Ĵt+(1−t)Ĵ′ (σ))dt∣∣∣∣
=

∣∣∣∣ ∫ 1

0

1

Z
∑

m∈ΓN

g(m)
∑

σ∈SN

m(σ)=m

d

dt
e−β∆Ĵt+(1−t)Ĵ′ (σ)dt

∣∣∣∣

=

∣∣∣∣ ∫ 1

0

1

Z
∑

m∈ΓN

g(m)
∑

σ∈SN

m(σ)=m

d

dt
e

β
AN

∑
1≤i<j≤N

(tĴij + (1− t)Ĵ ′
ij)σiσj

dt

∣∣∣∣

=

∣∣∣∣ ∫ 1

0

∑
m∈ΓN

g(m)
∑

σ∈SN

m(σ)=m

( ∑
1≤i<j≤N

β

AN
(Ĵij − Ĵ ′

ij)σiσj
1

Z
e

β
AN

∑
1≤i<j≤N

(tĴij + (1− t)Ĵ ′
ij)σiσj

dt

∣∣∣∣

=

∣∣∣∣ ∑
1≤i<j≤N

β

AN
(Ĵij − Ĵ ′

ij)

∫ 1

0

∑
m∈ΓN

g(m)
∑

σ∈SN

m(σ)=m

σiσj
1

Z
e

β
AN

∑
1≤i<j≤N

(tĴij + (1− t)Ĵ ′
ij)σiσj

dt

∣∣∣∣
(5.10)

After this long calculation to rewrite our bounded difference constant we can now start to identify
some parts in our last expression and simplify them. Firstly by constructionĴij − Ĵ ′

ij is only non zero
for one choice of ij. This makes us able to remove one of the summation signs thereby obtaining the
following, ∣∣∣∣FĴ − FĴ ′

∣∣∣∣ = ∣∣∣∣ β

AN
(Jkl − Ĵkl)

∫ 1

0

∑
m∈ΓN

g(m)
∑

σ∈SN

m(σ)=m

σkσl
1

Z
e
−β∆tĴij+(1−t)Ĵ′

ij dt

∣∣∣∣, (5.11)

where kl is the entry where J and Ĵ differ.
By using the triangle inequality we obtain∣∣∣∣FĴ − FĴ ′

∣∣∣∣ ≤ β

AN

∣∣∣∣Ĵkl − Ĵ ′
kl

∣∣∣∣∣∣∣∣ ∫ 1

0

∑
m∈ΓN

g(m)
∑

σ∈SN

m(σ)=m

σkσl
1

Z
e
−β∆tĴij+(1−t)Ĵ′

ij dt

∣∣∣∣. (5.12)

For the final part we can look at the definition of Z and from this it is obvious that the part inside the
integral is clearly less then 1 and thus the entire absolute value of the integral is less then one,∣∣∣∣FĴ − FĴ ′

∣∣∣∣ ≤ β

AN

∣∣∣∣Ĵkl − Ĵ ′
kl

∣∣∣∣. (5.13)

This derivation has been done without using the bounded condition. If we use the bounded condition
stated at the start of this chapter we obtain the following bounded difference constant,

ci =
β

AN
2M. (5.14)

These ci give us the following

v =
M2β2N(N − 1)

A2N22
≤ M2β2

A22
(5.15)
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So now we can use Theorem 5.1 thereby obtaining a concentration inequality for bounded random
variables

P{f − E(f) < −t} ≤ e−t2A2/M2β2

, (5.16)

and

P{f − E(f) > t} ≤ e−t2A2/M2β2

. (5.17)

The rest of the proof of the closeness for the randomly dilute Curie-Weiss model with bounded
random variables to the Curie-Weiss model will follow the same path as has been used for the randomly
dilute Curie-Weiss model with Gaussian random variables. However in the rest of the proof we will
replace L with βM

A
√
2
.

5.2. Sub-Gaussian
Just as in the previous section we have proved closeness for bounded random variables, in this section
we will prove the same closeness for Sub-Gaussian random variables. This proof will use a result that
looks a lot like Theorem 5.1. However this theorem uses some properties from sub-Gaussian random
variables that will be discussed first.

5.2.1. Sub Gaussian random variables and the Sub-Gaussian diameter
In this section we will introduce a definition of sub-Gaussian random variables. After introducing the
sub-Gaussian random variables we will discuss the sub-Gaussian diameter, an important property of
random variables from which we will construct a concentration inequality. This and the following section
is based on [4] and [3]

Definition A random Variable is a sub-Gaussian random variable of class G(∆2) if the following
holds

E(eλ(X−E(X))) ≤ e
∆2λ2

2 ∀λ ∈ R. (5.18)

This is implies that

P
(
X − E(X) > t

)
≤ e

−t2

2∆2 t > 0 (5.19)

and

P
(
X − E(X) < −t

)
≤ e

−t2

2∆2 t > 0 (5.20)

This implication can be proven using the Markov inequality which state that for non negative random
variables Y we have that P(Y > a) ≤ E(Y )

a . Therefore we have

P
(
(X − E(X)) > t

)
= P

(
eλ(X−E(X)) > eλt

)
≤ E(eλ(X−E(X)))

eλt
≤ e

∆2λ2

2 −λt (5.21)

Since this equation holds for all λ we can optimise the equation over λ. This bound is optimized
when

d

dλ
e

∆2λ2

2 −λt = 0 (5.22)

which results in

λ =
t

∆2
. (5.23)

From this we obtain the final bound

P
(
(X − E(X)) > t

)
≤ e

t2

2∆2 − t2

∆2 = e
−t2

2∆2 . (5.24)

The case with the minus sign can be proved in the same way.
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Now we will discuss the sub-Gaussian diameter a property of random variables that will be used to
construct a concentration inequality.

A random variable is of class SG(∆2
sg) if the random variable Ξ(X) = ϵ|X −X ′| is of class G(∆2

sg),
where ϵ = 2ξ − 1 with ξ ∼ Ber( 12 ), and X ′ is a independent copy of X.

The sub-Gaussian diameter of a random variable is the minimal ∆sg such that the variable is of
class SG(∆2

sg).
In order to use the sub-Gaussian diameter we need to calculate an upper bound of the sub-Gaussian

diameter of a sub-Gaussian random variable of class G(∆2).

E(eλ(ϵ|X−X′|−E(ϵ|X−X′|)) = E(eλϵ|X−X′|− 1
2E(|X−X′|)− 1

2E(−|X−X′|))

= E(eλϵ|X−X′|)

=
1

2
E(eλ|X−X′|) +

1

2
E(e−λ|X−X′|)

(5.25)

Now since X ′ is an independent copy of X we can split each of these 2 terms

E(eλ|X−X′|) = P(X > X ′)E(eλ(X−X′)) + P(X = X ′)E(e0) + P(X < X ′)E(e−λ(X−X′))

= 2P(X > X ′)E(eλ(X−X′)) + P(X = X ′)

= 2P(X > X ′)E(eλ(X−E(X)−(X′−E(X′))) + P(X = X ′)

= 2P(X > X ′)E(eλ(X−E(X)))E(e−λ(X′−E(X′))) + P(X = X ′)

≤ 2P(X > X ′)e∆
2λ2

+ P(X = X ′)

. (5.26)

Where in the fourth row we used independence and in the final row we used the that our variable
is sub-Gaussian. By noticing that our for sub-Gaussian random variables since they are bounded by a
Gaussian P(X = X ′) = 0. From this we get that 2P(X > X ′) = 1 thus by adding this to both terms we
get

E(eλ(ϵ|X−X′|−E(ϵ|X−X′|) ≤ e∆
2λ2

. (5.27)

hereby obtaining a bound for the sub-Gaussian diameter of ∆sg ≤
√
2∆

5.2.2. Concentration inequality
Now that we have found an upper bound for the sub-Gaussian diameter of sub-Gaussian random vari-
able, we can construct a concentration inequality. To construct this inequality we will use the following
theorem. This section is again based on [3] and [4]

Theorem 5.2 for c1, ..., cN ≥ 0, Let Xi be random variables taking values in R of class SG(∆2
i ) and

let f : RN → R satisfying the Lipschitz condition

|f(x1, ..., xN )− f(x′
1, ..., x

′
N )| ≤

N∑
i=1

ci|xi − x′
i|. (5.28)

Then for t>0

P
(
|f(X)− E(f(X))| > t

)
≤ 2exp

( −t2

2ΣN
i=1c

2
i∆

2
i

)
(5.29)

holds.
Now by equation (5.13) we find that ci = β

AN and we know that sub-Gaussian random variables from
class G(∆) has a sub-Gaussian diameter of ∆. Thereby we obtain the following probabilistic bound

P
(
|f(X)− E(f(X))| > t

)
≤ 2exp

( −t2

4β2∆2/A2

)
(5.30)

Now from this bound on the absolute value of our function we can create an upper and lower tail
bound by observing that the set we want to know the probability for is a subset of a set we already know
the probability for. We get
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P
(
f(X)− E(f(X)) > t

)
≤ exp

( −t2

4β2∆2/A2

)
. (5.31)

and in the same way we can use this for the case with the minus sign,

P
(
f(X)− E(f(X)) < −t

)
≤ exp

( −t2

4β2∆2/A2

)
. (5.32)

In all of these cases the eventual bound is of a single exponential. Sometimes a factor C can appear
in front of this exponential. This factor alters the calculations for the lower bound a bit. then instead we
obtain.

κ = α+ max
η∈(0,1)

(
log(η)− 2L

√
α+ log(C)− log(1− η)

)
(5.33)



6
Conclusion

In this paper we have proved the closeness for the random dilute Curie-Weiss model to the Curie-Weiss
model for Gaussian, bounded and sub-Gaussian couplings. Hereby we have demonstrated that the
standard Curie-Weiss model is an acceptable approximation of the dilute Curie-Weiss model. And that
we can apply its behaviour to actual magnets.

This closeness is stated in the following theorem, in terms of mesoscopic measures and averages
of observables

Theorem The following bounds hold for any s > 0, whereQ(m)RDCW is the mesoscopic distribution
of the randomly dilute Curie-Weiss model and Q(m)CW is the mesoscopic distribution of the Curie-
Weiss model. and ZRDCW , ZCW are their respective normalisation constants.

PJ

( ∑
m∈ΓN

g(m)QRDCW (m) ≤ eα+s ZCW

ZRDCW

( ∑
m∈ΓN

g(m)QCW (m)
)
(1 + o(1))

)
≥ 1− k1e

−k2s
2

(6.1)

PJ

( ∑
m∈ΓN

g(m)QRDCW (m) ≥ eκ−s ZCW

ZRDCW

( ∑
m∈ΓN

g(m)QCW (m)
)
(1 + o(1))

)
≥ 1− k1e

−k2s
2

(6.2)

Where α, κ, k1 and k2 depend on the form of the coupling.
For Gaussian couplings with mean A and variance B2 we have the following

α =
β2

4A2
B2

κ = max
η∈(0,1)

(
α+ log(η)− βB

√
2

A

√
α− log(1− η)

)
k1 =1

k2 =
β2B2

A2
.

(6.3)

For couplings bounded between [−M,M ] with mean A and variance B2 we have the following

α =
β2

4A2
B2

κ = max
η∈(0,1)

(
α+ log(η)− βM

√
2

A

√
α− log(1− η)

)
k1 =1

k2 =
β2M2

A2
.

(6.4)

For couplings of class G(∆2) with mean A and variance B2 we have the following
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α =
β2

4A2
B2

κ = max
η∈(0,1)

(
α+ log(η)− 2

2β∆

A

√
α− log(1− η)

)
k1 =1

k2 =
4β2M2

A2
.

(6.5)
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A
Appendix

A.1. Stirling’s approximation
Stirling’s approximation is an approximation is an approximation of a factorial stating.

ln(n!) = n ln(n)− n+Θ(ln(n)) (A.1)

This approximation will be applied to
(

N
1+m

2 N

)
to obtain the following approximation.

(
N

1+m
2 N

)
=

N !(
1+m
2 N

)
!
(
1−m
2 N

)
!

= e
ln

(
N!(

1+m
2

N

)
!

(
1−m

2
N

)
!

)
= eln

(
N !
)
−ln

((
1+m

2 N
)
!
)
−ln

((
1−m

2 N
)
!
)

= eN ln(N)−N− 1+m
2 N ln

(
1+m

2 N
)
+ 1+m

2 − 1−m
2 N ln

(
1−m

2 N
)
+ 1−m

2 +Θ(ln(N))−Θ(ln
(

1+m
2 N

)
)−Θ(ln

(
1−m

2 N
)
)

= eN ln(N)− 1+m
2 N ln

(
1+m

2 N
)
− 1−m

2 N ln
(

1−m
2 N

)
+Θ(ln(N))−Θ(ln

(
1+m

2 N
)
)−Θ(ln

(
1−m

2 N
)
)

= eN ln(N)− 1+m
2 N ln 1+m

2 N− 1−m
2 N ln

(
1−m

2 N
)

= eN ln(N)− 1+m
2 N ln

(
1+m

2

)
− 1−m

2 N ln
(

1−m
2

)
− 1+m

2 N ln(N)− 1−m
2 N ln(N)

= eN(− 1−m
2 ln

(
1+m

2

)
− 1−m

2 ln
(

1−m
2

)
)

(A.2)
obtaining the result used in the paper.
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A.2. Differentiating the free energy of the standard Curie-Weiss
model

first we will differentiate the free energy

d

dm
j(m) =

d

dm

(
− βm2

2
− βhm+

1−m

2
log

(1−m

2

)
+

1 +m

2
log

(1 +m

2

))
= −βm− hβ +

d

dm

(
1−m

2
log

(1−m

2

))
+

d

dm

(
1 +m

2
log

(1m
2

))
= −βm− hβ − 1

2
log

(1−m

2

)
+

1−m

2

d

dm

(
log

(1−m

2

))
+

1

2
log

(1 +m

2

)
+

1 +m

2

d

dm

(
log

(1 +m

2

))
= −βm− hβ − 1

2
log

(1−m

2

)
+

1−m

2

(1−m

2

)−1−1

2
+

1

2
log

(1 +m

2

)
+

1 +m

2

(1 +m

2

)−1 1

2

= −βm− hβ − 1

2
log

(1−m

2

)
+

−1

2
+

1

2
log

(1 +m

2

)
+

1

2

= −βm− hβ − 1

2
log

(1−m

2

)
+

1

2
log

(1 +m

2

)
= −βm− hβ +

1

2
log

(1 +m

2

2

1−m

)
= −βm− hβ + tanh−1 (m)

(A.3)
By setting the derivative to zero the following condition is obtained.

0 = −βm− hβ + tanh−1 (m)
βm+ hβ = tanh−1 (m)

tanh
(
βm+ hβ

)
= m

(A.4)
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