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a b s t r a c t 

This work presents a single-step deep-learning framework for longitudinal image analysis, coined Segis-Net. To 

optimally exploit information available in longitudinal data, this method concurrently learns a multi-class seg- 

mentation and nonlinear registration. Segmentation and registration are modeled using a convolutional neural 

network and optimized simultaneously for their mutual benefit. An objective function that optimizes spatial 

correspondence for the segmented structures across time-points is proposed. We applied Segis-Net to the anal- 

ysis of white matter tracts from N = 8045 longitudinal brain MRI datasets of 3249 elderly individuals. Segis-Net 

approach showed a significant increase in registration accuracy, spatio-temporal segmentation consistency, and 

reproducibility compared with two multistage pipelines. This also led to a significant reduction in the sample-size 

that would be required to achieve the same statistical power in analyzing tract-specific measures. Thus, we expect 

that Segis-Net can serve as a new reliable tool to support longitudinal imaging studies to investigate macro- and 

microstructural brain changes over time. 
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. Introduction 

The increasing availability of longitudinal imaging data is expanding

ur ability to capture and characterize progressive anatomical changes,

anging from normal changes in the life span, to responses along disease

rajectories or therapeutic actions. Compared to cross-sectional studies,

ongitudinal imaging studies have the advantage of allowing to trace the

rder of events at the individual level and to correct for the confound-

ng effect of time-invariant individual differences ( van der Krieke et al.,

017 ). They are thus considered to be more accurate and sensitive in

apturing subtle changes over time. To analyze spatio-temporal changes

rom longitudinal imaging data, a tailored framework that involves both

egmentation and registration is required to segment the structures-of-

nterest and to register temporal frames. This can be achieved by directly

ombining two existing segmentation and registration tools, which are

ften designed for cross-sectional studies. However, the information of-

ered in longitudinal data remains underutilized. 

Various studies have shown that combining segmentation and reg-

stration at the stage of algorithm optimization can lead to improved
Abbreviations: MRI, Magnetic Resonance Imaging; DTI, Diffusion Tensor Imaging; F

ime. 
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erformance. A popular combination strategy is to use the output of

ne task to optimize the other. Registration can be improved by using

egmentation-level correspondences as input for deformation initializa-

ion ( Dai and Khorram, 1999; Postelnicu et al., 2008 ) and optimization

 Balakrishnan et al., 2019; Bastiaansen et al., 2020; De Groot et al.,

013b; Hu et al., 2018; Rohé et al., 2017; Zhu et al., 2020 ). Likewise,

egmentation can benefit from registration by propagating anatomical

nformation to subsequent frames, as has been shown in classical multi-

tlas based segmentation methods ( Fischl et al., 2002; Vakalopoulou

t al., 2018 ) and in recent data-augmentation techniques which intro-

uce labels to support unsupervised ( Pathak et al., 2017 ) and weakly-

upervised segmentation ( Bortsova et al., 2019; Vlontzos and Mikola-

czyk, 2018 ). 

Other approaches combine the optimization of parameters from both

asks on a deeper level. Wyatt and Noble (2003) sub-grouped these

ethods into two types according to the way in which they update

heir parameters: (1) “simultaneous estimation ” that updates both the

lass labels and the transformations in a single-step optimization, and

2) “joint estimation ” that alternately updates (separate) models in a

ulti-step optimization. Although the initialization and robustness of
A, Fractional Anisotropy; MD, Mean Diffusivity; TE, Echo Time; TR, Repetition 
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oint estimation can be influenced by the selection of the order to op-

imize and the criteria to switch tasks, this approach is preferred as it

equires less computation power and allows to use task-specific training

atasets ( Ashburner and Friston, 2005; Cheng et al., 2017; Gooya et al.,

011; Parisot et al., 2014; Pohl et al., 2006; Wyatt and Noble, 2003; Xu

nd Niethammer, 2019; Yezzi et al., 2003 ). Simultaneous estimation is

xpected to be more accurate, as it fully exploits the conditional correla-

ions between two tasks that can be discounted in sequential processing

 Ashburner and Friston, 2005 ). In addition, simultaneous estimation can

xplicitly optimize performances that rely on both tasks. We expect that

his advantage has a large potential in improving the reliability of anal-

sis of longitudinal imaging data, for instance by optimizing the spatio-

emporal consistency of the segmentation. With the growing capabil-

ty of modeling and computation by deep learning techniques, several

imultaneous methods have been proposed and coupled segmentation

ith deformable registration in different ways, either for 2D ( Qin et al.,

018 ) or 3D images ( Estienne et al., 2020; 2019; Li et al., 2019 ). 

Diffusion magnetic resonance imaging (MRI) is a non-invasive imag-

ng technique that measures the diffusion of water in-vivo and can be

sed to quantitatively characterize white matter (WM) microstructure.

n addition, diffusion MRI derived measures, such as diffusion tensor

maging (DTI) metrics ( Le Bihan et al., 2001 ), are likely to be more sen-

itive than structural measures in the early detection of changes in WM,

nd are therefore promising for the identification of subtle changes that

elate to the early stages of the disease ( Niessen, 2016 ), for instance in

tudying dementia subtypes ( Meijboom et al., 2019 ). Longitudinal diffu-

ion MRI has been widely studied at various levels, i.e., from regions-of-

nterest ( Keihaninejad et al., 2013; Sullivan et al., 2010 ), to tract level

 Dimond et al., 2020; Lebel and Beaulieu, 2011; Meijboom et al., 2019;

endiki et al., 2016 ), and voxel level ( Barrick et al., 2010; Farbota et al.,

012; De Groot et al., 2016 ). Since WM tracts are functionally grouped

xonal fibers and thought to subserve particular brain functions, tract-

pecific investigation may highlight categorical differences in vulner-

bility to neurodegeneration and bridge the interpretation of imaging

iomarkers with clinical symptoms. 

Segmentation of WM tracts is however non-trivial because tracts can-

ot be identified directly from diffusion MRI, i.e., there is no in-vivo

gold standard ” for tract ( Crick and Jones, 1993 ), and because their

natomy can be complex. WM tracts are commonly segmented based

n diffusion tractography by reconstruction of potential fiber pathways

 Conturo et al., 1999 ). Recently, deep learning based methods, in par-

icular using convolutional neural networks (CNN), have emerged and

howed promising accuracy and efficiency in segmenting WM tracts ( Li

t al., 2020a; 2018; Wasserthal et al., 2018 ). 

In the present work we focus on a CNN-based framework for longi-

udinal analysis of WM tracts, i.e., Segis-Net, and investigate the value

f simultaneous optimization of segmentation and registration in this

etting. In ( Li et al., 2019 ), we introduced a generic framework for si-

ultaneous optimization, in which increased accuracies of both tasks

ere observed in a pilot analysis of a single tract (forceps minor; FMI).

n this paper, we extend the tract-specific method by enabling concur-

ent segmentation of multiple tracts, which is a non-trivial task as a

oxel can belong to multiple tracts. This also solves the problem of in-

onsistencies in deformations because of tract-specific ROIs. The reg-

stration task within the framework is updated to learn only local de-

ormations rather than an end-to-end composite including rigid trans-

ormation, as brain local changes over time is a focus in longitudinal

maging studies. In addition, we compare the performance of Segis-Net

o two multistage pipelines based on both classical and deep learning

lgorithms, and two state-of-the-art methods. The segmentation accu-

acy, registration accuracy, spatio-temporal consistency of segmenta-

ion, and reproducibility of segmentation and tract-specific measures of

he pipelines are quantitatively evaluated. Also, we evaluate the sample-

ize reduction that can be achieved in the imaging analysis of WM tracts

o provide insight into the practical value of the methods in clinical

pplications. 
2 
. Methods 

In this section, we first describe how the segmentation and registra-

ion tasks are individually modeled using CNN-based approaches. Sub-

equently, we present the proposed Segis-Net that integrates both tasks

n a single-step CNN framework. 

.1. CNN-based image segmentation 

Given a 𝑛 -D image 𝐼 which can be described by either intensity val-

es, multi-channel features or directional tensors, the goal of CNN-based

egmentation is to automatically infer, for each voxel 𝑥 ∈ ℝ 

𝑛 , its prob-

bility of belonging to the structure 𝑘 ∈ [1 , 𝐾] with 𝐾 the number of

tructures, i.e., voxel-wise classification. The CNN model can be inter-

reted as a parameterized mapping function  𝚯 such that the segmented

tructures spatially correspond to a segmentation ground truth with mul-

iple channels  = { 𝑆 1 , … , 𝑆 𝐾 } . The estimation of the segmentation is

ormulated as: 

̂
 =  𝚯

(
𝐼 
)
. (1)

 𝚯 is commonly modeled by a nested series of convolutions, non-

inearity, normalization, and re-sampling operations embedded in the

etwork architecture. 𝚯 indicate trainable parameters. 

The procedure of estimating parameter 𝚯 is then defined as an opti-

ization with respect to a loss function  𝑠𝑒𝑔 , aiming at minimizing the

lassification error over all the 𝑁 pairs of training samples {(  𝑖 , 𝐼 𝑖 )} 𝑁 

𝑖 =1 ,

.e., 

← argmin 
𝚯

𝑁 ∑
𝑖 =1 

 𝑠𝑒𝑔 

( 

 𝑖 ,  𝚯( 𝐼 𝑖 ) 
) 

. (2)

The loss function comprises metrics that quantify the difference be-

ween the prediction and the ground truth. In this study,  𝑠𝑒𝑔 is the aver-

ge Dice coefficient ( Crum et al., 2006; Dice, 1945 ) over all 𝐾 structures:

 𝑠𝑒𝑔 (  , ̂ ) = − 

2 
𝐾 

𝐾 ∑
𝑘 =1 

∑
𝑥 𝑆 𝑘 �̂� 𝑘 ∑

𝑥 ( 𝑆 𝑘 ) 2 + 

∑
𝑥 ( 𝑆 𝑘 ) 2 

. (3)

After estimation of the map function  𝚯, a probabilistic prediction

or the structures of interest ̂ in a given image can be inferred ( Eq. 1 ).

.2. CNN-based deformable registration 

Let us consider a pair of 𝑛 -D images, 𝐼 𝑠 in the source space Ω 𝑠 ⊂ ℝ 

𝑛 ,

nd 𝐼 𝑡 in the target space Ω 𝑡 ⊂ ℝ 

𝑛 , which contain a common structure

o be aligned. The spatial correspondence between images can be estab-

ished by estimating a dense displacement field 𝝓, such that 𝐼 𝑠 ◦𝝓 and 𝐼 𝑡 
orrespond spatially. 

In line with the hierarchical optimization scheme of classical reg-

stration algorithms, most existing learning-based registration methods

se affine alignment as a prepossessing step, in which case the displace-

ent field denotes the composition of affine and deformable transform,

.e., 𝝓 = 𝝓𝐴 ◦𝝓𝐷 . To estimate 𝝓𝐷 , the CNN model can be interpreted as

 shared domain-invariant mapping function  𝚿 such that for any un-

een pair of images a most likely transformation between them can be

nferred without pair-specific optimization, i.e., 

̂
𝐷 =  𝚿( 𝐼 𝑡 , 𝐼 𝑠 ◦𝝓𝐴 ) (4)

𝐼 𝑠 ◦�̂� ←  𝚿( 𝐼 𝑡 , 𝐼 𝑠 , 𝝓𝐴 ) . (5)

The parameters 𝚿 of the mapping function are optimized based on

 registration dissimilarity loss  𝑟𝑒𝑔 , aimed at minimizing the regis-

ration error. Meanwhile, to penalize large deviations of deformation

nd preserve anatomical topology during transformations, a deforma-

ion smoothness term  𝑑𝑒𝑓 is commonly included in the loss function.

n this work, we use the mean squared error based on intensities for  𝑟𝑒𝑔 
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Fig. 1. Overview of the Segis-Net framework. 𝚯 and 𝚿 denote the parameters of the segmentation (  𝚯) and registration (  𝚿) function, respectively. Black circle 

indicates spatial warp with affine matrix ( 𝝓𝐴 ) or the composite displacement field ( ̂𝝓). The concatenation of the affine-aligned images is used as the input for  𝚿. 

Loss function consists of  𝑠𝑒𝑔 ,  𝑐𝑜𝑚 ,  𝑟𝑒𝑔 and  𝑑𝑒𝑓 terms. Solid lines indicate the primary workflow of the method; dashed lines indicate the operations that are only 

implemented during training and could be adapted for applications. 
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nd the average spatial gradients of the displacement field for  𝑑𝑒𝑓 , i.e.,

 𝑟𝑒𝑔 ( 𝐼 𝑡 , 𝐼 𝑠 ◦�̂�) = 

1 |Ω 𝑡 | ‖𝐼 𝑡 − 𝐼 𝑠 ◦�̂�‖ 2 
2 , (6)

 𝑑𝑒𝑓 ( ̂𝝓𝐷 ) = 

1 |Ω 𝑡 | ‖∇ ̂𝝓𝐷 ‖ 2 
2 . (7)

ombining Eqs. (4) , (5), (6) and (7) , the estimation of 𝚿 over all the 𝑁

raining samples {( 𝐼 𝑖 
𝑡 
, 𝐼 𝑖 

𝑠 
, 𝝓𝑖 

𝐴 
)} 𝑁 

𝑖 =1 can be formulated as: 

← argmin 
𝚿

𝑁 ∑
𝑖 =1 

 𝑟𝑒𝑔 

(
𝐼 𝑖 
𝑡 
,  𝚿( 𝐼 𝑖 𝑡 , 𝐼 

𝑖 
𝑠 
, 𝝓𝑖 

𝐴 
) 
)
+  𝑑𝑒𝑓 

(
 𝚿( 𝐼 𝑖 𝑡 , 𝐼 

𝑖 
𝑠 
◦𝝓𝑖 

𝐴 
) 
)
. (8)

.3. Simultaneous estimation of segmentation and registration 

In this work, we aim to simultaneously estimate the parameters for

egmentation ( 𝚯) and for registration ( 𝚿) in a single-step optimization.

or this purpose, we integrate the segmentation and registration func-

ion  𝚯 and  𝚿 using an end-to-end optimization with the Segis-Net.

he loss function of the Segis-Net is designed to meet the joint objective

f both tasks and meanwhile to optimize the spatio-temporal consis-

ency of segmentation which rely on both tasks. The overview of the

roposed framework is illustrated in Fig. 1 . We describe the framework

rchitecture and loss function in the following paragraphs. 

.3.1. Segis-Net framework 

In the present study, we focus on the analysis of 3D images and utilize

D convolutions for the Segis-Net framework. The framework involves

unction  𝚯 and  𝚽 as two parallel streams that interact on their out-

uts. In order to eliminate the loss in image quality caused by multiple

nterpolations, Segis-Net warps source images with only the compos-

te displacement fields ( 𝝓) by taking as input the original source image

 𝐼 𝑠 ) and pre-estimated affine matrix ( 𝝓𝐴 ). This design has additional ad-

antages over existing methods that prepare all ordered pairs of affine-

ligned images in disk storage, as only up to half the storage is needed

nd as it can be flexibly applied to related images in the same space such

s the DTI metrics. 

 𝚯 outputs a set of probabilistic segmentations ( ̂ 𝑠 ) of the source

mage.  𝚿 outputs a dense local displacement �̂�𝐷 along the x, y, and z

xes. The source image and its segmentations are subsequently warped
3 
nto the target space using the composed displacement field. The warp

peration is implemented by a computational layer with differentiable

rilinear interpolation ( Balakrishnan et al., 2019; Jaderberg et al., 2015 ).

he segmentation and registration streams have independent network

rchitectures which are only connected by the output, i.e., the trans-

ormed source-segmentation to the target space ( ̂ 𝑠 ◦�̂�). Thus, they can

e applied separately after taking advantage of the simultaneous opti-

ization. The Segis-Net framework gives four outputs during training: 

1. The segmentation of the structures of interest from the source image

( ̂ 𝑠 ), 

2. A local displacement field between the source and target images

( ̂𝝓𝐷 ), 

3. The warped source image in the target space ( 𝐼 𝑠 ◦�̂�), 

4. The warped source segmentations in the target space ( ̂ 𝑠 ◦�̂�). 

We propose a generic framework where the architecture of each

tream can be adapted based on specific applications. For the partic-

lar network used in this study, we encoded two streams with a U-Net

rchitecture, that was modified as detailed below ( Ronneberger et al.,

015 ). In short, each stream was composed of an encoder and decoder

ath with skip connections of feature pyramid at multiple scales in or-

er to merge coarse- and fine-convolved features, similar to the multi-

esolution strategy used in classical algorithms to increase robustness.

he encoder paths with max-pooling operation between convolution

ayers gradually extract abstract features for the target anatomy (  𝚯)

nd global transformation between images (  𝚿). Subsequently, the de-

oder paths restore the details in segmentations (  𝚯) and refine local

eformations (  𝚿) by linear up-sampling the feature maps and concate-

ating them with the coarse counterpart at the same scale. The convo-

ution layers produce a set of feature maps by individually convolving

nputs with 3D kernels of size (3,3,3), followed by batch normalization

 Ioffe and Szegedy, 2015 ) and a leaky ReLu layer ( 𝑎 = 0 . 2 ) for modeling

on-linearity ( Maas et al., 2013 ). For the segmentation stream (  𝚯), we

plit the output layer into sub-branches to facilitate multi-class classifi-

ation for voxels with multiple labels. The final layer of the sub-branches

onsisted of a (1,1,1) convolution and a sigmoid activation. For the reg-

stration stream, the output layer was a convolution layer with three

ernels that yielded the local displacement �̂� . We provide detailed im-
𝐷 
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Figs. 8 and 9). 

.3.2. Segis-Net loss function 

The loss function of Segis-Net is composed of four terms that mea-

ure segmentation accuracy (  𝑠𝑒𝑔 , Eq. (3) ), intensity similarity between

egistered images (  𝑟𝑒𝑔 , Eq. (6) ), deformation field smoothness (  𝑑𝑒𝑓 ,

q. (7) ), and longitudinal composite of registration and segmentation

  𝑐𝑜𝑚 , Eq. (11) ). It is formulated as: 

 =  𝑠𝑒𝑔 

(
 𝑠 , ̂ 𝑠 

)
+ 𝛼 𝑟𝑒𝑔 

(
𝐼 𝑡 , 𝐼 𝑠 ◦�̂�) 

)
+ 𝛽 𝑑𝑒𝑓 

(
�̂�𝐷 

)
+ 𝛾 𝑐𝑜𝑚 

(
 𝑡 , ̂ 𝑠 ◦�̂�

)
, 

(9) 

nd optimized for 𝚯 and 𝚿 over all 𝑁 training samples

(  𝑖 
𝑡 
,  𝑖 

𝑠 
, 𝐼 𝑖 

𝑡 
, 𝐼 𝑖 

𝑠 
, 𝝓𝑖 

𝐴 
)} 𝑁 

𝑖 =1 : 

, 𝚿 ← argmin 𝚯, 𝚿
∑𝑁 

𝑖 =1  𝑠𝑒𝑔 

(
 𝑖 
𝑠 
,  𝚯( 𝐼 𝑖 𝑠 ) 

)
+ 𝛼 𝑟𝑒𝑔 

(
𝐼 𝑖 
𝑡 
,  𝚿( 𝐼 𝑖 𝑡 , 𝐼 

𝑖 
𝑠 
, 𝝓𝑖 

𝐴 
) 
)
+ 𝛽 𝑑𝑒𝑓 

(
 𝚿( 𝐼 𝑖 𝑡 , 𝐼 

𝑖 
𝑠 
◦𝝓𝑖 

𝐴 
) 
)

+ 𝛾 𝑐𝑜𝑚 

(
 𝑖 
𝑡 
,  𝚯( 𝐼 𝑖 𝑠 ) ,  𝚿( 𝐼 

𝑖 
𝑡 
, 𝐼 𝑖 

𝑠 
, 𝝓𝑖 

𝐴 
) 
)
. 

(10) 

We quantify the longitudinal composite loss term using the average

ice coefficient over all 𝐾 structures: 

 𝑐𝑜𝑚 

(
 𝑡 , ̂ 𝑠 ◦�̂�

)
= − 

2 
𝐾 

𝐾 ∑
𝑘 =1 

∑
𝑥 ∈Ω𝑡 

𝑆 𝑘 
𝑡 
( ̂𝑆 𝑘 

𝑠 
◦�̂�) ∑

𝑥 ∈Ω𝑡 
( 𝑆 𝑘 

𝑡 
) 2 + 

∑
𝑥 ∈Ω𝑡 

( ̂𝑆 𝑘 
𝑠 
◦�̂�) 2 

. (11)

n longitudinal imaging studies, the spatial correspondence in segmenta-

ion depends on the performance of both the segmentation and the reg-

stration procedure. Besides an explicit optimization of correspondence,

he  𝑐𝑜𝑚 term also exploits longitudinal information to boost both tasks,

hich introduces some degree of augmentation and regularization for

egistration and on the other hand constraints and prior knowledge for

egmentation. 

The hyperparameters 𝛼 and 𝛾 balance the loss magnitude of segmen-

ation, registration, and their interdependent composite. The degree of

egularization on the deformation is described by 𝛽. The procedure of

imultaneous optimization is summarized with pseudo code in supple-

entary material (Algorithm 1). 

. Application to diffusion MRI 

The performance of Segis-Net is demonstrated by analyzing white

atter tracts in a large diffusion MRI dataset, and compared to that of

wo multi-stage pipelines, in which segmentation and registration are in-

ependently optimized. Performance is evaluated in a longitudinal set-

ing where multiple time-points from the same individual are available.

.1. Dataset 

The Rotterdam Study is a prospective and population-based study

argeting causes and consequences of age-related diseases ( Ikram et al.,

020 ). For the present analysis, we included 3249 individuals who

nderwent diffusion MRI scanning twice or more often, resulting in

 = 8045 scans. The mean age at first scan was 61 . 2 ± 9 . 4 years (range:

5 . 7 − 91 . 1 years). The number of female participants was 1780 ( 54 . 8% ).

 flowchart for the inclusion, exclusion, and split of the datasets is

hown in Fig. 2 . We split the data into two subsets. The larger subset was

epeatedly acquired in a time interval of 1–5 years ( 𝑁 = 7770 scans from

166 individuals). In these long time-interval scans, it is expected that

rain microstructure changes due to aging exist. By matching any two

ime-points from the same individual regardless of the visiting order,

hese long time-interval scans can be grouped into 6043 pairs. We used

175 pairs of scans as training data, 200 pairs as validation data to tune

he hyperparameters, monitor the decay of learning rate and select the

ptimal epoch, and used an independent cohort of 668 pairs for testing.

he remaining scans from the smaller subset were from 97 individuals

ho were scanned twice within a month. No changes in brain macro-

nd microstructure were expected within such a short time-interval. We
4 
sed these scans for evaluation of reproducibility of the algorithm. The

ata split was based on the participants, namely, we made sure that

cans from the same participant ended up in either training, validation,

r test dataset. 

.2. MRI acquisition 

Scans were acquired on a 1.5T MRI scanner (GE Signa Excite). The

cquisition parameters for structural and diffusion MRI can be found in

kram et al. (2011) . Specifically, diffusion MRI was scanned with the fol-

owing parameters: TR/TE =8575 𝑚𝑠 ∕82 . 6 𝑚𝑠, imaging matrix of 64 × 96 ,
OV =21 × 21 𝑐𝑚 

2 , 35 contiguous slices with slice thickness 3.5 mm, 25

iffusion weighted volumes with a b-value of 1000 𝑠 ∕ 𝑚𝑚 

2 and 3 non-

eighted volumes (b-value = 0 𝑠 ∕ 𝑚𝑚 

2 ). The voxel size was resampled

rom 3 . 3 × 2 . 2 × 3 . 5 𝑚𝑚 

3 to 1 𝑚𝑚 

3 as required for probabilistic tractogra-

hy ( Behrens et al., 2007 ). 

.3. Image preprocessing 

Diffusion data were preprocessed using a standardized pipeline

 Koppelmans et al., 2014 ). In short, motion and eddy currents were cor-

ected by affine co-registration of all diffusion weighted volumes to the

veraged b0 volumes, including correction of gradient vector directions

sing Elastix software ( Klein et al., 2010 ). Diffusion tensors were esti-

ated with a Levenberg–Marquardt non-linear least-squares optimiza-

ion algorithm ( Leemans et al., 2009 ). We subsequently computed DTI

easures: fractional anisotropy (FA) and mean diffusivity (MD). Due

o noise, tensor estimation failed in a small proportion of voxels, re-

ulting in significant outliers. Outlier voxels with a tensor norm (Frobe-

ius norm) larger than 0 . 1 𝑚𝑚 

2 ∕ 𝑠 were set to zero ( Zhang et al., 2007 ).

rain tissue masks including WM and gray matter segmentations were

btained based on structural imaging ( Vrooman et al., 2007 ) and ap-

lied to the diffusion tensor images. In this study, we used a ROI of

12 × 208 × 112 voxels to analyze six WM tracts, including left and right

ingulate gyrus part of cingulum (CGC), left and right parahippocam-

al part of cingulum (CGH), forceps major (FMA) and forceps minor

FMI). Diffusion tensor images were image-wise normalized by setting

he union of the six components to zero-mean and standard deviation

f one. The affine matrix ( 𝝓𝐴 ) of each image pair was estimated by op-

imizing the mutual information of FA images using Elastix software. 

.4. Reference segmentations 

The segmentation labels for model training and evaluation were gen-

rated using a probabilistic tractography and atlas-based segmentation
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ethod by De Groot et al. (2015) . The resulting tract-density images for

ach tract were normalized by division with the total number of tracts

n the tractography run. Finally, tract-specific thresholds for the normal-

zed density images were established by maximizing the reproducibility

f FA measures on a subset of 30 participants ( De Groot et al., 2013b ).

e did not exclude this subset from the reproducibility test data ( Fig. 2 ),

s it remains unseen to the proposed method and other baseline meth-

ds. 

.5. Baseline multi-stage pipelines 

We compared the performance of the proposed Segis-Net with

wo multi-stage pipelines that consist of either non-learning-based or

earning-based algorithms to investigate the added value of simulta-

eous optimization. To assess whether the performance difference be-

ween approaches was statistically significant, paired t-tests with P-

alue threshold < 0 . 05 and Bonferroni correction for controlling the

amily-wise error of multiple testings were performed. 

First, a non-learning-based Classical pipeline was built using an ex-

sting tractography-based segmentation algorithm ( Section 3.4 ) and a

eformable registration algorithm Elastix ( Klein et al., 2010 ). Elastix

as adopted as a competing classical registration method since it has

een widely used on our dataset and thereby an optimal parameter set-

ing can be applied for performance comparison. Elastix is designed to

un in a cascade of resolutions, and offers the choice between multi-

le objective functions and multiple optimizers including an efficient

daptive stochastic gradient descent optimizer ( Klein et al., 2009 ). For

lastix (version 4.8), we used a rigid, affine, and B-spline transforma-

ion model consecutively by maximizing mutual information between

mages. The B-spline transformation of spline order 3 was implemented

sing a multi-resolution framework with isotropic control-point spacing

f 24, 12, and 6 𝑚𝑚 in three-level resolutions. The maximum number of

terations was 1024. 

Second, we built a learning-based CNN pipeline using components

rom the proposed Segis-Net to evaluate the sole contribution of simul-

aneous optimization. In this pipeline, we split the integrated segmen-

ation  𝚯 and registration stream  𝚽 into two separate neural networks

or independent optimization. Subsequently, the segmented images and

stimated transformations were combined. The segmentation network

ad the same architecture as that for  𝚯, except being independently

ptimized using the segmentation accuracy  𝑠𝑒𝑔 term. As this is a typ-

cal setting for CNN-based segmentation approaches ( Li et al., 2018;

onneberger et al., 2015 ), we denote it as Seg-Net . Similarly, the regis-

ration network denoted as Reg-Net had the same setting as that for  𝚿,

xcept being independently optimized using registration similarity  𝑟𝑒𝑔 

nd regularization  𝑑𝑒𝑓 terms ( Balakrishnan et al., 2019 ). We ensured

hat the training dataset for the Seg-Net and Reg-Net was the same as

hat used for the Segis-Net framework. 

.6. Related methods involving segmentation and registration 

When it comes to the combination of segmentation and registration,

here are various integration strategies ( Section 1 ). To investigate the

enefit of the proposed simultaneous optimization strategy, we addi-

ionally compared Segis-Net with two previously published methods: 

• U-ReSNet for simultaneous segmentation and registration that used a

shared feature encoder and separate decoders ( Estienne et al., 2019 ).
• VoxelMorph for image registration alone that used correspon-

dence in existing segmentation labels to boost registration

( Balakrishnan et al., 2019 ). 

.7. Implementation 

For this diffusion MRI application, the segmentation (  𝚯) and reg-

stration (  ) components of Segis-Net used different input images.
𝚿

5 
pecifically, segmentation was based on the diffusion tensor image, as it

ontains directional information of fiber populations and was shown to

e optimal in the present setting of clinical-quality resolution ( Li et al.,

020a ). For spatial alignment, we adopted the input the commonly used

calar-value FA map derived from diffusion tensor imaging. 

To mitigate class imbalance and to improve computational effi-

iency, we combined the reference segmentation for the six tracts

 Section 3.3 ) into a three-channel map for using it as the segmentation

round truth 𝑆. This combination was possible since only few cross-

ng fibers are expected between codirectional WM tracts (e.g., FMI and

MA). To evaluate performance on individual tracts after training, we

xtracted the two largest components from each of the three channels

f the probabilistic prediction and subsequently identified the left and

ight (for CGC and CGH) or the anterior and posterior (for FMI and FMA)

ract based on coordinates. 

The experiments of model training and evaluation were performed

n an NVIDIA 1080Ti GPU and an AMD 1920X CPU. CNN-based meth-

ds were implemented using Keras-2.2.0 with a Tensorflow-1.4.0 back-

nd and the Adam optimizer ( Kingma and Ba, 2014 ). For Reg-Net, Seg-

et and Segis-Net, weights of convolution kernels were initialized with

he Glorot uniform distribution ( Glorot and Bengio, 2010 ). In each

raining epoch, input images were fed in random batches (size = 1 ).
oss function hyperparameters were optimized based on segmentation

nd registration performance on the validation dataset (search range:

 10 −3 , 10 −2 , 10 −1 , 10 0 , 10 1 , 10 2 , 10 3 ]); we set to 𝛼 = 10 , 𝛽 = 0 . 01 × 𝛼 for

eg-Net; for Segis-Net we linearly increased 𝛼 from 10 to 100 by 4 per

poch (with 𝛽 increased accordingly), and set the additional parame-

er 𝛾 = 1 . The initial learning rates were experimentally optimized on

he validation dataset and set to 1 𝑒 −4 , 1 𝑒 −3 and 1 𝑒 −3 for Reg-Net, Seg-Net

nd Segis-Net, which were decayed with a factor of 0.8 if the validation

oss stopped decreasing for 10 epochs (decay condition, Algorithm 1).

e stopped the training procedure at the point that the validation loss

howed consecutive increases, i.e., early stopping ( Bishop, 2006 ). The

arameters of the model with the smallest error with respect to the val-

dation dataset were used. 

For VoxelMorph, the implementation as detailed by

alakrishnan et al. (2019) was used directly. For U-ResNet, in

ontrast to the other tensor-based segmentation methods, we used

he FA map as input for both segmentation and registration since the

hared feature-encoder required the same input for both tasks. Affine

egistration was applied as a pre-processing step. Hyperparameters

ere tuned on the validation dataset; and we obtained improved

erformance by using an initial learning rate of 0.0005 and by clipping

he warped segmentation predictions into the range of [ 10 −7 , 1 − 10 −7 ].

. Experiments and results 

We applied the methods to analyze six WM tracts. The performance

f the proposed Segis-Net was compared with the two baseline multi-

tage pipelines on segmentation accuracy, registration accuracy, spatio-

emporal consistency of segmentation, reproducibility of segmentation

nd measurements, and sample-size reduction; and compared with the

wo related methods in terms of the segmentation and registration ac-

uracy. 

.1. Segmentation accuracy 

Segmentation accuracy was quantified with respect to the reference

egmentation ( Section 3.4 ) using the Dice coefficient metric. 

The proposed method yielded similar segmentation accuracy as the

aseline multistage CNN pipeline ( Seg-Net ) for all six tracts ( Fig. 3 ).

oth methods achieved relatively high accuracy in segmenting cingu-

um, i.e., the accuracy of left and right CGC and CGH tracts was around

 . 76 ± 0 . 07 . The accuracy was lowest for FMI ( CNN : 0 . 68 ± 0 . 09 ; Segis-

et: 0 . 67 ± 0 . 09 ), which is a thin and arch-shaped tract that is known

o be more difficult to segment. Correcting for 6 tests resulted in an
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Fig. 3. Segmentation accuracies of the CNN pipeline and Segis-Net for different 

tracts. Error bars indicate standard deviations. 

Table 1 

Segmentation Dice coefficient of U-ReSNet and Segis-Net. The bold value indi- 

cates a better performance in each row. 

U-ReSNet Segis-Net 

CGC_L 0 . 69 ± 0 . 06 0.76 ± 0.06 

CGC_R 0 . 69 ± 0 . 07 0.76 ± 0.06 

CGH_L 0 . 67 ± 0 . 08 0.76 ± 0.07 

CGH_R 0 . 67 ± 0 . 09 0.76 ± 0.09 

FMA 0 . 69 ± 0 . 06 0.76 ± 0.05 

FMI 0 . 60 ± 0 . 08 0.67 ± 0.09 
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Fig. 4. Registration accuracies of the Classical, CNN , and Segis-Net pipeline as 

quantified by spatial correlation (SC) of the registered tract density maps. Error 

bars indicate standard deviations. The bracket hat indicates a significant differ- 

ence between two methods ( t -test, 𝑝 < 2 . 8 × 10 −3 ). 

Table 2 

Registration performance of U-ReSNet, VoxelMorph and Segis-Net, as quantified 

by the spatial correlation (SC) similarity, the Dice coefficient (DC), and the mean 

squared error (MSE). The bold value indicates the best performance in each row. 

U-ReSNet VoxelMorph Segis-Net 

SC CGC_L 0.77 ± 0.11 0 . 72 ± 0 . 09 0 . 73 ± 0 . 08 
CGC_R 0.77 ± 0.11 0 . 71 ± 0 . 09 0 . 73 ± 0 . 07 
CGH_L 0.77 ± 0.11 0 . 75 ± 0 . 10 0.77 ± 0.10 

CGH_R 0.77 ± 0.12 0 . 75 ± 0 . 11 0.76 ± 0.10 

FMA 0.73 ± 0.11 0 . 73 ± 0 . 10 0.74 ± 0.09 

FMI 0.75 ± 0.09 0 . 74 ± 0 . 08 0.76 ± 0.08 

DC CGC_L 0 . 69 ± 0 . 07 0 . 65 ± 0 . 06 0.74 ± 0.06 

CGC_R 0 . 70 ± 0 . 07 0 . 65 ± 0 . 06 0.74 ± 0.05 

CGH_L 0 . 67 ± 0 . 08 0 . 64 ± 0 . 07 0.71 ± 0.08 

CGH_R 0 . 67 ± 0 . 10 0 . 64 ± 0 . 08 0.71 ± 0.09 

FMA 0 . 70 ± 0 . 06 0 . 68 ± 0 . 06 0.72 ± 0.06 

FMI 0 . 57 ± 0 . 10 0 . 56 ± 0 . 07 0.60 ± 0.09 

MSE ( ×10 −2 ) 0 . 47 ± 0 . 38 0 . 19 ± 0 . 88 0.13 ± 0.10 
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djusted P-value threshold of 8 . 3 × 10 −3 . There was no significant differ-

nces in segmentation accuracy between two methods. 

The proposed method showed higher segmentation accuracy than

-ReSNet for all six tracts with a margin of around 10% and smaller

tandard deviation ( Table 1 ). 

.2. Registration accuracy 

Registration accuracy of the approaches was evaluated with the spa-

ial correlation (SC) similarity on the test dataset. According to the pro-

edure in De Groot et al. (2013b) , the estimated transformation was

pplied to the continuous density maps of individual tracts obtained

rom probabilistic tractography, subsequently, the SC similarity between

arped density maps was computed as follow: 

𝐶 𝑘 = 

∑
𝑥 ∈Ω𝑡 

𝐽 𝑘 
𝑡 
( 𝐽 𝑘 

𝑠 
◦�̂�) ( ∑

𝑥 ∈Ω𝑡 

√ 

( 𝐽 𝑘 
𝑡 
) 2 
) ( ∑

𝑥 ∈Ω𝑡 

√ 

( 𝐽 𝑘 
𝑠 
◦�̂�) 2 

) 

, (12)

here 𝐽 𝑘 
𝑡 

and 𝐽 𝑘 
𝑠 

indicate intensity of the target and source density im-

ge of the tract 𝑘 . Despite a lot of intensity variation in the tract den-

ity maps across scans due to the probabilistic nature of tractography,

igher intensity in general indicates more support for the tract while

ower intensity conversely indicates increased uncertainty. Therefore,

e assume that SC reflects the spatial correspondence of tracts. 

Fig. 4 presents the registration accuracy (SC) of Segis-Net and the

aseline multistage pipelines. The SC in all six tracts was overall high-

st for the Segis-Net, followed by the Classical pipeline. Correcting for

8 tests resulted in Bonferroni adjusted P-value threshold of 2 . 8 × 10 −3 .
egis-Net results yielded a significantly better spatial correspondence

han the Classical pipeline in the left CGH (Segis-Net vs Classical =
 . 77 ± 0 . 09 vs 0 . 75 ± 0 . 11 ), FMA ( 0 . 74 ± 0 . 09 vs 0 . 72 ± 0 . 10 ), and FMI

 0 . 76 ± 0 . 08 vs 0 . 74 ± 0 . 08 ) tract. Statistically significant difference in the

egistration accuracy of Segis-Net and CNN pipeline were observed in

he left CGC (Segis-Net vs CNN = 0 . 73 ± 0 . 08 vs 0 . 71 ± 0 . 07 ), right CGC

 0 . 73 ± 0 . 07 vs 0 . 69 ± 0 . 06 ), left CGH ( 0 . 77 ± 0 . 09 vs 0 . 75 ± 0 . 08 ), right
6 
GH ( 0 . 76 ± 0 . 10 vs 0 . 75 ± 0 . 10 ), and FMA ( 0 . 74 ± 0 . 09 vs 0 . 71 ± 0 . 08 )
ract. In general, the proposed Segis-Net approach achieved a better spa-

ial correspondence than the two independently optimized registration

lgorithms using classical and learning-based techniques. 

For comparing the proposed method with U-ReSNet and Voxel-

orph, we added the performance metric that was used in their original

apers ( Balakrishnan et al., 2019; Estienne et al., 2019 ), i.e., the Dice co-

fficient (DC) of registered reference segmentation of tracts, and added

he common loss metric, i.e., the mean squared error (MSE) between reg-

stered FA maps ( Table 2 ). Generally, the SC similarity of the proposed

ethod and U-ReSNet were better than that of VoxelMorph. Segis-Net

ed to the highest similarity in FMA and FMI tract; U-ReSNet was the

ighest for the left and right CGC, and the right of CGH tract; for the

eft CGH tract, a similar SC was observed for U-ReSNet and Segis-Net,

lthough the variations were smaller in Segis-Net; Segis-Net achieved

he best DC and MSE. For all six tracts, the DC of Segis-Net were higher

han that of U-ReSNet, followed by VoxelMorph; the standard deviation

f Segis-Net was overall smallest for all three metrics, except that of DC

n three tracts (left and right CGH, and FMI) which were smallest for

oxelMorph. 

.3. Spatio-temporal consistency of segmentation 

To evaluate the spatio-temporal consistency of segmentation (STCS)

or Segis-Net and the baseline multistage pipelines, we measured the

orrespondence between warped segmentation results across time-

oints using the Dice coefficient. The consistency of each tract was av-
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Fig. 5. Spatio-temporal consistency of segmentation (STCS) with the Classi- 

cal, CNN , and Segis-Net pipeline. Error bars indicate standard deviations. The 

bracket hat indicates a significant difference between two methods ( t -test, 

𝑝 < 2 . 8 × 10 −3 ). 
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raged over two directions by reversing the target and source image,

hich for the tract 𝑘 can be formulated as: 

 𝑇 𝐶𝑆 𝑘 = 

1 
2 

( 2 |�̂� 𝑘 
𝑡 
∩ �̂� 𝑘 

𝑠 
◦�̂�|

|�̂� 𝑘 
𝑡 
| + |�̂� 𝑘 

𝑠 
◦�̂�| + 

2 |�̂� 𝑘 
𝑠 
∩ �̂� 𝑘 

𝑡 
◦ ̂
𝝓−1 |

|�̂� 𝑘 
𝑠 
| + |�̂� 𝑘 

𝑡 
◦ ̂
𝝓−1 |

) 

. (13)

Each pipeline was evaluated as a whole, that is, (1) in Classical

ipeline the reference segmentation was warped by Elastix algorithm,

2) in CNN pipeline the prediction of Seg-Net was warped by the pre-

icted transformation of the Reg-Net , and (3) in Segis-Net framework the

egmentation prediction in native space and the segmentation warped

rom another time-point were available after a bidirectional test. 

The proposed Segis-Net overall showed higher segmentation con-

istency than the CNN and the Classical pipeline ( Fig. 5 ). Correcting

or 18 tests resulted in an adjusted P-value threshold of 2 . 8 × 10 −3 . In
omparison with the CNN pipeline, Segis-Net results yielded signifi-

antly higher spatio-temporal consistency in left CGC (Segis-Net vs CNN

 0 . 83 ± 0 . 04 vs 0 . 82 ± 0 . 04 ), right CGC ( 0 . 83 ± 0 . 04 vs 0 . 82 ± 0 . 06 ), left

GH ( 0 . 82 ± 0 . 05 vs 0 . 81 ± 0 . 05 ), FMA ( 0 . 87 ± 0 . 02 vs 0 . 84 ± 0 . 03 ), and

MI ( 0 . 81 ± 0 . 05 vs 0 . 77 ± 0 . 07 ) tract. In all six tracts, Segis-Net sig-

ificantly outperformed the Classical pipeline, i.e., in left CGC (Segis-

et vs Classical = 0 . 83 ± 0 . 04 vs 0 . 68 ± 0 . 06 ), right CGC ( 0 . 83 ± 0 . 04 vs

 . 68 ± 0 . 06 ), left CGH ( 0 . 82 ± 0 . 05 vs 0 . 66 ± 0 . 08 ), right CGH ( 0 . 81 ± 0 . 05
s 0 . 66 ± 0 . 09 ), FMA ( 0 . 87 ± 0 . 02 vs 0 . 69 ± 0 . 06 ), and FMI ( 0 . 81 ± 0 . 05 vs

 . 57 ± 0 . 09 ) tract. 

.4. Reproducibility of segmentation and measurements 

Reproducibility of tract-specific segmentations, volumes, and diffu-

ion metrics of the pipelines was evaluated using the reproducibility

ataset. We quantified voxel-wise agreement between segmentations of

epeated scans using Cohen’s kappa coefficient ( 𝜅). The segmentations

 ̂ 𝑡 , ̂ 𝑠 ) were obtained in the native space, and subsequently aligned

 ̂ 𝑠 ◦�̂�). Kappa 𝜅 of the tract 𝑘 is defined as: 

𝑘 = 

𝑝 𝑜 ( ̂𝑆 𝑘 𝑡 , �̂� 
𝑘 
𝑠 
◦�̂�) − 𝑝 𝑒 ( ̂𝑆 𝑘 𝑡 , �̂� 

𝑘 
𝑠 
◦�̂�) 

1 − 𝑝 𝑒 ( ̂𝑆 𝑘 𝑡 , �̂� 𝑘 𝑠 ◦�̂�) 
, (14)

n which 𝑝 𝑜 ( ̂𝑆 𝑘 𝑡 , �̂� 
𝑘 
𝑠 
◦�̂�) is the observed agreement between �̂� 𝑘 

𝑡 
and �̂� 𝑘 

𝑠 
◦�̂� ,

 𝑒 is the hypothetical probability of the agreement. Given |Ω𝑡 | being

he total number of voxels in the target image, |𝑆| and |Ω𝑡 | − |𝑆| being

he number of tract and non-tract voxels, the observed agreement (i.e.,

ccuracy) is computed as: 

 𝑜 ( ̂𝑆 𝑘 𝑡 , �̂� 
𝑘 
𝑠 
◦�̂�) = 

|�̂� 𝑘 
𝑡 
∩ ( ̂𝑆 𝑘 

𝑠 
◦�̂�) | + |(1 − �̂� 𝑘 

𝑡 
) ∩

(
1 − ( ̂𝑆 𝑘 

𝑠 
◦�̂�) 

)|
|Ω | , (15)
𝑡 

7 
he hypothetical probability of the agreement can be formulated as: 

 𝑒 ( ̂𝑆 𝑘 𝑡 , �̂� 
𝑘 
𝑠 
◦�̂�) = 

1 |Ω𝑡 |2 
(|�̂� 𝑘 

𝑡 
| × |�̂� 𝑘 

𝑠 
◦�̂�| + ( |Ω𝑡 | − |�̂� 𝑘 

𝑡 
|) × ( |Ω𝑡 | − |�̂� 𝑘 

𝑠 
◦�̂�|) ). 

(16) 

ypically, a 𝜅 > 0 . 60 indicates “substantial ” agreement, and a 𝜅 > 0 . 80
ndicates “almost perfect ” agreement ( Landis and Koch, 1977 ). 

Similarly, to evaluate the reproducibility of tract-specific measure-

ents, we computed the FA, MD and volume in image native space, and

ubsequently assessed relative differences in paired scan-rescan mea-

ures ( 𝑚 𝑡 , 𝑚 𝑠 ) as an indicator of measurement error ( 𝜖), i.e., 

= 

2 |𝑚 𝑠 − 𝑚 𝑡 |
( 𝑚 𝑠 + 𝑚 𝑡 ) 

× 100% . (17)

or FA and MD, the tract-specific measures were quantified as the me-

ian of non-zero values within the segmented images. A lower 𝜖 indi-

ates a better reproducibility. 

Fig. 6 presents the reproducibility of tract-specific segmentation and

easures determined with the baseline multi-stage pipelines and Segis-

et. The proposed Segis-Net achieved the best segmentation repro-

ucibility, followed by the CNN pipeline ( Fig. 6 (a)); in all six tracts, 𝜅

as around 0.80 or higher, indicating “almost perfect ” agreements be-

ween segmentations of repeated scans. Correcting for 18 tests for each

etric resulted in an adjusted P-value threshold of 2 . 8 × 10 −3 , result-

ng in overall statistically significant improvement by Segis-Net over the

lassical pipeline. For two tracts, voxel-wise agreement of Segis-Net was

ignificantly higher than that of the CNN pipeline, i.e., FMA (Segis-Net

s CNN = 0 . 87 ± 0 . 03 vs 0 . 85 ± 0 . 03 ) and FMI ( 0 . 82 ± 0 . 06 vs 0 . 79 ± 0 . 08 ).
Additionally, in the evaluation of the reproducibility in tract-specific

olume measures, Segis-Net showed the smallest error in all six tracts

 Fig. 6 (b)). The error of Segis-Net was significantly smaller than the

lassical pipeline in left CGC (Segis-Net vs Classical = 4 . 8 ± 4 . 1% vs

1 ± 8 . 8% ), right CGC ( 4 . 5 ± 3 . 9% vs 11 ± 8 . 9% ), left CGH ( 7 . 3 ± 5 . 6%
s 11 ± 9 . 8% ), and FMA ( 3 . 4 ± 2 . 6% vs 6 . 6 ± 5 . 9% ) tract. This outper-

ormed the CNN pipeline significantly in the FMA tract (Segis-Net vs

NN = 3 . 4 ± 2 . 6% vs 4 . 9 ± 3 . 6% ). Reproducibility of FA and MD mea-

urements was similar for the three methods ( Fig. 6 (c, d)). For the CGH

nd left CGC tracts, the reproducibility of FA using the CNN pipeline

as significantly higher than that of the Classical pipeline. Segis-Net

utperformed the FA reproducibility of the Classical pipeline only in the

eft CGC tract. For MD, no significant improvement over the Classical

ipeline was observed. A table (Table 3) with the results of Fig. 3 –6 is

rovided in the supplementary files. 

.5. Sample-size reduction 

An implication of the reduced measurement error ( 𝜖) is that

ewer participants or time-points would be required to achieve the

ame statistical power, i.e., a smaller sample size. We followed

iggle et al. (2002) and Reuter et al. (2012) to estimate the percentage

f the sample sizes ( 𝑃 ) that would be required for each of the pipelines:

 𝑖𝑗 = 

𝜎2 
𝑖 
× (1 − 𝜌𝑖 ) 

𝜎2 
𝑗 
× (1 − 𝜌𝑗 ) 

× 100% , (18)

here 𝜎𝑖 and 𝜎𝑗 are standard deviations in the measurements deter-

ined with the pipeline 𝑖 and 𝑗, and 𝜌𝑖 and 𝜌𝑗 are the correlation coef-

cients between the repeated measurements determined with the two

ipelines. 

Fig. 7 presents the percentage of sample-size reduction that could be

chieved by the CNN and the proposed Segis-Net compared to the Clas-

ical pipeline. In line with the reproducibility results, the data analyzed

ith Segis-Net would overall require the least sample-size to achieve

he same statistical power. The percentage of reduction was especially

emarkable in volume measures, in which on average only 33 . 0% of data

ould be required. The average percentage of reduction was 60 . 5% for
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Fig. 6. Reproducibility of tract-specific measures with the Classical, CNN , and Segis-Net pipeline. Error bars indicate standard deviations. The bracket hat indicates 

a significant difference between two methods ( t -test, 𝑝 < 2 . 8 × 10 −3 ). In figure (a), a higher Cohen’s kappa coefficient ( 𝜅) indicates a better reproducibility. In figure 

(b-d), a lower error ( 𝜖% ) indicates a better reproducibility. Volume: tract-specific volume (ml), FA: fractional anisotropy, MD: mean diffusivity ( 10 −3 𝑚𝑚 2 ∕ 𝑠 ). 

Fig. 7. The percentage of sample-size that would be required in tract measures of volume, FA, and MD with the CNN pipeline and Segis-Net. The sample-size required 

for the Classical pipeline is used as the reference (100%). 
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A and 57 . 0% for MD. Several percentages of the CNN pipeline were

maller than those of the Segis-Net, e.g., in FA measures of CGH and

MA tract ( Fig. 7 (b)), but its performance showed to be less stable across

racts than the Segis-Net, which in all settings consistently decreased in

he required samples over the Classical pipeline. The percentage of re-

uction was generally similar for left/right homologous tracts except for

he MD measure in the left of CGH ( Fig. 7 (c)). This large reduction could

e related to the MD reproducibility of the Classical pipeline, in which

he left CGH tract had a much higher variation in errors comparing with

hat of the other tracts ( Fig. 6 (d)). 
8 
. Discussion 

We developed a single-step deep learning framework, coined Segis-

et, for simultaneous optimization of segmentation and registration.

he method was applied to analyze changes in WM tracts from a large

et of longitudinal diffusion MRI images. To evaluate the performance

f the method, we compared it with two state-of-the-art methods, and

wo multistage pipelines consisting of independent segmentation and

egistration components, i.e., the Classical and CNN pipeline. Segis-Net

dvanced the state-of-the-art by a higher segmentation and registration
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ccuracy, and led to improved performances in registration accuracy,

patio-temporal consistency of segmentation, and reproducibility of seg-

entation and tract-specific measures comparing with the multi-stage

ipelines. We evaluated the practical value of the improved performance

n terms of sample-size reduction that could be achieved when em-

loying the method. The tract-specific mesures analyzed with Segis-Net

ould only require 33 . 0% − 60 . 5% sample-size of the data for achieving

he same effect size as the Classical pipeline. 

To date most developments in longitudinal analysis frameworks have

ocused on unbiased ways of registering image time series ( Keihaninejad

t al., 2013; Metz et al., 2011 ), in which a multistage approach comb-

ng independent segmentation and registration components is often used

 De Groot et al., 2013a; Yendiki et al., 2016 ). In this paper, we aimed

o investigate a different way to improve the performance of the lon-

itudinal framework by using a single-step CNN that optimizes both

asks simultaneously. The sole value of simultaneous optimization was

emonstrated by the comparison with the CNN pipeline. There was no

enefit observed for segmentation alone, but for registration, spatio-

emporal consistency of segmentation, and reproducibility, simultane-

us optimization led to significantly improved performance. 

In the evaluation of segmentation performance, similar accuracies

or the CNN and Segis-Net framework was observed for the six tracts

 Fig. 3 ). Relative segmentation accuracy between individual tracts were

n line with those reported in literature ( Li et al., 2020a; Wasserthal

t al., 2018 ). For instance, a small and curved object like the FMI tract

ended to have a lower Dice coefficient than the larger FMA tracts. For

ll six tracts, the proposed Segis-Net showed a better segmentation per-

ormance than U-ReSNet, an existing simultaneous method ( Table 1 ).

e expect the added value of Segis-Net to be related to two factors: (1)

he method allows the use of diffusion tensor images for tract segmen-

ation, as we use parallel network modules and only align the predicted

egmentation; this circumvents the need to interpolate tensor images. In

ther words, task-specific inputs can be used; and (2) the sub-branches

n the segmentation stream (Fig. 8) are designed for the prediction of

hite matter tracts which can overlap with each other, unlike the ex-

lusive tissue labels focused by other works. 

In the task of registration alone, Segis-Net overall yielded the best

ccuracy among the methods. It significantly outperformed the Classi-

al pipeline for three tracts and the CNN pipeline for five tracts ( Fig. 4 ).

his is an important observation as (1) it showed that simultaneous op-

imization was beneficial to one of the individual tasks, and (2) it is

on-trivial to improve registration accuracy over a classical algorithm,

n which the transformation is pair-wise optimized on the test images.

uring the comparison with the state-of-the-art methods, we observed

wo interesting results ( Table 2 ). First, VoxelMorph was the only method

hat directly optimized on the DC metric, but it led to a lowest DC score.

his can be due to the fact that the segmentation labels used in diffusion

maging studies are often independently obtained for each image, which

s much less correlated to the registration performance than is the case

or atlas-based segmentation ( Balakrishnan et al., 2019 ). As a result, the

lignment of “imperfect ” segmentation labels can be an obstructive loss

erm instead. Second, although the MSE of U-ReSNet was almost four

imes that of the Segis-Net, it achieved a good SC similarity, especially

n the thin structures (CGC and CGH). This can be attributed to the for-

ulation of their registration loss as the sum of local cross-correlation

nd MSE. 

In all six tracts, we observed substantially higher spatio-temporal

onsistency of segmentation and reproducibility of segmentation with

egis-Net than with the two multistage pipelines ( Figs. 5, 6 ). The spatio-

emporal consistency of segmentation as quantified by the Dice co-

fficient ranged 0 . 81 − 0 . 87 for Segis-Net, significantly outperforming

he Classical pipeline for all the six tracts (range: 0 . 57 − 0 . 69 ) and the

NN pipeline for five tracts (range: 0 . 77 − 0 . 84 ). The segmentation re-

roducibility as quantified by Cohen’s kappa ranged 0 . 79 − 0 . 87 for

egis-Net, significantly higher than the Classical pipeline for all the six

racts (range: 0 . 64 − 0 . 72 ) and the CNN pipeline for two tracts (range:
9 
 . 77 − 0 . 85 ). These results indicate that Segis-Net can serve as a reli-

ble alternative to the Classical pipeline in spatially capturing macro-

tructural brain changes over time. 

In addition, more significant improvements were observed for the re-

roducibility of tract-specific volume assessment, but not for the FA and

D measures. For volume reproducibility, Segis-Net yielded the least

rror in the measurements of scan and re-scan, followed by the CNN

ipeline ( Fig. 6 ). For the FA and MD measures, we observed relatively

imilar reproducibility for the three methods, in which significant differ-

nce was only observed in FA reproducibility of CGH and left CGC tract.

his suggests that diffusion measures are quite robust to variations in

he geometry of the segmented tract. It’s worth noting that the FA repro-

ucibility of the Classical pipeline could be higher than the benchmark

f tractography-based segmentation methods, since it is optimized on

he FA reproducibility on a subset of the data. 

These improved performances have practical values in a power anal-

sis, where both the CNN pipeline and Segis-Net showed to be able to

educe the required sample-size to achieve the same statistical power as

he Classical pipeline. The data processed with Segis-Net would require

n average 33 . 0% of the sample-size for volume measures, 60 . 5% for FA,

nd 57 . 0% for MD measures, requiring consistently a decreased sample-

ize for all the settings. The averaged percentages for the CNN pipeline

ere 62 . 7% , 60 . 5% and 68 . 7% . For FMI tract, it would, however, require

83% and 124% of the sample-size for the volume and FA measures. The

bserved dispersion of sample-size reduction with the CNN pipeline may

uggest that simultaneous optimization was beneficial to the robustness

f the method across the concurrently segmented tracts. 

Whereas the method is generic, we specifically implemented and

ptimized it for longitudinal study in diffusion MRI data. In diffusion

RI application, we adopted the commonly used scalar-value FA map

s the input for registration. Deformable registration of diffusion tensor

mages is known to be challenging due to the directional components

ontained in voxels. Despite developments in classical methods for ten-

or reorientation during the optimization ( Cao et al., 2006; Zhang et al.,

007 ), for learning-based registration it still largely remains unexplored.

ith the promising results of diffusion tensor interpolation as shown by

rigorescu et al. (2020) , Segis-Net based on solely tensor images would

e an interesting direction to explore. 

The Segis-Net framework presented in the current study is limited to

wo time-points. This is because learning-based registration algorithms

urrently only support pairwise transformations ( Balakrishnan et al.,

019 ). One limitation of our method is therefore that it does not allow

or analysis of arbitrary number of time-points. In the present study,

e grouped the available triple time-points from the same participant

nto orderless image-pairs for bidirectional analysis. A future possible

mprovement of the method could be extending the registration compo-

ent of Segis-Net to enable learning-based group-wise analysis of a set

f time-points ( Li et al., 2020b ). 

Beyond the current application, we expect that this work could be

xtended to other imaging sequences and for example for segmenta-

ion of lesion images. For future work, we plan to adapt the proposed

ethod to analyze brain diseases with large and progressive changes.

or instance, registration of brains with lesions due to cortical infarct

ay benefit from a simultaneous segmentation of infarct regions. 

. Conclusion 

We proposed a single-step deep learning framework for longitudi-

al diffusion MRI analysis, in which segmentation and deformable reg-

stration were integrated for simultaneous optimization. The compari-

on with baseline multistage approaches and state-of-the-art methods

howed that the proposed Segis-Net can be applied as a reliable tool

o support spatio-temporal analysis of WM tracts from longitudinal dif-

usion MRI imaging. Besides the improved performances, a two-in-one

ramework for concurrent segmentation and registration also enables a

ight-weight way of fast quantification of brain changes overtime. This
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ay lead to a more prominent role for tract-specific biomarkers in ap-

lications where tract segmentation and registration are subject to time

onstraints. With the increasing availability of longitudinal diffusion

ata, we expect future studies investigating progressive neurodegener-

tion can greatly benefit from the improved reliability and efficiency of

egis-Net. 
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