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ARTICLE INFO ABSTRACT

Keywords: This work presents a single-step deep-learning framework for longitudinal image analysis, coined Segis-Net. To
Segmentation optimally exploit information available in longitudinal data, this method concurrently learns a multi-class seg-
R_egISt_ra“O“ mentation and nonlinear registration. Segmentation and registration are modeled using a convolutional neural
Diffusion MRI network and optimized simultaneously for their mutual benefit. An objective function that optimizes spatial
Deep learning . . . . .

CNN correspondence for the segmented structures across time-points is proposed. We applied Segis-Net to the anal-

ysis of white matter tracts from N=8045 longitudinal brain MRI datasets of 3249 elderly individuals. Segis-Net
approach showed a significant increase in registration accuracy, spatio-temporal segmentation consistency, and
reproducibility compared with two multistage pipelines. This also led to a significant reduction in the sample-size
that would be required to achieve the same statistical power in analyzing tract-specific measures. Thus, we expect
that Segis-Net can serve as a new reliable tool to support longitudinal imaging studies to investigate macro- and

Longitudinal
White matter tract

microstructural brain changes over time.

1. Introduction

The increasing availability of longitudinal imaging data is expanding
our ability to capture and characterize progressive anatomical changes,
ranging from normal changes in the life span, to responses along disease
trajectories or therapeutic actions. Compared to cross-sectional studies,
longitudinal imaging studies have the advantage of allowing to trace the
order of events at the individual level and to correct for the confound-
ing effect of time-invariant individual differences (van der Krieke et al.,
2017). They are thus considered to be more accurate and sensitive in
capturing subtle changes over time. To analyze spatio-temporal changes
from longitudinal imaging data, a tailored framework that involves both
segmentation and registration is required to segment the structures-of-
interest and to register temporal frames. This can be achieved by directly
combining two existing segmentation and registration tools, which are
often designed for cross-sectional studies. However, the information of-
fered in longitudinal data remains underutilized.

Various studies have shown that combining segmentation and reg-
istration at the stage of algorithm optimization can lead to improved

performance. A popular combination strategy is to use the output of
one task to optimize the other. Registration can be improved by using
segmentation-level correspondences as input for deformation initializa-
tion (Dai and Khorram, 1999; Postelnicu et al., 2008) and optimization
(Balakrishnan et al., 2019; Bastiaansen et al., 2020; De Groot et al.,
2013b; Hu et al., 2018; Rohé et al., 2017; Zhu et al., 2020). Likewise,
segmentation can benefit from registration by propagating anatomical
information to subsequent frames, as has been shown in classical multi-
atlas based segmentation methods (Fischl et al., 2002; Vakalopoulou
et al., 2018) and in recent data-augmentation techniques which intro-
duce labels to support unsupervised (Pathak et al., 2017) and weakly-
supervised segmentation (Bortsova et al., 2019; Vlontzos and Mikola-
jezyk, 2018).

Other approaches combine the optimization of parameters from both
tasks on a deeper level. Wyatt and Noble (2003) sub-grouped these
methods into two types according to the way in which they update
their parameters: (1) “simultaneous estimation” that updates both the
class labels and the transformations in a single-step optimization, and
(2) “joint estimation” that alternately updates (separate) models in a
multi-step optimization. Although the initialization and robustness of

Abbreviations: MRI, Magnetic Resonance Imaging; DTI, Diffusion Tensor Imaging; FA, Fractional Anisotropy; MD, Mean Diffusivity; TE, Echo Time; TR, Repetition
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joint estimation can be influenced by the selection of the order to op-
timize and the criteria to switch tasks, this approach is preferred as it
requires less computation power and allows to use task-specific training
datasets (Ashburner and Friston, 2005; Cheng et al., 2017; Gooya et al.,
2011; Parisot et al., 2014; Pohl et al., 2006; Wyatt and Noble, 2003; Xu
and Niethammer, 2019; Yezzi et al., 2003). Simultaneous estimation is
expected to be more accurate, as it fully exploits the conditional correla-
tions between two tasks that can be discounted in sequential processing
(Ashburner and Friston, 2005). In addition, simultaneous estimation can
explicitly optimize performances that rely on both tasks. We expect that
this advantage has a large potential in improving the reliability of anal-
ysis of longitudinal imaging data, for instance by optimizing the spatio-
temporal consistency of the segmentation. With the growing capabil-
ity of modeling and computation by deep learning techniques, several
simultaneous methods have been proposed and coupled segmentation
with deformable registration in different ways, either for 2D (Qin et al.,
2018) or 3D images (Estienne et al., 2020; 2019; Li et al., 2019).

Diffusion magnetic resonance imaging (MRI) is a non-invasive imag-
ing technique that measures the diffusion of water in-vivo and can be
used to quantitatively characterize white matter (WM) microstructure.
In addition, diffusion MRI derived measures, such as diffusion tensor
imaging (DTI) metrics (Le Bihan et al., 2001), are likely to be more sen-
sitive than structural measures in the early detection of changes in WM,
and are therefore promising for the identification of subtle changes that
relate to the early stages of the disease (Niessen, 2016), for instance in
studying dementia subtypes (Meijboom et al., 2019). Longitudinal diffu-
sion MRI has been widely studied at various levels, i.e., from regions-of-
interest (Keihaninejad et al., 2013; Sullivan et al., 2010), to tract level
(Dimond et al., 2020; Lebel and Beaulieu, 2011; Meijboom et al., 2019;
Yendiki et al., 2016), and voxel level (Barrick et al., 2010; Farbota et al.,
2012; De Groot et al., 2016). Since WM tracts are functionally grouped
axonal fibers and thought to subserve particular brain functions, tract-
specific investigation may highlight categorical differences in vulner-
ability to neurodegeneration and bridge the interpretation of imaging
biomarkers with clinical symptoms.

Segmentation of WM tracts is however non-trivial because tracts can-
not be identified directly from diffusion MR], i.e., there is no in-vivo
“gold standard” for tract (Crick and Jones, 1993), and because their
anatomy can be complex. WM tracts are commonly segmented based
on diffusion tractography by reconstruction of potential fiber pathways
(Conturo et al., 1999). Recently, deep learning based methods, in par-
ticular using convolutional neural networks (CNN), have emerged and
showed promising accuracy and efficiency in segmenting WM tracts (Li
et al., 2020a; 2018; Wasserthal et al., 2018).

In the present work we focus on a CNN-based framework for longi-
tudinal analysis of WM tracts, i.e., Segis-Net, and investigate the value
of simultaneous optimization of segmentation and registration in this
setting. In (Li et al., 2019), we introduced a generic framework for si-
multaneous optimization, in which increased accuracies of both tasks
were observed in a pilot analysis of a single tract (forceps minor; FMI).
In this paper, we extend the tract-specific method by enabling concur-
rent segmentation of multiple tracts, which is a non-trivial task as a
voxel can belong to multiple tracts. This also solves the problem of in-
consistencies in deformations because of tract-specific ROIs. The reg-
istration task within the framework is updated to learn only local de-
formations rather than an end-to-end composite including rigid trans-
formation, as brain local changes over time is a focus in longitudinal
imaging studies. In addition, we compare the performance of Segis-Net
to two multistage pipelines based on both classical and deep learning
algorithms, and two state-of-the-art methods. The segmentation accu-
racy, registration accuracy, spatio-temporal consistency of segmenta-
tion, and reproducibility of segmentation and tract-specific measures of
the pipelines are quantitatively evaluated. Also, we evaluate the sample-
size reduction that can be achieved in the imaging analysis of WM tracts
to provide insight into the practical value of the methods in clinical
applications.
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2. Methods

In this section, we first describe how the segmentation and registra-
tion tasks are individually modeled using CNN-based approaches. Sub-
sequently, we present the proposed Segis-Net that integrates both tasks
in a single-step CNN framework.

2.1. CNN-based image segmentation

Given a »n-D image I which can be described by either intensity val-
ues, multi-channel features or directional tensors, the goal of CNN-based
segmentation is to automatically infer, for each voxel x € R”, its prob-
ability of belonging to the structure k € [1, K] with K the number of
structures, i.e., voxel-wise classification. The CNN model can be inter-
preted as a parameterized mapping function Fg such that the segmented
structures spatially correspond to a segmentation ground truth with mul-

tiple channels S = {5}, ..., Sk }. The estimation of the segmentation is
formulated as:
S =Fe(I). ()]

Fe is commonly modeled by a nested series of convolutions, non-
linearity, normalization, and re-sampling operations embedded in the
network architecture. ® indicate trainable parameters.

The procedure of estimating parameter © is then defined as an opti-
mization with respect to a loss function L,,, aiming at minimizing the
classification error over all the N pairs of training samples {(S’, I )}f‘i Iy
ie.,

N

O « argmin ) L, <5", F@(I")>. )
o i

The loss function comprises metrics that quantify the difference be-

tween the prediction and the ground truth. In this study, £, is the aver-

age Dice coefficient (Crum et al., 2006; Dice, 1945) over all K structures:

i Zx SkS‘k
XS+ X (S?

After estimation of the map function Fg, a probabilistic prediction
for the structures of interest S in a given image can be inferred (Eq. 1).

L0(S,8) = - ©))

2.2. CNN-based deformable registration

Let us consider a pair of »n-D images, I, in the source space Q,; C R",
and I, in the target space , C R”, which contain a common structure
to be aligned. The spatial correspondence between images can be estab-
lished by estimating a dense displacement field ¢, such that I,0¢ and I,
correspond spatially.

In line with the hierarchical optimization scheme of classical reg-
istration algorithms, most existing learning-based registration methods
use affine alignment as a prepossessing step, in which case the displace-
ment field denotes the composition of affine and deformable transform,
i.e., ¢ =P 0¢p. To estimate ¢, the CNN model can be interpreted as
a shared domain-invariant mapping function Gy such that for any un-
seen pair of images a most likely transformation between them can be
inferred without pair-specific optimization, i.e.,

ép = Cu,, I,09,) @

> ILop < Gy, I, ¢ ). (5)

The parameters ¥ of the mapping function are optimized based on
a registration dissimilarity loss L,,,, aimed at minimizing the regis-
tration error. Meanwhile, to penalize large deviations of deformation
and preserve anatomical topology during transformations, a deforma-
tion smoothness term L, , is commonly included in the loss function.

In this work, we use the mean squared error based on intensities for £, ,,
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Fig. 1. Overview of the Segis-Net framework. ® and ¥ denote the parameters of the segmentation (Fg) and registration (Gy) function, respectively. Black circle
indicates spatial warp with affine matrix (¢,) or the composite displacement field (¢). The concatenation of the affine-aligned images is used as the input for Gy

Loss function consists of L,;, L., L,eq

implemented during training and could be adapted for applications.

and the average spatial gradients of the displacement field for L, i.e.,

N 1 N

Lreg (i o) = 15 M = Todll % (6)
t

L

Edef (&D): 1,
t

IVépll3- @
Combining Egs. (4), (5), (6) and (7), the estimation of ¥ over all the N

training samples {(I/, I}, ¢')} 1’1 , can be formulated as:

N
W argmin Y L, (I, Gyl 1L @) + Lyof (Gu]. Tlod)). (8)

k-l

2.3. Simultaneous estimation of segmentation and registration

In this work, we aim to simultaneously estimate the parameters for
segmentation (@) and for registration (¥) in a single-step optimization.
For this purpose, we integrate the segmentation and registration func-
tion Fg and Gy using an end-to-end optimization with the Segis-Net.
The loss function of the Segis-Net is designed to meet the joint objective
of both tasks and meanwhile to optimize the spatio-temporal consis-
tency of segmentation which rely on both tasks. The overview of the
proposed framework is illustrated in Fig. 1. We describe the framework
architecture and loss function in the following paragraphs.

2.3.1. Segis-Net framework

In the present study, we focus on the analysis of 3D images and utilize
3D convolutions for the Segis-Net framework. The framework involves
function Fg and Gg4 as two parallel streams that interact on their out-
puts. In order to eliminate the loss in image quality caused by multiple
interpolations, Segis-Net warps source images with only the compos-
ite displacement fields (¢) by taking as input the original source image
(I,) and pre-estimated affine matrix (¢ 4). This design has additional ad-
vantages over existing methods that prepare all ordered pairs of affine-
aligned images in disk storage, as only up to half the storage is needed
and as it can be flexibly applied to related images in the same space such
as the DTI metrics.

Feo outputs a set of probabilistic segmentations (S,) of the source
image. Gy outputs a dense local displacement ¢, along the x, y, and z
axes. The source image and its segmentations are subsequently warped

L, and L, terms. Solid lines indicate the primary workflow of the method; dashed lines indicate the operations that are only

into the target space using the composed displacement field. The warp
operation is implemented by a computational layer with differentiable
trilinear interpolation (Balakrishnan et al., 2019; Jaderberg et al., 2015).
The segmentation and registration streams have independent network
architectures which are only connected by the output, i.e., the trans-
formed source-segmentation to the target space (S,0¢). Thus, they can
be applied separately after taking advantage of the simultaneous opti-
mization. The Segis-Net framework gives four outputs during training:

1. The segmentation of the structures of interest from the source image
(S,

2. A local displacement field between the source and target images
(¢p), A

3. The warped source image in the target space (I o¢),

4. The warped source segmentations in the target space (S o).

We propose a generic framework where the architecture of each
stream can be adapted based on specific applications. For the partic-
ular network used in this study, we encoded two streams with a U-Net
architecture, that was modified as detailed below (Ronneberger et al.,
2015). In short, each stream was composed of an encoder and decoder
path with skip connections of feature pyramid at multiple scales in or-
der to merge coarse- and fine-convolved features, similar to the multi-
resolution strategy used in classical algorithms to increase robustness.
The encoder paths with max-pooling operation between convolution
layers gradually extract abstract features for the target anatomy (Fg)
and global transformation between images (Gy). Subsequently, the de-
coder paths restore the details in segmentations (Fg) and refine local
deformations (Gy) by linear up-sampling the feature maps and concate-
nating them with the coarse counterpart at the same scale. The convo-
lution layers produce a set of feature maps by individually convolving
inputs with 3D kernels of size (3,3,3), followed by batch normalization
(Ioffe and Szegedy, 2015) and a leaky ReLu layer (a = 0.2) for modeling
non-linearity (Maas et al., 2013). For the segmentation stream (Fg), we
split the output layer into sub-branches to facilitate multi-class classifi-
cation for voxels with multiple labels. The final layer of the sub-branches
consisted of a (1,1,1) convolution and a sigmoid activation. For the reg-
istration stream, the output layer was a convolution layer with three
kernels that yielded the local displacement ¢ ,,. We provide detailed im-
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plementation of the network architecture in the supplementary material
(Figs. 8 and 9).

2.3.2. Segis-Net loss function

The loss function of Segis-Net is composed of four terms that mea-
sure segmentation accuracy (L,,,, Eq. (3)), intensity similarity between
registered images (E,eg, Eq. (6)), deformation field smoothness (£, 1
Eq. (7)), and longitudinal composite of registration and segmentation

(Leom» Eq. (11)). It is formulated as:
L =L,(S.S)
+a£reg(lt’ lio(ﬁ)) + ﬂﬁdef((pD) (9)

+y£(.‘0m (SI’ SSO$)’
and optimized for ® and ¥ over all N
{(SLSLILILGIDIN

50 Lps

training samples

0¥ —argmingy Y, Ly, (1. Fo(ID) _
+aL g (1), Gu(I}s 13, 8)) + BLaer (G}, Tiod) 10)
+7Loon (S Fol). Gu(l}. 1. §),)).

We quantify the longitudinal composite loss term using the average
Dice coefficient over all K structures:

A A 2 Zscq, S{(Sfod)

Leon (S S0) = —— — — an
k& e, (5 + Xie, (Skod)?
In longitudinal imaging studies, the spatial correspondence in segmenta-
tion depends on the performance of both the segmentation and the reg-
istration procedure. Besides an explicit optimization of correspondence,
the £, term also exploits longitudinal information to boost both tasks,
which introduces some degree of augmentation and regularization for
registration and on the other hand constraints and prior knowledge for
segmentation.

The hyperparameters a and y balance the loss magnitude of segmen-
tation, registration, and their interdependent composite. The degree of
regularization on the deformation is described by p. The procedure of
simultaneous optimization is summarized with pseudo code in supple-
mentary material (Algorithm 1).

3. Application to diffusion MRI

The performance of Segis-Net is demonstrated by analyzing white
matter tracts in a large diffusion MRI dataset, and compared to that of
two multi-stage pipelines, in which segmentation and registration are in-
dependently optimized. Performance is evaluated in a longitudinal set-
ting where multiple time-points from the same individual are available.

3.1. Dataset

The Rotterdam Study is a prospective and population-based study
targeting causes and consequences of age-related diseases (Ikram et al.,
2020). For the present analysis, we included 3249 individuals who
underwent diffusion MRI scanning twice or more often, resulting in
N = 8045 scans. The mean age at first scan was 61.2 + 9.4 years (range:
45.7 — 91.1 years). The number of female participants was 1780 (54.8%).
A flowchart for the inclusion, exclusion, and split of the datasets is
shown in Fig. 2. We split the data into two subsets. The larger subset was
repeatedly acquired in a time interval of 1-5 years (N = 7770 scans from
3166 individuals). In these long time-interval scans, it is expected that
brain microstructure changes due to aging exist. By matching any two
time-points from the same individual regardless of the visiting order,
these long time-interval scans can be grouped into 6043 pairs. We used
5175 pairs of scans as training data, 200 pairs as validation data to tune
the hyperparameters, monitor the decay of learning rate and select the
optimal epoch, and used an independent cohort of 668 pairs for testing.
The remaining scans from the smaller subset were from 97 individuals
who were scanned twice within a month. No changes in brain macro-
and microstructure were expected within such a short time-interval. We
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Longitudinal scans

Y
Long time-interval scans
N=7770
2 time-points scans 3 time-points scans 4 time-points scans
N=1729x2 N=1436x3 N=1x4

x 1 x3 x6

Exclude individuals

Subject-wise scan-pair
6043 pairs

Training data Validation data Test data Reproducibility test data
5175 pairs 200 pairs 668 pairs 97 pairs

Fig. 2. A flowchart for the inclusion, exclusion, and split of the datasets.

used these scans for evaluation of reproducibility of the algorithm. The
data split was based on the participants, namely, we made sure that
scans from the same participant ended up in either training, validation,
or test dataset.

3.2. MRI acquisition

Scans were acquired on a 1.5T MRI scanner (GE Signa Excite). The
acquisition parameters for structural and diffusion MRI can be found in
Ikram et al. (2011). Specifically, diffusion MRI was scanned with the fol-
lowing parameters: TR/TE =8575ms/82.6ms, imaging matrix of 64 x 96,
FOV=21 x 21¢m?, 35 contiguous slices with slice thickness 3.5 mm, 25
diffusion weighted volumes with a b-value of 1000s/mm? and 3 non-
weighted volumes (b-value = 0s/mm?). The voxel size was resampled
from 3.3 X 2.2 x 3.5mm? to 1mm?> as required for probabilistic tractogra-
phy (Behrens et al., 2007).

3.3. Image preprocessing

Diffusion data were preprocessed using a standardized pipeline
(Koppelmans et al., 2014). In short, motion and eddy currents were cor-
rected by affine co-registration of all diffusion weighted volumes to the
averaged b0 volumes, including correction of gradient vector directions
using Elastix software (Klein et al., 2010). Diffusion tensors were esti-
mated with a Levenberg—-Marquardt non-linear least-squares optimiza-
tion algorithm (Leemans et al., 2009). We subsequently computed DTI
measures: fractional anisotropy (FA) and mean diffusivity (MD). Due
to noise, tensor estimation failed in a small proportion of voxels, re-
sulting in significant outliers. Outlier voxels with a tensor norm (Frobe-
nius norm) larger than 0.1mm? /s were set to zero (Zhang et al., 2007).
Brain tissue masks including WM and gray matter segmentations were
obtained based on structural imaging (Vrooman et al., 2007) and ap-
plied to the diffusion tensor images. In this study, we used a ROI of
112 x 208 x 112 voxels to analyze six WM tracts, including left and right
cingulate gyrus part of cingulum (CGC), left and right parahippocam-
pal part of cingulum (CGH), forceps major (FMA) and forceps minor
(FMI). Diffusion tensor images were image-wise normalized by setting
the union of the six components to zero-mean and standard deviation
of one. The affine matrix (¢,) of each image pair was estimated by op-
timizing the mutual information of FA images using Elastix software.

3.4. Reference segmentations

The segmentation labels for model training and evaluation were gen-
erated using a probabilistic tractography and atlas-based segmentation
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method by De Groot et al. (2015). The resulting tract-density images for
each tract were normalized by division with the total number of tracts
in the tractography run. Finally, tract-specific thresholds for the normal-
ized density images were established by maximizing the reproducibility
of FA measures on a subset of 30 participants (De Groot et al., 2013b).
We did not exclude this subset from the reproducibility test data (Fig. 2),
as it remains unseen to the proposed method and other baseline meth-
ods.

3.5. Baseline multi-stage pipelines

We compared the performance of the proposed Segis-Net with
two multi-stage pipelines that consist of either non-learning-based or
learning-based algorithms to investigate the added value of simulta-
neous optimization. To assess whether the performance difference be-
tween approaches was statistically significant, paired t-tests with P-
value threshold < 0.05 and Bonferroni correction for controlling the
family-wise error of multiple testings were performed.

First, a non-learning-based Classical pipeline was built using an ex-
isting tractography-based segmentation algorithm (Section 3.4) and a
deformable registration algorithm Elastix (Klein et al., 2010). Elastix
was adopted as a competing classical registration method since it has
been widely used on our dataset and thereby an optimal parameter set-
ting can be applied for performance comparison. Elastix is designed to
run in a cascade of resolutions, and offers the choice between multi-
ple objective functions and multiple optimizers including an efficient
adaptive stochastic gradient descent optimizer (Klein et al., 2009). For
Elastix (version 4.8), we used a rigid, affine, and B-spline transforma-
tion model consecutively by maximizing mutual information between
images. The B-spline transformation of spline order 3 was implemented
using a multi-resolution framework with isotropic control-point spacing
of 24, 12, and 6 mm in three-level resolutions. The maximum number of
iterations was 1024.

Second, we built a learning-based CNN pipeline using components
from the proposed Segis-Net to evaluate the sole contribution of simul-
taneous optimization. In this pipeline, we split the integrated segmen-
tation Fg and registration stream Gq, into two separate neural networks
for independent optimization. Subsequently, the segmented images and
estimated transformations were combined. The segmentation network
had the same architecture as that for Fg, except being independently
optimized using the segmentation accuracy L,,, term. As this is a typ-
ical setting for CNN-based segmentation approaches (Li et al., 2018;
Ronneberger et al., 2015), we denote it as Seg-Net. Similarly, the regis-
tration network denoted as Reg-Net had the same setting as that for Gy,
except being independently optimized using registration similarity £,,,
and regularization £, ; terms (Balakrishnan et al., 2019). We ensured
that the training dataset for the Seg-Net and Reg-Net was the same as
that used for the Segis-Net framework.

3.6. Related methods involving segmentation and registration

When it comes to the combination of segmentation and registration,
there are various integration strategies (Section 1). To investigate the
benefit of the proposed simultaneous optimization strategy, we addi-
tionally compared Segis-Net with two previously published methods:

¢ U-ReSNet for simultaneous segmentation and registration that used a
shared feature encoder and separate decoders (Estienne et al., 2019).

e VoxelMorph for image registration alone that used correspon-
dence in existing segmentation labels to boost registration
(Balakrishnan et al., 2019).

3.7. Implementation

For this diffusion MRI application, the segmentation (Fg) and reg-
istration (Gy) components of Segis-Net used different input images.
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Specifically, segmentation was based on the diffusion tensor image, as it
contains directional information of fiber populations and was shown to
be optimal in the present setting of clinical-quality resolution (Li et al.,
2020a). For spatial alignment, we adopted the input the commonly used
scalar-value FA map derived from diffusion tensor imaging.

To mitigate class imbalance and to improve computational effi-
ciency, we combined the reference segmentation for the six tracts
(Section 3.3) into a three-channel map for using it as the segmentation
ground truth S. This combination was possible since only few cross-
ing fibers are expected between codirectional WM tracts (e.g., FMI and
FMA). To evaluate performance on individual tracts after training, we
extracted the two largest components from each of the three channels
of the probabilistic prediction and subsequently identified the left and
right (for CGC and CGH) or the anterior and posterior (for FMI and FMA)
tract based on coordinates.

The experiments of model training and evaluation were performed
on an NVIDIA 1080Ti GPU and an AMD 1920X CPU. CNN-based meth-
ods were implemented using Keras-2.2.0 with a Tensorflow-1.4.0 back-
end and the Adam optimizer (Kingma and Ba, 2014). For Reg-Net, Seg-
Net and Segis-Net, weights of convolution kernels were initialized with
the Glorot uniform distribution (Glorot and Bengio, 2010). In each
training epoch, input images were fed in random batches (size = 1).
Loss function hyperparameters were optimized based on segmentation
and registration performance on the validation dataset (search range:
[1073,1072,1071,10°,10', 102, 10%]); we set to a =10, § =0.01 x & for
Reg-Net; for Segis-Net we linearly increased o« from 10 to 100 by 4 per
epoch (with g increased accordingly), and set the additional parame-
ter y = 1. The initial learning rates were experimentally optimized on
the validation dataset and set to le~*, le=> and le~> for Reg-Net, Seg-Net
and Segis-Net, which were decayed with a factor of 0.8 if the validation
loss stopped decreasing for 10 epochs (decay condition, Algorithm 1).
We stopped the training procedure at the point that the validation loss
showed consecutive increases, i.e., early stopping (Bishop, 2006). The
parameters of the model with the smallest error with respect to the val-
idation dataset were used.

For VoxelMorph, the implementation as detailed by
Balakrishnan et al. (2019) was used directly. For U-ResNet, in
contrast to the other tensor-based segmentation methods, we used
the FA map as input for both segmentation and registration since the
shared feature-encoder required the same input for both tasks. Affine
registration was applied as a pre-processing step. Hyperparameters
were tuned on the validation dataset; and we obtained improved
performance by using an initial learning rate of 0.0005 and by clipping
the warped segmentation predictions into the range of [10~7, 1 — 1077].

4. Experiments and results

We applied the methods to analyze six WM tracts. The performance
of the proposed Segis-Net was compared with the two baseline multi-
stage pipelines on segmentation accuracy, registration accuracy, spatio-
temporal consistency of segmentation, reproducibility of segmentation
and measurements, and sample-size reduction; and compared with the
two related methods in terms of the segmentation and registration ac-
curacy.

4.1. Segmentation accuracy

Segmentation accuracy was quantified with respect to the reference
segmentation (Section 3.4) using the Dice coefficient metric.

The proposed method yielded similar segmentation accuracy as the
baseline multistage CNN pipeline (Seg-Net) for all six tracts (Fig. 3).
Both methods achieved relatively high accuracy in segmenting cingu-
lum, i.e., the accuracy of left and right CGC and CGH tracts was around
0.76 + 0.07. The accuracy was lowest for FMI (CNN: 0.68 + 0.09; Segis-
Net: 0.67 + 0.09), which is a thin and arch-shaped tract that is known
to be more difficult to segment. Correcting for 6 tests resulted in an
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Fig. 3. Segmentation accuracies of the CNN pipeline and Segis-Net for different
tracts. Error bars indicate standard deviations.

Table 1
Segmentation Dice coefficient of U-ReSNet and Segis-Net. The bold value indi-
cates a better performance in each row.

U-ReSNet Segis-Net
CGC_L 0.69 +0.06 0.76 + 0.06
CGC_R 0.69 +0.07 0.76 + 0.06
CGH_L 0.67 +0.08 0.76 + 0.07
CGH_R 0.67 £ 0.09 0.76 + 0.09
FMA 0.69 +0.06 0.76 + 0.05
FMI 0.60 + 0.08 0.67 + 0.09

adjusted P-value threshold of 8.3 x 10~3. There was no significant differ-
ences in segmentation accuracy between two methods.

The proposed method showed higher segmentation accuracy than
U-ReSNet for all six tracts with a margin of around 10% and smaller
standard deviation (Table 1).

4.2. Registration accuracy

Registration accuracy of the approaches was evaluated with the spa-
tial correlation (SC) similarity on the test dataset. According to the pro-
cedure in De Groot et al. (2013b), the estimated transformation was
applied to the continuous density maps of individual tracts obtained
from probabilistic tractography, subsequently, the SC similarity between
warped density maps was computed as follow:

veq, Ji(JEod)
SC, = Zeco, , (12)

<erg, \/(JzT)z) <erg, \V (Jsk‘"i’)z)

where J¥ and J* indicate intensity of the target and source density im-
age of the tract k. Despite a lot of intensity variation in the tract den-
sity maps across scans due to the probabilistic nature of tractography,
higher intensity in general indicates more support for the tract while
lower intensity conversely indicates increased uncertainty. Therefore,
we assume that SC reflects the spatial correspondence of tracts.

Fig. 4 presents the registration accuracy (SC) of Segis-Net and the
baseline multistage pipelines. The SC in all six tracts was overall high-
est for the Segis-Net, followed by the Classical pipeline. Correcting for
18 tests resulted in Bonferroni adjusted P-value threshold of 2.8 x 1073.
Segis-Net results yielded a significantly better spatial correspondence
than the Classical pipeline in the left CGH (Segis-Net vs Classical =
0.77+£0.09 vs 0.75+0.11), FMA (0.74 +0.09 vs 0.72 +0.10), and FMI
(0.76 + 0.08 vs 0.74 + 0.08) tract. Statistically significant difference in the
registration accuracy of Segis-Net and CNN pipeline were observed in
the left CGC (Segis-Net vs CNN = 0.73 + 0.08 vs 0.71 + 0.07), right CGC
(0.73 £ 0.07 vs 0.69 + 0.06), left CGH (0.77 +0.09 vs 0.75 + 0.08), right
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Fig. 4. Registration accuracies of the Classical, CNN, and Segis-Net pipeline as
quantified by spatial correlation (SC) of the registered tract density maps. Error
bars indicate standard deviations. The bracket hat indicates a significant differ-
ence between two methods (t-test, p < 2.8 x 1073).

Table 2

Registration performance of U-ReSNet, VoxelMorph and Segis-Net, as quantified
by the spatial correlation (SC) similarity, the Dice coefficient (DC), and the mean
squared error (MSE). The bold value indicates the best performance in each row.

U-ReSNet VoxelMorph Segis-Net
Ne CGC_L 0.77 + 0.11 0.72 £0.09 0.73 +£0.08
CGC_R 0.77 + 0.11 0.71 £ 0.09 0.73 +£0.07
CGH_L 0.77 + 0.11 0.75 +£0.10 0.77 + 0.10
CGH_R 0.77 + 0.12 0.75 £ 0.11 0.76 + 0.10
FMA 0.73 £ 0.11 0.73 £0.10 0.74 + 0.09
FMI 0.75 + 0.09 0.74 £ 0.08 0.76 + 0.08
DC CGC_L 0.69 +0.07 0.65 +0.06 0.74 + 0.06
CGC_R 0.70 +0.07 0.65 + 0.06 0.74 + 0.05
CGH_L 0.67 +0.08 0.64 +0.07 0.71 + 0.08
CGH_R 0.67 £0.10 0.64 +0.08 0.71 + 0.09
FMA 0.70 £ 0.06 0.68 +0.06 0.72 + 0.06
FMI 0.57+0.10 0.56 +0.07 0.60 + 0.09
MSE (x1072) 0.47 +0.38 0.19 +0.88 0.13 + 0.10

CGH (0.76 £ 0.10 vs 0.75 £0.10), and FMA (0.74 +0.09 vs 0.71 +0.08)
tract. In general, the proposed Segis-Net approach achieved a better spa-
tial correspondence than the two independently optimized registration
algorithms using classical and learning-based techniques.

For comparing the proposed method with U-ReSNet and Voxel-
Morph, we added the performance metric that was used in their original
papers (Balakrishnan et al., 2019; Estienne et al., 2019), i.e., the Dice co-
efficient (DC) of registered reference segmentation of tracts, and added
the common loss metric, i.e., the mean squared error (MSE) between reg-
istered FA maps (Table 2). Generally, the SC similarity of the proposed
method and U-ReSNet were better than that of VoxelMorph. Segis-Net
led to the highest similarity in FMA and FMI tract; U-ReSNet was the
highest for the left and right CGC, and the right of CGH tract; for the
left CGH tract, a similar SC was observed for U-ReSNet and Segis-Net,
although the variations were smaller in Segis-Net; Segis-Net achieved
the best DC and MSE. For all six tracts, the DC of Segis-Net were higher
than that of U-ReSNet, followed by VoxelMorph,; the standard deviation
of Segis-Net was overall smallest for all three metrics, except that of DC
in three tracts (left and right CGH, and FMI) which were smallest for
VoxelMorph.

4.3. Spatio-temporal consistency of segmentation

To evaluate the spatio-temporal consistency of segmentation (STCS)
for Segis-Net and the baseline multistage pipelines, we measured the
correspondence between warped segmentation results across time-
points using the Dice coefficient. The consistency of each tract was av-



B. Li, W.J. Niessen, S. Klein et al.

Spatio-Temporal Consistency of Segmentation

109 —

0.9

O
-0 O O LA

0.6 - ‘
0.5 4
0.4

STCS

0.3 A
0.2 A
0.1 A

CGC L CGC R CGH L CGH R FMA FMI

Classical CNN Bl Segis-Net

Fig. 5. Spatio-temporal consistency of segmentation (STCS) with the Classi-
cal, CNN, and Segis-Net pipeline. Error bars indicate standard deviations. The
bracket hat indicates a significant difference between two methods (t-test,
p<28x1073).

eraged over two directions by reversing the target and source image,
which for the tract k can be formulated as:

2|18k n Skog|
|SK] + | Skodb|

STCS, = 1(

2 13)

. 218 n S‘,"o¢:1| >
|SK] + Sfop™"|

Each pipeline was evaluated as a whole, that is, (1) in Classical
pipeline the reference segmentation was warped by Elastix algorithm,
(2) in CNN pipeline the prediction of Seg-Net was warped by the pre-
dicted transformation of the Reg-Net, and (3) in Segis-Net framework the
segmentation prediction in native space and the segmentation warped
from another time-point were available after a bidirectional test.

The proposed Segis-Net overall showed higher segmentation con-
sistency than the CNN and the Classical pipeline (Fig. 5). Correcting
for 18 tests resulted in an adjusted P-value threshold of 2.8 x 1073, In
comparison with the CNN pipeline, Segis-Net results yielded signifi-
cantly higher spatio-temporal consistency in left CGC (Segis-Net vs CNN
=0.83 +0.04 vs 0.82 + 0.04), right CGC (0.83 +0.04 vs 0.82 + 0.06), left
CGH (0.82 +0.05 vs 0.81 +0.05), FMA (0.87 + 0.02 vs 0.84 + 0.03), and
FMI (0.81 +£0.05 vs 0.77 +£0.07) tract. In all six tracts, Segis-Net sig-
nificantly outperformed the Classical pipeline, i.e., in left CGC (Segis-
Net vs Classical = 0.83 +0.04 vs 0.68 + 0.06), right CGC (0.83 +0.04 vs
0.68 + 0.06), left CGH (0.82 + 0.05 vs 0.66 = 0.08), right CGH (0.81 + 0.05
vs 0.66 + 0.09), FMA (0.87 + 0.02 vs 0.69 + 0.06), and FMI (0.81 + 0.05 vs
0.57 + 0.09) tract.

4.4. Reproducibility of segmentation and measurements

Reproducibility of tract-specific segmentations, volumes, and diffu-
sion metrics of the pipelines was evaluated using the reproducibility
dataset. We quantified voxel-wise agreement between segmentations of
repeated scans using Cohen’s kappa coefficient (k). The segmentations
(3‘, ,$‘S) were obtained in the native space, and subsequently aligned
(S,0¢). Kappa « of the tract k is defined as:

_ po(Sf, Skod) — p. (S, Skod)

14
1= p,(SF, Skodp) a®

K

in which p,($¥, $¥og) is the observed agreement between $¥ and S¥o¢,
p. is the hypothetical probability of the agreement. Given |Q,| being
the total number of voxels in the target image, |.S| and |Q;| — |S| being
the number of tract and non-tract voxels, the observed agreement (i.e.,
accuracy) is computed as:

po( S5, Shop) = 1S5 N (Skod)| + |(1|£-2 ff) n(1- <s~;<o<;>))|’
T

t

s)
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the hypothetical probability of the agreement can be formulated as:

1
121

Pe(SK, Skodp) = (185 x 1S 0| + (12,1 = 185D x (12,] — |S¥od))).

(16)

Typically, a ¥ > 0.60 indicates “substantial” agreement, and a « > 0.80
indicates “almost perfect” agreement (Landis and Koch, 1977).

Similarly, to evaluate the reproducibility of tract-specific measure-
ments, we computed the FA, MD and volume in image native space, and
subsequently assessed relative differences in paired scan-rescan mea-
sures (m, ,m) as an indicator of measurement error (), i.e.,

_ 2|ms _mtl

= 100%. 17
€ (ms+mt) X 0 ( )

For FA and MD, the tract-specific measures were quantified as the me-
dian of non-zero values within the segmented images. A lower ¢ indi-
cates a better reproducibility.

Fig. 6 presents the reproducibility of tract-specific segmentation and
measures determined with the baseline multi-stage pipelines and Segis-
Net. The proposed Segis-Net achieved the best segmentation repro-
ducibility, followed by the CNN pipeline (Fig. 6 (a)); in all six tracts, k
was around 0.80 or higher, indicating “almost perfect” agreements be-
tween segmentations of repeated scans. Correcting for 18 tests for each
metric resulted in an adjusted P-value threshold of 2.8 x 1073, result-
ing in overall statistically significant improvement by Segis-Net over the
Classical pipeline. For two tracts, voxel-wise agreement of Segis-Net was
significantly higher than that of the CNN pipeline, i.e., FMA (Segis-Net
vs CNN = 0.87 + 0.03 vs 0.85 + 0.03) and FMI (0.82 + 0.06 vs 0.79 + 0.08).

Additionally, in the evaluation of the reproducibility in tract-specific
volume measures, Segis-Net showed the smallest error in all six tracts
(Fig. 6 (b)). The error of Segis-Net was significantly smaller than the
Classical pipeline in left CGC (Segis-Net vs Classical = 4.8 +4.1% vs
11 + 8.8%), right CGC (4.5 +3.9% vs 11 +8.9%), left CGH (7.3 +5.6%
vs 11 +£9.8%), and FMA (3.4 +2.6% vs 6.6 +5.9%) tract. This outper-
formed the CNN pipeline significantly in the FMA tract (Segis-Net vs
CNN =3.4+2.6% vs 4.9 +3.6%). Reproducibility of FA and MD mea-
surements was similar for the three methods (Fig. 6 (c, d)). For the CGH
and left CGC tracts, the reproducibility of FA using the CNN pipeline
was significantly higher than that of the Classical pipeline. Segis-Net
outperformed the FA reproducibility of the Classical pipeline only in the
left CGC tract. For MD, no significant improvement over the Classical
pipeline was observed. A table (Table 3) with the results of Fig. 3-6 is
provided in the supplementary files.

4.5. Sample-size reduction

An implication of the reduced measurement error (e) is that
fewer participants or time-points would be required to achieve the
same statistical power, i.e., a smaller sample size. We followed
Diggle et al. (2002) and Reuter et al. (2012) to estimate the percentage
of the sample sizes (P) that would be required for each of the pipelines:

62 x(1-p;)
P; = 5 ———— x 100%, (18)
o; x (1 —-p))

where o; and o; are standard deviations in the measurements deter-
mined with the pipeline i and j, and p; and p; are the correlation coef-
ficients between the repeated measurements determined with the two
pipelines.

Fig. 7 presents the percentage of sample-size reduction that could be
achieved by the CNN and the proposed Segis-Net compared to the Clas-
sical pipeline. In line with the reproducibility results, the data analyzed
with Segis-Net would overall require the least sample-size to achieve
the same statistical power. The percentage of reduction was especially
remarkable in volume measures, in which on average only 33.0% of data
would be required. The average percentage of reduction was 60.5% for
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Fig. 6. Reproducibility of tract-specific measures with the Classical, CNN, and Segis-Net pipeline. Error bars indicate standard deviations. The bracket hat indicates
a significant difference between two methods (t-test, p < 2.8 x 1073). In figure (a), a higher Cohen’s kappa coefficient (k) indicates a better reproducibility. In figure
(b-d), a lower error (e%) indicates a better reproducibility. Volume: tract-specific volume (ml), FA: fractional anisotropy, MD: mean diffusivity (1073 mm?/s).
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Fig.7. The percentage of sample-size that would be required in tract measures of volume, FA, and MD with the CNN pipeline and Segis-Net. The sample-size required

for the Classical pipeline is used as the reference (100%).

FA and 57.0% for MD. Several percentages of the CNN pipeline were
smaller than those of the Segis-Net, e.g., in FA measures of CGH and
FMA tract (Fig. 7 (b)), but its performance showed to be less stable across
tracts than the Segis-Net, which in all settings consistently decreased in
the required samples over the Classical pipeline. The percentage of re-
duction was generally similar for left/right homologous tracts except for
the MD measure in the left of CGH (Fig. 7 (c)). This large reduction could
be related to the MD reproducibility of the Classical pipeline, in which
the left CGH tract had a much higher variation in errors comparing with
that of the other tracts (Fig. 6 (d)).

5. Discussion

We developed a single-step deep learning framework, coined Segis-
Net, for simultaneous optimization of segmentation and registration.
The method was applied to analyze changes in WM tracts from a large
set of longitudinal diffusion MRI images. To evaluate the performance
of the method, we compared it with two state-of-the-art methods, and
two multistage pipelines consisting of independent segmentation and
registration components, i.e., the Classical and CNN pipeline. Segis-Net
advanced the state-of-the-art by a higher segmentation and registration
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accuracy, and led to improved performances in registration accuracy,
spatio-temporal consistency of segmentation, and reproducibility of seg-
mentation and tract-specific measures comparing with the multi-stage
pipelines. We evaluated the practical value of the improved performance
in terms of sample-size reduction that could be achieved when em-
ploying the method. The tract-specific mesures analyzed with Segis-Net
would only require 33.0% — 60.5% sample-size of the data for achieving
the same effect size as the Classical pipeline.

To date most developments in longitudinal analysis frameworks have
focused on unbiased ways of registering image time series (Keihaninejad
et al., 2013; Metz et al., 2011), in which a multistage approach comb-
ing independent segmentation and registration components is often used
(De Groot et al., 2013a; Yendiki et al., 2016). In this paper, we aimed
to investigate a different way to improve the performance of the lon-
gitudinal framework by using a single-step CNN that optimizes both
tasks simultaneously. The sole value of simultaneous optimization was
demonstrated by the comparison with the CNN pipeline. There was no
benefit observed for segmentation alone, but for registration, spatio-
temporal consistency of segmentation, and reproducibility, simultane-
ous optimization led to significantly improved performance.

In the evaluation of segmentation performance, similar accuracies
for the CNN and Segis-Net framework was observed for the six tracts
(Fig. 3). Relative segmentation accuracy between individual tracts were
in line with those reported in literature (Li et al., 2020a; Wasserthal
et al., 2018). For instance, a small and curved object like the FMI tract
tended to have a lower Dice coefficient than the larger FMA tracts. For
all six tracts, the proposed Segis-Net showed a better segmentation per-
formance than U-ReSNet, an existing simultaneous method (Table 1).
We expect the added value of Segis-Net to be related to two factors: (1)
the method allows the use of diffusion tensor images for tract segmen-
tation, as we use parallel network modules and only align the predicted
segmentation; this circumvents the need to interpolate tensor images. In
other words, task-specific inputs can be used; and (2) the sub-branches
in the segmentation stream (Fig. 8) are designed for the prediction of
white matter tracts which can overlap with each other, unlike the ex-
clusive tissue labels focused by other works.

In the task of registration alone, Segis-Net overall yielded the best
accuracy among the methods. It significantly outperformed the Classi-
cal pipeline for three tracts and the CNN pipeline for five tracts (Fig. 4).
This is an important observation as (1) it showed that simultaneous op-
timization was beneficial to one of the individual tasks, and (2) it is
non-trivial to improve registration accuracy over a classical algorithm,
in which the transformation is pair-wise optimized on the test images.
During the comparison with the state-of-the-art methods, we observed
two interesting results (Table 2). First, VoxelMorph was the only method
that directly optimized on the DC metric, but it led to a lowest DC score.
This can be due to the fact that the segmentation labels used in diffusion
imaging studies are often independently obtained for each image, which
is much less correlated to the registration performance than is the case
for atlas-based segmentation (Balakrishnan et al., 2019). As a result, the
alignment of “imperfect” segmentation labels can be an obstructive loss
term instead. Second, although the MSE of U-ReSNet was almost four
times that of the Segis-Net, it achieved a good SC similarity, especially
in the thin structures (CGC and CGH). This can be attributed to the for-
mulation of their registration loss as the sum of local cross-correlation
and MSE.

In all six tracts, we observed substantially higher spatio-temporal
consistency of segmentation and reproducibility of segmentation with
Segis-Net than with the two multistage pipelines (Figs. 5, 6). The spatio-
temporal consistency of segmentation as quantified by the Dice co-
efficient ranged 0.81 — 0.87 for Segis-Net, significantly outperforming
the Classical pipeline for all the six tracts (range: 0.57 — 0.69) and the
CNN pipeline for five tracts (range: 0.77 — 0.84). The segmentation re-
producibility as quantified by Cohen’s kappa ranged 0.79 — 0.87 for
Segis-Net, significantly higher than the Classical pipeline for all the six
tracts (range: 0.64 — 0.72) and the CNN pipeline for two tracts (range:
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0.77 — 0.85). These results indicate that Segis-Net can serve as a reli-
able alternative to the Classical pipeline in spatially capturing macro-
structural brain changes over time.

In addition, more significant improvements were observed for the re-
producibility of tract-specific volume assessment, but not for the FA and
MD measures. For volume reproducibility, Segis-Net yielded the least
error in the measurements of scan and re-scan, followed by the CNN
pipeline (Fig. 6). For the FA and MD measures, we observed relatively
similar reproducibility for the three methods, in which significant differ-
ence was only observed in FA reproducibility of CGH and left CGC tract.
This suggests that diffusion measures are quite robust to variations in
the geometry of the segmented tract. It’s worth noting that the FA repro-
ducibility of the Classical pipeline could be higher than the benchmark
of tractography-based segmentation methods, since it is optimized on
the FA reproducibility on a subset of the data.

These improved performances have practical values in a power anal-
ysis, where both the CNN pipeline and Segis-Net showed to be able to
reduce the required sample-size to achieve the same statistical power as
the Classical pipeline. The data processed with Segis-Net would require
on average 33.0% of the sample-size for volume measures, 60.5% for FA,
and 57.0% for MD measures, requiring consistently a decreased sample-
size for all the settings. The averaged percentages for the CNN pipeline
were 62.7%, 60.5% and 68.7%. For FMI tract, it would, however, require
183% and 124% of the sample-size for the volume and FA measures. The
observed dispersion of sample-size reduction with the CNN pipeline may
suggest that simultaneous optimization was beneficial to the robustness
of the method across the concurrently segmented tracts.

Whereas the method is generic, we specifically implemented and
optimized it for longitudinal study in diffusion MRI data. In diffusion
MRI application, we adopted the commonly used scalar-value FA map
as the input for registration. Deformable registration of diffusion tensor
images is known to be challenging due to the directional components
contained in voxels. Despite developments in classical methods for ten-
sor reorientation during the optimization (Cao et al., 2006; Zhang et al.,
2007), for learning-based registration it still largely remains unexplored.
With the promising results of diffusion tensor interpolation as shown by
Grigorescu et al. (2020), Segis-Net based on solely tensor images would
be an interesting direction to explore.

The Segis-Net framework presented in the current study is limited to
two time-points. This is because learning-based registration algorithms
currently only support pairwise transformations (Balakrishnan et al.,
2019). One limitation of our method is therefore that it does not allow
for analysis of arbitrary number of time-points. In the present study,
we grouped the available triple time-points from the same participant
into orderless image-pairs for bidirectional analysis. A future possible
improvement of the method could be extending the registration compo-
nent of Segis-Net to enable learning-based group-wise analysis of a set
of time-points (Li et al., 2020b).

Beyond the current application, we expect that this work could be
extended to other imaging sequences and for example for segmenta-
tion of lesion images. For future work, we plan to adapt the proposed
method to analyze brain diseases with large and progressive changes.
For instance, registration of brains with lesions due to cortical infarct
may benefit from a simultaneous segmentation of infarct regions.

6. Conclusion

We proposed a single-step deep learning framework for longitudi-
nal diffusion MRI analysis, in which segmentation and deformable reg-
istration were integrated for simultaneous optimization. The compari-
son with baseline multistage approaches and state-of-the-art methods
showed that the proposed Segis-Net can be applied as a reliable tool
to support spatio-temporal analysis of WM tracts from longitudinal dif-
fusion MRI imaging. Besides the improved performances, a two-in-one
framework for concurrent segmentation and registration also enables a
light-weight way of fast quantification of brain changes overtime. This
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may lead to a more prominent role for tract-specific biomarkers in ap-
plications where tract segmentation and registration are subject to time
constraints. With the increasing availability of longitudinal diffusion
data, we expect future studies investigating progressive neurodegener-
ation can greatly benefit from the improved reliability and efficiency of
Segis-Net.
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