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ABSTRACT
Current Artificial Intelligence (AI) computation systems face chal-
lenges, primarily from the memory-wall issue, limiting overall
system-level performance, especially for Edge devices with con-
strained battery budgets, such as smartphones, wearables, and
Internet-of-Things sensor systems. In this paper, we propose a new
SRAM-based Compute-In-Memory (CIM) accelerator optimized for
Spiking Neural Networks (SNNs) Inference. Our proposed architec-
ture employs a multiport SRAM design with multiple decoupled
Read ports to enhance the throughput and Transposable Read-
Write ports to facilitate online learning. Furthermore, we develop
an Arbiter circuit for efficient data-processing and port allocations
during the computation. Results for a 128×128 array in 3nm FinFET
technology demonstrate a 3.1× improvement in speed and a 2.2×
enhancement in energy efficiency with our proposed multiport
SRAM design compared to the traditional single-port design. At
system-level, a throughput of 44 MInf/s at 607 pJ/Inf and 29mW is
achieved.
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1 INTRODUCTION
The demand for Artificial Intelligence (AI) applications to operate
on battery-powered Edge devices, such as smartphones, wearables,
and diverse Internet-of-Things (IoT) systems, is rapidly growing.
These devices handle substantial amounts of data that require pro-
cessing through AI algorithms. As transmitting raw data can be
energy-intensive and introduce higher latency and privacy risks,
there is an increasing demand for the (partial) execution of AI ap-
plications directly on Edge devices. The primary solution being
explored for low-power Edge AI involves neuromorphic comput-
ing and the utilization of Spiking Neural Networks (SNNs). This
approach leverages large-scale parallel operations, integrating ad-
vanced techniques like Computation In-Memory (CIM), event-based
computation, and the reduction of parameter precision [1]. The
main challenge for neuromorphic accelerators involves improv-
ing the speed and efficiency of Multiply-and-Accumulate (MAC)
operations.

In digital CIM, synaptic weights are stored in Static Random Ac-
cess Memories (SRAM), where MAC operations are predominantly

conducted through either Adder Trees and their variants [2 –5] or
Multiplication In-Memory with sequential accumulation in the SRAM
Periphery (CIM-P) [6–9]. Adder Trees allow enhanced parallelism
but come at the price of disrupting the SRAM structure and intro-
ducing considerable hardware overhead. In contrast, SRAM-based
CIM-P designsminimize hardware overhead and efficiently leverage
SNN sparsity, albeit with the trade-off of reduced parallelism in the
pre-synaptic neuron dimension. This is because, in typical SRAM
digital designs, only one row can be accessed at a time, resulting in
the capability for only one pre-synaptic neuron to fire per timestep.
Implementations like [9] strive to address this concern through ap-
proximate computing, yet this compromises classification accuracy.
Another challenge with CIM-P involves spike arbitration; ensuring
that only one spike enters the SRAM per timestep. Generally, these
arbitration systems are extensive and demand multiple clock cycles
per spike [6]. Additionally, on-chip learning is a popular practice for
SNNs, enabling adaptability to dynamic environments and training
with smaller datasets. On-chip learning is performed much more ef-
ficiently with transposable SRAM, facilitating access to cells in both
row- and column-wise directions [7 , 10–13]. However, the majority
of methods either necessitate additional hardware components in
the SRAM array, adversely impact cell stability, or lead to slow and
high-power Read/Write operations. Hence, there is a decisive need
for a cost-effective solution for SRAM-based CIM that can deliver a
high degree of parallelism without compromising the classification
accuracy and which enables efficient on-chip learning.

In this paper, we propose an SRAM-based SNN accelerator using
CIM for low-power Edge AI applications, called ESAM. To solve the
aforementioned problems with the state-of-the-art we implement:

• Enhanced pre-synaptic neuron parallelism through novel
multiport SRAMcells for synaptic weight storage, each equip-
ped with multiple decoupled Read ports;

• A novel multiport Arbiter circuit designed to assign input
spikes to their designated port channels;

• Transposable Read/Write access to the multiport SRAM ar-
ray, facilitating online learning.

The multiport SRAM cell as well as Arbiter circuit and other
peripheral circuits are designed using IMEC’s 3nm FinFET tech-
nology. Simulation results for a 128×128 array show that our pro-
posed SNN architecture can improve SNN computation speed and
energy-efficiency by 3.1× and 2.2× respectively, in comparison to
the standard single port SRAM design. Employing the proposed
design at system-level and executing a handwritten digit classifi-
cation application achieves a throughput of 44 MInf/s at just 607
pJ/Inf, while consuming 29 mW of power.

The rest of this paper is organized as follows: Section 2 presents
the basics of SNNs, as well as the concept of Transposable crossbar
memories. Section 3 presents the proposed accelerator architec-
ture with different SRAM cell options, after which Section 4 does
evaluations. Finally, Section 5 concludes the paper.
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(a) Illustration of SNN working principle (b) Row-wise access for Inference (c) Column-wise access for learning

Figure 1: Illustration of working principle of Spiking Neural Network, mapping to memory crossbar and traditional row-wise
SRAM access versus Transposable column-wise SRAM access.

2 BACKGROUND
2.1 Digital In-memory for Spiking Neural

Networks
Spiking Neural Networks (SNNs) represent a significant advance-
ment from traditional Neural Networks [14] by introducing a more
biologically inspired model, where neurons communicate through
discrete spikes, enhancing the temporal aspects of information
processing and enabling more efficient modeling of complex pat-
terns in dynamic data. These spikes contribute to an increased
information-carrying capacity and facilitate event-based comput-
ing, thereby minimizing energy consumption. Figure 1(a) shows a
visual example of an SNN. The Figure shows an Integrate-and-Fire
(IF) neuron, which accumulates weighted spikes as its membrane
potential (𝑉𝑚𝑒𝑚) and sends out a spike when 𝑉𝑚𝑒𝑚 exceeds its
threshold potential; 𝑉𝑚𝑒𝑚 ≥ 𝑉𝑡ℎ . The digital implementation of
such SNNs offers advantages including enhanced energy efficiency,
parallel processing capabilities, and compatibility for hardware
acceleration, rendering them particularly suitable for real-time,
low-power applications in domains like Edge computing. In digital
Computational-In-Memory (CIM), synaptic weights are mapped to
a memory crossbar, as shown in Figure 1(b). Here, Multiply-and-
Accumulate (MAC) operations are mainly conducted through Adder
Tree-based designs [2–5] or through sequential accumulation in the
SRAM Periphery (CIM-P) [6–9].

2.2 Transposable SRAM for On-Chip Learning
On-chip learning is a prevalent practice in SNNs, allowing the
network to continuously learn even after deployment, ensuring
adaptability to changing environments. For efficient on-chip learn-
ing, it is crucial to have access to the synapse weights in both the
pre-synaptic and post-synaptic dimensions [16–18]. Inference ne-
cessitates reading in the pre-synaptic dimension, corresponding to
a memory row, as indicated in Figure 1(b). Contrarily, learning in
SNNs typically occurs when particular conditions arise in the post-
synaptic neuron. Hence, weight updates should be applied to all
synapses preceding the learning neuron, associated with a memory
column, as depicted in Figure 1(c). Overall, row-wise Read access
and column-wise Read/Write access are essential for SNN Inference

and on-chip learning, respectively. SRAM with access in both the
row-wise and column-wise directions is called Transposable SRAM.

3 PROPOSED ESAM TECHNIQUE FOR CIM
ARCHITECTURE

In this section, we present our proposed SNN accelerator. We first
provide an overview of the complete ESAM (Energy-efficient SNN
Architecture forMultiport SRAM) system. Subsequently, we provide
a more detailed explanation of the innovative subsystem compo-
nents: the bitcell design, the Arbiter, and the Neuron design.

3.1 Architecture Overview
As discussed, SRAM-based Computational-In-Memory (CIM) em-
ploying Adder Trees to perform the MAC operation results in sub-
stantial hardware overhead. Conversely, CIM-P designs reduce
hardware overhead and efficiently leverage the sparsity of SNNs;
however, they suffer from significantly lower parallelism. The is-
sue lies in the fact that conventional SRAM-based CIM-P designs
access memory rows one by one to execute the MAC operation. To
enhance the parallelism in the CIM-P architecture, we enable mul-
tiple simultaneous accesses to the array through novel multiport
processing configurations. This improvement requires addressing
input encoding, considering the random nature of input spikes,
and managing the accumulation process during MAC operations.
To tackle these aspects, we introduce an innovative Arbiter-based
encoding scheme and a novel Neuron design capable of handling
multiple accesses. Additionally, these multiport capabilities simplify
the Transposable arrangements necessary for on-chip learning.

Figure 2 presents a Macro-level overview of the architecture,
illustrating the composition of a single CIM-P Tile. Each Tile exe-
cutes the MAC operation, involving incoming input spikes and the
synapse weights stored in the SRAM array. Multiple Tiles can be
integrated to constitute a multi-layer neural network. To create a
fully connected neural network, Tiles can be cascaded directly, and
spikes are transmitted fully in parallel as binary pulses between
the Tiles, negating the need for decoding or routing the spikes.
Each Tile contains three novel components, highlighted in Figure
2: the Arbiter, the SRAM cells, and the Neuron Array. The Arbiter
processes requests for sending spikes and accommodates up to p
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Figure 2: Overview of proposed Macro Architecture. Green
indicates the Transposed Read/Write access, with the Infer-
ence Read access in Purple.
(𝑝 = 4 in Figure 2) spike requests per clock cycle, resulting in the
activation of corresponding Inference Wordlines (RWLs, depicted
in purple). The Read outputs are then conveyed on the Inference
Bitlines (RBLs), which then proceed to the Neurons. At the Neu-
rons, these outputs are added together in parallel, after which they
determine changes in the membrane potentials𝑉𝑚𝑒𝑚 . Moreover, as
depicted in Figure 2 in green, the Transposed Wordlines (WL) and
Bitlines (BL) enable column-wise Read/Write access to the SRAM
array. This notably decreases the number of operations required to
update a column of synapse weights, thereby enhancing the overall
efficiency of on-chip learning.

3.2 Transposable Multiport SRAM cell-based
Synapse

To enhance parallelism and improve the throughput of the archi-
tecture, we implement increased accessibility through a multiport
SRAM cell design featuring several Read ports capable of processing
multiple spikes in parallel. Furthermore, to enhance the efficiency
of online learning, we require additional column-wise accessibility.
Therefore, to fulfill these requirements, we propose a newmultiport
cell design that includes one dedicated column-wise Read/Write
port and several row-wise Read ports.

Figure 3(a) shows the schematic of our proposed one-Read/Write
and four-Read (1RW+4R) SRAM cell. The original 6T SRAM cell,
comprising transistors M1-M6, remains unchanged; however, in
contrast to common convention, its Word Line (WL) runs vertically,
while its Bit Line (BL) and Bit Line Bar (BLB) run horizontally,
enabling column-wise Read/Write access. M7 provides access to
the cell content via the inverted cell content node QB. Through
M7, Qr is discharged to VSS if QB is ‘1’, meaning it effectively
mirrors the content Q of the cell. M8-M11 then provide access to
Qr to one of the added Bitlines RBL0-RBL3, depending on which of
the added Wordlines RWL0-RWL3 is set to ‘1’. To perform a Read
operation, an added Bitline, RBLx, is precharged to 𝑉𝑝𝑟𝑒𝑐ℎ . When
the corresponding WLx is driven to ‘1’, the corresponding access

(a) Cell schematic (b) Cell layout (using IMEC’s
3nm FinFET)

Figure 3: Schematic and layout of proposed five-Read and
one-Write (1RW+4R) SRAM Cell.

transistor conducts. Depending on QB, RBLx is then either kept at
𝑉𝑝𝑟𝑒𝑐ℎ or discharged to VSS, which is then sensed.

By connecting M7 only with its Gate to the content of the cell,
a decoupled port is formed. This minimizes the influence of the
added ports to the stability of the cell. It also enables us to scale
𝑉𝑝𝑟𝑒𝑐ℎ to lower values than VDD with almost negligible impact on
the cell stability. This results in power savings at the cost of slower
precharging. Figure 3 presents the 1RW+4R cell, which has four
dedicated decoupled Read ports and one standard Read/Write port.
Similar to this, we have also designed a 1RW+1R, 1RW+2R, and
1RW+3R, each having one, two, and three decoupled Read ports,
respectively, alongside one standard Read/Write port. These cells
can be inferred from the structure in Figure 3(a) by removing Bit-
lines, Wordlines, and access transistors. The layout of the 1RW+4R
cell is shown in Figure 3(b).

To sense the BL/BLB of the Transposed port, we have employed
the traditional voltage-based differential Sense Amplifier and used
row-muxing by a factor of four to match the SRAM row pitch.
For RBL0-RBL3 single ended Reading, we have employed cascaded
inverter-based Sense Amplifiers to be able to match the pitch of the
SRAM columns, which deliver a slightly slower readout result than
traditional Sense Amplifiers.

3.3 Arbiter Design
The Arbiter design is implemented to manage spike requests to
maximize port utilization and process a higher number of spikes
to enhance the overall parallelism of the CIM-P architecture. The
Arbiter takes a spike Request vector 𝑅 as input. The vector contains
‘1’s which indicate for which SRAMWordlines there are pending
spike requests. Figure 4(a) shows the structure of the 4-port Arbiter,
built out of four cascaded 1-port Arbiters. The 1-port Arbiter is
implemented as a Fixed Priority Encoder for this work. This Priority
Encoder is highlighted in Figure 4(b). It is built of a string of identical
logic-based subblocks, highlighted in 4(c).

The Priority Encoder takes 𝑅 and selects the leftmost ‘1’ in the
vector, creating one-hot Grant vector 𝐺 . The signal 𝑠 [𝑛] is used to
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Figure 4: The proposed logic-based 4-Port Arbiter based on
four cascaded 1-Port Arbiters.

block any requests further to the right of the selection. If 𝑅 does
not contain any spike, 𝑛𝑜𝑅 is made ‘1’. The vector 𝑅′ is the same
as 𝑅 except the selected spike is masked out. These non-granted
spikes 𝑅′ are passed to subsequent 1-port Arbiters in a cascaded
fashion to extend the system to multiple ports, generating multiple
𝐺-vectors within a single clock cycle.

In principle the Priority Encoder can be used as an Arbiter by
itself, as shown in Figure 4. However, for a full SRAM array of
> 128 rows, this results in an excessively long critical path inside
the Priority Encoder, highlighted in Red in Figure 4(b). To mitigate
this, in practice the 1-port Arbiter is not implemented as a singular
Priority Encoder, but instead by combining multiple shorter Priority
Encoders in a tree structure. Multiple shorter base Priority Encoders
process the actual request vector 𝑅, while higher-level Priority
Encoders in turn arbitrate amongst these base Priority Encoders.
Note that both the base and higher-level Priority Encoders still
utilize the same structure as presented in Figure 4(b). At the cost of
8.0% area overhead this reduces the critical path from >1100𝑝𝑠 to
<800𝑝𝑠 for the 128-wide, 4-port Arbiter.

3.4 Neuron Design
Figure 5 shows a high-level overview of the Neuron subcomponent.
For this work an Integrate-and-Fire (IF) neuron was chosen, as the
test setup involves a time-static classification task. The Neurons
take in the sensed data from the 𝑝 multiport Bitlines of the SRAM
arrays, represented by {‘1’/‘0’}. For every Bitline, a validity flag is
used to indicate which memory ports were actually used in every
clock cycle. This ensures an unused port is not erroneously read as
a ‘1’ and added to the membrane potential. The valid Bitlines are
decoded to {‘+1’/‘-1’}, added together, and then added to the𝑚-bit
𝑉𝑚𝑒𝑚 register. The 𝑉𝑡ℎ of every individual Neuron is stored in its
own 𝑡-bit register. When all input spikes of a Tile have been served
by the Arbiter, R_empty becomes ‘1’, which enables the comparison
of 𝑉𝑚𝑒𝑚 and 𝑉𝑡ℎ . If 𝑉𝑚𝑒𝑚 ≥ 𝑉𝑡ℎ , Neuron output register 𝑟 is set to
‘1’ to indicate the request to send a spike to the subsequent Tile.

Figure 5: Proposed Neuron for ESAM Architecture.

Simultaneously, 𝑉𝑚𝑒𝑚 is reset to zero to start accumulating spikes
again. If the Neuron’s spike request 𝑟 is granted (𝑔 = ‘1’), 𝑟 is reset
to ‘0’.

4 RESULTS
4.1 Experimental Setup
Table 1 summarizes the experimental setup utilized in this work.
Note that in order to improve the SRAMWrite operation, the Nega-
tive BL (NBL) assist technique [19] is used, which creates a lowered
voltage (𝑉𝑊𝐷 < 𝑉𝑆𝑆) on the complementary Bitline to force the
cell to the desired state. This technique is necessary due to the
high parasitics at smaller technology nodes. The required 𝑉𝑊𝐷 is
determined for various array sizes, and if it is necessary for 𝑉𝑊𝐷

to be < −400𝑚𝑉 , the array size is considered non-valid for imple-
mentation due to low expected yield [19]. This restriction limits
the array size to ≤ 128 rows and columns for all cell designs.

The synthesis results, combined with the SRAMMacro outcomes,
are utilized to simulate the network on a spike-by-spike basis in
Python and determine the timing, power, and energy at the system-
level.

4.2 Circuit-Level Evaluation
From layout, we have observed that the area of standard 6T is
0.01512𝜇𝑚2 [20]. The areas of the 1RW+1R, 1RW+2R, 1RW+3R and
1RW+4R cells are 1.5×, 1.875×, 2.25× and 2.625× larger respectively.
We explored the possibility of adding 5+ ports, but only 4 Bitlines
could match the pitch of the 4-port cell. Adding another port would
require further widening of the cell, increasing the area by 87.5%
of the 6T cell, making it too area-inefficient.

Table 1: Experimental Setup Details
Parameter Specification
Technology Node IMEC 3nm FinFet
Supply Voltage 700𝑚𝑉 (𝑉𝑝𝑟𝑒𝑐ℎ = 500𝑚𝑉 , for single-ended)
Simulation Cadence Spectre
Synthesis Cadence Genus

Parasitics Extraction Calibre PEX + Line Geometries and
Node Datasheets

Process Variation ±3𝜎
SRAM Target Cell Worst-case Cell/Row/Column
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Figure 6 shows the time and energy measurements for Writing
to the cell and Reading from the cell using the Transposed port (WL
and BL/BLB). Write time is the delay between the start of the Write
process and the cell content flipping to 90% of its intended value.
Read time is the delay between the Wordline being driven and the
data output of the Sense Amplifier flipping. Additionally, Write
energy is the energy consumed during the Write time, while Read
energy is the energy consumed during a full clock cycle, which
includes precharging of the BL/BLB [21].

As expected, both the Write and Read operation results scale
with the addition of ports due to the parasitics that these ports
introduce. The effect is stronger for the Write operation, as the
parasitics also require a lower value of 𝑉𝑊𝐷 when more ports are
added, increasing the voltage differential and consequently the
power consumption. Note also that when just one extra Inference
Port is added, there is an immediate and significant increase in both
Write and Read times of the Transposed port. This is because the
WL wire in the proposed cells is narrower and thus more resistive,
which is necessary due to the new RBL0-RBL3 that have to be
routed in the same metal layer.

Figure 7 demonstrates the relationship between access time and
energy consumption for different 𝑉𝑝𝑟𝑒𝑐ℎ levels and different num-
bers of ports in the SRAM. The results are shown for full utilization
of all available ports, meaning that if a cell has 𝑝 ports, 𝑝 Read
operations are performed. Total access time is calculated as the sum
of the precharge time and the Read time.

• The effect of precharge voltage: As Figure 7 indicates,
there is a trade-off between access time and energy.We select
𝑉𝑝𝑟𝑒𝑐ℎ = 500𝑚𝑉 , as it leads to a reduction of at least 43% in
energy consumption at the cost of at most 19% higher access
time for all port numbers. Lowering 𝑉𝑝𝑟𝑒𝑐ℎ from 500𝑚𝑉 to
400𝑚𝑉 saves up to 10%more energy for 1- and 2-port designs.

Figure 6: Write and Read Energies and Timings via Trans-
posed port for different types of SRAM Cells.

Figure 7: Illustration of the average access energy and time
per number of ports for different 𝑉𝑝𝑟𝑒𝑐ℎ values and various
ports for 128 × 128 arrays.

However, for 3- and 4-port designs energy consumption
actually increases due to much slower precharging.

• The effect of the number of Inference ports: Adding
extra Inference ports increases the parallelism and reduces
the average access time. However, the average access energy
starts increasing after adding the fourth port. This increase
in energy consumption per port can be explained by the
increased cell size that creates more parasitics. These results
support our earlier claim that increasing the ports to more
than four would not be beneficial due to the excessive area
and resulting parasitics.

4.3 Timing Evaluation
To calculate the system clock period, we need to determine the
duration of each pipeline stage. Table 2 shows the durations of each
stage for the various cell designs, including slack. The longest of the
two stages determines the minimum clock period for each design.
The Table shows that the critical path of the Arbiter does not scale
with added ports. As a result, with more added ports the SRAM
Read + Neuron accumulation stage becomes the bottleneck.

4.4 System-Level Evaluations
4.4.1 Online Learning. Online learning becomes significantly more
efficient with Transposable memory access. Without the presence
of the Transposed ports, reading and writing all the weights in an
array of 128×128 6T (1RW) SRAM cells would require 2×128 clock
cycles, consuming 257.8 ns and 157 pJ. For our proposed SRAM
cells, the synaptic weights of a post-synaptic Neuron can be read
and written in just 2 × 4 cycles, where the factor 4 is due to the use
of 4-to-1 MUXs. The 4-port cell, identified as the worst performer
in the Transposed Read/Write port configuration, operates with
a clock period of 1.2 ns. This means it requires only 9.9 ns (26.0×
less) and 8.04 ns (19.5× less) to read and write a full column.

4.4.2 Inference. To evaluate the system’s Inference performance,
we have created a Fully Connected Binary-SNN network for MNIST
digit classification by placing multiple Tiles in sequence. The net-
work has a structure of 768:256:256:256:10. In case a layer exceeds
the maximum SRAM array size, multiple SRAM arrays are used
in a single Tile. Each SRAM has its own 128-wide Arbiter. This
increases parallelism by another factor; a 256-wide layer will have
two 𝑝-port Arbiters, meaning up to 2 × 𝑝 spikes can be selected
per clock cycle. In order to reduce the input images from 784 to
768 pixels, a 2 × 2 set of pixels is removed from every corner of
the images. This ensures that the first layer corresponds to exactly
6 × 128 inputs. We have trained the network as a Binary Neural
Network (BNN) with a sign activation function and per-neuron bi-
ases. The BNN is then converted to a Binary-SNN with per-neuron
thresholds, as described in [15]. The resulting accuracy achieved
by the network is 97.64%.
Table 2: Time required for each stage in the pipeline for differ-
ent SRAM cells, with the longest of the two stages indicating
the clock period for each cell (1RW is the standard 6T cell).

1RW 1RW+1R 1RW+2R 1RW+3R 1RW+4R
Arbiter 1.01ns 1.01ns 1.04ns 1.03ns 1.01ns
SRAM
+ Neuron 0.69ns 1.08ns 1.18ns 1.14ns 1.23ns
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Figure 8: System-level comparison between using standard
6T (1RW) SRAM Cell and our proposed cells.

Figure 8 provides a comparison of system-level power, perfor-
mance, energy, and area for the five discussed SRAM cell options.
Generally, the power of the system increases with the number of
added ports. However, the system’s power implemented with the
standard 1RW cells is higher than that of the 1RW+1R and 1RW+2R
cells. This is due to the active power savings from the voltage scal-
ing of 𝑉𝑝𝑟𝑒𝑐ℎ for the decoupled ports. When comparing the 1RW
and 1RW+1R cells, throughput decreases slightly, as the effective
parallelism is the same, but read operations for the 1RW+1R cell are
slower due to the added parasitics. However, at 2+ added ports, the
increased parallelism compensates for this. Additionally, with ev-
ery added port, the overall energy/Inference decreases significantly
due to the increased spike throughput. The main downside of the
multiport design is that the area of the design using the 1RW+4R
cell is 2.4× larger than when using the standard 1RW cell.

Table 3 compares the 1RW+4R cell with state-of-the-art SNN
accelerators aimed at ultra-low-power applications. We achieved
typical overall power consumption, but significantly improve en-
ergy/Inference and throughput. Note that the presented implemen-
tation is biased heavily towards high throughput. For applications
that have lower throughput demands, a lower𝑉𝐷𝐷 , lower clock fre-
quency, and HVT transistors can be utilized to significantly reduce
power consumption, while maintaining similar energy/Inference.

5 CONCLUSION
In our research paper, we presented an SRAM-based CIM accel-
erator designed for SNNs in IMEC’s 3nm FinFET. The synthesis
results indicate that our system exhibits high classification accu-
racy, while also reducing system-level power consumption and
increasing the number of Inferences per second by four orders of
magnitude. These accomplishments were made possible through
the use of a new multiport SRAM cell that enables enhanced paral-
lelism and voltage scaling, an improved spike arbitration system, a
low-cost communication fabric, and technology scaling which is
made possible by the fully digital design.

Table 3: Comparison of the 1RW+4R-based systemwith state-
of-the-art Small-scale SNN Accelerators.

[6] [9] [10] This Work
Technology [nm] 65 10 65 3
Neuron Count 650 4096 1K 778
Synapse Count 67K 1M 256K 330K
Activation Bit Width 6 1 – 1
Weight Bit Width 1 7 5 1
Transposable No No Yes Yes
Clock Frequency 70kHz 506MHz 100MHz 810MHz
MNIST
Power 305nW 196mW* 53mW 29.0mW
Accuracy [%] 97.6 97.9 97.2 97.6
Throughput [inf/s] 2 6250 20 44M
Energy/Inf [nJ] 195 1000 – 0.607
* Inferred from SOP/s/mm2, Area, and pJ/SOP
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