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Abstract. Aging wind energy assets demand the development of methods able to

effectively support informed decision-making. These needs have inspired the use

of data-driven methodologies, which offer valuable insights to wind turbine owners

and/or operators. Many approaches can be found in the literature for extrapolating

fatigue damage measurements to estimate the lifetime of wind turbines. In some cases,

resampling approaches are proposed to compute the confidence levels associated with

the generated projections, yet a standardized framework has not been adopted. Most

reported studies identify the relationship between short-term damage and long-term

Environmental and Operational Conditions (EOCs) by mainly rendering mean lifetime

predictions and their associated confidence levels, whereas additional predicted lifetime

statistical information is usually overlooked. In this work, we showcase the importance

of properly accounting for the variability in lifetime predictions, describe how to

summarize binned damages using statistical estimators and investigate bootstrapping

variants for computing the confidence levels in the generated damage estimators.

1. Introduction

Addressing the restrictions imposed by limited available sensor data, existing methods

in the literature resort to additional long-term information provided by readily available

Supervisory Control and Data Acquisition (SCADA) systems. For instance, [1, 2]

identify the relationship between measured damages and concurrently monitored

environmental conditions (e.g., wind speed and turbulence intensity) by binning

damage measurements into environmental parameters and for only a specific operational

condition. Most studies only report the predicted mean value of the asset’s lifetime,

whereas [3] conservatively suggests relying on the 90th percentile from the estimated

lifetime statistics. While quantifying the lifetime’s mean value is certainly informative,

the often high variability associated with the generated predictions tends to be

overlooked. Such an omission ultimately precludes the comprehensive understanding of

potential outcomes, specifically with regard to the minimum and maximum projected
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lifetimes. As shown by [4], fatigue damage measurements that are binned based on

specific environmental and operational conditions (EOCs) may exhibit high variability.

Explicitly quantifying this variability becomes even more crucial in cases where more

sophisticated binning schemes (e.g. high dimensional) cannot be implemented due to, for

instance, SCADA parameters’ unavailability. With a slightly different application focus,

[5] and [6] are among the few studies that explicitly account for damage variability within

each bin. Furthermore, some studies [1, 2, 3, 5] rely on resampling methods to quantify

confidence levels in the predicted lifetime mean value. By applying bootstrapping on

already clustered data, some of these methods deviate from principled bootstrapping

methods, which typically involve resampling from a sample representative of the entire

population [7].

In this work, we establish the relationship between limited SHM damage data

and its corresponding EOCs by binning short-term damage into representative EOC

parameters, e.g., wind speed, while restricting the analysis to operational data.

More specifically, we introduce the required formulation and quantify the uncertainty

associated with fatigue damage predicted through binning by: (i) describing how damage

scatter in bins can be encapsulated into estimators, and (ii) investigating bootstrapping

variants for computing confidence levels from damage estimators in order to account

for statistical uncertainty. Note that the focus of this study is on deriving 10-minute

damage statistical information from short-term monitoring campaigns, and contrasting

the resulting damage distributions against those from extended measurement periods,

without explicitly addressing long-term fatigue damage extrapolation.

2. Predicting wind turbine fatigue damage through binning

To enable the computation of fatigue damage predictions based on information collected

over a short-term monitoring campaign, binning fatigue damage into predefined EOC

categories is a widely adopted solution within the wind energy community. Once the

relationship between EOCs and fatigue damage is established, one can simply rely on

recorded or forecasted EOCs for yielding fatigue damage predictions over periods when

damage monitoring is no longer available. This relationship can be achieved by binning

monitored damage information into EOC bins. However, it is generally impractical to

include an extensive set of relevant EOC parameters as this may result in numerous

empty bins and/or a limited number of damage measurements available for some EOC

bins. In practical scenarios, fatigue damage is normally binned into a reduced subset

of EOC parameters, thereby leading to potential fatigue damage variability within each

considered bin. This variability is potentially caused by the omission of relevant EOC

categories. The majority of existing studies typically assign either the mean or the

mode as the measure of fatigue damage for each bin [1, 2, 3, 8], thus disregarding useful

information for estimating the uncertainty associated with fatigue damage predictions.

We instead propose a probabilistic binning approach in Section 3 that naturally accounts

for fatigue damage inherent variability within each bin.
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As mentioned previously, fatigue damage can be predicted over a certain period

by relying on binned measurements and collected or estimated EOC information. The

probability of occurrence of each EOC bin is either estimated from design/theoretical

probability distributions or a mass probability function based on long-term collected

SCADA information. More specifically, the probability of occurrence of each EOC bin,

p(xi), is computed as the area under the probability density function (PDF) delimited

by a specified interval:

p(xi) = Pr
(
x
(l)
i < X < x

(u)
i

)
=

∫ x
(u)
i

x
(l)
i

f(x) dx , (1)

where x
(l)
i and x

(u)
i are the lower and upper bounds of the ith bin, and f(x) stands

for the PDF over a defined EOC, X. Alternatively, one can compute the frequency

of occurrence associated with a certain bin through a normalized histogram obtained

from a discrete number of samples as, p(xi) = ni/nt, where ni stands for the number of

samples falling into the ith bin and nt denotes the total number of samples.

At the prediction stage, the fatigue damage over a certain period can be estimated

by combining the clustered fatigue damage, di, and the probability of occurrence, p(xi),

for each ith EOC bin, as:

d =
nb∑
i=1

p(xi)di , (2)

where nb stands for the total number of bins. To better understand the predictive

capabilities of this fatigue damage model, let us consider a simple scenario where a wind

turbine is operational 70% over a reasonably long-term period, whereas the turbine is

parked 30% over the same period. If during a short-term monitoring campaign the

operational-parked distribution, however, corresponds to 50% for each condition, the

long-term EOC’s frequency of occurrence, i.e., (70%, 30%), should be considered when

computing long-term damage.

3. Quantifying the uncertainty of fatigue damage predictions

As explained in the previous section, the fatigue damage for a given EOC bin, di, is

often modeled as the mean or mode of clustered measurements. Instead, the fatigue

damage variability within each bin can be modeled as a probability distribution or via

statistical estimators. If the collected dataset used for binning contains a significant

number of measurements, the damage variability within each bin can be categorized as

aleatory uncertainty. This means that by collecting additional data, the uncertainty

cannot be further reduced. The statistical estimators computed for characterizing the

damage distribution for each bin, e.g. approximated mean μ̂di and variance σ̂2
di
, might

not be very representative if the dataset does not contain sufficient samples. In that

case, the estimators themselves are uncertain, yet this uncertainty can be classified

as epistemic, particularly statistical in this case. By collecting additional data, the

statistical uncertainty can be reduced, thereby resulting in more accurate estimators.
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Hereafter, we describe: (i) the necessary formulation for combining binned statistical

estimators with EOCs’ frequency of occurrence, and (ii) a bootstrapping approach for

estimating the statistical uncertainty associated with statistical estimators.

3.1. Combining binned statistical estimators

The binned fatigue damage within each bin is here modeled as a random variable, Di,

whose variability stems from omitted EOC parameters and/or other intrinsic random

phenomena. Di can be described through statistical estimators, e.g. mean, variance,

or density estimators such as a histogram, which ultimately represent a subset of the

underlying population. For a defined period, collected fatigue damage measurements

are clustered into EOC bins, and statistical estimators, θ̂di can then be computed for

each respective ith bin. Once the binned estimators are calculated, the combined

fatigue damage estimator, θ̂d, of the combined damage random variable, D, can be

straightforwardly computed as:

θ̂d =
nb∑
i=1

p(xi) · θ̂di , (3)

where p(xi) corresponds to the probability of occurrence of bin i, and θ̂di stands for the

ith binned damage estimator. This process can be followed to compute a wide range of

statistical estimators, from the combined mean damage, μ̂d, and discrete mass function

values to events, e.g. probability that a certain value is exceeded. The combined central

variance, σ̂2
d, can also be determined directly through a closed-form solution:

σ̂2
d =

nb∑
i=1

p(xi)
[
σ̂2
di
+ (μ̂di − μ̂d)

2
]
, (4)

where σ̂2
di

stands for the fatigue damage variance corresponding to the ith bin. By

following this process, the resulting combined variance is naturally equal to the variance

estimated directly from unbinned fatigue damage measurements for a given monitoring

period, and, in contrast to other works [5], a zero covariance between bins does not have

to be assumed.

3.2. Bootstrapping

As explained previously, the computed estimators are subject to statistical uncertainty

arising from a limited number of collected fatigue damage samples. For instance, two

short-term monitoring campaigns may yield different damage estimators. By extension,

binned damages may also vary for each measurement set. Statistical uncertainty can be

reduced by collecting more samples, i.e., over a longer measurement period. Obtaining

measurements throughout the turbine’s entire lifespan is impractical. Consequently,

inference about the overall performance must be drawn from the data collected within

a specific timeframe. From a frequentist perspective, the degree of confidence over an

estimate for a population parameter can be expressed as a confidence interval. The

interpretation of confidence intervals should be carefully understood to avoid potential
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Figure 1: Flowchart representation of the investigated bootstrapping variants.

misconceptions [9]. Following a frequentist view, a 95% Confidence Interval (CI) can

be interpreted as the interval that contains the true value in 95 out of 100 repeated

experiments. Logically, the width of a CI is influenced by the intrinsic variation within

the target population, the size of the sample, and the desired level of confidence.

Sample-based bootstrapping with replacement can be introduced to the

measurement-based probabilistic model to estimate the confidence over damage

estimators θ̂d. Bootstrapping consists of sampling with replacement over a defined

number of iterations, out of which, certain parameters of interest can be estimated,

e.g. mean, variance, confidence intervals, among others. The bounds of the (1 − α)%

confidence interval, which are the (α/2)-th percentile and the (1 − α/2)-th percentile,

are used to estimate the (1− α)% CI:

(1− α)% CI = [θ̂(α/2), θ̂(1− α/2)] , (5)

where θ̂(α/2) is the (α/2)-th percentile, and θ̂(1−α/2) is the (1−α/2)-th percentile. CIs

can be computed through bootstrapping for any of the estimators described in Section

3.1. While the calculated CIs may seem narrow, it is crucial to recognize that CIs

represent a statistical measure of precision in estimating a parameter, e.g. the mean

damage. A narrow CI reflects a high degree of confidence in the estimated mean damage,

based on the current sample. With an infinite number of samples, μ̂d will asymptotically

approach the true combined mean, μd.

Furthermore, we clarify the potential applications of two bootstrapping variants, as

depicted in Figure 1. In the first case, the damage measurements are firstly categorized

into bins, and random sampling with replacement is then directly implemented

on clustered data, i.e., bootstrapping within each bin (BootBin). In the second

approach, the whole measurement is bootstrapped (BootWhole), and subsequently, each

bootstrapping sample is clustered, as shown in Figure 2. The key distinction between

the BootWhole and BootBin methods lies in the variation of the number of data points

in bins during each bootstrap iteration for BootWhole, whereas BootBin maintains a

fixed number. In practice, BootWhole is more representative of repeated experiments,

and more importantly, a primary assumption of bootstrapping is that the sample should
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Figure 2: Schematic representation of BootWhole’s statistical bootstrapping process,

showcasing the resulting sample estimator distribution and its corresponding CI.

be representative of the whole population. Bootstrapping on the whole measurement is

generally preferred to bootstrapping on clustered data, especially considering that the

latter may result in biased results.

4. Case study

4.1. Monitoring campaign and data processing

The conducted research is based on a six-year measurement campaign, out of which,

short-term 10-minute strain measurements and SCADA (Supervisory Control And Data

Acquisition) data were collected from a three-megawatt offshore wind turbine installed

on a monopile foundation in the North Sea. The turbine is equipped with six longitudinal

strain gauges mounted 60° apart and installed at the tower-transition piece interface,

16 m above the LAT (Lowest Astronomical Tide).

From sensor strain measurements, we can calculate stress (S) and bending moments

(M) at any heading. Selecting the heading as the average yaw angle within a 10-minute

time window results in Fore-Aft (FA) and Side-Side (SS) bending moments for each

window [10]. For the sake of simplicity, we only consider short-term damage from

FA bending moments retrieved from power-generating conditions. We do not include

wind direction and operational conditions as EOCs, with the primary emphasis being

placed on wind speed EOC. Focusing only on wind speed and power generating mode

constitutes a reasonable assumption since accurate lifetime estimates can be normally

obtained if the damage data is divided into wind speed bins, as explained in [11].

For each 10-min measurement, we calculate its short-term (10-min) damage, d, via

py-fatigue’s Python package [12], adhering to the recommended practice guidelines

DNVGL-RP-C203. Note that upon binning, each di represents a 10-min damage

realization for the ith EOC bin. Specifically, d is computed through Palmgren-Miner’s
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rule, where the stress-life (SN) curve is defined by Basquin’s law:

d =
k∑

j=1

ncj

Nj

=
1

a

k∑
j=1

ncj(ΔSj)
m ; with N(ΔS)m = a , (6)

where (m, a) stand for the SN curve slope and intercept, respectively, k is the number

of load blocks, ncj is the number of cycles in the jth load block, and Nj are the cycles

to failure at the load level ΔSj.

4.2. Case study definition

To comply with the design, the bin size is selected as 2 m/s, and short-term damages

are calculated using a linear S-N curve with slope m = 3. As explained in Section 3 and

shown in [4], binning results in damage variability. In this work, we quantify the damage

variability through two estimators, damage mean and variance. The variance accounts

for the aleatory uncertainty in short-term damages due to loads’ natural variation and/or

omitted EOCs. Moreover, each bin is associated with a certain occurrence probability,

p(xi), which can either be determined using measurement data (e.g. several years of

SCADA data) or based on design documents or available theoretical relations. Here,

we rely on measured wind speed distributions. Note that measured distributions can be

either adopted from as-measured probabilities, i.e. normalized histograms, or by fitting

a distribution to as-measured wind speeds. We directly retrieve as-measured normalized

histograms to avoid any distribution fitting errors.

Following the methodology proposed in Section 3, we investigate two bootstrapping

variants: BootWhole and BootBin. Within the analysis, we consider multiple

measurement periods: (i) 12 periods of 1 month, (ii) 6 periods of 6 months, and (iii) 6

periods of 1 year. BootBin first bins the selected measurement period into wind speed

categories and then bootstraps on each bin. The bootstrapping sample size in each bin

equals the number of datapoints in that bin. In contrast, BootWhole first bootstraps the

whole studied measurement period and then bins the resampled data. The size of the

sample in each bootstrap iteration equals the size of the studied measurement period. In

each of the executed 10,000 bootstrap iterations, the combined mean and variance are

calculated using Equations 3 and 4, and considering the wind speed probability for each

measurement period. From the resulting 10,000 estimators, we subsequently compute

bootstrapping statistics, e.g. expected value or CIs.

Since we are relying on the wind speed probability over the measurement period,

we can verify our results. It should be, however, noted that for long-term damage

predictions, a long-term wind speed probability should instead be used. We compare

both bootstrapping variants with respect to the confidence interval (CI) that results

from unbinned damage data (NoBin), and we expect that the mean, variance, and

CIs computed from both bootstrapping methods are similar to those obtained from

NoBin. Specifically, we calculate the 95% confidence intervals, which are delimited by

the 2.5th percentile and the 97.5th percentile of the resampled distribution. In our

analysis, the ground truth (target) corresponds to the deterministic mean and variance
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Figure 3: Comparative analysis of bootstrapping variants BootWhole and BootBin

against NoBin. It should be noted that values are normalized to the target mean value

calculated based on 6 years of data.

computed from 6-year fatigue damage measurements. Note that we intentionally

do not fill in empty bins. Regarding BootWhole, this decision stems from the

possibility of encountering iterations with empty bins when drawing random samples

with replacement. By not filling the empty bins, we maintain a more accurate

representation, resulting in smaller final damage values for those specific iterations,

as the empty bins have no contribution to the combined damage estimators.

5. Results and discussion

The main results of our study are showcased in Figure 3. The top-left plot illustrates

the bootstrapped expected value of the combined damage mean, normalized with

respect to the target mean value. The ground-truth damage mean for each studied

measurement period closely aligns with the bootstrapped expected value. This is

logical since the applied wind speed frequency of occurrence is estimated from the

considered measurement period. The bottom-left plot represents the bootstrapped

expected value of the combined damage variance, normalized to the target variance

value. Again, all bootstrapping variants are in good agreement with the ground-

truth damage variance. The top-right plot showcases the 95% CI associated with the

bootstrapped combined mean damage, normalized with respect to the target mean

value. We observe that BootBin and BootWhole variants exhibit discrepancies for
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Figure 4: Evolution of normalized damage mean and variance 95% confidence intervals

(CIs) over measurement period length.

all measurement periods, with these differences becoming more apparent for shorter

measurement periods (1 month). BootWhole’s CIs are in good agreement with NoBin,

whereas BootBin’s CIs are visibly narrower (top-right plot), which could potentially lead

to a misleading sense of confidence and consequently biased outcomes. We also observe

that 1-month measurements exhibit higher CIs than 1-year measurements, indicating

increased confidence with additional available data, yet the CIs for 6 months are very

similar to those for 1 year.

The bottom-right plot represents the normalized 95% CI of the bootstrapped

combined damage variance, normalized with respect to the target variance. Upon

inspection, a negligible discrepancy can be found between BootBin and BootWhole

for all measurement periods. More generally, we can see that the combined estimators

are more accurate (i.e. closer to the target) for longer measurement periods with more

datapoints than those available in short measurement periods. This is, in turn, reflected

by smaller CIs obtained for the case of longer measurement periods, which are naturally

associated with less statistical uncertainty than for shorter periods.

Besides comparing bootstrapping variants, we also investigate the evolution of

estimators’ CIs over measurement periods. This process can be followed to define

criteria for selecting a long enough measurement period, where the confidence over

combined estimators can no longer be further reduced. Figure 4 illustrates the evolution

of normalized estimators’ 95% CIs from 1- to 25-month measurement periods with 1-

month steps. Specifically, CIs of μ̂d and σ̂d
2 are normalized with respect to the target

mean and variance, respectively. To exemplify the process, let us consider a 1-month

measurement period. We first draw 5,000 bootstrap samples from the entire 1-month

measurement dataset, and we then cluster and compute estimators for each bin, i.e.

a vector of 5,000 elements is obtained for both damage mean and variance. Finally,

binned estimators are combined and the normalized 95% CIs are computed from the

resampled points, i.e. 5,000-element vectors.

As explained in Section 3, the width of 95% CIs is influenced by both sample size

and variability within the population. Increasing the sample size naturally leads to a

reduction in CI with respect to a smaller sample size (e.g. shorter measurement period).

Note that CIs represented in Figure 4 mainly show that if we repeat the measurement,
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95% of the calculated intervals will include the true value, as explained in Section 3.

This does not mean that one could be 95% sure about it. Instead, one can inspect in the

represented CI evolution what period is long enough to retrieve an accurate statistical

estimator. This can be assessed based on a defined CI width. For example, in this

case study, the CIs of estimators reduce at a negligible rate after almost 12 months of

measurement. Therefore, we can say that the estimators have low statistical uncertainty

using one year of measurement.

6. Conclusion and future work

This work introduces a structured methodology to quantify both aleatory and statistical

uncertainty in fatigue damage predictions computed through binning. Our findings

reveal inherent variability in fatigue damage estimated from measurements, thereby

supporting the need for uncertainty quantification approaches. Moreover, our analysis

confirms that bootstrapping directly on binned data may yield biased results, especially

in datasets with a limited number of samples. In future research efforts, we envision

the application of alternative methodologies for computing the complete statistical

description of predicted fatigue estimates, from frequentist statistical approaches to

fully Bayesian methods. Ultimately, our aim is to develop a systematic probabilistic

framework for computing the lifetime of wind turbines that appropriately takes into

account additional uncertainties, e.g., EOC parameters modeled as random variables.
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