

Delft University of Technology

CodeFill
Multi-token Code Completion by Jointly learning from Structure and Naming Sequences
Izadi, Maliheh; Gismondi, Roberta; Gousios, Georgios

DOI
10.1145/3510003.3510172
Publication date
2022
Document Version
Final published version
Published in
Proceedings - 2022 ACM/IEEE 44th International Conference on Software Engineering, ICSE 2022

Citation (APA)
Izadi, M., Gismondi, R., & Gousios, G. (2022). CodeFill: Multi-token Code Completion by Jointly learning
from Structure and Naming Sequences. In Proceedings - 2022 ACM/IEEE 44th International Conference on
Software Engineering, ICSE 2022 (pp. 401-412). (Proceedings - International Conference on Software
Engineering; Vol. 2022-May). IEEE. https://doi.org/10.1145/3510003.3510172
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3510003.3510172
https://doi.org/10.1145/3510003.3510172

CodeFill: Multi-token Code Completion by Jointly Learning
from Structure and Naming Sequences

Maliheh Izadi
M.Izadi@tudelft.nl

Delft University of Technology

Delft, Netherlands

Roberta Gismondi
R.Gismondi@student.tudelft.nl

Delft University of Technology

Delft, Netherlands

Georgios Gousios
G.Gousios@tudelft.nl

Delft University of Technology

Delft, Netherlands

ABSTRACT

Code completion is an essential feature of IDEs, yet current auto-

completers are restricted to either grammar-based or NLP-based

single token completions. Both approaches have significant draw-

backs: grammar-based autocompletion is restricted in dynamically-

typed language environments, whereas NLP-based autocompleters

struggle to understand the semantics of the programming language

and the developer’s code context.

In this work, we present CodeFill, a language model for autocom-

pletion that combines learned structure and naming information.

Using a parallel Transformer architecture and multi-task learning,

CodeFill consumes sequences of source code token names and their

equivalent AST token types. Uniquely, CodeFill is trained both for

single-token and multi-token (statement) prediction, which enables

it to learn long-range dependencies among grammatical and nam-

ing elements. We train CodeFill on two datasets, consisting of 29M

and 425M lines of code, respectively. To make the evaluation more

realistic, we develop a method to automatically infer points in the

source code at which completion matters. We compare CodeFill

against four baselines and two state-of-the-art models, GPT-C and

TravTrans+. CodeFill surpasses all baselines in single token predic-

tion (MRR: 70.9% vs. 66.2% and 67.8%) and outperforms the state of
the art for multi-token prediction (ROUGE-L: 63.7% vs. 52.4% and

59.2%, for 𝑛 = 4 tokens). We publicly release our source code and

datasets.

CCS CONCEPTS

• Software and its engineering → Software notations and

tools.

KEYWORDS

Automatic Code Completion, Transformers, Multi-Task Learning,

Types, Dynamically-typed Languages

ACM Reference Format:

Maliheh Izadi, Roberta Gismondi, and Georgios Gousios. 2022. CodeFill:

Multi-token Code Completion by Jointly Learning from Structure and Nam-

ing Sequences. In 44th International Conference on Software Engineering

(ICSE ’22), May 21–29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA,

12 pages. https://doi.org/10.1145/3510003.3510172

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9221-1/22/05.
https://doi.org/10.1145/3510003.3510172

1 INTRODUCTION

Automatic code completion (also called autocompletion) is the task

of completing source code statements by predicting what the de-

veloper would write given the current context. It helps developers

finish their programming tasks faster by decreasing the typing ef-

fort and saving keystrokes, correcting typographical errors, and

enabling them to explore APIs in a context-sensitive manner [5]. Au-

tocompletion has therefore emerged as one of the most prominent

features in Integrated Development Environments (IDEs).

To support autocompletion, current IDEs exploit the regular

structure of programming languages. For example, an IDE knows

that an opening parenthesis character (‘(‘) at a function-call posi-

tion must be followed by enough arguments to match the function’s

arity. It can therefore propose argument names for variables that

are in scope. The availability of types in the host programming

language helps increase the precision of suggestions; continuing

with the example above, the IDE will only propose variable names

for variables whose types match the function argument. Recent au-

tocompletion systems also take into account past completions [43]

and analyze large code bases [9] to rank suggestions according to

their past popularity. Despite the best efforts of researchers and

IDE developers, developers find rule-based code completion mecha-

nisms lacking. Ranking suggestions based on alphabetical or usage

frequency (or even the suggestion list length [23]) neglects the

current context, leading to unrelated recommendations [3]. These

problems are exacerbated in dynamically typed language settings,

as the IDE is lacking significant information to provide accurate

suggestions.

To mitigate rule-based autocompletion issues, researchers have

proposed statistical [17, 37] and learning-based [6, 17, 29, 31, 32, 51]

autocompletion models. Motivated by the naturalness hypothe-

sis [19], learning-based models treat source code as natural lan-

guage text, hence code completion becomes an instance of the

well-studied text completion problem. However, treating source

code as text deprives learning-based models of important code

structure and semantic information [18]. Moreover, the open-ended

nature of code leads to extremely large prediction spaces due to

developers constantly inventing identifier names [24].

In an illuminating study, Hellendoorn et al. [18] identified a set

of issues with current research in code completion. Initially, the

current approach of evaluating accuracy asmasked token prediction

does not reflect how autocompletion is used; developers only trigger

autocompletion after specific, and certainly not arbitrary, points

in a program’s syntax (e.g., after an opening parenthesis). Thus,

treating all tokens equally masks the fact that some tokens (e.g.,

punctuation) are much easier to predict than others (e.g., identifiers).

Moreover, most approaches (especially learning-based ones) do not

401

2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Izadi, et al.

account for names coming from dependencies, which deprives them

of important context.

In this work, we propose CodeFill, a novel learning-based ap-

proach that aims to address the problems identified above. CodeFill

borrows from the bimodality hypothesis [12] to model source code

inputs. Specifically, CodeFill exploits that information is conveyed

by source code through two channels; the natural language chan-

nel (variable names, functions, etc.), and the code structure channel

(inheritance, containment, etc.). Inputs are fed into the model si-

multaneously as both sequences of token values, which enable it to

learn relationships among token values, and, uniquely, sequences of

token types, which enable it to learn associations between syntactic

elements. CodeFill is then asked to predict either the value or the

type of the next n tokens. To enable CodeFill to learn name depen-

dencies across longer ranges, we also train it with an additional

task, multi-token statement completion at the value level. The input

token names to CodeFill is encoded with Byte-Pair Encoding (BPE),

which enables CodeFill to both compress the input name space and

generate names that are not in the input vocabulary. To present

suggestions relevant to the developer’s context, CodeFill includes

a post-processing step that re-ranks the predictions based on the

context visible to the model at the completion point. CodeFill is in-

stantiated as a set of three Transformers (GPT2-based) trained with

soft parameter sharing Multi-Task Learning (MTL) setting. Each

transformer models one of the three tasks, namely token value,

token type, and multi-token prediction; a joint loss function across

all three tasks updates the weights of all three model components.

During each epoch, the model is trained on one task according to a

configurable task-picking policy. Our target language is Python, to

both demonstrate the efficiency of the model when type informa-

tion is missing and also make our work comparable with the state

of the art.

We pit CodeFill against four baseline models and two the-state-

of-the-art models, namely GPT-C [49] and TravTrans+ [25]. We

use two deduplicated datasets: the ETH150K dataset (deduplicated:

PY117K) and a manually collected dataset consisting of practically

all non-forked Python repositories on GitHub (PY1690K). We eval-

uate all models on two tasks: Token-Level and Statement-Level Pre-

dictions (TLP and SLP). For TLP, we evaluate for i) next token

prediction (TLP-A), ii) next token type prediction (TLP-B), iii) next

token value prediction (TLP-C). To ensure that the evaluation set-

ting reflects real-world use of autocompletion, we also evaluate

completions after specific syntactic elements, e.g., a dot . or an

AWAIT keyword (TLP-D). We devise an algorithm to identify those

syntactic elements (cardinal points) automatically given a corpus.

We use top-1 Accuracy and the Mean Reciprocal Rank (MRR) as

evaluation metrics. For the SLP task, we assess the models on state-

ment completion with 𝑛 tokens and we compare them using ME-

TEOR and ROUGE-L measures. To show that each component in

the CodeFill model is necessary, we perform an ablation study.

The results demonstrate that CodeFill outperforms all the com-

peting approaches in all tasks. Indicatively, for each of the TPL-A,

TPL-B, TPL-C, and TPL-D evaluation tasks, CodeFill achieves a

state of the art MRR of 81.7%, 87.2%, 69.5%, 70.2% while TravTrans+,

a current state of the art, scores 79.4%, 83.6%, 63.8%, and 66.2%,
respectively. In the SLP evaluation task, for completing statements

with four tokens (the average completion length in our datasets)

CodeFill obtains 70.2% and 63.8% for the METEOR and ROUGE-L

metrics respectively, and thus significantly surpasses TravTrans+

(64.5% and 52.4%).
The main contributions of this work are:

• CodeFill, a model that unifies learning of structural and

name-based information for the autocompletion task.

• An implementation of CodeFill, including training proce-

dures, for the Python programming language. We make our

code and datasets available. 1

• An extensive evaluation of CodeFill against four baseline

models and two state-of-the-art approaches, demonstrating

its superior performance.

2 BACKGROUND AND RELATEDWORK

In this section, we briefly review the background work relating to

our approach. Then, we present the main approaches to autocom-

pletion, including the baselines we used for comparison.

2.1 Language Models and Transformers

Statistical Language Modeling (LM) is the task of developing a

probabilistic model for predicting the next tokens in a sequence

given its preceding tokens, i.e., the context [14]. This context for

simpler LMs is a short sequence of words, while it can be sentences

or paragraphs for larger models [46]. LMs are either used without

modification, e.g., in a text generation task, or used inside a down-

stream task which requires language understanding. Programming

languages also contain predictable statistical properties which can

be learned using LMs [19].

Recently, Neural LMs have gained popularity due to their supe-

rior performance and generalization capabilities [14, 35]. Neural

LMs address the n-gram data sparsity problem through param-

eterization of words as vectors [26]. A real-valued vector (word

embedding) is used to represent each word in a vector space. This

representation of words is learned based on their usage. This allows

words with a similar meaning to have a similar representation. Note

that traditional statistical LMs were not able to achieve this level

of generalization [47]. Moreover, the distributed representation ap-

proach makes it easier for the embedding representation to scale

with the vocabulary size. This is specifically useful with source

code, where the vocabulary size can be unlimited due to the use of

arbitrary identifiers. Initially, feed-forward neural network mod-

els, then Recurrent Neural Networks (RNNs) and next, networks

with long-term memory, such as Long Short Term Memory (LSTM)

networks were used.

Most recently, there have been significant improvements with

the introduction of self-attention architectures in the Transformer

which is a sequence-to-sequence architecture for transforming a

given sequence of elements to another form [53]. Attention enable

Transformers to focus on selective parts of an input, thus generating

more relevant outputs [34]. Transformers outperform previous deep

models such as RNNs and LSTMs on multiple NLP tasks [53]. A

Transformer consists of two main components, an encoder, and

a decoder. GPT-2 introduced by OpenAI 2, is a large generative

Transformer-based LM trained on a dataset of 8M web pages [39].

1https://github.com/saltudelft/codefill
2https://openai.com/

402

CodeFill: Multi-token Code Completion by Jointly Learning from Structure and Naming Sequences ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

GPT-2 has been successfully exploited for various NLP and source

code analysis tasks [10, 16, 28, 49].

2.2 Multi-Task Learning

Multi-Task Learning (MTL) is a model training technique that com-

bines multiple tasks and a joint loss function, with the goal of

maximizing performance on one or all of the tasks. MTL enables

knowledge transfer across related tasks and improves generaliza-

tion by leveraging the domain-specific information contained in the

training signals of related tasks [11]. An MTL model captures the

common features among all the tasks through sharing hidden layers

among them. MTL has been applied successfully in both NLP [13]

and source code analysis [32, 33]. There are two approaches to

jointly train models using MTL, hard-parameter and soft-parameter

sharing. In the former, the hidden layers are shared between all

tasks while keeping several task-specific output layers. For the

latter, each task has its own model with its own parameters. How-

ever, the distance between them is regularized to encourage the

parameters to be similar. In the soft-parameter sharing case, train-

ing can happen either sequentially (one task per training round) or

alternatively (one task per epoch).

2.3 Related Work

Autocompletion is an active research area for both practitioners

and researchers. Below, we review the latest approaches to auto-

completion.

2.3.1 Conventional Autocompletion. Traditionally, autocompleters

used heuristic rules static type information [20], similar code exam-

ples [9], and program history data [42] for suggesting completions.

For instance, IDEs conventionally return a list of type-checked

names either based on the order of alphabet or usage frequency.

2.3.2 Statistical LMs and Grammar-based Models. Several studies

use statistical LMs for modeling source code [17, 19, 37, 52]. Tu

et al. [52] built upon an n-gram model using a cache mechanism

to capture locality in source code. Hellendoorn and Devanbu [17]

improved the n-gram model by exploiting various techniques in-

cluding nested scopes, locality, and unlimited vocabulary. Raychev

et al. [40] proposed a probabilistic model based on decision trees

and domain-specific grammars. Researchers also studied the use

of syntactic structure through exploiting probabilistic graphical

models. Allamanis et al. [4] employ probabilistic context-free gram-

mars, while Raychev et al. [8, 40, 41] use probabilistic higher order

grammars to this end.

2.3.3 Deep Learning for Autocompletion. Recently, deep neural

networks such as RNNs, LSTMs and Transformers are being effec-

tively used for modeling source code [6, 17, 24, 25, 29]. In 2018, Li

et al. [29] proposed a pointer mixture model to mitigate the Out-

Of-Vocabulary (OOV) problem. They trained two LSTM models on

types and tokens. Karampatsis et al. [24] presented a large-scale

open-vocabulary neural LM. They incorporated BPE, beam search,

and cache mechanism to address the OOV problem. Most recently,

Kim et al. [25], incorporated the syntactic structure of trees into

their Transformer-based model to better learn from source code.

2.3.4 Multi-token Autocompletion. Although most research on

code completion is focused on single-token prediction, several stud-

ies aimed to complete entire statements or blocks of code [36, 49, 54,

55]. Yang et al. [55] proposed PCC and introduced an intermediate

representation for source code, to put tokens into groups using

lexeme and variable relative order. Nguyen et al. [36] proposed

AUTOSC to combine program analysis and software naturalness

and fill in a partially completed statement with frequent and valid

recommendations. Svyatkovskiy et al. [49] recently proposed a

GPT-2 based multi-lingual model, GPT-C, for completing lines. Wen

et al. [54] introduced FeaRS which recommends the next method

given the current code in an IDE using implementation patterns

learned through mining open source projects.

2.3.5 MTL for Autocompletion. MTL has been used in various NLP-

related tasks [45, 48, 56]. Recently, it has also been employed for

programming language processing tasks. Liu et al. [32, 33] proposed

two approaches based onMTL for autocompletion. In the first study,

the authors used a Transformer-XL and an RNN for predicting next

token type and value [32]. They develop a partial AST encoder

and a path2root encoder and use them in their MTL framework. In

their second study, Liu et al. [33] pre-train their model with hybrid

objective functions for code understanding and code generation

tasks. Next, they fine-tune it on code completion. The pre-training

tasks are masked bidirectional LM, next code segment prediction,

and unidirectional LM. The fine-tuning tasks are unidirectional

masked LM, and unidirectional LM.

2.3.6 Practical Aspects of Autocompletion. Hellendoorn et al. [18]

claim the accuracy of autocompleters evaluated on synthetic data

can drop on real-world data. Aye et al. [7], trained models on real-

world code completion examples of an internal dataset (Facebook).

They showed that models trained on data distributions that are

closer to those of where the model will be deployed can outper-

form models trained on committed source code in public reposi-

tories. Svyatkovskiy et al. [51] integrated Pythia, an LSTM model,

to IntelliCode, an extension to Microsoft VS Code IDE. In a follow-

up study [49], they introduced IntelliCode Compose as a general-

purpose multilingual autocompletion using Transformers. The im-

proved model predicts sequences of code tokens, generating up to

entire statements. IntelliCode Compose is integrated into the Mi-

crosoft VS Code IDE. Finally, Svyatkovskoy et al. [50] implemented

and evaluated several neural code completion models, which offer

varying trade-offs in terms of memory, speed, and accuracy. Com-

mercial autocompletion tools, such as TabNine and GitHub Copilot

also exist, but very little technical information has been shared

about them.

2.4 Baselines

We include six recent models as baselines to provide a comprehen-

sive evaluation. For all baselines, we use the replication packages

provided by the authors and set the parameters as defined in each

respective study. For the statement level prediction task, we modi-

fied the output layer of the baselines to predict up until the end of

a statement.

N-gram + LSTM (FSE, 2017): Hellendoorn et al. [17] claim that

a well-engineered and simple approach (n-gram based language

403

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Izadi, et al.

models) can provide better performance than more complex models

(deep neural networks). The authors show that the combination

of an n-gram and LSTM-based model outperforms the rest of their

models.

Pointer Mixture (IJCAI, 2018): Li et al. [29], propose a pointer

mixture model to address the OOV problem. They also try to in-

corporate structural information in their models by training two

models (token types and values) separately.

T-XL + Bi-LSTM (ICPC, 2020): Liu et al. [32, 33], propose

two models based on the MTL technique. The first study uses

Transformer-XL and a Bi-LSTM to train two models for tokens

and AST paths for dynamically-typed languages such as Python.

The second study by the same group presents a pre-trained lan-

guage model which is fine-tuned for code completion. The authors

use static analysis and type annotations for their type prediction

task, for Java. We compare against the first model only, as it most

closely matches our setup.

OpenVocab (ICSE, 2020): To address the OOV problem, Karam-

patsis et al. [24] present a BPE-based language model. We include

it here for completeness, even though their model is not tuned for

autocompletion.

IntelliCode Compose (FSE, 2020): Svyatkovskiy et al. [49]

propose a general-purpose, multi-lingual autocompletion support-

ing multi-token statement completion. They train a GPT-2 model

on 1.2𝐵 LOCwritten in Python, C#, TypeScript, and JavaScript. This

tool is deployed as a cloud-based web service and uses client-side

caching and parallel implementation to speed up the predictions.

As the source code is not publicly available, we trained a GPT-2

model for source code and did our best to adhere to the settings

reported in the study. As the focus of our study is mono-lingual,

we only train this model on Python code.

TravTrans+ (ICSE, 2021): Kim et al. [25] propose a transformer-

based approach which exploits AST paths. We use their best model,

TravTrans+, as the state of the art in our evaluation.

3 APPROACH

The CodeFill pipeline comprises two main phases; pre-processing,

model training. Figure 1 presents the overall workflow. Initially,

CodeFill pre-processes, tokenizes and converts the input source

code to equivalent syntax token sequences. Training consists of

two main phases pre-training with 3 tasks (token sequence type

and name completion, statement completion) and fine-tuning on 2

tasks (name and statement completion). For both stages, CodeFill

uses soft-parameter sharing MTL to learn from different represen-

tations of source code. At evaluation time, Codefill also re-orders

recommendations based on their type and the visible context.

In the following section, we present how the proposed approach

works in detail.

3.1 Pre-processing

During pre-processing, CodeFill converts the input program files to

an equivalent format where keywords and identifiers are swapped

with their AST equivalents. The algorithm starts by removing com-

ment sections, blank spaces, and blank lines. It then extracts the list

of modules, libraries, and their aliases using the Python AST library.

Those are stored in a dictionary and, using it, CodeFill replaces all

Figure 1: CodeFill Workflow

1 def transform(node, ctx):
2 node = qual_names.resolve(node)
3 node = CallTreeTransformer(ctx).visit(node)
4 return node

Type Value #Line Position

RETURN return 4 1

NAME node 4 2

Figure 2: Sample code snippet and the extracted information

their occurrences in code with their respective types (i.e., MODULE,

LIBRARY, and ALIAS).

CodeFill also pre-processes and tokenizes the input source code.

For each line, it reads the tokenized information and stores four

types of information about each token namely (1) its value, (2) its

type, (3) its line number, and (4) its position in the line. For instance,

for the statement return node in Figure 2, it stores two tokens as

shown in the table following the code example. Moreover, variable

visibility information (e.g., global vs. local variables), is maintained,

to differentiate between different name usages in the same context.

To address the OOV problem, CodeFill uses a BPE-encoded

name representation. Exploiting word segmentation, BPE itera-

tively merges the most frequently occurring character sequences.

Prior to applying BPE encoding, and similarly to other studies [21,

22, 49], CodeFill normalizes the input strings by replacing string,

and numeric literals with respective special tokens, i.e., STRING and

NUMBER.

A unique characteristic of the Python language is that indenta-

tion defines code blocks; it is therefore important for source code

models to learn to encode indentation as part of their learned rep-

resentation. To do so, CodeFill stores the positioning of indentation

markers. For the first line with an indentation, it adds a special to-

ken 〈𝐼𝑁𝐷𝐸𝑁𝑇 〉 at the beginning of the given line. It passes through
the following lines with the same indentation, to reach the next

indentation or a dedentation position, at which point it adds a

respective 〈𝐼𝑁𝐷𝐸𝑁𝑇 〉 or 〈𝐷𝐸𝐷𝐸𝑁𝑇 〉 token.
The pre-processing step results in two files for each input source

code file; (1) one containing sequences of token names minus the

comments and extra blank lines, and (2) one containing sequences

of token types. Both are fed into CodeFill as two different but

corresponding representations of source code. Figure 3 shows a

404

CodeFill: Multi-token Code Completion by Jointly Learning from Structure and Naming Sequences ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

1 # Raises an error when the required variable is missing
2 def required_env(var):
3

4 value = os.environ.get(var)
5 if value is None:
6 raise RuntimeError("Var is required to start the service.")
7 return value

1 def required_env(var):
2 value = os.environ.get(var)
3 if value is None:
4 raise RuntimeError("STRING")
5 return value

1 DEF FUNCTION_NAME(LOCAL_VARIABLE): EOS
2 INDENT LOCAL_VARIABLE = LIB.MODULE.FUNCTION_NAME(LOCAL_VARIABLE)

EOS
3 IF LOCAL_VARIABLE IS NONE: EOS
4 INDENT RAISE ERRORTOKEN("STRING") EOS
5 DEDENT RETURN LOCAL_VARIABLE EOS

Figure 3: An example code snippet and its converted version

sample function and its corresponding type information with the

correct indention.

3.2 Model Training

In this phase, CodeFill learns from two granularity levels; token-

and statement-level completions with three simultaneous tasks,

namely (1) next Token Value Prediction (TVP), (2) next Token Type

Prediction (TTP), and (3) Statement Completion (SC). Model train-

ing follows a two-stage process; First, a generic language modeling

objective is used on the unlabeled data to learn the initial parame-

ters. Then, these parameters are adapted to the target tasks using

the corresponding objective. Thus, while pre-training, CodeFill

learns from all three tasks while fine-tuning is restricted to the

TVP and SC tasks. The reason for excluding the TTP task is that

the number of types for all the program files is limited. Hence, the

model quickly learns how to properly predict these type sequences

(i.e., learns an effective representation of the Python grammar),

eliminating the need for further fine-tuning.

The main neural network architecture for all tasks is based on

the GPT-2 Transformer with 𝐿 layers. CodeFill uses three distinct
GPT-2 transformers, each with its own input and training objec-

tive. The models are initialized with random weights. Transformer

blocks include self-attention layer, feed-forward neural nets, and

a normalization layer. Self-attention blocks identify which tokens

to focus on. Feed-forward neural nets consist of an input layer to

accept information, hidden layers to capture the hidden correlations

between each data point, and finally, an output layer to transmit

information. The parameters are transferred to the next decoder in

the stack after being regularised (with 𝑙2 norm) to be similar to the
respective decoder’s parameters. CodeFill uses softmax activation

function in the output layer to generate probability distributions

over the vocabulary.

To train the model to predict a sequence of tokens, {𝑣𝑡 } ⊂ 𝐷, 𝑡 ∈
[1, . . . , 𝑁], with 𝐷 as the vocabulary, and 𝐶 as the existing code

context, CodeFill estimates the following conditional probability

distribution, 𝑃 :

𝑃 (𝑣0, . . . , 𝑣𝑁 |𝑐0, . . . , 𝑐𝑇) =
𝑁∏

𝑖=1

𝑃 (𝑣𝑖 |𝑐0, . . . , 𝑐𝑇 , 𝑣0, . . . , 𝑣𝑖−1). (1)

We use a standard language modeling objective, predicting the

next token given a context, and maximize the following likelihood

based on our unsupervised corpus of tokens. In Equation 2,𝑚 is

the length of the predicted sequence of code token values and 𝜃 is
the set of parameters that is learned through stochastic gradient

descent optimization to model 𝑃 [44].

𝐿(𝑉) =
∑

𝑖

log 𝑃 (𝑣𝑖 |𝑐0, ..., 𝑐𝑇 , 𝑣𝑖−𝑚, ..., 𝑣𝑖−1;𝜃). (2)

In each layer, multi-attention heads are used to aggregate the out-

put of the previous layer for each transformer block. Multi-headed

self-attention is applied over the input context tokens followed by

position-wise feed-forward layers to produce the output distribu-

tion.

ℎ0 = 𝐶𝑊𝑒 +𝑊𝑝 , (3)

ℎ𝑙 = 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟_𝑏𝑙𝑜𝑐𝑘 (ℎ𝑙−1), 𝑙 ∈ [1, . . . , 𝐿], (4)

𝑃 (𝑣𝑡) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (ℎ𝐿𝑊
𝑇
𝑒), 𝑡 ∈ [0, . . . , 𝑁] (5)

where𝐶 is the context vector of tokens, 𝐿 is the number of layers,𝑊𝑒

is the token embedding matrix, and𝑊𝑝 is the position embedding

matrix.

For training with MTL, CodeFill uses the alternative training

strategy, which aims to prevent catastrophic forgetting (as opposed

to the sequential strategy). With a probability of 20%, 40%, and

40% for each of the TTP, TVP, and SC tasks, respectively, CodeFill

picks a random task for each epoch. TTP requires fewer epochs as

its vocabulary is fairly limited. Further on, for TVP and SC tasks,

CodeFill uses beam search to identify the most likely (sub-)token

sequences.

Loss is shared among all tasks. During pre-training, the param-

eters are tuned to minimize the absolute minimum of the cross

entropy losses among the three pre-training tasks, namely, TVP,

TTP, and SC (Equation 6). When fine-tuning, only TVP and SC

losses are used.

𝐿𝑜𝑠𝑠𝑓 𝑖𝑛𝑎𝑙 =| min(𝐿𝑜𝑠𝑠𝑇𝑉𝑃 , 𝐿𝑜𝑠𝑠𝑇𝑇𝑃 , 𝐿𝑜𝑠𝑠𝑆𝐶) | (6)

3.2.1 Token Value Prediction Task (TVP). CodeFill uses different

representations of programs for each task within the soft-parameter

sharing MTL framework. CodeFill treats the TVP task as masked

unidirectional prediction; left-side context is used to predict the

next token. The inputs to the task are sequences of token values,

represented as real-valued vectors of [𝑣1, 𝑣2, . . . , 𝑣𝑛].

3.2.2 Token Type Prediction Task (TTP). Similarly to TVP, TTP

is also treated as left-to-right masked unidirectional prediction.

The input are corresponding token type representations as real-

valued vector of [𝑡1, 𝑡2, . . . , 𝑡𝑛] As both the TTP and TVP models
are trained jointly, CodeFill is capable of exploiting token types

when the ultimate goal is to predicting token values.

405

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Izadi, et al.

Figure 4: Model training

3.2.3 Statement Completion Task (SC). As useful as next-token

prediction may be, developers can also benefit from getting longer

suggestions to complete code statements [6, 36, 49]. Correspond-

ingly, CodeFill can also benefit from training to predict longer

sequences, as training will enable it to better prioritize context use.

Thus, we add a third task to train CodeFill to provide completion

suggestions up and until the end of a statement. To predict a whole

statement given the existing code context 𝐶 , and the vocabulary
𝐷 , CodeFill attempts to generate token values {𝑣𝑡 } ⊂ 𝐷 , condi-
tioned on the sequence of preceding token values {𝑐𝑡 } ⊂ 𝐷 , For
this task, the pre-processing steps introduce a special token (〈𝐸𝑂𝑆〉)
to demarcate the end of a statement. CodeFill is trained to keep

predicting sequences of token names until it produces an 〈𝐸𝑂𝑆〉
token.

3.2.4 Beam search. CodeFill uses greedy (beam) search to identify

the most probable sequences given a sequence of probabilistic pre-

dictions. Specifically, |𝐵 | (width of the beam) top probabilities, are
recorded partially for every step. This heuristic algorithm does not

necessarily optimize results; however, its computational complexity

equals to𝑂 (|𝐵 |× |𝑉 |) which is much faster than computing all cases.
As |𝐵 | increases, the quality of generated summaries improves, how-
ever, the learning time increases as well. We experimented with

several beam values (3, 5, and 10), and settled to 5, as it provided a

good balance of accuracy and speed.

3.3 Post-processing

Re-ranking Recommendations. For a recommendation system to

be useful, predictions should be ranked similarly to user expec-

tations. To optimize ranking, CodeFill includes a post-processing

layer to re-rank the leaf nodes in the final recommendation list

based on the visible scope (i.e., the current file). This is based on

the observation that most completions should be local to the edited

file, as naming visibility rules should force names to cluster.

To re-rank the suggestions, CodeFill hierarchically divides the

visible scope to file, class, and closest function. The intuition here

is, when the model is predicting the next token and its type is ex-

pected to be a variable name, candidates in the closest scope have a

higher probability of being correct. However, when the next token

is predicted to be a function name, candidates from the same class

(functions defined in the same class) should be probably at the top

of the list. The re-ranking process consists of multiplying the pre-

diction probabilities of the top-10 predictions with a corresponding

weight coefficient. The weights are selected based on the type of

the predicted token and the scope of the declaration of the identi-

fier. Each prediction consists of a <token, type, probability>

triplet with respect to the prediction point that it is made available,

We generate the list of all visible names and their hierarchical scope

(function, class, file). Each prediction is then cross-checked with

this list, in the case where the predicted identifier is indeed already

declared in the file (and thus in the list), its prediction probability is

multiplied by a weight depending on the type of the predicted token

and the scope associated with the item in the list. As the weights

impact the quality of predictions, we first defined a range/ratio

for different categories based on our programming intuition. Then,

we experimented with this range and selected the best performing

weights. Table 1 presents the weights used in this process.

406

CodeFill: Multi-token Code Completion by Jointly Learning from Structure and Naming Sequences ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 1: Weights in the post-processing layer for re-ranking

Leaf node type Function Class File

Attribute Access 1.625 1.250 1.125

Variable names 1.625 1.125 1.500

Function names 1.125 1.625 1.500

Algorithm 1 Re-ranking final recommendations

1: input Predictions, WeightsList

2: output Predictions ⊲ List of updated predictions
3: Names← getSignificantNames() ⊲ Get the list of important
names in left context from the file

4: for pred in Predictions do

5: while true do

6: Names← getSignificantName.pop()

7: if significantName.token = prediction.token then

8: typeCategory← getTypeCategory()

9: weight← weights[typeCategory][scope]

10: pred.probability← pred.probability × weight

11: break

12: end if

13: end while

14: end for

Although the current weights improve the predictions, this only

sets the minimum bar. Future work can exploit automatic learning

of these weights.

4 EXPERIMENTAL SETUP

To train and evaluate CodeFill, we use two Python datasets. We eval-

uate the models based on different evaluation scenarios, to achieve

a more realistic and comprehensive outlook on the performance of

code completion models to benefit developers in real-world cases.

4.1 Evaluation Tasks

Weevaluate CodeFill on two tasks, namely Token-Level and Statement-

Level Predictions (TLP and SLP).

4.1.1 Token-Level Prediction. We use TLP to assess the ability of

the model to predict a single next token. We split this part of the

evaluation into four subtasks presented below.

Any token prediction. Our first sub-task is to evaluate the pre-

dictions of any token irrespective of its type (TLP-A). This is the

baseline evaluation task employed in the literature, but as research

has shown [18], it is not representative of real-world autocomple-

tion use. For this reason, we resort to more detailed evaluations, as

presented below.

Token Type Prediction. To assess the model’s ability to learn

grammatical sequences, we evaluate how well a model can predict a

correct AST token given a context (TLP-B). We group together AST

tokens in the following categories: Identifiers, Keywords, Operators,

Punctuation, and finally numerals and string Literals.

Figure 5: Length of statements in the PY117K dataset

Leaf Node Prediction. Inspired by the evaluation setup of the

state-of-the-art study by Kim et al. [25], we investigate the ability of

models when predicting AST leaf nodes (TLP-C), includingAttribute

access, Names, Function parameters, and Constants.

Cardinal Point Prediction. The three tasks presented up to now

give a comprehensive view of the prediction ability of a model.

However, in practical settings, autocompletion is only triggered

at specific points (e.g., after a dot, or after specific keywords such

as for) while the developer is editing source code. To ensure that

predictions translate to practical benefits for the developers, we

evaluate completions on cardinal points (TLP-D). To obtain a list

of keywords after which autocompletion is likely to be triggered,

we first select the list of punctuation and keywords tokens that can

be completed. We then compute the frequency of all bi-grams with

any of these tokens as their first token in our dataset. Then, we

remove three sets of bi-grams; (1) those that are mostly written

together with occurrence frequency above 95% (e.g., async def),

(2) those that are normally not predictable (e.g., class NAME or def

FUNCTION-NAME), and finally (3) those that are usually not practical

completions (e.g., TRUE :). The resulting list of tokens after which

it is most beneficial for autocompletion to be triggered is as follows.

DOT, AWAIT, ASSERT, RAISE, DEL, LAMBDA, YIELD, RETURN,

EXCEPT, WHILE, FOR, IF, ELIF, ELSE, GLOBAL, IN, AND, NOT,

OR, IS, BINOP, WITH, ;, „ [, (, {, ~

Evaluation Metrics. As the model only predicts a single token

in the TLP task, we include two evaluation metrics, namely the

Accuracy of the top prediction and the Mean Reciprocal Rank (MRR)

for the top-10 recommendations.

Accuracy measures the proportion of samples for which the

suggested completion token exactly matches the single target label.

MRR assesses the whole top 𝑁 recommended completions and

takes into account the first position the target is matched [38]. For a

single query, the reciprocal rank is 1
𝑟𝑎𝑛𝑘 where 𝑟𝑎𝑛𝑘 is the position

of the highest-ranked answer (1, 2, 3, ..., 𝑁 for 𝑁 answers). If no

correct answer exists in top-𝑁 , then the reciprocal rank is 0. For
multiple queries 𝑄 , the MRR is the mean of the 𝑄 reciprocal ranks.

4.1.2 Statement Level Prediction (SLP). The SLP task assesses a

model’s ability to complete statements with up to 𝑛 tokens. The
boxplot in Figure 5 shows the distribution of number of tokens for

completions in the evaluation dataset (𝑃𝑌117𝐾). In our datasets,
statements are 4.2 tokens long on average (median: 4, maximum:
13). To provide a comprehensive view, we evaluate the performance

of the models when predicting next-𝑛 tokens with 𝑛 ∈ [2, 3, . . . , 8].

Evaluation Metrics: On absence of code-specific metrics, we use

two metrics commonly-used for automatic evaluation of text gen-

eration, namely Metric for Evaluation of Translation with Explicit

407

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Izadi, et al.

Table 2: Datasets used for training and evaluation

PY1690K PY117K

#Repositories 32.7K 24.9K
#Files 1.7M 117K

#LOC 425M 29M

#Tokens (unique) 5.7M 766K

#Types (unique) 103 103

ORdering (METEOR) [27] and Recall-Oriented Understudy for Gist-

ing Evaluation (ROUGE-L) [30].

ROUGE: ROUGE-N refers to overlapping n-grams. ROUGE-L,

one of the variations of the ROUGE metric, counts longest match-

ing sequence of words using the Longest Common Subsequence

algorithm. It considers sentence-level structure similarity and auto-

matically identifies the longest co-occurring chain of in sequence

n-grams. Thus, it does not require consecutive matches but in-

sequence matches that reflect sentence-level word order.

METEOR is based on the term-to-term mapping of the gener-

ated code with its corresponding reference code. It focuses mainly

on recall. Lavie et al. [27] showed metrics based on recall consis-

tently achieve higher correlation with user preferences than those

based on precision alone.

4.2 Datasets

We use two Python datasets for training and evaluation:

• The ETH 150K Python dataset [40] for compatibility with

previous work. The authors collected Python programs from

GitHub repositories and removed duplicate files, project

forks, files that do not parse and have more than 30K nodes

in their ASTs. They also removed obfuscated files and only

used repositories with permissive licenses including MIT,

BSD, and Apache.

• TheCodeFill dataset, whichwas collected by queryingGHTor-

rent [15] for all non-forked Python repositories with more

than 20 stars (58k repositories).

After deduplication, using themethod proposed byAllamanis [2],

we ended up with two versions of the original datasets, 𝑃𝑌117𝐾
and 𝑃𝑌1690𝐾 for the ETH and CodeFill datasets, respectively. Note

that 𝑃𝑌1690𝐾 and 𝑃𝑌117𝐾 do not have any common files. Table 2

presents an overview of the contents of the datasets.

We use 𝑃𝑌1690𝐾 exclusively for pre-training our LM. We then

use 90% of 𝑃𝑌117𝐾 for fine-tuning the model on the tasks presented

in Section 4.1, and finally the last 10% of 𝑃𝑌117𝐾 for evaluation. For

the baselines, we concatenate 𝑃𝑌1690𝐾 with the same 90% portion

of 𝑃𝑌117𝐾 as above for training, and evaluate on the remaining

10% of 𝑃𝑌117𝐾 .

Table 3: TPL-A results: Any token prediction

Approach Venue Accuracy MRR

n-gram + LSTM [17] (FSE, 2017) 65.1 67.9

Pointer Mixture [29] (IJCAI, 2018) 65.8 70.0

OpenVocab [24] (ICSE, 2020) 67.2 69.8

T-XL + Bi-LSTM [32] (ICPC, 2020) 75.0 76.4

GPT-C [49] (FSE, 2020) 79.8 80.0

TravTrans+ [25] (ICSE, 2021) 78.9 79.4

CodeFill Proposed 80.6 81.7

4.3 Implementation and Configuration

We use Python’s AST 3, Tokenize 4, and the DIS 5 libraries in our

conversion tool. Moreover, we use the HuggingFace 6 library for the

implementation of our GPT-2 and MTL models. We set the learning

rate to 0.00001, maximum sequence length to 2048, and trained our

model for 100 epochs. We set the remaining parameters to default

values. Our experiments are conducted on a machine equipped with

two GeForce GTX 1080 Ti GPUs, an Intel(R) Xeon(R) CPU E5-2690

v4 @ 2.60GHz CPU with 14 core processors, and 128G RAM.

5 RESULTS AND DISCUSSION

In this section, we present the results for each evaluation task,

along with an ablation study and a characterization of the models’

performance.

5.1 Token-level Prediction (TLP)

5.1.1 Any token prediction. The most basic form of evaluation for

an autocompletion model is to gauge its ability to predict the next

token given some context as input. TLP-A can provide an overview

on the ability of an autocompleter to predict, however, it does not

account for the prior probabilities of different types of tokens. We

present this task for compatibility with existing work, and further

elaborate CodeFill’s performance in the following tasks. The results

can be seen in Table 3; our model outperforms all the baselines

across all metrics.

5.1.2 Token Type Prediction. We investigate the performance of

the models when predicting different types of tokens, i.e., their

ability to assimilate how developers use grammar to express con-

cepts. Models generally struggle more with specific token types.

For instance, it is known that predicting identifiers is harder than

predicting keywords [18]. Table 4 present the Accuracy and MRR

results based on all token types. As demonstrated, CodeFill out-

performs the baselines for all token types based on both metrics

(except for MRR on keywords and punctuation, where its perfor-

mance is on par). Transformer-based approaches are highly capable

of predicting specific types of tokens, namely keywords and punctu-

ation; effectively, this means that given enough training examples,

they can efficiently learn syntactical patterns. Predicting identifiers

and literals across all models is more challenging. For identifiers,

3https://docs.python.org/3/library/ast.html
4https://docs.python.org/3/library/tokenize.html
5https://docs.python.org/3/library/dis.html
6https://huggingface.co

408

CodeFill: Multi-token Code Completion by Jointly Learning from Structure and Naming Sequences ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 4: TPL-B Results: Token type predictions

M
et
ri
c

Approach Id
en
ti
fi
er

K
ey
w
o
rd

P
u
n
ct
u
at
io
n

L
it
er
al
s

O
p
er
at
o
rs

A
ll

Token Percentage 21% 28% 33% 5% 13% -

A
cc
u
ra
cy

N-gram+LSTM [17] 40.2 74.2 81.4 46.2 62.7 66.6

Pointer Mixture [29] 37.0 85.3 80.0 43.9 62.8 68.4

OpenVocab [24] 42.3 89.8 93.4 54.4 65.0 76.0

T-XL + Bi-LSTM [32] 47.4 93.1 92.4 59.4 68.7 78.4

GPT-C [49] 50.0 96.5 95.1 62.0 71.0 81.2

TravTrans+ [25] 51.1 95.9 97.0 59.3 71.3 81.8

CodeFill 54.4 97.3 98.0 65.8 71.4 83.8

M
R
R

N-gram+LSTM [17] 40.6 76.8 84.6 49.8 64.2 68.8

Pointer Mixture [29] 38.5 85.9 85.2 46.7 64.5 71.0

OpenVocab [24] 43.2 90.3 96.0 57.0 67.1 77.6

T-XL + Bi-LSTM [32] 49.8 96.1 96.6 61.3 70.0 81.4

GPT-C [49] 52.3 98.8 98.8 64.0 73.3 83.9

TravTrans+ [25] 53.7 97.1 98.6 62.2 73.0 83.6

CodeFill 56.0 98.1 98.0 66.1 74.4 87.2

all models’ result range from 37% to 56% accuracy. In both cases,

CodeFill maintains a non-trivial edge over the baselines, which

we attribute to the statement completion task. We believe it helps

CodeFill to learn syntactical patterns over longer ranges.

5.1.3 Leaf Node Prediction. We compare eachmodel’s performance

in predicting different types of leaf nodes in an AST, e.g., function

calls, variables, and attribute names. Tables 5 present the Accuracy

and MRR results for this task. CodeFill is the best model in both ac-

curacy, and, especially, MRR. This means that its name predictions,

which is arguably the most important feature for an autocompleter,

are 2 out of 3 times correct and have a high probability (> 70%) of

being included in the top suggestions.

5.1.4 Cardinal Point Completion. In Table 6, we report the perfor-

mance of models when predicting at cardinal points (described in

Section 4.1). As indicated, CodeFill outperforms all the baselines.

Consequently, it is more capable of presenting correct recommenda-

tions at points where autocompletion is more likely to be triggered.

5.2 Statement-Level Prediction (SLP)

We report the results for autocompleting code statements, by pre-

dicting the remaining 𝑛 tokens at a given statement position (with
𝑛 ranging between 2 and 8). Figure 6 presents the results of this
experiment based on the achieved METEOR and ROUGE-L scores.

All Transformer-based models [25, 32, 49], are consistently more

capable than the three baseline approaches. CodeFill improves over

all competitors. Themargin grows wider as the number of tokens re-

quired to complete statements increase (especially in the ROUGE-L

case). This result highlights the merits of our statement completion

task. In turn, this can help developers code faster by reducing the

number of required keystrokes; the experience of using statement

completion should be reminiscent of text line completion in popular

Table 5: TLP-C results: Leaf node prediction

M
et
ri
c

Approach A
tt
ri
b
u
te

A
cc
es
s

N
am

es

Fu
n
ct
io
n

n
am

es

N
u
m
er
ic

co
n
st
an
t

A
ll

Token Percentage 32% 13% 33% 22%

A
cc
u
ra
cy

N-gram + LSTM [17] 56.3 61.8 63.5 45.1 56.9

Pointer Mixture [29] 53.5 62.0 59.8 42.0 54.2

OpenVocab [24] 59.8 63.7 66.2 51.7 60.6

T-XL + Bi-LSTM [32] 59.9 58.1 62.8 54.8 59.5

GPT-C [49] 60.0 59.9 64.0 56.0 60.4

TravTrans+ [25] 60.2 65.4 68.3 52.7 61.7

CodeFill 64.0 67.3 72.2 53.1 66.3

M
R
R

N-gram + LSTM [17] 57.9 64.7 65.2 47.5 58.9

Pointer Mixture [29] 57.1 59.0 60.2 43.1 55.3

OpenVocab [24] 61.2 64.8 70.1 51.7 62.5

T-XL + Bi-LSTM [32] 61.9 65.3 69.9 55.3 63.5

GPT-C [49] 63.4 62.9 66.5 57.2 63.0

TravTrans+ [25] 62.8 65.4 70.0 55.2 63.8

CodeFill 72.0 69.7 76.9 56.0 69.5

Table 6: TPL-D Results: Cardinal Points Completion

Approach Accuracy MRR

N-gram + LSTM [17] 49.0 52.3

Pointer Mixture [29] 51.3 52.4

OpenVocab [24] 52.2 53.5

T-XL + Bi-LSTM [32] 64.0 64.7

GPT-C [49] 66.1 67.8

TravTrans+ [25] 65.0 66.2

CodeFill 70.0 70.9

online email or document editors. Statistically, more than 2 out of 3

statement completions of 4 or fewer tokens will be correct.

5.3 Ablation Study

We perform an ablation study to examine the impact of different

components of CodeFill . Table 7 presents the results of this study.

We include the performance of a vanilla GPT-2 model to show

the importance of employing the MTL approach to jointly train

models on different representations of source code. The results show

that employing the MTL technique to train the models jointly on

multiple tasks indeed helps the model learn better. Next, we conduct

experiments to compare hard-parameter and soft-parameter models

with the two-task MTL model. It is worth mentioning that for

the hard-parameter sharing variation, we need to input a unified

representation to the models. Thus, we concatenate the type and

value of each token as 𝑥𝑖 = [𝑡𝑖 , 𝑣𝑖] and then feed the vectors of this
concatenated representation to the MTL model. The results indicate

that the soft-parameter sharing works better in our case. This is

probably because this setting allows each task to have its ownmodel

and parameters and then regularizes the distance between them to

409

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Izadi, et al.

Figure 6: Results for the SLP task

Table 7: Effectiveness of Different Components of theModel

Approach Tasks Train Time Accuracy MRR

GPT-2 Value 12h 77.7 78.2

MTL HP Value, Type 17h 78.3 79.6

MTL SP Value, Type 19h 78.9 79.5

MTL SP Value, Type, Statement 24h 80.6 81.7

encourage the parameters to be similar. Finally, to verify whether

adding information regarding statements helps, we investigate the

effect of adding the third task, statement completion. The results

demonstrate that training on two different granularity (single-token

and statement) also helps them learn better. To conclude, each

component of the proposed model adds to its value. Although the

training time increases, it can be argued that training time is a one-

time cost, and can be significantly reduced with parallel training

on multiple GPUs.

5.4 Runtime Characteristics

An important aspect of ML-based autocompletion tools is their

prediction latency. A very accurate model that takes 1 second per

prediction will not be very useful in practice as it will interfere

with the developer’s workflow. As Table 8, all models feature an

average latency of less than 100 milliseconds, which is considered

the golden standard in the industry.

Moreover, the model size and number of parameters are impor-

tant practical aspects that affect a model’s deployment; if the model

is too big, it will need to be deployed centrally and clients should

connect to the model server over a network connection (which may

affect latency negatively), otherwise, it could be distributed to the

clients. As Table 8 shows, CodeFill’s number of parameters is more

Table 8: Runtime Characteristics

Approach Train Time (hr) Latency (ms) #Params

n-gram + LSTM [17] 23 75 168M

Pointer Mixture [29] 18 62 177M

OpenVocab [24] 21 61 145M

T-XL + Bi-LSTM [32] 24 79 173M

GPT-C [49] 23 74 125M

TravTrans+ [25] 15 53 119M

CodeFill 24 73 258M

than other baselines due to our architecture specification. However,

the size of all Transformer-based models makes them impractical

for distribution to clients, necessitating centralized deployments.

6 CONTRIBUTIONS AND IMPLICATIONS

Autocompletion is a popular research area, however, the existing

challenges leave substantial margin for improvement, particularly

for recommending identifiers or completing longer sequences [18].

In this study, CodeFill learns from sequences of both token types

and token names simultaneously using MTL. The contribution of

this work is twofold;

Technical novelty: Similar to the state-of-the-art [25, 49], we

use transformers for learning a name-based sequencing model,

and similar to the studies by Liu et al. [32, 33], we use the MTL

technique to condition our models under different tasks. However,

IntelliCodeCompose [49] treats code as natural text, neglecting the

rich structure inherent in programs. Moreover they focus on multi-

lingual LMs. TravTrans+ [25] uses serialized ASTs in an attempt

to learn from structure, however, we show that our novel transfor-

mation, which we designed so that it is closer to how developers

410

CodeFill: Multi-token Code Completion by Jointly Learning from Structure and Naming Sequences ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

treat source code structure, outperforms TravTrans+. CodeFill also

learns from our novel statement completion task to consider longer

contexts. Both Figure 6 and Table 7 show that this technique im-

proves the model, probably by helping it better utilize completion

context. The combination of the above demonstrably results in

higher evaluation scores and better recommendations.

Evaluation: We propose two novel evaluation tasks, cardinal

point, and statement completion, to address deficiencies in current

autocompletion evaluation setups. We also collect, pre-process,

deduplicate, and share an large Python dataset, consisting of prac-

tically all Python code on GitHub.

7 THREATS TO THE VALIDITY

Threats to internal validity: These include the threats pertaining

to the parameters affecting the performance of the model. Another

threat in this section relates to the errors in the implementation

of the baselines. For all of these approaches, we have used the

replication packages provided by these studies.

Threats to external validity: These threats relate to the qual-

ity of the datasets we used and the generalizability of the results.

We used two Python datasets; PY117K is a benchmark dataset [40]

frequently used in the literature [24, 25, 29, 32]. PY1690K, our sec-

ond dataset, is ten times larger with approximately 1.7𝑀 program

files. More data can lead to more generalizable results. Furthermore,

as Allamanis. [2] suggests, we have de-duplicated both datasets to

avoid biasing the models. All of the programs in both datasets are

collected from open-source GitHub repositories. However, further

studies are needed to validate and generalize our findings to other

programming languages.

Threats to construct validity: These relate to the suitability

of the evaluation setting and metrics. In this work, we have tried

to incorporate diverse evaluation measures. For the TLP task, we

have used standard evaluation metrics, namely Accuracy and MRR

in the top-one and top-ten recommendations which are both fre-

quently used in the literature [24, 25, 29, 32]. Furthermore, we use

ROUGE-L and METEOR scores for evaluation in the SLP task as

used in previous studies on source sequence of code generation,

summarization, and translation [1, 49].

8 CONCLUSION AND FUTUREWORK

Unlike natural language text, source code is more structured, its

grammar is more well defined but its vocabulary is orders of mag-

nitude bigger. Consequently, NLP-based models and corresponding

evaluation methods need to be adapted to the particular case of

source code.

In this work, we proposed CodeFill, a Transformer-based gen-

erative LM for source code pre-trained on three tasks closely rele-

vant to programming. Given a context of tokens (and their types),

CodeFill is trained to predict (1) the type of the next token, (2) its

value, and (3) the values of up to 𝑛 next tokens. We employ the

MTL approach to jointly train CodeFill on the above tasks. We also

propose 2 novel evaluation tasks, cardinal point prediction and

statement-level multi-token prediction, which we argue that they

better represent how autocompletion systems are used in practice.

We extensively evaluate CodeFill against six baselines on both tasks.

Our results indicate that CodeFill outperforms all the baselines in all

scenarios, achieving state of the art scores on both accuracy (80.6%)

and MRR (81.7%) in the basic token-level prediction task. Moreover,

we show that CodeFill also learns to autocomplete statements of up

to 4 tokens with over 70% accuracy, a significant improvement over

the baselines, making it practical to offer statement completions as

an IDE feature.

In the future, we plan to incorporate more domain specific knowl-

edge on aspects of training and evaluating a training ML models.

For instance, one can limit the context fed to the model based on the

programming language to better incorporate related information

of functions and nested scopes in a piece of code. We also plan to

further investigate statement completion, including better metrics

for its evaluation.

ACKNOWLEDGMENTS

This work has received funding from the European Union’s Horizon

2020 research and innovation programme under grant number

825328 (FASTEN project), and also the NWO MIPL project, grant

number 628.008.003.

REFERENCES
[1] Alireza Aghamohammadi, Maliheh Izadi, and Abbas Heydarnoori. 2020. Gener-

ating summaries for methods of event-driven programs: An Android case study.
Journal of Systems and Software 170 (2020), 110800. https://doi.org/10.1016/j.jss.
2020.110800

[2] Miltiadis Allamanis. 2019. The adverse effects of code duplication in machine
learning models of code. In Proceedings of the 2019 ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Reflections on Programming and
Software. 143–153.

[3] Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles Sutton. 2018.
A survey of machine learning for big code and naturalness. ACM Computing
Surveys (CSUR) 51, 4 (2018), 1–37.

[4] Miltiadis Allamanis and Charles Sutton. 2014. Mining idioms from source code.
In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering. 472–483.

[5] Sven Amann, Sebastian Proksch, Sarah Nadi, and Mira Mezini. 2016. A study
of visual studio usage in practice. In 2016 IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER), Vol. 1. IEEE, 124–134.

[6] Gareth Ari Aye and Gail E Kaiser. 2020. Sequence model design for code comple-
tion in the modern IDE. arXiv preprint arXiv:2004.05249 (2020).

[7] Gareth Ari Aye, Seohyun Kim, and Hongyu Li. 2021. Learning autocompletion
from real-world datasets. In 2021 IEEE/ACM 43rd International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP). IEEE, 131–
139.

[8] Pavol Bielik, Veselin Raychev, and Martin Vechev. 2016. PHOG: probabilistic
model for code. In International Conference on Machine Learning. 2933–2942.

[9] Marcel Bruch, MartinMonperrus, andMiraMezini. 2009. Learning from examples
to improve code completion systems. In Proceedings of the 7th joint meeting of
the European software engineering conference and the ACM SIGSOFT symposium
on the foundations of software engineering. 213–222.

[10] Paweł Budzianowski and Ivan Vulić. 2019. Hello, It’s GPT-2-How Can I Help You?
Towards the Use of Pretrained Language Models for Task-Oriented Dialogue
Systems. In Proceedings of the 3rd Workshop on Neural Generation and Translation.
15–22.

[11] Rich Caruana. 1997. Multitask learning. Machine learning 28, 1 (1997), 41–75.
[12] Santanu Kumar Dash, Miltiadis Allamanis, and Earl T. Barr. 2018. RefiNym: Using

Names to Refine Types. In Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (Lake Buena Vista, FL, USA) (ESEC/FSE 2018). Association
for Computing Machinery, New York, NY, USA, 107–117. https://doi.org/10.
1145/3236024.3236042

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[14] Yoav Goldberg. 2017. Neural network methods for natural language processing.
Synthesis lectures on human language technologies 10, 1 (2017), 1–309.

[15] Georgios Gousios and Diomidis Spinellis. 2012. GHTorrent: GitHub’s Data from a
Firehose. InMSR ’12: Proceedings of the 9thWorking Conference on Mining Software
Repositories (Zurich, Switzerland), Michael W. Godfrey and Jim Whitehead (Eds.).
IEEE, 12–21. https://doi.org/10.1109/MSR.2012.6224294

411

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Izadi, et al.

[16] Donghoon Ham, Jeong-Gwan Lee, Youngsoo Jang, and Kee-Eung Kim. 2020.
End-to-end neural pipeline for goal-oriented dialogue systems using GPT-2.
In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics. 583–592.

[17] Vincent J Hellendoorn and Premkumar Devanbu. 2017. Are deep neural networks
the best choice for modeling source code?. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering. 763–773.

[18] Vincent J Hellendoorn, Sebastian Proksch, Harald C Gall, and Alberto Bacchelli.
2019. When code completion fails: A case study on real-world completions. In
2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE,
960–970.

[19] Abram Hindle, Earl T Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu.
2012. On the naturalness of software. In 2012 34th International Conference on
Software Engineering (ICSE). IEEE, 837–847.

[20] DaqingHou andDavidMPletcher. 2010. Towards a better code completion system
by API grouping, filtering, and popularity-based ranking. In Proceedings of the
2nd International Workshop on Recommendation Systems for Software Engineering.
26–30.

[21] Maliheh Izadi, Kiana Akbari, and Abbas Heydarnoori. 2022. Predicting the
objective and priority of issue reports in software repositories. Empirical Software
Engineering 27, 2 (2022), 1–37. https://doi.org/10.1007/s10664-021-10085-3

[22] Maliheh Izadi, Abbas Heydarnoori, and Georgios Gousios. 2021. Topic recom-
mendation for software repositories using multi-label classification algorithms.
Empirical Software Engineering 26, 5 (2021), 1–33. https://doi.org/10.1007/s10664-
021-09976-2

[23] Xianhao Jin and Francisco Servant. 2018. The Hidden Cost of Code Completion:
Understanding the Impact of the Recommendation-List Length on Its Efficiency.
In Proceedings of the 15th International Conference on Mining Software Repositories
(Gothenburg, Sweden) (MSR ’18). Association for Computing Machinery, New
York, NY, USA, 70–73. https://doi.org/10.1145/3196398.3196474

[24] Rafael-Michael Karampatsis, Hlib Babii, Romain Robbes, Charles Sutton, and An-
drea Janes. 2020. Big code!= big vocabulary: Open-vocabulary models for source
code. In 2020 IEEE/ACM 42nd International Conference on Software Engineering
(ICSE). IEEE, 1073–1085.

[25] Seohyun Kim, Jinman Zhao, Yuchi Tian, and Satish Chandra. 2021. Code Pre-
diction by Feeding Trees to Transformers. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). 150–162. https://doi.org/10.1109/
ICSE43902.2021.00026

[26] Yoon Kim, Yacine Jernite, David Sontag, and Alexander M Rush. 2016. Character-
aware neural language models. In Thirtieth AAAI conference on artificial intelli-
gence.

[27] Alon Lavie, Kenji Sagae, and Shyamsundar Jayaraman. 2004. The significance of
recall in automatic metrics for MT evaluation. In Conference of the Association
for Machine Translation in the Americas. Springer, 134–143.

[28] Jieh-Sheng Lee and Jieh Hsiang. 2020. Patent claim generation by fine-tuning
OpenAI GPT-2. World Patent Information 62 (2020), 101983.

[29] Jian Li, Yue Wang, Michael R Lyu, and Irwin King. 2017. Code completion with
neural attention and pointer networks. arXiv preprint arXiv:1711.09573 (2017).

[30] Chin-Yew Lin. 2004. Rouge: A package for automatic evaluation of summaries.
In Text summarization branches out. 74–81.

[31] Chang Liu, Xin Wang, Richard Shin, Joseph E Gonzalez, and Dawn Song. 2016.
Neural code completion. (2016).

[32] Fang Liu, Ge Li, Bolin Wei, Xin Xia, Zhiyi Fu, and Zhi Jin. 2020. A Self-Attentional
Neural Architecture for Code Completion with Multi-Task Learning. In Proceed-
ings of the 28th International Conference on Program Comprehension. 37–47.

[33] Fang Liu, Ge Li, Yunfei Zhao, and Zhi Jin. 2020. Multi-task Learning based
Pre-trained Language Model for Code Completion. In 2020 35th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE). IEEE, 473–485.

[34] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. 2015. Effec-
tive approaches to attention-based neural machine translation. arXiv preprint
arXiv:1508.04025 (2015).

[35] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev Khu-
danpur. 2010. Recurrent neural network based language model. In Eleventh
annual conference of the international speech communication association.

[36] Son Nguyen, Tien Nguyen, Yi Li, and Shaohua Wang. 2019. Combining program
analysis and statistical language model for code statement completion. In 2019
34th IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 710–721.

[37] Tung Thanh Nguyen, Anh Tuan Nguyen, Hoan Anh Nguyen, and Tien N Nguyen.
2013. A statistical semantic language model for source code. In Proceedings of the
2013 9th Joint Meeting on Foundations of Software Engineering. 532–542.

[38] Dragomir R Radev, Hong Qi, Harris Wu, and Weiguo Fan. 2002. Evaluating
Web-based Question Answering Systems.. In LREC. Citeseer.

[39] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2019. Language Models are Unsupervised Multitask Learners. (2019).

[40] Veselin Raychev, Pavol Bielik, and Martin Vechev. 2016. Probabilistic model for
code with decision trees. ACM SIGPLAN Notices 51, 10 (2016), 731–747.

[41] Veselin Raychev, Pavol Bielik, Martin Vechev, and Andreas Krause. 2016. Learning
programs from noisy data. ACM Sigplan Notices 51, 1 (2016), 761–774.

[42] Romain Robbes and Michele Lanza. 2008. How program history can improve
code completion. In 2008 23rd IEEE/ACM International Conference on Automated
Software Engineering. IEEE, 317–326.

[43] Romain Robbes and Michele Lanza. 2010. Improving code completion with
program history. Automated Software Engineering 17, 2 (2010), 181–212.

[44] Herbert Robbins and Sutton Monro. 1951. A stochastic approximation method.
The annals of mathematical statistics (1951), 400–407.

[45] Sebastian Ruder. 2017. An overview of multi-task learning in deep neural net-
works. arXiv preprint arXiv:1706.05098 (2017).

[46] Hinrich Schütze, Christopher D Manning, and Prabhakar Raghavan. 2008. Intro-
duction to information retrieval. Vol. 39. Cambridge University Press Cambridge.

[47] Holger Schwenk and Jean-Luc Gauvain. 2002. Connectionist language modeling
for large vocabulary continuous speech recognition. In 2002 IEEE International
Conference on Acoustics, Speech, and Signal Processing, Vol. 1. IEEE, I–765.

[48] Ozan Sener and Vladlen Koltun. 2018. Multi-task learning as multi-objective
optimization. arXiv preprint arXiv:1810.04650 (2018).

[49] Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and Neel Sundaresan. 2020.
Intellicode compose: Code generation using transformer. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 1433–1443.

[50] Alexey Svyatkovskiy, Sebastian Lee, Anna Hadjitofi, Maik Riechert, Juliana Vi-
cente Franco, and Miltiadis Allamanis. 2021. Fast and memory-efficient neural
code completion. In 2021 IEEE/ACM 18th International Conference on Mining
Software Repositories (MSR). IEEE, 329–340.

[51] Alexey Svyatkovskiy, Ying Zhao, Shengyu Fu, and Neel Sundaresan. 2019. Pythia:
Ai-assisted code completion system. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 2727–2735.

[52] Zhaopeng Tu, Zhendong Su, and Premkumar Devanbu. 2014. On the localness
of software. In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering. 269–280.

[53] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. arXiv preprint arXiv:1706.03762 (2017).

[54] Fengcai Wen, Emad Aghajani, Csaba Nagy, Michele Lanza, and Gabriele Bavota.
2021. Siri, Write the Next Method. In 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE). IEEE, 138–149.

[55] Yixiao Yang, Yu Jiang, Ming Gu, Jiaguang Sun, Jian Gao, and Han Liu. 2017.
A language model for statements of software code. In 2017 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 682–
687.

[56] Yu Zhang and Qiang Yang. 2021. A survey on multi-task learning. IEEE Transac-
tions on Knowledge and Data Engineering (2021).

412

