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Abstract An areal distribution of sensors can be used
for estimating the direction of incoming waves through
beamforming. Beamforming may be implemented as
a phase-shifting and stacking of data recorded on
the different sensors (i.e., conventional beamforming).
Alternatively, beamforming can be applied to cross-
correlations between the waveforms on the different
sensors. We derive a kernel for beamforming cross-
correlated data and call it cross-correlation beamform-
ing (CCBF). We point out that CCBF has slightly
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better resolution and aliasing characteristics than con-
ventional beamforming. When auto-correlations are
added to CCBF, the array response functions are the
same as for conventional beamforming. We show nu-
merically that CCBF is more resilient to non-coherent
noise. Furthermore, we illustrate that with CCBF
individual receiver-pairs can be removed to improve
mapping to the slowness domain. An additional flexi-
bility of CCBF is that cross-correlations can be time-
windowed prior to beamforming, e.g., to remove the
directionality of a scattered wavefield. The observa-
tions on synthetic data are confirmed with field data
from the SPITS array (Svalbard). Both when beam-
forming an earthquake arrival and when beamforming
ambient noise, CCBF focuses more of the energy to a
central beam. Overall, the main advantage of CCBF is
noise suppression and its flexibility to remove station
pairs that deteriorate the signal-related beampower.

Keywords Beamforming · Cross-correlation ·
Waveform characterization

1 Introduction

In various application areas, e.g., seismology, astron-
omy, and geodesy, arrays of sensors are used to char-
acterize incoming wavefields due to distant sources.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10950-016-9612-6&domain=pdf
http://orcid.org/0000-0001-7153-5115
http://dx.doi.org/10.1007/s10950-016-9612-6
mailto:e.n.ruigrok@uu.nl
mailto:steven@norsar.no
mailto:c.p.a.wapenaar@tudelft.nl


J Seismol

Beamforming is a general term for phase-adjusted
summations over the different array elements. Beam-
forming may be used to steer the measured wavefield
to a single direction (e.g., van Veen and Buckley 1988;
Rost and Thomas 2002). By doing so, the beam-
former acts as a spatial filter, yielding data with an
improved signal-to-noise ratio for the phase-shifts
specified. Alternatively, beamforming may be used
to diagnose an array measurement. In this case, the
phase-adjusted summations are performed for a range
of backazimuths and slownesses; each backazimuth
and slowness describes one plane-wave model. The
models that show the greatest consistency with the
measured wavefield lead to a large stacking power,
which is called beampower in the following. Hence,
a plot of the beampower is then used to unravel the
directions of the measured wavefields. In this study,
we use beamforming as a diagnostic tool.

Instead of applying phase shifts to the actual wave-
forms recorded on the different sensors, phase shifts
can be applied to cross-correlations between these
waveforms (Birtill and Whiteway 1965). In the latter
case, wavefield models (usually plane-wave approxi-
mations) are sought which best explain the measured
phase differences between the signals on the differ-
ent array elements. An early advocate of this approach
are Posmentier and Herrmann (1971), who demon-
strated the statistical advantages of what they coined
the “cophase” method. Their method, and small varia-
tions to it, became common in sound monitoring (e.g.,
Boone et al. 2000). In seismology, cross-correlations
between waveforms on different sensors has long been
employed to refine estimates of signal delay times
(e.g., VanDecar and Crosson 1990). Frankel et al.
(1991) employed a method akin to co-phase that they
termed ZLCC (zero-lag cross-correlation) to scan the
slowness parameter space. This method and related
procedures have been applied to near-field (e.g.,
Almendros et al. 1999; Wassermann and Ohrnberger
2001; Cros et al. 2011; Hillers et al. 2014), regional
(e.g., Gibbons et al. 2011), and global-scale (e.g.,
Landès et al. 2010) parameter estimation scenarios.
A probabilistic expansion of ZLCC has been derived
in Saccorotti and Del Pezzo (2000). Infrasound
signals are typically coherent between neighboring
sensors over far longer time-durations than seismic
signals, which makes them particularly amenable to
cross-correlation based processing. In the context
of monitoring compliance with the Comprehensive

Nuclear-Test-Ban Treaty (CTBT), infrasound signal
detection at the prototype International Data Cen-
tre was originally based on a ZLCC-type estimator
(Brown et al. 2002). However, this procedure has
been replaced at the International Data Center by
PMCC (progressive multichannel cross-correlation,
Cansi 1995), which estimates parameters based upon
the cross-correlation-derived time-delays with maxi-
mum power rather than on a more informative grid-
search procedure.

In seismology, continuous data are routinely cross-
correlated to find virtual responses as if there were a
source at one of the receivers and the induced wave-
field were detected by the other receivers. A detailed
description of this method, called seismic interfer-
ometry, can, e.g., be found in Larose et al. (2006),
Bensen et al. (2007), and Wapenaar et al. (2010).
To assess the accuracy with which these responses
are retrieved, it is necessary to estimate the spectral
content of the input data. This can be done through
beamforming (Stehly et al. 2006; Yao et al. 2009;
Ruigrok et al. 2012; Draganov et al. 2013; Almagro
Vidal et al. 2014). The availability of cross-correlated
data makes it a straightforward to apply also the beam-
forming to these cross-correlated data. But does this
yield the same results as beamforming the original
data?

In this study, we compare beamforming cross-
correlated data (cross-correlation beamforming or
CCBF) with beamforming the original data (con-
ventional beamforming or BF). We do not consider
improvements to conventional beamforming, like
Capon beamforming, since they can be applied both
for BF and for CCBF. Nor do we discuss non-linear
stacking methods in much detail, like nth root stack-
ing (Muirhead 1968) and phase-weighted stacking
(Schimmel and Paulssen 1997) since again they are
equally applicable to both methods.

In the following, we start with reviewing a kernel
for conventional beamforming. We continue by deriv-
ing a kernel for beamforming cross-correlated data
and we assess how it relates to other beamforming
methods which include cross-correlations. The mathe-
matical descriptions form the basis for comparing the
different methods.We compare resolution and aliasing
by computing array-response functions. BF and CCBF
are surprisingly similar, but for the fact that with
BF, implicitly, also non-informative auto-correlations
are included. After that, we study how the methods
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perform with different levels of non-coherent noise.
Next, we illustrate the enhanced flexibility of CCBF
by having control on individual receiver pairs. In the
end, we compare BF and CCBF for estimating wave-
form characteristics from field data, and we study the
effect of time-windowing cross-correlations prior to
beamforming.

2 Theory

In this section, we formulate an implementation of
conventional beamforming in the frequency domain.
Next, we introduce the expression for cross-correla-
tion beamforming and show that it is similar to cross-
correlation and stacking of phase-adjusted recordings.
We continue by stating the expressions for the array-
response functions (ARFs). In the last subsection,
these ARFs are used to explain the link between the
spatial sampling characteristics of an array and its
resolving power in terms of resolution and aliasing.

2.1 Conventional beamforming

We define d(x(i), t) = [d(x(1), t) d(x(2), t)...d(x(n), t)]
as a two-dimensional data matrix with ns time sam-
ples and n receivers. Furthermore, (i) is a receiver
index and x = [x1 x2 x3] denotes a position vector of a
receiver. Hence, d(x(i), t) is the data vector recorded
at location i. In the following, we assume the sensors
to be placed on a flat surface, reducing the position
vector to x = [x1 x2]. For further processing, we take
the data to the temporal Fourier domain:

d
(
x(i), ω

)
=

∫ ∞

−∞
d

(
x(i), t

)
e−ιωt dt, (1)

where ι denotes the imaginary unit, ω = 2π f is the
angular frequency, and f is the frequency.

With conventional beamforming, the beampower P

(as function of horizontal slowness p, backazimuth
θ , and angular frequency ωo) is computed using the
following equation:

P(p, θ, ωo) =
∣∣∣∣∣

n∑
i=1

d
(
x(i), ωo

)
eιx(i)kT

∣∣∣∣∣
2

, (2)

where the wave vector k is defined as

k = [kE kN ] = ωop[sin(θ) cos(θ)], (3)

and kE and kN denote the wavenumber in the east-
ward and northward direction, respectively, and T

denotes the transpose. Futhermore,ωo is the frequency
for which the beampower is computed. Either (2) is
computed for only this frequency sample or the beam-
power is averaged over a small frequency bin around
ωo (see, e.g., Gal et al. 2014). Equation 3 states that a
wavenumber vector is composed for each combination
of slowness (here the reciprocal of horizontal appar-
ent velocity) and backazimuth, which together define
a plane wave. Equation 2 states that the delay times
τ (i) = x(i)kT are computed for each wavenumber
vector and each receiver. These delay times define—
together with the frequency of interest—phase-shift
terms that are applied to the data values d(x(i), ωo).
Finally, beampowers are obtained by summing the
phase-shifted data over all receivers and by taking the
squared norm of this sum.

Note that the sum in (2) is an approximation of the
two-dimensional spatial Fourier Transform. For a reg-
ularly sampled array, the distance between the array
elements dx determines the Nyquist wavenumber,
i.e., the maximum wavenumber that can be mapped
unambiguously: kNyq = π/(2dx). For an irregu-
larly sampled array of stations, the clear distinction
between directly mapped wavenumbers and aliasing,
vanishes.

2.2 Cross-correlation beamforming

With cross-correlation beamforming, the data are first
cross-correlated for all possible receiver pairs. In the
frequency domain, the cross-correlations can be writ-
ten as

c
(
x(i), x(j), ω

)
= d

(
x(i), ω

) {
d(x(j), ω)

}∗
, (4)

where ∗ denotes the complex conjugate. The corre-
lation function c(x(i), x(j), ω) is only evaluated for
i �= j , i.e., all auto-correlations are left out, since they
do not contain directivity information. Consequently,
for n receivers, we have q = n(n − 1) receiver pairs
(of which n(n−1)/2 are unique) and q corresponding
cross-correlations remaining. These are concatenated
to a two-dimensional matrix (in case of multiple fre-
quencies): c(ω) = [c(1)(ω) c(2)(ω) ... c(q)(ω)], where,



J Seismol

e.g., c(1)(ω) = d(x(1), ω){d(x(2), ω)}∗ and c(q)(ω) =
d(x(n−1), ω){d(x(n), ω)}∗. With CCBF, the beam-
power P̌ is computed using the following equation:

P̌ (p, θ, ωo) =
∣∣∣∣∣

q∑
k=1

c(k)(ωo)e
ιωo2h(k)p cos(θ(k)−θ)

∣∣∣∣∣ , (5)

where h(k) are the half offsets (i.e., half of the
receiver-pair separations), θ(k) are the receiver-pair
azimuths, and (k) is a receiver-pair index. The deriva-
tion of the receiver-pair delay-time expression τ (k) =
2h(k)(p cos(θ(k) − θ)) can be found in the follow-
ing subsection. The delay times are computed for
each receiver-pair and for each plane-wave defined
by p and θ . These delay times define—together with
the frequency of interest—phase-shift terms that are
applied to the cross-correlated data. Finally, beam-
powers are obtained by summing the phase-shifted
cross-correlations over all receivers and by taking the
absolute value (complex modulus) of this sum.

Note that in (5), no squared norm is taken, like
in (2), since the cross-correlation of the data already
yields an energy measure. To obtain a power quantity,
a division would need to be made by the duration of
the input data. In (2) and (5), we do not explicitly write
this division.

When (5) is averaged over a frequency band
with varying signal strength over this bandwidth, it
is advantageous to replace the cross-correlation by
a spectrally normalized cross-correlation, e.g., the
cross-coherence:

h
(
x(i), x(j), ω

)
= d

(
x(i), ω

) {
d(x(j), ω)

}∗

|d (
x(i), ω

) ||d (
x(j), ω

) | . (6)

CCBF (5) and the co-phase method (Posmentier
and Herrmann 1971) are nearly identical. With co-
phase, the exponential in (5) is replaced by a cosine.
This cosine term is multiplied with a sum of the ampli-
tude spectra at the different receivers. Equation 5,
on the other hand, contains a multiplication of the
amplitude spectra (which is hidden in the correlation
function c(k)(ωo)). The co-phase was written as a sum
over a large frequency bandwidth, unlike a small fre-
quency band, or a single frequency, like in (5). To
assure equal contribution of the different frequencies,
despite differences in amplitudes, with co-phase each
monochromatic result is normalized with the sum of
the amplitude spectra at the different receivers, instead

of with the multiplication of the amplitude spectra,
like in (6).

2.3 Correlation beamforming

Frankel et al. (1991) suggested to first apply time
shifts to the data and subsequently to cross-correlate
the data for all possible receiver pairs. If we addition-
ally take the absolute value, their approach amounts—
in the frequency domain—to

P̂ (p, θ, ω) =
∣∣∣∣∣∣

n∑
i=1

n∑
j=1

d
(
x(i), ω

)
eι(x(i)kT

{
d(x(j), ω)eι(x(j))kT

}∗
∣∣∣∣∣ . (7)

Equation 7 can be re-organized to

P̂ (p, θ, ω) =
∣∣∣∣∣∣

n∑
i=1

n∑
j=1

d
(
x(i), ω

) {
d

(
x(j), ω

)}∗

eι
(
x(i)−x(j)

)
kT

∣∣∣∣∣∣
. (8)

Further, by rewriting the vector (x(i) − x(j)) to
2h(ij)[sin(θ(ij)) cos(θ(ij))], where θ(ij) is the receiver-
pair azimuth and h(ij) = |x(i) − x(j)|/2 is the half
offset, we find

P̂ (p, θ, ω) =
∣∣∣∣∣∣

n∑
i=1

n∑
j=1

d
(
x(i), ω

) {
d(x(j), ω)

}∗

eιω2h(ij)p
[
sin

(
θ(ij)

)
sin(θ)+cos

(
θ(ij)

)
cos(θ)

]
∣∣∣∣∣∣
.

(9)

Using the trigonometric product-to-sum identity:

sin(θ(ij)) sin(θ) + cos(θ(ij)) cos(θ) = cos(θ(ij) − θ),

(10)

leaving out the auto-correlations and computing the
beampower only for a single frequency or frequency
bin, we find again (5). Hence, applying phase shifts
prior to cross-correlation is similar to applying phase
shifts after cross-correlation.

Applying (7), (8), or (9) for beamforming in small
frequency bands, we call correlation beamforming
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(CBF). The only difference between CBF and CCBF
is that auto-correlations are left out from the latter.

Note that Frankel et al. (1991) do not apply
cross-correlations for all possible time lags. Instead,
they multiply the time-shifted seismograms in the
time domain, which operation corresponds to zero-lag
cross-correlation. Hence, the name of their method:
zero-lag cross-correlation (ZLCC). All dominant con-
tributions are at the zero time lag. Therefore, in
practice, it makes little difference whether the cross-
correlation is extended to larger time lags or not. This
is shown in Section 6.

2.4 Array response functions

To compare different beamforming approaches, we
use the array-response functions (ARFs) (Birtill
and Whiteway 1965). The ARF is the beampower
for a given plane-wave model, array configuration
and beamforming method. The ARFs can be com-
puted prior to the actual installation of an array
to assess the resolving power for the expected
waveforms.

The directionality of a plane-wave wavefield is
defined by kS = ωopS[sin(θS) cos(θS)], where pS and
θS are the slowness and backazimuth of the wave-
field. The backazimuth is defined with respect to
the center of gravity of the array. For an array of
receivers located at x, the phase delay of an amplitude-
normalized monochromatic plane wave at receiver i

reads as e−ιx(i)(kS)T . Using the conventional beam-
forming (BF) beampower expression (2), the ARF is
obtained by substituting the data values with the plane
wavefield expression, yielding:

P(p, θ, ωo; pS, θS) =
∣∣∣∣∣

n∑
i=1

eιx(i)(k−kS)T

∣∣∣∣∣
2

. (11)

For cross-correlated data, the (differential) am-
plitude-normalized monochromatic plane wavefield
defined by pS and θS can be expressed as
e−ιωo2h(k)pS cos(θ(k)−θS). By substituting this cross-cor-
related data model in (5), the cross-correlation-
beamforming (CCBF) ARF is obtained:

P̌ (p, θ, ωo; pS, θS) =∣∣∣∣∣
q∑

k=1
eιωo2h(k)(p cos(θ(k)−θ)−pS cos(θ(k)−θS))

∣∣∣∣∣ . (12)

The ARF for CBF (9) is the same as (12), with the
exception that the summation incorporates the auto-
correlations. Hence, instead of summing over q =
n(n − 1) receiver pairs, the summation is extended to
q = n2 combinations.

2.5 Resolution and aliasing

In this section, we show an example of an ARF for
cross-correlation beamforming. This ARF serves to
illustrate the connection between the spatial element
distribution and resolution and aliasing characteristics
in the beampower domain.

From the ARCES array (Mykkeltveit et al. 1990)
in northern Norway (Fig. 1), we select stations ARA1,
ARA2, and ARB2. Figure 2a shows the station
distribution. The array samples a distribution of
(receiver-pair) azimuths and offsets, which determine
the resolution and aliasing in the p − θ domain for
a given frequency. Each station pair samples one dis-
tance 2h(k) in two directions θ(k) & θ(k) + 180◦.
Figure 2b displays the distribution of both parameters.

Figure 2c shows the CCBF ARF (12). As a source
model, a plane wave is used with f = 5 Hz,
impinging the array from vertically below, that is
with pS = 0. The ARF is shown in a polar plot,
where the slowness axis is along the radius and the
backazimuth axis is along the circumference. In this
and subsequent figures, the beampower is normal-
ized using the maximum beampower within the plot-
ted range. The ARF correcly maps a peak power at
p = 0. The power only slowly diminishes for larger
slowness, which limits the resolution in the p − θ

plane.
The resolution is dependent on the maximum

receiver offset (i.e., the aperture of the array). This
offset is azimuth dependent (Fig. 2b) and hence also
the resolution is azimuth dependent. This can be seen
in Fig. 2c: the area where the power remains high
is an ellipse rather than a circle, with the minor
semi-axis corresponding to the direction with the
largest offset. For simplicity, we approximate the
resolution slowness as a backazimuth independent
function:

pRes = 1/(4hmaxf ), (13)

where 2hmax is the largest offset within the array. With
f = 5 Hz and 2hmax = 0.3 km (Fig. 2b), this yields
pRes = 0.33 s/km.
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Fig. 1 A regional overview
of Svalbard and
Scandinavia, including the
locations and configurations
of a the SPITS, b the
ARCES array. The green
circle denotes the location
of the earthquake which
response is beamformed in
Section 6. Orange triangles
denote the locations of the
arrays, and green triangles
denote seismic sensors
within the arrays
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slownesses. The Nyquist slowness, i.e., the slow-
ness beyond which repetition occurs, we approximate
with

pNyq = 1/(4hminf ), (14)
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Fig. 2 Array configuration, sampling and array-response func-
tions(ARFs) for cross-correlation beamforming. a An array
assembled by combining three stations (green triangles) of the
ARCES array. The relevant parameters are indicated: 2h(k)

denotes the offsets between different array elements and θ(k)

denotes the azimuths of the lines connecting the different ele-
ments (receiver-pair azimuths). b A distribution plot showing

the azimuthal and offset distribution of the receiver pairs in a.
c ARF for beamforming a plane-wave source with pS = 0 and
f = 5 Hz and d ARF for beamforming the same plane-wave
source from 3 to 7 Hz. e As d but squared beampower instead
of beampower is displayed. In c–e, the radial axes represent
slowness, from 0 to 1.0 s/km



J Seismol

where hmin is the smallest half-offset within the array.
With f = 5 Hz and 2hmin = 0.25 km we find pNyq =
0.4 s/km. In Fig. 2c, aliasing maxima occur at ∼
2pNyq . As the aliasing, like the resolution, is in fact
a direction dependent function, the aliasing artifacts
appear precisely in between the azimuths that are
sampled.

The Nyquist slowness is frequency dependent.
Hence, if the signal is coherent over a band of frequen-
cies, the mapping to the p−θ domain can be improved
by stacking the beampower over this band. Figure 2d
shows the resulting beampower for stacking the ARFs
over a frequency range from 3 to 7 Hz (with incre-
ments of 0.5 Hz). Over this band, the signal is assumed
to be stable in directivity. For higher frequency, pNyq

goes down (14) and the aliasing thus moves towards
the center of the p − θ domain. This frequency depen-
dence of the aliasing leads to a smearing of the aliased
beampowers. The maximum beampower related to
the actual directivity of the signal is not frequency
dependent. Consequently, stacking beampower over
frequency leads to a power reduction of the alias-
ing artifacts and improves detectability of the actual
directivity of the signal.

The p − θ domain plots in Fig. 2c, d, and plots
alike, could visually be improved by not plotting the
power, but the power squared, or even higher pow-
ers of the power. Since 10 log10 P̃ 2 = 20 log10 P̃ , the
logarithm of the squared power difference between
signal and artifacts becomes twice as big as that of
the non-squared power difference. Figure 2e shows the
power-squared version of 2e and the further reduction
of artifacts can be appreciated here. Such non-linear
improvement is worth considering when only the
directivity of the dominant arrival is of interest. When
the measurement contains wavefields with different

directivity and amplitude, the non-linear enhancement
will likewise amplify the primary beam with respect to
the less energetic, but still physical, secondary beams.
In the following, we will leave out such non-linear
enhancements since they can equally be applied to
enhance the output of BF, CBF, and CCBF.

3 ARF comparison

In this section, we compare the ARF for conventional,
correlation, and cross-correlation beamforming. We
use the station configuration of the SPITS array
(Gibbons et al. 2011), which is a concentric distribu-
tion of nine stations. Figure 1 shows the location of the
array. Figure 3a depicts the configuration of the array
elements. The Supporting Material includes sampling
characteristics of the SPITS array (Fig. SM1(b)).

The ARFs are computed using (11) and (12) for BF
and CCBF, respectively. For CBF, we also use (12)
as a base, but we expand the summation to include n

auto-correlations. As a source model, a plane wave is
used with f = 5 Hz, impinging the array from verti-
cally below, that is with pS = 0. Figure 3b–d shows
the resulting ARFs.

Studying Fig. 3, it is obvious that the BF ARF
(Fig. 3b) and the CBF ARF (Fig. 3d) are the same.
The CCBF ARF (Fig. 3c) does have a slightly higher
resolution than the two other methods. Note that the
−9 dB ring (blue color) in Fig. 3c occurs for smaller
slowness than in Fig. 3b, d.

Figure 3 shows that, from a sampling perspective,
conventional beamforming (phase-shifting, summing
and taking the squared norm; (2)) is identical to
correlation beamforming (phase-shifting, correlating,
and taking the norm; (7)). The higher resolution of
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Fig. 3 a The configuration of array elements (green trian-
gles) of the SPITS array (Fig. 1) and b–d corresponding ARFs
for varying beamforming implementations, for a plane-wave
source with pS = 0 and f = 5 Hz. ARF for b conventional

beamforming, c cross-correlation beamforming, and d correla-
tion beamforming. In b–d, the radial axes represent slowness,
from 0 to 0.5 s/km
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CCBF with respect to BF and CBF must be ascribed
to the omission of the auto-correlations.

The cause of the higher resolution can be found by
studying the CCBF ARF expression (12). Including
the auto-correlations to the summation would lead to
the addition of neιω0 = n to the beampower, for any
slowness and backazimuth. This additional direction-
independent raise of the beampower lowers the log-
arithmic difference between the power of signal and
the power of spuriously mapped energy in the p − θ

domain. As an effect aliasing goes up and resolution
goes down.

Note that the cross-correlations do not result in an
information gain. Neither is there redundancy in the
cross-correlations if each station pair samples a dif-
ferent azimuth-offset combination. This is the case for
the SPITS array (Fig. SM1(b)). Thus, removing a sta-
tion pair from the SPITS array would deteriorate the
ARF.

4 Robustness

In this section, we assess the robustness of BF and
CCBF in the presence of non-coherent noise. For this
test, we use again the station configuration of the
SPITS array (Svalbard).

We numerically model 164 s of data (16,384 sam-
ples) due to one continuously acting source located
40 km west of the array. This source itself acts as a
noise source, but its wavefield is our signal of interest.
Wave propagation in the horizontal plane is mod-
eled, taking geometrical spreading into account. The
modeling is done in a two-dimensional lossless homo-
geneous acoustic medium with a velocity of 3 km/s.
The source has a peak frequency of 5 Hz. To the coher-
ent (source-emitted) noise, random noise is added with
varying signal-to-noise ratios (SNRs). We express the
SNR in decibel:

SNR = 10 log10
PS

PN

, (15)

where PS is the power of the source-related wavefield
and PN is the power of the non-coherent noise. PS

and PN are computed in the time domain as an aver-
age power over the entire duration of the synthetic
recording (164 s). The noise is forward modeled in the
same frequency band as the signal. The noise, how-
ever, has a nearly white distribution over p, θ space,

whereas the signal is localized to (pS, θS) = (0.33
s/km, 270◦).

Figure 4(left) and (right) show the beampower as
obtained with BF and CCBF, respectively, for the
frequency band f = [4 6] Hz. For BF, the mea-
surement is first chopped up in 36 segments and the
beampower is averaged over these time segments. For
CCBF, the cross-coherence (6) is applied instead of
the cross-correlation, to ensure an equal contribution
of the different frequencies. For BF, for the same
reason, whitening is applied. The complete cross-
correlations (from −164 to 164 s) are used for CCBF.
The black dots in Fig. 4 show the actual parame-
ters of the source with respect to the center of the
array. The first, second, and third rows in Fig. 4 show
the results for a SNR equal to 0, −12, and −24 dB,
respectively.

For SNR = 0 dB (Fig. 4a, b), both BF and CCBF
yield a beampower distribution that is almost equal
to the one that would be obtained without the pres-
ence of non-coherent noise (compare with Fig. 3).
As before, CCBF has a slightly higher resolution in
the p − θ domain. For SNR= −12 dB (Fig. 4c,
d), the source parameters remain well estimated with
both methods. For BF (Fig. 4c), the artifacts increase
in power, while for CCBF (Fig. 4d) the artifacts
remain nearly the same as for SNR = 0 dB. For
SNR = −24 dB (Fig. 4e, f), both BF and CCBF
show a reduced gain. For BF (Fig. 4e), the noise
mapped to the p − θ domain becomes of similar
order as the signal, therefore limiting the detection
capabilities, while for CCBF (Fig. 4f) the beam-
power related to the signal still stands out. How-
ever, interference with noise does somewhat deflect
the maximum beampower from the location of the
source.

CCBF turns out to be more robust than BF in
the presence of non-coherent noise. With CCBF, the
noise is largely suppressed in the cross-correlation
process. The longer the input duration from the origi-
nal data, the more the cross-correlation suppresses the
non-coherent noise. Hence, similar noise reduction
capabilities as in Fig. 4 would not be achieved when
a small time-window around a transient signal is
selected for beamforming. With BF, the non-coherent
noise is suppressed by averaging over multiple time
segments. The source beam is coherent from seg-
ment to segment, whereas the directionality of the
non-coherent noise varies from segment to
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Fig. 4 A comparison of BF (a, c, and e upper row) and CCBF
(b, d, and f lower row) with increasing levels of non-coherent
noise from left to right. Synthetic data are beamformed for a
continuous noise source west of the SPITS array (Fig. 1). The
parameters of the induced wavefield are marked with black dots
at (pS, θS) = (0.33 s/km, 270◦). The first column shows the

beampower for BF (up) and CCBF (down) for an equal power
of signal and noise (that is for an SNR (15) equal to 0 dB). The
second and third column show the beampowers for SNR = −12
and −24 dB, respectively. The radial axes represent slowness,
from 0 to 0.5 s/km

segment. Also for BF, the noise-reduction capabil-
ities get worse for a shorter duration of the input
signal because averaging would take place over less
segments.

For the above examples (Fig. 4), the computation
time of BF and CCBF is 3 and 11 s, respectively, on
an off-the-shelf 2015 laptop. For CCBF, this includes
the computation time for the cross-correlations. When
an array has n stations, for CCBF the computation
time scales with n(n − 1)/2, while for BF it only
scales with n. For arrays with many more than nine
elements, BF would thus be preferred in view of the
shorter computation time. However, for CCBF, the
computation time could be reduced by removing near-
redundant station pairs. In the above examples, BF
requires more computation time than CCBF, mainly
due to averaging the beampower over 36 time seg-
ments for BF. A larger amount of samples than 16,384
would further slow down BF. Hence, for studying the
directivity of a noise field over hours or days, CCBF
would be faster to compute than BF, especially when
cross-correlations are already available for a different
purpose.

5 Flexibility

In this section, we illustrate the enhanced flexibility of
CCBF with respect to BF using a T-shaped array.

T-arrays are logistically convenient, especially for
temporary arrays. They can be deployed from two
intersecting roads (Fig. 5a) and still result in a fairly
regular distribution in receiver-pair azimuths and
offsets (Fig. 5b). In seismology, a T-shaped design has,
e.g., been used for the Yellowknife array (Rost and
Thomas 2002).

Figure 5c, d shows ARFs for BF and CCBF, respec-
tively. Due to the regular sampling, pNyq (14) is
well defined and the beampower is precisely repeated
beyond pNyq , rather than creating aliasing artifacts
with a reduced power, as for non-regularly sampled
arrays. Hence, for the T-array, the aperture in the p−θ

domain is limited. This might be a reason that T-
shaped arrays were frequently used in the past (Birtill
and Whiteway 1965), but have largely been replaced
by concentric arrays (Rost and Thomas 2002). For a
discussion of different array designs and their pros and
cons, see the Supporting Material.
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Fig. 5 Sampling and beamforming characteristics for an
upside-down T-array. a Spatial configuration of the array
with ten receivers (green triangles), with interconnecting lines
between all receivers depicted. b Distribution plot showing the

azimuth and offset distribution of the receiver pairs in a. c BF
ARF and d CCBF ARF for beamforming a plane-wave source
with pS = 0 and f = 5 Hz. In c and d, the radial axes represent
slowness, from 0 to 2.0 s/km

Besides the repetitions, the T-array BF ARF
(Fig. 5c) shows linear aliasing artifacts. These artifacts
find their origin in oversampling. The 0◦, 90◦, 180◦,
and 270◦ azimuths are over represented (Fig. 5b). For
example, the smallest offset is sampled six times in the
90◦ and 270◦ directions and three times in the 0◦ and
180◦ directions.

As we have found in Section 3, BF and CCBF
have similar ARF. However, the resolution and level
of aliasing is somewhat better for CCBF due to the
omission of autocorrelations. Thus, also for the T-
array CCBF ARF, the same repetitions and linear
aliasing features exist as in Fig. 5c. However, for
CCBF, we have the flexibility to improve the array
response by removing the oversampling. In Fig. 5d,
we show the CCBF array response after remov-
ing all the non-unique offsets at the aforementioned
azimuths. This improved ARF does not contain the
linear features that appear on Fig. 5c.

For BF, we have the flexibility to remove array ele-
ments from the data analysis, if this is beneficial for
the data analysis. For example, data can be left out
from elements with poor SNR. For CCBF, we also
have the flexibility to remove array elements from
the data analysis. Besides, we have the flexibility to
remove individual receiver pairs, e.g., to improve the
ARF from an array that has been installed already.
In this section, we have shown that the latter may
allow mitigation of aliasing while maintaining the
same resolution.

6 Field data

In this section, we study the behavior of CCBF in
comparison with BF for a field data case. Another

field-data comparison can be found in Gibbons et al.
(2015). We use the actual vertical particle-velocity
recordings from the SPITS array (Fig. 1a). Because
one station had timing issues (the one at the southwest-
ern edge of the array), we use the recordings of the
eight remaining stations. As with the synthetic data in
the previous section, we beamform the data over a fre-
quency range of f = [4 6] Hz, using five frequency
bins. As a benchmark, we first beamform data from a
known earthquake. Secondly, we beamform ambient
noise.

The earthquake (mb 4.4, 2013-02-01 11:31:19.0
UTC) is located by the European-Mediterranean
Seismological Centre in the ocean-spreading ridge
between Svalbard and Greenland (Fig. 1). The loca-
tion is at 561 km from the center of the SPITS array
and at a backazimuth of 324◦. We select a 4 s time-
window around the first P-wave arrival (Fig. 6a) as
input for the beamforming algorithms. Figure 6c, d
shows the resulting beampowers for BF and CCBF,
respectively. With BF, the waveform is picked as
(pS , θS)= (0.095 s/km, 348◦), while CCBF has a max-
imum beampower at (pS , θS) = (0.090 s/km, 339◦).

In Fig. 6b, the intermediate step for CCBF is
shown, that is the cross-correlated data for all receiver
pairs. The main feature in this panel, around t =
0, exhibits by approximation a cosine behavior (5).
The receiver-pair azimuth at which the maximum
negative time lag occurs corresponds to the backaz-
imuth of the source. The feature around t = 0 largely
originates from the cross-correlation of direct waves.
Cross-correlation of direct waves and scattered waves
would end up at larger time lags. Also if the wave-
field is coherent in time, that is, if the wavefield
repeats after a fixed duration, this leads to additional
features at larger time lags. Both contributions from
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Fig. 6 An earthquake beamform example with data from the
SPITS array (Fig. 1). a A regional earthquake response over the
array. The purple box indicates a 4 s time-window around the
first P-wave arrival. b is the result of cross-correlating the data
in a within the purple box, for all receiver pairs. The green box
indicates a time-window from −0.5 to 0.5 s. Beamforming the

data in the purple box in a results in c the BF power. Beamform-
ing the cross-correlated data in b results in d the CCBF power
distribution. Taking instead of the complete cross-correlations
only the portion within the green box in b results in e the time-
windowed CCBF power distribution. In c–e, the radial axes
represent slowness, from 0 to 0.5 s/km

scattering and wavefield repetitions can be largely
excluded by taking, instead of the complete cross-
correlation result, only this main contribution around
t = 0 (as indicated by the green box in Fig. 6b). This
yields the time-windowed CCBF result as depicted
in Fig. 6e. This could be seen as an approxima-
tion of the ZLCC (Section 1). Other examples of
time-windowing cross-correlation functions to sepa-
rate different contributions can be found in Wapenaar
et al. (2011).

Both BF and CCBF do a reasonable job in finding
the backazimuth of the source. However, the slow-
ness estimates are quite far off from the theoretically
expected value of 0.12 s/km based on a 1D reference
model. It is known that wavefronts arriving at SPITS

from the NNW reach larger apparent velocities than
may be expected based on a 1D velocity model (Fig. 6
in Gibbons et al. (2011)). This is likely due to dip-
ping interfaces in the crust below SPITS. Moreover,
to further improve the directivity estimate, for both
methods also corrections would need to be made for
elevation differences over the SPITS array (Gibbons
et al. 2011).

The CCBF beampower shows less severe artifacts.
This is probably due to less sensitivity to non-coherent
noise over the array (Section 4). For example, scat-
tering near the array does not show a plane-wave
coherency over the array and would be seen by the
beamformer as non-coherent noise. Figure 6d, e is
almost identical. Thus, for this data, time-windowing
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the cross-correlations does not improve the resolving
power in the p − θ domain. This can be understood
by the cross-correlations having most of their energy
around t = 0 and later coherent contributions hav-
ing similar directivity as this feature around t = 0
(Fig. 6b).

Next, we beamform a time interval of 250 s (start-
ing at 1-1-2013, 1:45:00 UTC). In this time interval
and for the frequency band of consideration (f =
[4 6] Hz), only ambient noise is recorded, without
any transient event that is distinguishable in the time
domain (Fig. 7a). Figure 7c, d shows the resulting
beampower plots for BF and CCBF, respectively.

Also the intermediate step for CCBF is shown, that
is the cross-correlated data: Fig. 7b. Instead of show-
ing the complete cross-correlation result (from −250
to 250 s) only a time-window is shown with the main
contributions. As in Fig. 6b, a cosine-like feature can

be distinguished around t = 0. The azimuthal shift
of this cosine feature is related to the backazimuth of
the dominating source; the amplitude (maximum time
shift in this case) is related to the appararent veloc-
ity of the dominant wave (5). Using only this main
contribution around t = 0 for CCBF results in the
beampower as shown in Fig. 7e.

The CCBF beampower shows well-focused energy
with a maximum at θ = 66◦ and p = 0.14 s/km
(7.14 km/s). The BF beampower is less focused and
has a maximum at θ = 68◦ and p = 0.155 s/km
(6.45 km/s). Moreover, there is considerable energy
all over the evaluated part of the p − θ domain. This
may due to sources closer to the array (with circu-
lar wavefronts over the array). As with the earthquake
P-wave arrivals, using only the main feature of the
cross-correlation gives an almost identical result to
using the complete cross-correlation result.
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Fig. 7 An earthquake beamform example with data from the
SPITS array (Fig. 1). a A local noise response over the array.
b is the result of cross-correlating the data in for all receiver
pairs. The green box indicates a time-window from −0.5 to
0.5 s. Beamforming the data in a results in c the BF power.

Beamforming the cross-correlated data in b results in d the
CCBF power distribution. Taking instead of the complete cross-
correlation result only the portion within the green box in b
results in e the time-windowed CCBF power distribution. In
c–e, the radial axes represent slowness, from 0 to 0.5 s/km
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The origin of the noise source is unknown to us. It
might be related to mining activity on Svalbard. Con-
sidering that the central beam for CCBF has a higher
SNR than for BF, likely the directivity estimate for
CCBF is more correct.

7 Conclusions

In the foregoing, we compared straighforward beam-
forming of the recorded data with beamforming of the
cross-correlated data. The former method we referred
to as conventional beamforming (BF) and the latter as
cross-correlation beamforming (CCBF).

We found that the array-response functions (ARFs)
for BF and CCBF are different. With BF auto-
correlations are, implicitly, included, which do not
contain any information about the directivity of the
source. The auto-correlations do reduce the gain.
Consequently, for BF the resolution is a bit less
and the aliasing artifacts are a bit stronger than for
CCBF.

Using synthetic data, we showed that CCBF per-
formed markedly better than BF when non-coherent
noise was measured in addition to coherent wave-
fields. The non-coherent noise is drastically sup-
pressed in the cross-correlation process.

Another advantage of CCBF was shown to be
its higher flexibility in comparison with BF. For
BF, one could decide to leave out data from indi-
vidual elements. For CCBF, one could additionally
leave out data from specific station pairs. Not only
the auto-correlations can be left out, as is the norm
for CCBF, but any receiver-pair that deteriorates the
signal-related beampower. For example, when there
are tiny timing issues between the instruments, it could
be favorable to leave out the station pairs with the
highest sensitivity to the timing errors (the ones at
close range). On the other hand, when phases are not
recorded coherently over the entire array, receiver-
pairs at large range could be removed. For a T-shaped
array, we showed that it is advantageous to remove
station pairs that non-uniquely sample offset-azimuth
combinations.

The observations on synthetic data were con-
firmed with field data from the SPITS array. Both
when beamforming an earthquake arrival and when
beamforming ambient noise, CCBF focused more
of the energy to a central beam. We showed that

cross-correlated data may be time-windowed prior to
beamforming, which constitutes another flexibility of
CCBF. Time-windowing would be advantageous to
exclude scattered arrivals from the direct noise field.
For the field-data cases, however, the beamforming
results did not change notably after time-windowing,
indicating that near-array scattering is no issue for the
SPITS array for the frequency band considered.
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