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Abstract
In the defence and security domain, camera systems are widely used for surveillance. The
major advantage of using camera systems for surveillance is that they provide high‐
resolution imagery, which is easy to interpret. However, the use of camera systems and
optical imagery has some drawbacks, especially for application in the military domain. In
poor lighting conditions, dust or smoke the image quality degrades and, additionally,
cameras cannot provide range information too. These drawbacks can be mitigated by
exploiting the strengths of radar. Radar performance can be largely maintained during the
night, in various weather conditions and in dust and smoke. Moreover, radar provides the
distance to detected objects. Since, the strongpoints and weaknesses of radar and camera
systems seem complementary, a natural question is: can radar and camera systems learn
from each other? Here the potential of radar/video multimodal learning is evaluated for
human activity classification. The novelty of this work is the use of radar spectrograms
and related video frames for classification with a multimodal neural network. Radar
spectrograms and video frames are both two‐dimensional images, but the information
they contain is of different nature. This approach was adopted to limit the required
preprocessing load, while maintaining the complementary nature of the sensor data.

1 | INTRODUCTION

Human activity classification is a major asset in the defence and
security domain. The activity or behaviour a person exhibits
may (partly) reveal their intent. A person wandering around a
parking lot may be just on the way to a car or he or she may be
scanning the cars for possible valuable items to steal. The
behaviour of a person, for example, walking speed and walking
pattern, may reveal the actual intent.

In the security domain, cameras are widely used for sur-
veillance; camera systems can be found in cities, in shopping
centres, in parking garages, in public transportation, on air-
ports etc. This widespread use of cameras in the civil domain is
motivated by their ease of use and the fact that optical images
are easy to interpret for humans, avoiding the need for
extended operator training. Moreover, optical imagery allows
the application of facial recognition. This is a crucial asset
regarding the prosecution of possible offenders, although it
may arouse privacy issues in some situations.

Camera systems do have some drawbacks, especially when
considering applications in the defence domain. The quality of
(daylight) camera imagery degrades in poor lighting conditions,
smoke and dust. Furthermore, a standard camera cannot
provide information about the range to a subject.

These issues relate directly to the strongpoints of radar.
Radar systems provide the range and velocity of detected
subjects, have all‐weather capability and maintain their
performance in darkness, dust or smoke. Radar imagery is,
however, typically unsuited for recognition and is difficult to
interpret by a human operator.

Since their strengths and weaknesses seem to complement
each other, a natural question seems to be: Can radar and
camera systems learn from each other?

An example of such multimodal learning is the fusion of
video data with laser range measurements for autonomous
navigation [1]. The aim of this study was to exploit the com-
plementary nature of the individual sensors. Indeed, the fusion
of these complementary measurements leads to better
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performance, as in general data fusion leads to more consistent
and accurate information. However, the crux of multimodal
learning is that: the improvement is maintained even if one of
the sensor modalities delivers data of degraded quality or is
absent all together [2, 3]. An extreme example is the fusion of
video data of a speaking person and the related audio signal
[4–6]. The ultimate purpose of this multimodal learning
application is to achieve robust speech recognition using the
video data only, even in absence of the audio signal. This
notion formed the basis for the current study.

Here, it was investigated if human activity classification can
be improved when feeding corresponding video and radar data
to a classifier based on a multimodal convolutional neural
network (CNN) instead of a unimodal classifier using only
video or radar data. If indeed there is some performance
improvement using a multimodal CNN, the next question to
be addressed is whether this improvement is maintained when
one of the sensor modalities is absent or delivers data of
degraded quality (e.g. in darkness when a daylight camera
cannot provide suitable data, whereas the quality of the radar
data is preserved). To gain insight in the process of multimodal
video/radar learning, visualization techniques have been
applied to identify the pixels in the images that are exploited by
the CNN for classification. The application of CNNs for
classification of persons or objects in pictures and video frames
is already well‐established [7]. Recently, CNNs have also been
successfully applied to classify human activity based on radar
micro‐Doppler signatures [8–11]. The idea of fusing video and
radar data using CNNs in a multimodal setup is, however,
relatively novel. Neural networks have been applied to register
synthetic aperture radar (SAR) images and optical imagery [12,
13]. For registration, the CNN is trained to find related fea-
tures in the SAR and optical images and exploit these features
to align the images. In this application, the complementary
nature of radar and optical data is not used per se (the image
registration is based on features that are present in both mo-
dalities). Only in recent years, methods exploiting the com-
plementary nature of radar and one or more other modalities
have been reported [14–18]. Some of these methods are
particularly focussed on data fusion and less on cross learning,
that is, all modalities are always assumed to be present [14, 15].
In other cases, extended preprocessing is applied to the data,
such that the data of the different modalities can be presented
in similar format [16–18], for example, by transforming video
frames into two‐dimensional (2D) heat maps or radar data into
SAR images. The novelty of the presented work is that radar
spectrograms and video frames are fed to the CNN‐based
classifier. This approach was adopted to limit the preprocess-
ing. In essence spectrograms and video frames are both 2D
images in which pixel colour or intensity has some meaning,
but the type of information they represent is very different.
The CNN‐based classifiers and their performance are dis-
cussed in Sections 3 and 4. More details on this work can be
found in [19] and it has been presented earlier in [20].

One disadvantage of using a CNN‐based classifier is that
the temporal relation between successive measurements cannot
be exploited. Since successive radar measurements and video

frames are correlated sequences, applying recurrent neural
networks (RNNs) may improve classification accuracy. RNNs
contain a feedback loop and are therefore capable of managing
problems with a temporal nature. Several types of RNNs exist,
in the current study the long short‐term memory (LSTM)
architecture is applied. LSTM architectures are used for radar‐
based human activity classification with success [21–24],
including a multimodal LSTM architecture [25]. The assess-
ment of an LSTM network applied to radar and video data for
human activity classification is presented in Sections 5 and 6.

For the evaluation of the different architectures, a data set
of simultaneous radar measurements and video recordings of
walking people was used. For these measurements the test
subjects performed three ‘activities’: strolling, walking while
carrying an object and walking with a backpack. These three
cases are assumed representative for different types of human
intent, as persons carrying heavy items may be regarded sus-
pect in specific situations (such as a person carrying a crowbar
on a parking lot). In Section 2, the measurements and data sets
are discussed in detail.

2 | RADAR AND VIDEO
MEASUREMENTS

To evaluate the potential of multimodal learning for classifi-
cation of human activity, experiments were conducted with a
compact radar and a high‐definition camera (see Figure 1).
Prior to the start of each measurement, a test subject posi-
tioned itself at approximately 40 m range from the sensors. At
the start of each measurement the test subject began walking
towards the sensor systems. With an average walking speed of
the test subjects of approximately 1.5 m/s each measurement
run was limited to 20 s. The experiments were conducted on
two days both during the morning and during the afternoon.
The circumstances were similar during the experiments, but the
lighting conditions varied depending on the time of day. The
test subjects were asked to walk (normally) towards the sensor
systems so some natural variation in walking speeds and pat-
terns could be observed.

Measurements were made of test subjects strolling, that is,
walking without objects in their hands (class N), walking while
carrying a rifle‐like object in both hands (class R), and walking
with a relatively heavy backpack (class B). It should be noted that
the test subjects inclined to swing their arms when not carrying
the object. Thirty‐five test subjects took part in the experiments.
Each test subject performed the defined activities twice; as a
result 210measurements are available for training and validation.

2.1 | Radar measurements

For the experiments, the X‐band AMBER frequency‐
modulated continuous wave radar was used [26]. For these
experiments, the sweep repetition frequency was set to 2.5 kHz
and the bandwidth was set to 100 MHz. The range resolution
(1.5 m) was relatively coarse to capture most of a test subject's
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micro‐Doppler signature in a single resolution cell (including
swinging legs and arms). The micro‐Doppler signatures were
visualised by means of the spectrogram. The spectrograms
were obtained by taking the squared magnitude of the short‐
time Fourier transforms (STFTs) computed from successive,
but overlapping sequences of the radar signal. Before
computing the related STFT, a Blackman window was applied
to a radar sequence. The integration length of each STFT was
0.1 s and the overlap between successive STFTs was 80%. A
spectrogram of each class of activity is presented in Figure 2.
Each spectrogram shows 1.28 s of radar data, corresponding
with at least a single human gait cycle.

It is assumed that the gait and torso motion change if a test
subject carries a heavy object. If this difference in gait and torso
motion can be recognized in the spectrograms, it can be deter-
mined whether the person carries a heavy item or hefty back-
pack. However, from a previous study it was already concluded
that the swinging arms or the lack thereof (if the test subject
carries an object with both hands) is the most distinctive feature
[27]. This is observable in the spectrograms in Figure 2; if the test
subject is strolling or carrying the backpack, the spectrogram
exhibits an ‘arc' related to the (lower) arm's motion (indicated by
the [dashed] arc and arrow). When both hands of the test subject
are engaged, this arc is absent. The results of this earlier study
also showed that the effect of carrying a backpack (of around
10 kg or a little less) on the micro‐Doppler signature is minor, as
the classes N and B could not be distinguished [27]. It was also
clear from visual observation, that the impact of the backpack on
the cadence was negligible for most test subjects. For those test
subjects, a heavier load would have been required to impact their
movements [28].

2.2 | Video recordings

The video recordings were made using a high‐definition daylight
camera (1920 � 1080 pixels) with an average frame rate of 13.5
frames per second. As preprocessing step a single‐shot detector
(SSD) was used [29]. An SSD is a deep neural network for

detecting objects in images and providing their bounding box at
the same time. In the first stage of an SSD, feature maps are
extracted of the input image using a pretrained network. In the
second stage, multiple default bounding boxes, of varying size
and aspect ratio, are applied to each feature map location. For
each default bounding box, a score is generated for the presence
of each object class in that box and the box is adapted to better fit
the object's size and shape. The results from multiple feature
maps with different resolutions are combined, such that objects
of varying sizes can be detected.Here, a pretrained SSDwas used
to detect persons in the video frames. After detection, the area
within the defined bounding box, that is, the pixels related to the
detected person, is then extracted from the frame.Due to the test
subjects walking towards the sensor systems, starting from an
initial range of about 40 m, the bounding boxes differ in size in
successive frames. As the test subjects come closer to the sen-
sors, the size of the bounding box increases. However, for the
chosenCNN implementation all inputsmust be of the same size.
Therefore, all extracted subimages were resized to a width of 64
pixels and a height of 128 pixels.

The SSD performed relatively well on this data set. A high
detection probability (of the order of 90%) and a low false
alarm rate was obtained. Nonetheless, in some video frames
the test subject was missed, or a random object in the back-
ground was detected as a person. These video frames were
deleted from the data set by hand.

3 | CNN‐BASED UNIMODAL
LEARNING

First two CNNs were trained and validated for the video and
radar modalities separately. The classification performance of
the individual networks is evaluated and the main features
contributing to the classification accuracy are assessed. This
assessment provides insight in the potentially added value of
multimodal learning.

3.1 | CNN background

A CNN is a specialised kind of neural network that excels in
processing data with a known grid like topology [30]. A CNN
employs a convolutional operation in one or several of its
layers. The weights of the kernels are learnt form the data. This
allows a CNN to learn increasingly more complex represen-
tations as the depth of the architecture increases. A typical
CNN architecture for classification consists of a number of
convolutional stages that consist of convolutional filters, non‐
linear activation functions and pooling. The final layers consist
of fully connected layers and at last a softmax function to
assess the probability of each class.

3.2 | Individual CNN architectures

Keras and TensorFlow were used to implement the neural
networks in this work. The hyperparameters of the models

F I GURE 1 Experimental setup with a high‐definition camera and a
compact radar

904 - DE JONG ET AL.



were defined by performing a grid search. The optimised
(unimodal) CNN architecture for the radar data is presented in
Table 1 and the unimodal CNN architecture for the video data
is presented in Table 2.

After each convolution and fully connected layer a rectified
linear unit (ReLU) activation function is used.

The last part of both classifiers consists of two fully con-
nected layers with a size of 500 neurons and as output a
softmax activation function is applied. The number of outputs
is two for the two class classification and three for the three
class classification problem.

3.3 | Training and validation sets

As stated in Section 2.1, spectrograms were generated from the
radar measurements. From each spectrogram, a 1.28 s long
excerpt was extracted, such that at least a single human gait cycle
is included. This excerpt was paired with the video frame cor-
responding to the start time of the excerpt. The maximum syn-
chronization error between the start time of the excerpt and the
actual time of the video frame is 0.01 s. More than 40,000 of such
video/radar image pairs were available for training and valida-
tion. The image pairs of 28 randomly chosen test subjects were
used for training and the image pairs of the remaining seven test
subjects were used for validation. Thus, the training and valida-
tion sets were mutually exclusive in terms of the test subjects.

3.4 | Respective unimodal performance

The classification accuracy of the unimodal CNNs is presented
in Table 3, for the two‐class (N and R), and the three‐class

(N, R, and B) classification problems respectively. For both
problems, the video‐based classifier outperforms the radar‐
based classifier.

As was stated in Section 2.1, the radar‐based classifier has
difficulties to discriminate the N and B classes; the overall
classification accuracy for the three‐class (N, R and B) problem
is only 62.6%. The confusion matrices in Figure 3 illustrate
this. As can be seen, the radar‐based classifier is able to
distinguish the R class from the other two classes with high
probability, constituting the major contribution to the overall

F I GURE 2 Measured spectrograms of a test
subject strolling (class N) (top left), holding an object
in both hands (class R) (top right) and carrying the
backpack (class B) (bottom)

TABLE 1 Unimodal radar CNN architecture

Layer Number of filters Kernel size Dimensions

Radar input ‐ ‐ 64 � 64 � 1

Convolution 20 5 � 5 64 � 64 � 20

Max pooling ‐ 2 � 2 32 � 32 � 20

Convolution 30 5 � 5 32 � 32 � 30

Max pooling ‐ 2 � 2 16 � 16 � 30

Convolution 40 5 � 5 16 � 16 � 40

Max pooling ‐ 2 � 2 8 � 8 � 40

Convolution 50 5 � 5 8 � 8 � 50

Max pooling ‐ 2 � 2 4 � 4 � 50

(Flatten) ‐ ‐ 800

Fully connected ‐ ‐ 500

Fully connected ‐ ‐ 500

Softmax ‐ ‐ 2/3

Abbreviation: CNN, convolutional neural network.
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accuracy. The confusion between the R and B classes is partly
due to the test subjects not moving their arms when walking
(recall that the lack of arm motion is the most distinguishing
feature of class R). Due to the cold weather during the
experiments some test subjects walked with their arms stiffly
besides their body. Because of the reduced arm motion this
behaviour can result in the absence of the earlier discussed ‘arc’
feature in the spectrograms. In addition, some test subjects
grabbed the straps of the backpack whilst walking, thus
reducing the arm motion.

The video‐based classifier can distinguish the N and B
classes, see the corresponding confusion matrix in Figure 3.
This means the video‐based classifier must exploit different
features than the radar‐based classifier. Most likely the clear
visibility of the object or the straps of the backpack in optical
images is the main feature exploited by the video‐based
classifier.

If indeed the video and radar‐based classifiers exploit
complementary information, there might be added value in

video/radar multimodal learning. To evaluate the potential
added value of multimodal learning, it is examined what
information is used for feature extraction by the radar and
video CNNs. For this evaluation, the gradient‐weighted class
activation mapping (Grad‐CAM++) visualization technique is
applied [31]. A class activation map (CAM) highlights the
image pixels that are actually used by a CNN for feature
extraction and classification, for example [10, 27]. The gen-
eration of such a CAM or saliency map alleviates the black‐
box nature of CNNs. The Grad‐CAM++ is a generalisation
of the CAM that can be broadly applied to any CNN network
architecture. In order to obtain the Grad‐CAM++, the
gradient of the class score is computed with respect to the
feature maps of a convolutional layer. The Grad‐CAM++ is
the weighted combination of the feature maps followed by a
ReLU.

3.5 | Video recordings saliency maps

In Figure 4, detected video frames are presented with the
Grad‐CAM++ saliency maps displayed on top. The frames are
correctly classified with more than 99% certainty. The exam-
ples in Figure 4 are a fair representation of saliency maps
observed for this data set. The first row of maps illustrates the
general findings; the second row displays some saliency maps
highlighting undesirable features.

As illustrated by the top‐left saliency map, in case of the
test subject strolling, the pixels around the lower arms and
hands have high saliency. This indicates that arms hanging
loose next to the torso are a key feature to classify a person
strolling. The top‐middle saliency map shows that in case of
the test subject carrying the object, the pixels around the
hands and the object have high saliency. This suggests that
the presence of an object in front of the torso is the main
feature. Finally, the top‐right saliency map shows that for
the test subject carrying the backpack the pixels around the
backpack straps have high saliency, thus correctly contrib-
uting to the classification. The free hands also have high
saliency, but this is not a discriminative feature for the
activity.

The bottom row of detected video frames in Figure 4 is
also classified correctly, although the saliency maps highlight
undesirable features. In these video frames, the test subject's
feet seem an important feature. It is uncertain why the feet
should contribute to the activity classification and whether this
is a wanted property. Some video frames have been cropped

TABLE 2 Unimodal video CNN architecture

Layer Number of filters Kernel size Dimensions

Video input ‐ ‐ 128 � 64 � 3

Convolution 16 3 � 3 128 � 64 � 16

Convolution 16 3 � 3 128 � 64 � 16

Max pooling ‐ 2 � 2 64 � 32 � 16

Convolution 32 3 � 3 64 � 32 � 32

Convolution 32 3 � 3 64 � 32 � 32

Max pooling ‐ 2 � 2 32 � 16 � 32

Convolution 64 3 � 3 32 � 16 � 64

Convolution 64 3 � 3 32 � 16 � 64

Max pooling ‐ 2 � 2 16 � 8 � 64

Convolution 128 3 � 3 16 � 8 � 128

Convolution 128 3 � 3 16 � 8 � 128

Max pooling ‐ 2 � 2 8 � 4 � 128

(Flatten) ‐ ‐ 4096

Fully connected ‐ ‐ 500

Fully connected ‐ ‐ 500

Softmax ‐ ‐ 2/3

Abbreviation: CNN, convolutional neural network.

TABLE 3 Classification accuracy (%) of
the individual unimodal classifiers and the
different implementations of the multimodal
classifier. The results are shown for the two‐
class (N and R) and three‐class (N, R and B)
classification problems

{N,R} {N,R,B}

Single Modality classification Radar 88.9 62.6

Video 95.2 87.0

Video/radar multimodal classification Data‐level fusion 95.5 87.0

Feature‐level fusion 96.3 86.9

Decision‐level fusion 96.4 87.3
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(by the SSD) such that the feet are cut off, this can cause the
feet to contain some information about the position of the test
subject and the objects in question. The saliency map displayed
on the video frame of the test subject carrying an object is a
more pronounced example of undesired features. This saliency
map indicates that the surroundings have high saliency. How-
ever, the surroundings of the test subject do not contain

information about the activity and is therefore an unwanted
feature.

3.6 | Radar spectrograms saliency maps

In Figure 5, spectrograms and related maps are presented of a
test subject strolling with his/her arms swinging and a test
subject holding an object in both hands. These results were
produced with a CNN trained to separate the two classes N
and R for the unimodal CNN architecture as stated in
Section 3.1 (right two columns) and a CNN architecture with a
larger last convolutional layer (left two columns). As it is
challenging to classify a test subject carrying a backpack based
on radar spectrograms, class B was omitted from this evalua-
tion (including activity class B in the evaluation led to noise‐
like saliency maps). In case of the test subject strolling, the
region where the arc of the moving arms is (cf. Figure 2) has
high saliency, which is best visible in the top‐left image. In case
of the test subject holding the object, the response to the torso
has high saliency. This evaluation confirms the notion that the
arm motion or lack thereof is the major feature to distinguish a
strolling person from a person holding an object in both hands
in radar spectrograms (given that a person just strolling typi-
cally swings his/her arms). Due to the rescaling of the saliency
maps with the dimensions of the last convolutional layer,
however, the outcome is not always clear, as is illustrated by the
two columns on the right.

3.7 | Discussion

Considering the unimodal classifiers, the video‐based classifier
outperforms the radar‐based classifier. This is for a part due to
the biased data sets. All measurements were performed during
daytime, with lighting conditions well‐suited for video
recordings. Preferably, measurements should be performed in
varying weather and lighting conditions, such that the SSD
might fail to recognise humans in the video imagery. In adverse
lighting conditions, the performance of the video‐based clas-
sifier might be degraded more severely than the performance
of the radar‐based classifier. In such varying conditions, the
complementary nature of video and radar measurements will
emerge, and a multimodal approach might improve the overall
classification performance.

Here the RGB‐based imagery was used for the video input,
this might be extended to other types of imaging, such as
multispectral/hyperspectral imaging. In principle the additional
information can be included by increasing the number of
channels in the input. However, this would require retraining
and validation of the neural networks.

A multimodal approach has added value if the radar‐based
and video‐based classifiers exploit different features for clas-
sification. To assess the main features used by the individual
classifiers, Grad‐CAM++ saliency maps were generated. For
both classifiers, the position of the arms is a key feature. If the
arms swing loose next to the torso, is a strong indication that

F I GURE 4 Saliency maps with a correct classification (with at least
99% certainty) displayed on top of the related video frame, for a test subject
strolling (left column), a test subject holding an object (middle column) and
a test subject carrying a backpack (right column)

F I GURE 3 Confusion matrices for the radar‐based (left) and video‐
based (right) classifiers. N refers to a person strolling, R to a person holding
an object and B to a person carrying a backpack. Classification results are in
percentage
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the person is just strolling. For the video‐based classifier, in
addition, the presence of an object in front of the torso or the
straps of a backpack are important features. The Grad‐CAM++
saliency maps provide insight in the pixels (i.e. features) relevant
for classification. However, they do not explain why certain
pixels are important for classification.

4 | CNN‐BASED MULTIMODAL
LEARNING

Modality refers to the way the environment or events are
perceived. Different types of sensors, for example, acoustic,
optical and RF sensors, perceive the environment in different
ways and are thus referred to as different modalities. Multi-
modal CNNs are neural networks that can jointly interpret data
from various modalities [32]. Within a neural network archi-
tecture, the integration of data from different modalities may
be done at different levels. These different levels of integration
are displayed in Figure 6.

The architecture on the left illustrates decision‐level fusion.
The radar and video data are essentially considered indepen-
dently resulting in two classification results. A joint final stage
aggregates the individual result in some way to obtain the overall
classification. By using this decision‐fusion architecture, the
individual CNNs for the video and radar data are trained and
validated separately and therefore cannot learn from each other.

The architecture in the middle shows feature‐level fusion.
In this case CNNs are applied independently to the radar and
video data to extract the desired features for each modality.
The combined features are then past to a neural network with
one or several fully connected layers and a softmax layer to
perform the final classification on the shared feature space. By
using this architecture, the individual radar and video CNNs
may learn from each other in the back‐propagation stage, as
the weights can be adapted based on the overall classification
result.

Finally, the architecture on the right depicts data‐level fusion.
By using this data‐level fusion architecture, the video and radar
data are simultaneously input to a single CNN. Potentially,
data‐level fusion allows deep exploitation of the correlation (or
complementarity) between the various modalities. A disadvan-
tage of this approach is that the video and radar images are forced
to have the same dimensions (expressed in image pixels).
Another potential disadvantage of this architecture is that the
modalities use convolutional stages that need to be optimised for
the combined input, this does not necessarily lead to optimal
feature extraction for the individual modalities.

The classification results of the three multimodal fusion
strategies are presented and discussed in the following
subsections, in the order of the fusion depth.

4.1 | Data‐level fusion

The data‐level fusion architecture was implemented by adding
the spectrogram excerpt as an extra channel to the video CNN
from Table 2. To do so the spectrogram excerpts was upscaled
to have the same dimensions as the video CNN input. The
combined input dimensions are 128 � 64 � 4. The classifi-
cation accuracy of the data‐level fusion is listed in Table 1.
There is no significant difference in performance, as compared
to the unimodal video‐based classifier. The radar input either
just introduces noise into the feature extraction process or the
model seemingly learns to ignore the radar input.

4.2 | Feature‐level fusion

The feature‐level fusion architecture was implemented by
concatenating the features obtained after the convolutional
stages from the unimodal architectures. The features from the
‘Flatten’ layers from Tables 1 and 2 were concatenated. The last
layers of the combined architecture were the same as the layers

F I GURE 5 Measured spectrograms and related saliency maps. The spectrograms and saliency maps are shown for the current CNN architecture (right two
columns) and for a CNN with a larger last convolutional layer (left two columns). The results are shown for a test subject strolling (top row) and a test subject
holding an object (bottom row). CNN, convolutional neural network
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after the ‘Flatten’ layer from the unimodal architecture in
Table 2. This model was then trained and validated from
scratch. The classification accuracy achieved with feature‐level
fusion is also presented in Table 3. Considering the two‐class
(N and R) classification problem, the classification accuracy
improves slightly as compared to the accuracy of the unimodal
video‐based classifier.

4.3 | Decision‐level fusion

As aggregation strategy for decision‐level fusion, the average
of the individual classifiers was used. The CNN implementa-
tions discussed in Section 3.1 were used for the single
modalities. The class predictions from the softmax activations
from Tables 1 and 2 were averaged. The classification accuracy
obtained with decision‐level fusion is given in Table 3.
Considering the two‐class (N and R) classification problem, the
accuracy is again slightly improved as compared to the accuracy
of the unimodal video‐based classifier.

Considering the three‐class (N, R, and B) classification
problem, the radar data does not seem to have much added
value. The classification accuracy of the different multimodal
approaches is similar to the accuracy of the unimodal video‐
based classifier. As stated earlier, the radar‐based classifier is
unable to distinguish the N and B classes. In the multimodal
approach, the radar‐based classifier does, however, aid more

robust classification of the R class. This is illustrated by the
confusion matrices in Figure 7. Compared to the unimodal
video‐based classifier, the multimodal approach performs
similar on the N and B classes. The classification of the R class
is, on the other hand, slightly improved from 96% to 99%.

4.4 | Missing modality

The results presented in the previous sections were obtained
after training and validation with both modalities. However,
one of the starting points for this study was the notion that the
overall classification performance can be maintained if one of
the modalities is absent or delivers data of degraded quality. To
evaluate the robustness against a missing modality, the feature‐
level fusion classifier was also trained with an incomplete
training set, that is, a training set in which one of the modalities
is occasionally missing. During training either the spectrogram
or the video frame was removed with a one‐third chance.
Validation has been performed with a complete validation set,
but also with unimodal validation sets. The overall classifica-
tion results are shown in Table 4.

As can be seen, the overall classification performance when
validated with both video and radar data is similar, irrespective
of the training set used. What is, however, remarkable, is that
the overall classification performance improves drastically after
training with an incomplete training set if only radar data are

F I GURE 6 Diagrams of three multimodal fusion approaches. Here CNN indicates the convolutional and pooling layers of the CNN, used for feature
extraction, whereas neural network refers to the fully connected layer(s), including a softmax layer, used for the overall classification. The three output classes are
denoted by N, R and B. CNN, convolutional neural network
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used for validation. This improvement comes at the cost of a
somewhat degraded classification performance if only video
data are used for validation. At the same time, these results
should be put in perspective. The classification accuracies,
when using only radar data for validation (86.7% and 62.2%),
are similar to the performance obtained with the unimodal
radar‐based classifier (cf. Table 3: 88.9% and 62.6%). Thus, if
one of the modalities is occasionally absent, a multimodal
approach has the potential to improve overall performance. If,
on the other hand, one of the modalities is structurally absent,
for example, at night when the video camera delivers imagery
of degraded quality, it is better to apply a unimodal classifier.

4.5 | Discussion

Several options related to the fusion depth of radar and video
data were investigated. Both feature‐level and decision‐level
fusion show the possibility to improve the classification
accuracy. The feature‐level fusion approach showed that the
models can be made more robust against missing modalities by
adapting the training phase (e.g. randomly dropping samples of
one of the modalities from the training set). Feature‐level
fusion is expected to improve the classification performance
when the activities are better resolved using the correlation of
the individual modalities. This was not found to be the case for
a person carrying a backpack.

Overall, the data from the video recordings were found to
be leading in the classification process, which is probably also
related to the architecture design. The feature vector obtained
from the video data is larger than the vector for the radar data
this is likely to introduce a bias towards the video data. It is
expected that the classification performance can be improved
by further optimising the multimodal architecture. As the N
and B class spectrograms were quite similar it might be
beneficial to use for instance a decision tree to first resolve the
N and R classes and subsequently, in case of class N, just use
the video data to resolve between the N and B classes.

Moreover, the current approach uses only single video
frames that are associated with 1.28 s of radar data. During this
time, however, multiple video frames are available. Ideally all

data collected up to a certain point in time are used for clas-
sification simultaneously. This is the topic of the next sections.

5 | LSTM‐BASED UNIMODAL
LEARNING

The downsides of the CNN‐based classification are: the fixed
size of the inputs, the fact that sequential data are considered
independently, and the delay in the classification process.
Ideally once new data are obtained, that is, the result from
applying an STFT on a new segment of radar data or a new
video frame, these data are classified instantly. A prediction
needs to be made for each segment of input data. In principle
LSTM neural network architectures can do this. For each input
a synchronous output is produced. This setup allows to make
predictions on variable length sequences while still obtaining a
prediction at each time step. The accuracy depends on how
well each time step is classified. As soon as the first STFT
result is extracted a classification is performed of the current
activity. As time progresses and more information becomes
available, the classification should become more accurate.

5.1 | LSTM background

RNNs are a type of neural networks that are designed to process
sequential data. RNNsmake use of an internal state (memory) to
process sequences of input data. The state is an accumulation of
all data that the network has seen. LSTM is a type of RNN that
bypasses the vanishing gradient problem, allowing it to use and
remember relevant information over a long duration.

5.2 | CNN–LSTM architectures

Inspired by [24], a hybrid CNN–LSTM architecture is used as
presented in Figure 8. First the CNN–LSTM‐based models for
the radar data and video data are optimised separately. The radar
CNN–LSTM and the video CNN–LSTM are presented in
Tables 5 and 6, respectively. The tables indicate the architecture
for a single timestep; however, the models are trained such that a
variable length input sequence can be presented and a prediction
is made for each timestep. The convolutional layers for the video

F I GURE 7 Confusion matrices for the unimodal video‐based classifier
(left) and for decision‐level fusion (right). The classes are N for test subject
strolling, R for a test subject holding an object and B for a test subject
carrying a backpack. Results are in %

TABLE 4 Feature‐level fusion classification performance (%), for
training and validation with complete and incomplete sets

Validation set {N,R} {N,R,B}

Complete training set Radar only 74.0 46.2

Video only 96.2 87.2

Radar + video 96.3 86.9

Incomplete training set Radar only 86.7 62.2

Video only 92.0 86.8

Radar + video 95.3 87.2

910 - DE JONG ET AL.



CNN–LSTM are identical to the video unimodal CNN archi-
tecture in Table 2 up to the ‘Flatten’ layer. For the combined
architecture, as presented in Figure 8, the ‘Flatten’ layers from the
unimodal CNN–LSTM architectures are concatenated. The last
layers are an LSTM layer with 512 neurons and a softmax acti-
vation function for the prediction of the class probabilities.

The video‐based CNN‐LSTM classifier is depicted by the
upper feed of the multimodal CNN‐LSTM architecture. The
radar‐based CNN‐LSTM classifier is represented by the lower
feed of the multimodal architecture. Note that the input to the
radar‐based CNN is now the result of the STFT, that is, a
vector of length 64.

The same measurements were used for training and vali-
dation of the CNN–LSTM architectures as for the CNN
architectures discussed in Section 3. However, for training and
validation of the CNN architectures, the data set was limited to
just the cases where both a radar spectrogram and a related
video frame were available. For the CNN–LSTM approach all
data were used. Missing video frames, that is, video frames in
which the SSD did not detect a person, were replaced by black
frames. During training randomly selected time sequences of
1.28 s were extracted and fed to the CNN‐LSTM model.
Validation is performed for all sequences in the validation set
from the start to the end of a measurement. Each input is
classified instantaneously, but past information is taken into
account for the classification. The classification accuracy is the
percentage of inputs that is correctly classified.

5.3 | Respective unimodal performance

The classification accuracy of the unimodal CNN–LSTM
classifiers is listed in Table 7. As compared to the performance
of the unimodal CNN classifiers, discussed in Section 3.3, the
performance of the radar‐based classifier is better, in particular
for the three‐class (N, R, and B) classification problem.

Figure 9 shows a complete radar measurement with the
spectrogram and the related softmax score over time. As the
measurement starts the CNN–LSTM‐based classifier can
quickly predict the activity correctly. Within half a gait cycle an
accurate prediction is made of the activity.After this short
initialisation, the spectrogram is classified almost correctly
throughout time, apart from some interruptions between 13 s
and 15 s where the correct class score is momentarily very low.
It is not entirely clear why this happens, but at this point the
clutter return is a bit stronger compared to the other regions
which might interfere with the classification.

Other errors that are observed mainly seem to originate
from people walking with their hands in their pockets and/or
barely moving their arms while walking, these cases are then
classified as the R class as no arm motion is observed. For
most persons the classification is accurate throughout the
measurement although for some persons the fluctuation of the
class label is worse than the example in Figure 9.

As compared to performance of the unimodal CNN
classifiers, the performance of the video‐based classifier is
worse. This is due to the video frames at the start of the

measurements in which the SSD could not detect a moving
person. These video frames were replaced by black frames,
resulting in low classification accuracy for those frames. Recall
that these bad video frames were deleted from the training set
used for the CNN‐based classifiers.

Similar to Figure 9, the classification score over time is
shown in Figure 10 for the video‐based CNN–LSTM classifier.
The figure shows an uncertain classification at the start of the
measurement, the softmax classification score is around 0.5,
this is due to the fact that up to that point no detections have
been made in the video feed and therefore only black frames
are presented up to this point. As soon as a frame is detected
around 2.7 s a correct classification is made of the activity,

F I GURE 8 Multimodal CNN–LSTM architecture. The input on the
left: the video frames and the result of a single STFT window. The output
classes are indicated by N, R and B: CNN, convolutional neural network;
LSTM, long short‐term memory, STFT, short‐time Fourier transform

TABLE 5 Radar CNN‐LSTM architecture

Layer Number of filters Kernel size Dimensions

Radar input ‐ ‐ 64 � 1

Convolution 8 5 � 1 64 � 8

Max pooling ‐ 2 � 1 32 � 8

Convolution 16 3 � 1 32 � 16

Max pooling ‐ 2 � 1 16 � 16

(Flatten) ‐ ‐ 256

LSTM ‐ ‐ 512

Softmax ‐ ‐ 2/3

Abbreviations: CNN, convolutional neural network; LSTM, long short‐term memory.

TABLE 6 Video CNN–LSTM architecture

Layer Number of filters Kernel size Dimensions

Video input ‐ ‐ 128 � 64 � 3

Video CNN stages Layers from input up to ‘Flatten’ layer from Table 2.

(Flatten) ‐ ‐ 4096

LSTM ‐ ‐ 512

Softmax ‐ ‐ 2/3

Abbreviations: CNN, convolutional neural network; LSTM, long short‐term memory.
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although beyond 2.7 s there are also missed detections in the
feed (which are substituted by black frames) the classification is
accurate throughout the rest of the observation. As the per-
sons walked from 40 m towards the radar and video sensors
during the measurements, the detection rate on the video
frames worsen at larger distances. Although quite often, once a
detection is made the classification is also accurate. The main
source of error for this video classification approach is there-
fore the missing frames at the start of the measurements.

5.4 | Discussion

The hybrid CNN–LSTM architectures show potential to
outperform the CNN‐based classifiers. However, a direct
performance comparison is difficult since different training
and validation sets have been used (bad video frames were
deleted from the sets used for the CNN‐based classifier). For a
part the classification accuracy might be improved further by
optimising the CNN–LSTM architecture.

6 | LSTM‐BASED MULTIMODAL
LEARNING

The proposed multimodal CNN–LSTM architecture is
depicted in Figure 8. The individual architectures are the
same as discussed in the previous section. Each new STFT

result is fed to the radar‐based CNN and then to the LSTM
network. In parallel, the most recent detected video frame,
related to the time window of the STFT, is fed to the video‐
based CNN and subsequently to the LSTM network. This
procedure is illustrated in Figure 11. The red window at
time tN illustrates the combined video and STFT result. In
this way the most recent data are used for the classification.
Video frames are not always available, for those cases a
black frame is fed to the video feed, as illustrated at time
tM. The LSTM model should recognise these frames and is
able to remember the necessary features from past frames.
This way not only the information about objects can be
used but also the sequence of the video feed can be
exploited.

6.1 | Multimodal CNN–LSTM analysis

The classification performance of the multimodal CNN–
LSTM architecture is also listed in Table 7. When
comparing these results with the unimodal classification
results, it can be observed that the classification perfor-
mance for the classification of the N, R and B classes is
improved by a few percent. The main contribution in this
improvement is the more accurate classification at the start
of the measurements, that is, when the SSD cannot detect
the moving person in the video frames due to the unfav-
ourable lighting conditions.

TABLE 7 CNN–LSTM‐based
classification performance (%), for validation
with complete and incomplete sets

{N, R} {N, R, B}

Single modality classification Radar 91.2 73.0

Video 91.5 81.0

Video/radar multimodal classification Validation with radar data 78.6 65.8

Validation with video data 86.5 75.2

Multimodal validation 94.3 86.5

Abbreviations: CNN, convolutional neural network; LSTM, long short‐term memory.

F I GURE 9 Classification performance
(correct class score) of the radar‐based CNN–
LSTM architecture for a single radar measurement.
On top the spectrogram of the complete
measurement, at the bottom the correct class score.
CNN, convolutional neural network; LSTM, long
short‐term memory
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6.2 | Discussion

For some measurements, it takes several seconds before a
moving person is detected by the SSD, due to the lighting
conditions. During this time no reliable prediction can be made
of the activity. Once a frame has been detected, however, the
model is able to remember relevant past features and use them
effectively for the classification of future frames. To what
extent past features are used effectively may be optimised by
training the model with longer or shorter time sequences.
Although the current activities are mainly defined by identi-
fying objects in the video frames. The CNN–LSTM model is in
principle capable of exploiting the changes from frame to
frame as well for the classification.

Being aware that someone was carrying an object or per-
forming a certain activity can help in classifying the behaviour in
the future. Especially the multimodal setup can benefit from this
information. To further assess this notion, a data set is needed
that includes transitions fromone activity to another.With such a
data set it can be investigated howheavily the LSTMmodel relies
on the past information, this might be optimised by adjusting the
length of the sequences during the training procedure.

For the radar‐based CNN–LSTM classifier, a CNN stage
was used to transform the input features. Alternatively, the
CNN stage could be omitted and the result of the STFT can be
directly fed to the LSTM stage. However, the feature extraction
stage seems to slightly improve the multimodal classification

performance, this can, however, also happen due to the
increased size of the feature vector.

7 | CONCLUSION

Here, several multimodal learning methods have been demon-
strated for the purpose of human activity classification based on
radar and video data. First, an analysis was made of different
fusion depths: data‐level, feature‐level and decision‐level. Both
feature‐level and decision‐fusion approaches show the possi-
bility to improve classification accuracies. The disadvantage of
the approach was that each frame was considered independently
and 2D convolutional layers were used for the recognition of the
activity in 1.28 s spectrogram excerpts.

The second approach demonstrated the use of a multi-
modal hybrid CNN–LSTM model to classify the human
activity continuously. The result of a 0.1 s STFT and a single
video frame was used for classification at each time instance.
Unimodal implementations of hybrid CNN–LSTM models
showed that both the radar and video sequences can be clas-
sified continuously with a high degree of accuracy. The
multimodal classification accuracy improves by a few percent,
although this improvement is for a large part contributed to
the ability to classify missed detections in the video feed at the
start of the measurement runs.

The CNN–LSTM model should be able to do transition
between activities more rapidly than compared to the 2D
convolutional approach as it can identify the necessary
features that are related to changing the activity. However, to
investigate this effect for human activity classification a data
set is required that contains test subjects changing their
activity or behaviour during the measurements. In addition, a
more challenging data set including measurements in more
realistic and varying (light) conditions should be obtained to
test the robustness of the multimodal approach and show
the added value.
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