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Preface
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| undertook this project because | believe it is crucial to examine the interaction between humans
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extend my gratitude to the Computer Vision Lab for providing me with the opportunity and resources to
conduct this research. A special acknowledgment goes to Jan van Gemert, my supervisor, for offering
invaluable critical feedback and posing insightful questions. | would also like to express my appreciation
to Ombretta Strafforello, my daily supervisor, for weekly meetings and guidance, helping me maintain
a clear perspective on tasks and their execution. Lastly, | want to thank Jorge Martinez Castaneda for
his presence and efforts as an additional committee member.

In conclusion, heartfelt thanks to my family, friends, and girlfriend for their unwavering support and
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Introduction

Object detectors are algorithms designed and trained to recognize a particular object or set of objects
within an image or video. In the research field of computer vision, object detection stands as one of the
foundational technologies that empower machines to perceive and understand the visual world. Object
detectors trained to identify specific objects or abnormalities can assist humans in their work, such as
helping doctors understand medical MRlIs or aiding individuals in quality control to identify irregularities
within a product.

One way to visualize the outcomes of such object detectors is by using bounding boxes. As the
name suggests, bounding boxes are rectangular boxes drawn around the object of interest. When
examining an image, the bounding box is drawn in a manner that aligns its edges with the left, right,
top, and bottommost points of the object.

The second chapter of this report is an article that describes the findings of my master’s thesis,
which explores the relationship between the accuracy of a set of bounding boxes within an image
and the performance and trust of a human working with that image. The research for this master’s
thesis took the form of an observer performance study, aiming to uncover the connection between
changes in a system and the performance of humans working with these systems. These studies
are crucial for analyzing and improving processes where humans need to make decisions based on
visual information. Domains where this form of research is applied include medical imaging, security
screening, and Computer-Aided Detection Systems.

The last chapter of this report covers some background information that aid in understanding some
of the terms and concepts described in my thesis. It will explain in more detail what a observer perfor-
mance study is, some core concepts of computer vision and some of the tests used within the thesis.

The insights from this study not only enhance our understanding of human performance but also
provide guidance for engineers and researchers developing algorithms for human-computer tasks.
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Bounding boxes are often used to communicate automatic object detection results to humans, aiding humans

in a multitude of tasks. We investigate the relationship between bounding box localization errors and human
task performance. We use observer performance studies on a visual multi-object counting task to measure both
human trust and performance with different levels of bounding box accuracy. The results show that localization
errors have no significant impact on human accuracy or trust in the system. Recall and precision errors impact
both human performance and trust, suggesting that optimizing algorithms based on the F1 score is more
beneficial in human-computer tasks. Lastly, the paper offers an improvement on bounding boxes in multi-
object counting tasks with center dots, showing improved performance and better resilience to localization

inaccuracy.

1 INTRODUCTION

Automatic object detectors are used to localize and
classify objects appearing in images and videos.
These algorithms have application in a number of
fields, including autonomous driving, surveillance,
medical imaging, augmented reality, robotics and vi-
sual inspection. In this work, we are interested in
the applications that involve humans as end users of
object detectors. Important examples are anomaly
detection in surveillance footage and examination of
medical images. A common approach of showing the
outcome of a object detection system to a human is
with bounding boxes. Bounding boxes are rectangu-
lar boxes drawn around each object of interest. Object
detectors are trained to predict bounding boxes that
closely match ”ground truth” bounding boxes drawn
by humans.

The quality of object detections is assessed using
standard evaluation methods that do not consider the
detectors’ intended application. Often, the evaluation
is achieved by means of the mean average precision
(mAP), a metric that combines object classification
and localization accuracy. In particular, an object is
considered accurately localized if there is sufficient
overlap between the bounding box predicted by the
algorithm and the ground truth. The overlap is calcu-
lated using intersection-over-union (IoU). Object de-
tections with IoU greater than 0.5 or 0.75 and correct

High
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Low Object detection performance High

Figure 1: Illustration visualizing improvement of human
performance in human computer task. A design choice fo-
cused on the human in the system could improve perfor-
mance without need of object detector improvement.

classification are considered acceptable (
; )-
However, relying on IoU (and therefore, on mAP)
can be misleading as IoU is highly affected by
small annotation errors present in current datasets

( ). In addition, pre-
vious work shows that the IoU does not consistently
align with users preference ( ).

In this work, we explore how the performance of the
end human users is affected by the object detectors



localization errors. We do this using observer perfor-
mance studies on a practical inspection task including
multi-object counting task. In addition, we measure
how the human trust towards the object detection sys-
tem varies as we vary the object detections localiza-
tion quality. Our study reveals that using center dots
instead of boxes not only improves the efficiency of
the human in the process, but also increases the over-
all resilience to inaccurate localization. Generating a
performance increase without the need for increased
object detector performance as illustrated in Figure 1.

This paper contributes by (1) Designing a study
to test human accuracy and performance on a sim-
ple object counting task. (2) Showing the relation be-
tween object detection accuracy and human perfor-
mance. (3) Showing the relation between object de-
tection accuracy and human trust. (4) Lastly, showing
how simple design choices can increase user perfor-
mance.

2 RELATED WORK

Research on object detectors aims to enhance the lo-
calization and classification performance on a variety
of images and datasets, accelerate the inference speed
and reduce the computational requirements. Current
models comprise two-stage models (

), single stage approaches (

), pointwise/anchorless meth-
ods ( ; ;

), transformers-based detectors (
; ) and, more recently, diffusion
models ( ).

Although the latest state-of-the-art models have
achieved competitive performance on standard bench-
marks, progress in object detection is often carried out
overlooking what the intended application of object
detectors is. In fact, ( ) showed
that when object detections are meant to be shown to
humans, standard evaluation metrics are unreliable.
In this work, our objective is to assess the impact
of object detections localization accuracy when they
are intended for applications involving human users.
In this regard, we conduct an observer performance
study to compare object detectors localization accu-
racy with users performance.

Using observer performance study to analyze and
improve the workflow between humans and computer
vision systems is not new. ( )
deployed observer performance studies to assess as-

sistive imaging techniques in radiology. Similarly
( ) looked at the impact computer
aided detection for radiologist using 3D MR imaging.

When looking at the mixed field of psychology
and computer science, frust is an important factor
to consider. Extensive research has been conducted
on effectively measuring human trust in computer
systems, yet it remains a challenging task. Multi-
ple studies examining trust measures and methodolo-
gies are available ( ;

; ). How-
ever, it has been demonstrated that many studies em-
ploy trust measures that are either inadequately vali-
dated or specifically designed for a particular use case
( ). In this study, we use the multi-
dimensional scale proposed by ( ) to
assess user trust in human-computer interactions.

3 METHOD

Our goal is to investigate the relation between ob-
ject detection localization accuracy and human per-
formance and trust. To do this, we conduct an ob-
server performance study. We design a task where
participants of the study have to count the number of
aquatic creatures in images.

In the experiments, participants are shown images
containing bounding boxes and center dots with vary-
ing localization accuracy. The answers and response
times per image are recorded. At the end of the task,
the participants are asked to fill in a survey related
to the trust in the system that generated the bounding
boxes. Participants are informed that the same system
could potentially be utilized to monitor the growth
and well-being of creatures in the aquarium or for
an automated feeding system, where errors might re-
sult in incorrect meal sizes. The survey consists of 12
question about the perceived risk, benevolence, com-
petence and reciprocity. Respondents answer through
a Likert scale, ranging from 1 (strongly disagree) to 5
(strongly agree).

The errors introduced are using 2 different mea-
sures. The IoU that gives a bounding box a score
based on the overlap of the placed box compared to
the ground truth. The Shifted boxes and Shifted Dots
are shifted into a random direction from the ground
truth to create an IoU of 0.5. The other measure we
use is the F1 score. The F1 score is calculated us-
ing the precision and recall. Precision measures how
accurate a object detector is looking at the amount
of true positive boxes placed compared to the total
amount of boxes placed. This score is varied by plac-
ing additional boxes. Recall measures the ability of



the object detector to find all the objects of interest
calculated by dividing the number of true positive
boxes by the total number of boxes that the ground
truth has. A lower recall can be achieved by removing
some of the ground truth boxes. The object detections
proposed in our study are generated by manipulating
ground truth bounding boxes. We do not make use
of real object detectors to ensure full control of the
object detections localization error. Our study partici-
pants are recruited through Amazon Mechanical Turk
(mtu, ).

In total we perform 7 experiments, each contain-
ing a set of 30 images divided into 3 smaller tasks of
10 images. This choice was made to reduce the work-
load per participant, increasing their cooperation and
reducing the chance of noise in our results. Every task
is performed by 10 to 12 participants, resulting in ap-
proximately 36 participants per experiment following
the recommendations of ( ).

Within this study, we measure the participants er-
ror by calculating the absolute difference between the
real number of aquatic creatures in an image and the
provided answer. We also calculate the agreement be-
tween the participants using the Krippendorff’s Alpha
( ) and use it to assesses the par-
ticipants’ reliability. To test the significance of our
findings we use the T-test with Bonferroni correction.
This study involves 7 different groups of data result-
ing in significance threshold o0 = @ =0.0071.

4 Experiments

4.1 Dataset

All images used in this study come from the Aquar-
ium combined data set from Roboflow(

; ). The dataset
contains images with multiple aquatic creatures. The
images were labeled by the Roboflow team with help
of SageMaker Ground Truth. From this dataset the 30
most suitable images for the experiments were hand
picked. To be suitable for the experiment an image
has to have multiple creatures in the image, the crea-
tures must be in the water (images containing puffins
outside the water could lead to confusion), the image
must be clear and the creatures in the image have to
be big enough to be able to recognize as a aquatic
creature. The bounding box information of some of
the images were updated after finding additional un-
marked fish that were in the image or reflections of
fish that were marked by the original team. All bound-
ing boxes and dots are drawn is a bright red color. As
red contrasted the best with the dark and blue tones

that were most present in the images. Examples of
the different kind of images are visualized in the grid
in Figure 2.

4.2 Pilot Testing

Prior to conducting the main survey on Amazon Me-
chanical Turk, we conducted pilot surveys in the
MTurk sandbox to evaluate the clarity of images and
accuracy of bounding box surveys. The purpose of
this pilot study was to gather feedback on the survey
and assess the task’s difficulty level. If the task was
too easy, participants would likely achieve close to
100% accuracy with short response times, potentially
diminishing the performance differences between var-
ious experiments. On the other hand, if the task was
too difficult, overall performance across all experi-
ments would likely be poor. The accuracy results
from the two pilot surveys indicated that the task’s dif-
ficulty level was appropriate for testing the hypothe-
ses.

Additionally, the pilot studies served as a means
to estimate the average time required to complete the
survey. This information was essential for ensuring
that participants received appropriate compensation
for their time investment in the task. Moreover, the
pilot surveys helped identify any errors in the images
and any ambiguities in the task or images that could
lead to divergent subjective interpretations of the cor-
rect answers. Such discrepancies would undermine or
interfere with the hypotheses being tested.

4.3 Clean Image Baseline

The first experiment aimed to determine the task diffi-
culty and establish a baseline for overall performance.
Clean images, consisting of the 30 images used in this
study without additional information such as bound-
ing boxes, were employed. These 30 images were di-
vided into three counting tasks, each containing 10
images.

Analyzing the results of the individual counting
tasks gives an average error of 3.64, 3.68, and 3.88.
These results indicate that the task difficulty remains
relatively consistent across all the counting task.
In this study, the Krippendorff’s Alpha value was
found to be 0.76, indicating a substantial level of
agreement among participants regarding the correct
answers. A low score would indicate disagreement
or unreliability in the data, which would mean that
the images or task are ambiguous or data is labeled
wrong. A score of 0.76 suggest that the data and task
are clear and we can use the outcome.
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Figure 2: Example of images used within the study. Going from left to right accurate bounding boxes (Perfect box), bounding
boxes with 0.5 IoU (Shifted box), accurate Dots (Perfect Dot ), Inaccurate dots (Shifted Dot), additional boxes(False positive)

and missing boxes(False negative).

The overall average error for the clean image
task was 3.7, with a standard deviation of 3.6 (see
Table 1). The standard deviation was calculated
based on the absolute errors for all questions, without
distinguishing between errors above or below the
correct answer. These findings serve as a valuable
baseline for the subsequent experiments, providing
insights into the task difficulty and establishing a
reference Dot for performance comparison.

4.4 Perfect Bounding Boxes

The objective of the second experiment is to assess
whether adding a correct bounding boxes to the im-
ages aids the participants’ performance. We use the
same experimental setup as for first experiment.

As presented in Table 1, the average error and
standard deviation of errors in this experiment were
significantly lower than those observed in the base-
line experiment. As anticipated, participants exhib-
ited improved performance in accurately counting the
fish when provided with the correct bounding box in-
formation. Furthermore, participants spent less time
on the images in this experiment. However, we found
no statistical significant difference in response times.
This implies that participants spent roughly the same
amount of time on images both with and without
bounding boxes, despite their enhanced performance
when the bounding boxes were available.

These findings suggest that the inclusion of cor-

rect bounding boxes in the images led to a significant
reduction in errors and improved participant perfor-
mance in counting the fish. Moreover, the response
times remained comparable, indicating that partici-
pants efficiently processed the images with or without
the presence of bounding boxes, albeit with superior
results when aided by the bounding box information.
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Figure 3: Boxplot comparing the absolute error of the dif-
ferent experiments.

4.4.1 Shifted Bounding Boxes

The purpose of the third experiment is to evaluate the
performance of humans when presented with images



60

Response time in seconds
w
8

Il

uClean =Box
Dot = Shifted Dot
= False Negative

= Shifted Box
= False positive

Figure 4: Boxplot comparing response times within the dif-
ferent experimets.

containing bounding boxes with lower object detec-
tion localization accuracy. In this experiment, the
bounding boxes in the images are randomly shifted
in direction to create an IoU value of 0.5. The scale
of the bounding boxes remains consistent, as vari-
ations in bounding box scale could introduce addi-
tional factors that might influence the experiment’s
outcomes. Similarly to the previous experiments, the
images were divided into three counting tasks, with a
total of 36 participants.

As shown in Table 1, the average error observed
in this experiment does not appear significantly differ-
ent compared to the experiment with correct bounding
boxes. Surprisingly, the participants’ performance is
even better when confronted with the shifted bound-
ing boxes. Conducting a T-test on the data con-
firms that there is no significant difference in accu-
racy between the two types of images. However, a
notable difference is observed in the response times
for the images with participants taking an average of
12 seconds more of the images containing the shifted
boxes. This finding suggests that overall performance
on the images is better when participants are pro-
vided with correct bounding boxes. The discrepancy
in response times can be attributed to participants
needing to count more carefully on the images with
shifted bounding boxes compared to those with cor-
rect bounding boxes.

4.5 F1 Errors

Localization errors are not the only type of errors that
object detectors struggle with. A object detector can
fail to find the objects of interest or might detect a ob-
ject where there is none. These are called type II and

type I errors or false-positives and false-negatives.
The F1 score is used to give the object detector a score
based on these errors .

Two experiments were run to analyze the impact
of type I and type II errors on the human performance
and trust. The hypotheses for these two experiments
were that the overall performance and trust of the hu-
mans would be lower than in the case of the correct
or shifted boxes. This because the amount of boxes
shown does not equal the correct amount of sea crea-
tures within the image.

Table 1: Participant mean error and response time when pre-
sented with Clean images (Clean). accurate bounding boxes
(Perfect box), bounding boxes with 0.5 IoU (Shifted box),
accurate Dots (Perfect Dot ), Inaccurate dots (Shifted Dot),
additional boxes(False positive) and missing boxes(False
negative).

Mean error  Mean response time
Clean 3.7+£3.6 18.6+17.4
Perfect Box 1.5+£2.7 17.0s+15.8
Shifted Box 1.3+£2.0 29.7s£7.3s
Perfect Dot 0.7+1.8 15.8s+11.7s
Shifted Dot 1.5£25 18.5s+16.8s
False positive | 2.5+2.7 21.95+21.8s
False negative | 2.24+2.2 1795+ 12.2s

4.5.1 False-Positives

In this experiment, the images were altered to have
additional boxes on random locations in the image
as demonstrated in the 5th column of the image grid
in Figure 2. The bounding box size was in a range
around the average box size within the image. The
amount of boxes in the image was doubled to create a
precision score of 0.5.

As the data in Table | shows, the average error is
2.524. Using a t-test with an oo = 0.0071 it shows that
this difference is significant compared to that of cor-
rect bounding boxes. The same goes for the average
time spent per image with an average of 21.891 sec-
onds. This result is important as it shows that false-
positive errors impact the performance of the human
both in accuracy and speed.

4.5.2 False-Negatives

In this experiment, we remove 50% of the bounding
boxes in each image, leading to a decrease of the re-
call score to 0.5 as demonstrated in the 6th column of
figure 2. This way not all sea creatures are as easy
to find as in the experiments with perfect recall, and
there are clearly visible mistakes from the object de-
tector.

The data in Table 1 shows an average error that



is significantly higher compared to the correct bound-
ing boxes. With an average error of 2.216. This shows
that the participants had an overall worse performance
when not all of the boxes are present in the image.
However, we find no significant difference in the re-
sponse time. This means that, on average, people
spent about the same amount of time on false nega-
tive images as they did on the images with the correct
bounding boxes.

4.6 Perfect Center Dots

The introduction of center dots is proposed as a po-
tential solution to address challenges associated with
bounding boxes such as occlusion, overlapping and
clutter. In this experiment, images are modified to in-
clude red dots positioned at the center of where the
original bounding boxes would be, effectively mark-
ing all aquatic creatures with a red dot. The hypoth-
esis states that images with center dots will yield su-
perior human performance and accuracy compared to
images with correct bounding boxes. This hypothesis
stems from the notion that bounding boxes in a multi-
ple object counting task may introduce additional dif-
ficulties for certain images.

As depicted in some of the images in Figure 2 the
proximity of multiple bounding boxes can result in
the formation of new boxes through overlap. These
new boxes could potentially confuse or mislead par-
ticipants attempting to count the number of aquatic
creatures as quickly as possible, leading them to ei-
ther perceive empty boxes or count additional boxes.
To address this issue, the presented approach utilizes
center dots, represented by down scaled versions (9
by 9 pixels) of the original bounding boxes. The ex-
pectation is that employing center dots will enhance
human performance and accuracy while potentially
reducing the overall Intersection over Union (IoU)
metric.

Table 1 illustrates that the overall task perfor-
mance using center dots surpasses that of correct
bounding boxes. With a mean error of 0.74, the center
dot approach achieves significantly lower error rates
compared to the 1.53 error associated with correct
bounding boxes in this simple task. Utilizing a T-
test with a significance threshold o of 0.0071 demon-
strates that the difference in performance is statisti-
cally significant and not merely a result of random
chance. Conversely, no significant difference is ob-
served in response times between the two approaches.
This finding is intriguing, as it indicates that partic-
ipants spent an equivalent amount of time on both
types of questions, while accuracy with center dots
was higher.

The results indicate that incorporating center dots
leads to superior performance and accuracy in the task
compared to the use of correct bounding boxes. This
outcome holds even though participants spent similar
amounts of time on both types of questions

4.6.1 Shifted Center Dots

How do participants perform when the location of the
center dots is inaccurate? This experiment is similar
to the Shifted Bounding Box (Section 4.4.1), but in
this case, the dots are deliberately shifted to achieve
lower accuracy. The images in this experiment in-
clude center dots that are randomly displaced in a di-
rection based on where the center of the box would
be with a 0.5 IoU when drawing the bounding boxes.
We hypothesize that the advantage of over bounding
boxes found in the Perfect Center Dots experiment
will still hold, even with reduced accuracy. This is
because there is a greater likelihood that the center
dot will still connect to a portion of the object. Addi-
tionally, center dots may aid in human perception of a
less accurate system. Bounding boxes make it easier
for humans to perceive the boundaries of the box, as
demonstrated in the study by List and Bins (
).

The results indicates that the participants per-
formed with similar accuracy and time compared to
the correct bounding boxes. Using a T-test with a sig-
nificance level of o 0.0071 on the times of the shifted
bounding boxes and shifted dots reveals a significant
difference. This suggests that the overall performance
of the shifted dots, although inferior to that of the cen-
ter dots, is better than that of the shifted bounding
boxes. The aforementioned perceptual factors could
also play a role, where the reduced accuracy of the
dots might be less noticeable, resulting in people be-
ing less cautious compared to their interaction with
the shifted bounding boxes.

4.7 Trust

In addition to the participants performance, we mea-
sure the participants trust towards the object detec-
tor. Table 2 shows the collected trust scores, ranging
on a scale from 1 to 100. Surprisingly, there is no
significant difference in trust when showing partici-
pants correct bounding boxes versus boxes with lo-
calization errors. This might suggest that users solved
the counting task by counting the number of bound-
ing box present in the images, while not focusing too
much on the exact box location.



Table 2: Result summary of trust scores per experiment out of 100. The data shows no signifact drop in trust with perturbations
to the box and dots location, while adding or removing false and true positive bounding boxes does. This suggest to optimize

for precision and recall in human computer tasks.

Perfect box | Shifted Box | Perfect Dot | Shifted Dot | False positive | False negative
Trust score | 63.74+17.5 | 62.54+16.0 | 57.74+10.0 | 63.7£16.4 | 28.8+12.9 23.948.7
On the other hand, the trust scores of the experi- REFERENCES

ments with the false negatives and false positives are
significantly lower than the perfect box baseline. This
suggests that showing an incorrect amount of bound-
ing boxes significantly impact the participants percep-
tion of the object detection system.

The trust scores collected in presence of false neg-
atives and false positives align with the diminished
performance of participants observed in these two ex-
periments, suggesting that users’ self-perception of
their own performance plays a pivotal role in deter-
mining their trust in the system.

S DISCUSSION

In this work, we show that the human performance in
a visual multi-object counting task is improved when
introducing an assistive object detection system. Sec-
ondly, we measure how human performance varies as
we control for object detector localization errors. In-
terestingly, we find that perturbing the location of the
object detections does not degrade the human count-
ing accuracy nor their trust in the system, but only
increases the completion time of the task. In addition,
human performance is improved even when the ob-
ject detections are not perfect, but contain precision
and recall errors. On the other hand, we find that the
human trust in the object detector system significantly
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tive detections. Therefore, we conclude that when ob-
ject detections are meant to be presented to humans,
it is more important to optimize the F1-score over the
IoU.

Finally, we show that the visualization strategy
used to present the object detections has an impact on
the human performance. In fact, in our study, using
center dots instead of bounding boxes increases the
human performance in the object counting task and
the resilience to localization errors. This highlights
the importance of presenting data in a way that is op-
timal for the task.
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3.1

Background

Observer performance study

This research for this thesis was done in the form of a observer performance study. Observer perfor-
mance studies are research methodologies used to assess and quantify the ability of human observers
to perform a specific task, such as detecting abnormalities in medical images, identifying objects in
visual scenes, or making judgments in decision-making scenarios. These studies are particularly com-
mon in fields such as medical imaging, computer vision, and psychology and can be used for instance
as a comparative analysis of two systems [4] or to improve detection and classification[1][2].

The primary goal of observer performance studies is to evaluate and understand how well human
observers can perform a given task under specific conditions. Here’s a general outline of the key
components of these studies:

1.

Task Definition: The first step is to clearly define the task that the observers are expected to
perform. This could be anything from detecting tumors in medical images to identifying specific
objects in a visual scene.

. Study Design: The study design outlines the experimental setup, including the selection of ob-

servers, the presentation of stimuli (e.g., images or scenarios), and any variations in conditions
(e.g., different imaging techniques, levels of noise, or presence of distractors).

Data Collection: Observers are then presented with the stimuli, and their responses are recorded.
This might involve rating the severity of a condition, making binary decisions (e.g., presence or
absence of a lesion), or ranking items.

Performance Metrics: Various metrics are used to assess observer performance. Common
metrics include sensitivity, specificity, accuracy, positive predictive value, and negative predictive
value. These metrics provide quantitative measures of how well observers can perform the task.
Statistical Analysis: Statistical methods are applied to analyze the data and determine the
significance of any observed differences or trends. This helps ensure that the results are not
due to random chance.

Results Interpretation: The results are interpreted in the context of the study objectives. Re-
searchers may draw conclusions about the effectiveness of a particular diagnostic method, the im-
pact of different conditions on observer performance, or the reliability of human decision-making
in a given context.

Implications and Applications: The findings from observer performance studies often have
important implications for practical applications. For example, in medical imaging, these studies
can influence the development and optimization of diagnostic techniques, potentially leading to
improvements in patient care.

Observer performance studies provide valuable insights into the strengths and limitations of human
observers in specific tasks. They help refine and validate techniques and technologies, ultimately
contributing to advancements in fields where human judgment and decision-making play a crucial role.
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3.2. Bounding Boxes

Bounding boxes are rectangular regions that are used to encapsulate and define the spatial location
of objects or regions of interest within an image or a frame of a video. These boxes are commonly
employed in computer vision tasks, especially in object detection, localization, and tracking. Bounding
boxes can be defined either by a set of coordinates relating to the corners or the coordinate of a center
point with a height and width.

3.3. Mean Avereage Precision

Mean Average Precision (mAP) is a metric used to evaluate the performance of object detection models.
The mAP consist of 3 elements mainly the Intersection over Union(loU) which rates the localization of
the detection and the recall and precision which rate the relation between correct and wrong detections.

3.3.1. Intersection over Union

The intersection over Union or loU is used to calculate how good a bounding box is placed on a detected
object on a scale from 0 to 1. Here 0 means that there is no overlap between the predicted box and
the ground truth or correct location and 1 means a perfect overlap. The loU is calculated by taking the
intersection between the predicted area and the ground truth and dividing this by the union of these
two boxes.

Intersection Area
Union Area
A threshold can be set up to decide what degree of overlap is acceptable to be considered as a true

detection. An loU of 0.5 or 50% is often used, however this is highly dependent on how important
location is for the use of the object detector.

loU =

3.3.2. Precision and Recall
Ones a threshold for the loU is set the performance of the object detector can be measured. This
is done by looking at the amount of correct predictions (true positives), incorrect predictions (false
positves) and missing predictions (false negatives).

The precision measures how accurate the predictions are or the percentage of correct predictions,
this is calculated by taking the ratio of true positive predictions to the total number of positive predictions.

True Positives
True Positives + False Positives

Precision =

The recall measures how good the object detector is in finding all the objects and is calculated by
taking the ratio of true positive predictions to the total number of actual positives.

True Positives

Recall =
eca True Positives + False Negatives

When calculating these scores with different loU tresholds a Precision-Recall curve can be made
from which a single average precision (AP) can be taken or mean Average precision when looking at
multiple classes.

3.3.3. Fl score

The precision and recall can also be used to calculate the F1 score. The F1 score is used when trying
to optimize both recall and precision. The harmonic mean is used to prevent the score from being
dominated by either precision or recall when one of them is very small.

Precision * Recall

F1=2+ Precision + Recall
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3.4. Object detection

Object detection is a computer vision task that involves identifying and locating objects of interest within
an image or video. The goal is to not only classify the objects present but also to determine their precise
locations by outlining bounding boxes around them. Object detection algorithms often make use of
machine learning or deep learning to produce their results. What kind of algorithm you use depends
on the problem you are trying to solve, the data you have and the amount of processing power you
have access to. Some popular architectures and algorithms for object detection include Faster R-CNN
(Regional-Based Convolutional Neural Network)[7], Mask R-CNN[3], YOLO (You Only Look Once)[6],
SSD (Single Shot Detector)[ssd] and Retinanet[5]. These models are often pre-trained on large data
sets and fine-tuned for specific tasks or domains. Object detection has seen significant advancements
in recent years, ongoing research continues to improve the accuracy, speed, and efficiency of these
models. Object detection enables a lot of computer vision based applications such as robot vision,
autonomous driving and smart video surveillance.

3.5. T-Test

T-testing is a statistical method used to compare the means of two groups and determine if there is a
significant difference between them. There are different types of t-tests, the paper uses an independent
two-sample t-test, which is commonly used when comparing the means of two independent groups.

Assumptions: The data in each group should be approximately normally distributed. The variances
of the two groups should be approximately equal.

* Null Hypothesis (H0): There is no significant difference between the means of the two groups.

+ Alternative Hypothesis (H1): There is a significant difference between the means of the two
groups.

The formula for the Two sample T-Test becomes:

Where:

+ X1 and X2 are the sample means of the two groups.
* s1 and s2 are the sample standard deviations of the two groups.
* n1 and n2 are the sample sizes of the two groups.

If the absolute value of the t-statistic is greater than the critical value from the t-distribution table
or if the p-value is less than the chosen significance level (commonly o = 0.05), the null hypothesis is
rejected.

3.6. Bonferroni correction

The Bonferroni correction is a method used to adjust the significance level of a statistical test when
multiple comparisons are performed simultaneously. When conducting multiple statistical tests, the
probability of making a Type | error (rejecting a true null hypothesis) increases. The Bonferroni correc-
tion helps control the familywise error rate by reducing the chances of finding a statistically significant
result by chance.

The idea behind the Bonferroni correction is relatively straightforward. If you are conducting k tests
and want to maintain an overall significance level of a, you adjust the significance level for each indi-
vidual test to ¢

The Bonferroni correction is a conservative method, meaning it reduces the risk of Type | errors but
comes at the cost of potentially increasing Type Il errors (failing to reject a false null hypothesis).
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3.7. Kripperndorfs alpha
Krippendorff's alpha[krippendorff2010vols] is a reliability coefficient used to measure the reliability or
agreement among multiple raters or annotators when assessing categorical data. It takes into account
the possibility of chance agreement and provides a normalized measure of agreement. The formula
for Krippendorff’'s alpha is as follows:

_ Do
a= De

Where:

* Do is the observed disagreement.
* De is the expected disagreement.

The calculation involves comparing the observed disagreement to the expected disagreement under
the assumption of random chance. The closer the value of Krippendorff's alpha is to 1, the higher the
agreement among raters beyond what would be expected by chance. The resulting value of a ranges
from-1to 1. A value near 1 indicates high agreement beyond what would be expected by chance, while
a value near 0 or negative suggests agreement is no better than random chance. Negative values may
occur when there is less agreement than expected by chance.
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