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a b s t r a c t 

We investigate creeping flow of a viscoelastic fluid through a three dimensional random porous medium 

using computational fluid dynamics. The simulations are performed using a finite volume methodology 

with a staggered grid. The no slip boundary condition on the fluid-solid interface is implemented using 

a second order finite volume immersed boundary (FVM-IBM) methodology [1] . The viscoelastic fluid is 

modeled using a FENE-P type model. The simulations reveal a transition from a laminar regime to a 

nonstationary regime with increasing viscoelasticity. We find an increased flow resistance with increase 

in Deborah number even though shear rheology is shear thinning nature of the fluid. By choosing a 

length scale based on the permeability of the porous media, a Deborah number can be defined, such 

that a universal curve for the flow transition is obtained. A study of the flow topology shows how in 

such disordered porous media shear, extensional and rotational contributions to the flow evolve with 

increased viscoelasticity. We correlate the flow topology with the dissipation function distribution across 

the porous domain, and find that most of the mechanical energy is dissipated in shear dominated regimes 

instead, even at high viscoelasticity. 

© 2017 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

The flow of complex fluids through porous media is a field of

considerable interest due to its wide range of practical applica-

tions including enhanced oil recovery, blood flow, polymer pro-

cessing, catalytic polymerization, bioprocessing, geology and many

others [2–4] . The flow of Newtonian fluids though porous me-

dia is relatively well understood in the framework of Darcy’s law

[2] . Also, a significant effort has been made to understand flow

through porous media of non-Newtonian fluids with a viscos-

ity that depends on the instantaneous local shear-rate (inelastic

non-Newtonian fluids, or quasi-Newtonian fluids), as reviewed by

Chhabra et al. [5] and Savins [6] . However, flow through disor-

dered porous media of viscoelastic fluids, i.e. non-Newtonian flu-

ids displaying elasticity, is far from being understood [5,7,8] . This is

due to the complex interplay between the nonlinear fluid rheology

and the porous geometry. Several types of numerical frameworks

have been used to model flow of non-Newtonian fluids through

porous media, including extensions of Darcy’s law [9] , capillary

based models [10] , and direct numerical simulations based on

computational fluid dynamics. Unfortunately, extensions of Darcy’s

law and capillary based models are found to be inadequate to
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ccurately capture the complete physics of pore scale viscoelastic

ow through porous media [11–13] . 

Many numerical works focus on relatively simple geometries to

ncover the essentials of non-Newtonian fluid flow through porous

edia [14–17] . Sometimes a full three-dimensional random porous

edium is studied, which is already closer to a realistic pore ge-

metry, but such studies are then usually limited to power-law flu-

ds, which are the most commonly applied quasi-Newtonian fluids

11,18–20] . For example, Morais et al. [18] applied direct numerical

imulations to investigate the flow of power-law fluids through a

isordered porous medium and found that pore geometry and fluid

heology are responsible for an increase in hydraulic conductance

t moderate Reynolds numbers. Simulations of fully viscoelas-

ic fluid flows are limited to two dimensional pore geometries

21–25] . It is now commonly agreed that including viscoelastic-

ty is important: both numerically and experimentally, viscoelas-

icity is found to introduce profound effects and complex phenom-

na such as enhanced pressure drop and elastic instabilities (some-

imes referred to as elastic turbulence) [5,26–35] . So, although it is

nown that viscoelastic fluids behave more complex than inelastic

on-Newtonian fluids, the current literature shows a lack of de-

ailed simulations of fully three dimensional flows of viscoelastic

uids through random porous media. 

In this paper, we report on a numerical study of the flow of

iscoelastic fluids through three dimensional random porous media
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Location of primitive variables in a 3D control volume (fluid cell). 
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Fig. 2. Particle configuration at solid fraction φ= 0.4 of a random array of monodis- 

perse spheres. Note that the particles are scaled by 50% for better visualization. 
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onsisting of packed arrangements of monodispersed spherical par-

icles using a combined finite volume immersed boundary (FVM-

BM) methodology. Four different porosities are studied for a range

f low to high Deborah numbers (defined later). We measure in

etail the viscoelastic fluid flow structure and stress development

n the porous medium. We will show a transition from a symmet-

ic Newtonian flow profile to an asymmetric flow configuration,

nd will relate it to a strong increase in pressure drop. An anal-

sis of the flow topology will show how shear, extension and rota-

ion dominated flow regimes change with increasing viscoelasticity

or different porous structures. Finally, we will show how the dis-

ribution of mechanical energy dissipation in the porous medium

hanges with increasing viscoelasticity and correlate this with the

ow topology. This analysis will help us to understand the inter-

lay of pore structure and fluid rheology in three dimensional ran-

om porous media. 

. Governing equations 

.1. Constitutive equations 

The fundamental equations for an isothermal incompressible

iscoelastic flow are the equations of continuity and momentum,

nd a constitutive equation for the non-Newtonian stress compo-

ents. The first two equations are as follows: 

 · u = 0 (1) 

[
∂u 

∂t 
+ u · ∇u 

]
= −∇p + 2 ηs ∇ · D + ∇ · τ (2) 

ere u is the velocity vector, ρ is the fluid density (assumed to

e constant) and p is the pressure. τ is the viscoelastic poly-

er stress tensor. The Newtonian solvent contribution is explic-

tly added to the stress and defined as 2 ηs D , where the rate of

train is D = (∇u + (∇u ) T ) / 2 . The solvent viscosity ηs is assumed

o be constant. In this work the viscoelastic polymer stress is mod-

led through the constitutive FENE-P model, which is based on the

nitely extensible non–linear elastic dumbbell for polymeric mate-

ials, as explained in detail by Bird et al. [36] . The equation is de-

ived from a kinetic theory, where a polymer chain is represented

s a dumbbell consisting of two beads connected by an entropic

pring. Other basic rheological models, such as the Maxwell model

nd Oldroyd–B model, take the elastic force between the beads to
e proportional to the separation between the beads. The main

isadvantage of such models is that the dumbbell can be stretched

ndefinitely, leading to divergent behavior and associated numer-

cal instabilities in strong extensional flows. These problems are

revented by using a finitely extensible spring. The basic form of

he FENE-P constitutive equation is: 

f ( τ) τ + λ
∇ 

τ = 2 aηp D , with : f ( τ) = 1 + 

3 a + ( λ/ηp ) tr ( τ) 

L 2 
, 

a = 

L 2 

L 2 − 3 

(3) 

n Eq. (3) the operator ∇ above a second-rank tensor represents

he upper-convected time derivative, defined as 

∇ = 

∂τ

∂t 
+ u · ∇τ − ∇u 

T ·τ − τ · ∇u (4) 

n Eq. (3) the constant λ is the dominant (longest) relaxation time

f the polymer, ηp is the zero-shear rate polymer viscosity, tr ( τ)

enotes the trace of the stress tensor, and L characterizes the max-

mum polymer extensibility. This parameter equals the maximum

ength of a FENE dumbbell normalized by its equilibrium length.

hen L 2 → ∞ the Oldroyd–B model is recovered. The total zero

hear rate viscosity of the polymer solution is given as η = ηs + ηp .

he viscosity ratio, which for a real system depends on polymer

oncentration, is defined as β = ηs /η. 

We simulate an unsteady viscoelastic flow through a static ar-

ay of randomly arranged monodisperse spheres, constituting a

odel porous medium, using computational fluid dynamics (CFD).

he primitive variables used in the formulation of the model are

elocity, pressure and polymer stress. The complete mass and mo-

entum conservation equations are considered and discretized in

pace and time. A coupled finite volume – immersed boundary

ethodology [1] (FVM - IBM) with a Cartesian staggered grid is ap-

lied. In the FVM, the computational domain is divided into small

ontrol volumes �V and the primitive variables are solved in the

ontrol volumes in an integral form over a time interval �t . 

The location of all the primitive variables in a 3D cell is indi-

ated in Fig. 1 . The Cartesian velocity components u, v, w are lo-

ated at the cell faces while pressure p and all components of the

tress τ are located at the center of the cell. 

We apply the discrete elastic viscous stress splitting scheme

DEVSS), originally proposed by Guénette and Fortin [37] , to intro-

uce the viscoelastic stress terms in the Navier-Stokes equation be-

ause it stabilizes the momentum equation, which is especially im-
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Fig. 3. Viscoelastic flow streamlines through a random array of monodisperse spheres at De = 1.0 for solid fractions (a) φ= 0.3 and (b) φ= 0.5. The planes are colored with 

normalized averaged flow velocity. Only a section of the full domain is shown. 

Fig. 4. Apparent relative viscosity versus De number for different solid fraction ( φ). 

Here De is based on the radius R c of the sphere. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Apparent relative viscosity versus altered De k , using 
√ 

k as the character- 

istic length scale, for different solid fractions. Neglecting the slight flow-induced 

thinning around De k = 0.1, most data can be fitted through the correlation ηapp = 

1 + 0 . 32 De 1 . 15 
k . 
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portant at larger polymer stresses (small β). A uniform grid spac-

ing is used in all directions. The temporal discretization for the

momentum Eq. (2) is as follows, 

ρu 

n +1 = ρu 

n + �t 
{
−∇ p n +1 −

[
C 

n +1 
f 

+ 

(
C 

n 
m 

− C 

n 
f 

)]
+ 

[
( ηs + ηp ) ∇ 

2 u 

n +1 + ∇ · τ n 
]

+ ρg − E 

n 
p 

}
(5)

Here ηp ∇ 

2 u 

n +1 and E 

n 
p = ηp ∇ 

2 u 

n are the extra variables we in-

troduce to obtain numerical stability, where n indicates the time

index. C represents the net convective momentum flux given by: 

C = ρ( ∇ · uu ) (6)

Here the first order upwind scheme is used for the implicit eval-

uation of the convection term (called C f ). In the calculation of

the convective term we have implemented a deferred correc-

tion method. The deferred correction contribution that is used to

achieve second order spatial accuracy while maintaining stability is

( C 

n 
m 

− C 

n 
f ) and is treated explicitly. In this expression C m 

indicates

the convective term evaluated by the total variation diminishing

min-mod scheme. A second order central difference (CD) scheme

is used for the discretization of diffusive terms. 
In Eq. (5) the viscoelastic stress part τ is calculated by solving

q. (3) . The viscoelastic stress tensors are all located in the cen-

er of a fluid cell, and interpolated appropriately during the veloc-

ty updates. The convective part of Eq. (3) is solved by using the

igher order upwind scheme. 

Eq. (5) is solved by a fractional step method, where the tenta-

ive velocity field in the first step is computed from: 

u 

∗∗ = ρu 

n + �t 
{
−∇ p n −

[
C 

∗∗
f + 

(
C 

n 
m 

− C 

n 
f 

)]
+ 

[
( ηs + ηp ) ∇ 

2 u 

∗∗ + ∇ · τ n 
]

+ ρg − E 

n 
p 

}
(7)

n Eq. (7) we need to solve a set of linear equations. Here it is im-

ortant to note that the enforcement of a no-slip boundary condi-

ion at the surface of the immersed objects is handled at the level

f the discretized momentum equations by extrapolating the ve-

ocity field along each Cartesian direction towards the body surface

sing a second order polynomial [1,38] . The main advantage of us-

ng the immersed boundary method is that it requires no confor-

al meshing near the fluid-solid interface whereas the method is

omputationally robust and cheap. 
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Fig. 6. Spatial distribution of normalized flow velocity along the flow direction (x) for a fluid flowing at (a) De 0.001 and (b) De 1.0 for solid fraction φ= 0.5. Only a section 

of the full domain is shown. 

Fig. 7. Flow streamlines (coloured with normalized vorticity) for De number (a) 0.001 and (b) 1.0 for flow through random porous media for φ= 0.5 (Arrow shows the flow 

direction). Only a section of the full domain is shown. 

Fig. 8. Stress contours (colored by non-dimensional stress) showing the normal stress along the flow direction ( τxx 

ηU/ R c 
) for a non-Newtonian fluid flowing at different De 

numbers ((a) De 0.001 (b) De 0.1 (c) De 1.0) for φ= 0.5. Only a section of the full domain is shown. 

 

v

u
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c

∇

The velocity at the new time step n + 1 is related to the tentative

elocity is as follows: 

 

n +1 = u 

∗∗ − �t 

ρ
∇ ( δp ) (8) 
here δp = p n +1 − p n is the pressure correction. As u 

n +1 should

atisfy the equation of continuity, the pressure Poisson equation is

alculated as: 

 ·
{

�t 

ρ
∇ ( δp ) 

}
= ∇ · u 

∗∗ (9) 
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Fig. 9. PDFs of the dimensionless velocity along flow direction (x) for different solid fractions: (a) φ= 0.3, (b) φ= 0.4, (c) φ= 0.5, (d) φ= 0.6, for all De numbers. 
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We use a robust and efficient block – incomplete Cholesky con-

jugate gradient (B-ICCG) algorithm [39,40] to solve the resulting

sparse matrix for each velocity component in a parallel computa-

tional environment. 

As the viscoelastic stress tensor components are coupled

amongst themselves and with the momentum equation, the ve-

locity at the new time level u 

n +1 is used to calculate the

stress value accordingly. As a steady state criterion, the relative

change of velocity and stress components between two subse-

quent time steps are computed in all the cells. If the magni-

tude of the relative change is less than 10 −4 the simulation is

stopped. This part is also explained in detail in our methodology

paper [1] . 
.2. Problem description 

We employ our method to investigate the flow of viscoelastic

uid through a static array of randomly arranged spherical par-

icles in a 3D periodic domain ( Fig. 2 ). The domain size is set

y the solids volume fraction φ, the diameter of each particle d p 
nd number of particles N p . To generate the random packing for

≤ 0.45, a standard hard sphere Monte-Carlo (MC) method [41] is

sed. The particles are placed initially in an ordered face centered

ubic (FCC) configuration in a domain with periodic boundary con-

itions in all directions. Then each particle is moved randomly

uch that no overlap between particles occurs. However, such a

C method does not provide sufficiently random configurations
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Fig. 10. PDFs of the dimensionless velocity along the transverse direction (y) for different solid fractions: (a) φ= 0.3, (b) φ= 0.4, (c) φ= 0.5, (d) φ= 0.6, for all De number. 
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n highly dense packings [42] . Thus, to generate random config-

rations at φ > 0.45, an event driven method combined with a

article swelling procedure is applied [43] . This ensures the parti-

les are randomly distributed. The same approach was followed by

ang et al. , for Newtonian fluid simulations for a range of low to in-

ermediate Reynolds numbers [44] . A detailed analysis of different

acking generation and drag correlation study for Newtonian fluid

ow through such a random monodispersed porous media has also

een performed [44, 45] . 

In all simulations, the flow is driven by a constant body force

xerted on the fluid in the x -direction, while maintaining peri-

dic boundary conditions in all three directions. Note that this is

lightly different from using periodic boundary conditions with a

ressure jump condition. Simulations of random arrays are carried

ut with N p = 108 spheres arranged in different configurations. The
article diameter d p is always kept constant at 1.6 × 10 −3 m. The

olid fractions φ investigated are 0.3, 0.4, 0.5 and 0.6, respectively.

orosities therefore range from 0.7 to 0.4. 

For the FENE-P viscoelastic fluid we use a constant extensional

arameter (L 2 ) of 100. The viscosity ratio β is kept at 0.33. As we

ant to study the interaction between the viscoelastic fluid and

olid for different flow configurations we keep a constant value of

 

2 and β . For reference purposes, we also simulate a Newtonian

uid with the same zero-shear viscosity as the polymer solution.

n all our simulations we keep the Reynolds number low, below a

alue of 0.01, ensuring we are always in the creeping flow regime

nd any type of inertial effects will be insignificant. We perform

imulations for Deborah numbers ranging from 0 to 1, if the Debo-

ah numbed is defined as De = λU/ R c , based on the sphere radius

nd mean flow velocity U . However here we already note that if
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Fig. 11. Distribution of flow topology parameter Q at (a) De 0.001 and (b) De 1.0, in a slice of random porous medium at solid fraction φ= 0.5. Blue corresponds to rotational 

flow, green to shear flow, and red to extensional flow. Only a section of the full domain is shown. 
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we use the Deborah number De k based on the length scale equal

to the square root of permeability ( 
√ 

k ) , different simulation out-

comes for different porous configurations can be effectively ex-

plained (as will be discussed later). 

We have performed simulations for three different mesh sizes:

� = R c / 30 , � = R c / 40 and � = R c / 80 . The results for � = R c / 40

and � = R c / 80 were virtually indistinguishable ( < 2% difference

in the averaged velocity and stress values of each cell) even for

De > 1 (not shown). Thus all results in the remainder of this pa-

per are based on the mesh size � = R c / 40 . It should be noted that

we need to keep the CFL number lower than 0.01 in all our sim-

ulations, leading to considerable computational costs. At De < 1 a

larger time step can be utilized but at De ≥ 1, a small time step is

required for smooth convergence. 

The precise flow configuration through the random packings,

i.e. the amount of rotational, shear and extensional flow, will de-

pend on the level of viscoelasticity. To characterize the flow con-

figuration, we introduce a flow topology parameter Q which is the

second invariant of the normalized velocity gradient. This parame-

ter is defined as 

Q = 

S 2 − �2 

S 2 + �2 
(10)

where S 2 = 

1 
2 ( D : D ) and �2 = 

1 
2 ( � : �) are invariants of the rate

of strain tensor D , introduced before, and the rate of rotation ten-

sor � = 

1 
2 ( ∇ u 

T − ∇u ) . Values of Q = − 1, Q = 0, and Q = 1 corre-

spond to pure rotational flow, pure shear flow and pure elonga-

tional flow, respectively. 

In this paper we will correlate the above flow topology param-

eter Q with the dissipation function in the flow domain. The dis-

sipation function expresses the work performed by the viscoelastic

and Newtonian stress per unit volume (in W/m 

3 ), and is defined

as: 

. 
e t = ( τ + 2 ηs D ) : ∇u (11)

By correlating the spatial distributions of Q and 

. 
e in the porous

domains at different De numbers, we will be able to identify the

flow configurations which lead to the predominant energy dissi-

pation, and are therefore predominantly responsible for observed

pressure drops. 

To quantify the dissipation function in a dimensionless man-

ner, we express the total work performed by Newtonian and
iscoelastic stress per unit of volume as E t = 

. 
e t 

ηU 2 /R 2 
C 

. We warn the

eader that the word “dissipation function” may be a bit mislead-

ng because for a viscoelastic fluid not all of the work represented

y this term is irreversibly turned into heat, but instead can be

tored elastically and released at a later point in time, leading to a

ocal negative value of the dissipation function. We will show later

hat this indeed is the case. 

. Results 

.1. Apparent relative viscosity 

Fig. 3 shows streamlines for viscoelastic flow through a random

phere packings at De = 1 for solids volume fractions 0.3 and 0.5,

espectively. The flow direction is indicated by the arrow and se-

ected planes are colored with the normalized averaged flow ve-

ocity. 

These streamlines provide an idea about the complex flow pat-

ern in these porous media. For solids volume fraction 0.3, the flow

s rather homogeneous. However for solids volume fraction 0.5, the

ore structure triggers more tortuous flow paths and more prefer-

ntial flows. 

To quantify the viscoelastic effects we express the results in

erms of the viscosity that appears in a generalized Darcy law for

ow through porous media. The volume-averaged fluid velocity 〈 u 〉
n porous media is controlled by the pressure drop across the sam-

le. According to Darcy’s law, for a Newtonian fluid the relation

etween the average pressure gradient ( − dp 
dx 

) and the average fluid

elocity across the porous medium is: 

−dp 

dx 

)
= 

η〈 u 〉 
k 

(12)

Here k is the permeability (units: m 

2 ), which is related to the

olids volume fraction (or porosity), pore size distribution and

ortuosity of the porous medium, whereas η is the viscosity of

he fluid. Eq. (12) presents an operational way of measuring the

ermeability k by flowing a Newtonian fluid of known viscosity

hrough the porous medium. For a viscoelastic fluid, the viscos-

ty is not a constant but generally depends on the flow conditions.

owever, if we assume that k is constant for a specific porous

edium, we can still define an apparent viscosity by using a
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Fig. 12. Flow topology parameter histograms for solid fractions (a) φ= 0.3, (b) φ= 0.4, (c) φ= 0.5, and (d) φ= 0.6, for different De numbers. 
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eneralized Darcy law. Dividing the apparent viscosity by its low

ow rate limit gives us insight in the effective flow-induced thin-

ing or thickening of the fluid in the porous medium. In detail, the

pparent relative viscosity ηapp of a viscoelastic fluid flowing with

 volumetric flow rate q and pressure drop �P through a porous

edium is given by: 

app = 

(
�P 
〈 u 〉 

)
V E (

�P 
〈 u 〉 

)
N 

(13) 

he subscript VE indicates viscoelastic fluid at a specific flow rate

r pressure drop, while the subscript N indicates its Newtonian

ounterpart in the low flow rate or low pressure drop limit. 

Fig. 4 depicts how the apparent relative viscosity changes with

n increase in viscoelasticity for flow through flow configurations

ith different solids volume fractions. With increasing De num-

er, where De is based on the sphere radius as the characteristic

ength scale, we initially observe a (relatively weak) flow-induced

hinning. Then beyond a certain flow rate we observe a strong

ow-induced thickening, which means a sharp increase in flow re-

istance. With increasing solids volume fraction (decreasing poros-
ty), the onset of this increased flow resistance shifts to a lower De

umber. This shows that the increased fluid-solid interaction facil-

tates the onset of such a flow resistance. Experimental evidence of

his increase in apparent relative viscosity was previously reported

n literature [5] , especially for packed bed systems. 

The pore porosity and pore geometry are very important for

he increase in apparent relative viscosity, but this is not re-

ected in the De number based on the radius of the spheres.

herefore, we next try to use the square root of the permeabil-

ty, 
√ 

k obtained from Newtonian flow simulations, as the char-

cteristic length scale. This altered Deborah number is defined as

 e k = 

λU √ 

k 
. Fig. 5 shows the apparent relative viscosity versus the

ltered De k for different solids volume fractions. We find a collapse

f all data sets of Fig. 4 to a single curve for the entire range of De k 
umbers. This is remarkable considering the fact that, despite the

ifferent arrangement of pore structures for the different porosi-

ies, the resulting increase in flow resistance follows the same uni-

ersal thickening behavior. However we should keep in mind that

hese results are strictly only valid for a FENE-P type of fluid with

 

2 = 100 flowing through a random array of monodisperse spheres.
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Fig. 13. Flow topology parameter histogram for different solid fractions at De k = 1.0. 

Fig. 14. Volumetric non dimensional total dissipation function E t at De 1.0 for 

φ= 0.5. The color range is clipped to clearly show regions of energy release at high 

De. Only a section of the full domain is shown. 
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The increase in flow resistance for flow of viscoelastic fluid through

packed bed are also experimentally shown in the work of Chhabra

et al. [5] and by W. Kozicki [46] based on a capillary hybrid model.

Recently M. Minale, [47,48] showed a similar kind of scaling re-

lationship for flow of second order fluids through porous media

using a generalized Brinkman’s equation. 

3.2. Velocity and stress profiles 

Next we investigate the velocity and stress profiles of viscoelas-

tic fluid flow through the three dimensional porous medium, and

analyze the interplay between the flow structures and fluid rhe-

ology. Although we have investigated different porosities, here we

show the profiles for a solid fraction of φ= 0.5 for a range of De

numbers. 

Fig. 6 shows snapshots of velocity contours (across a repre-

sentative section of flow domain), colored by the normalized x-

velocity, for different De numbers after the same time of simu-

lation. The flow structure becomes non uniform with increasing

De number. Especially at De of order 1 we see the onset of pref-

erential flow paths (paths with higher velocity) in the flow do-

main. Fig. 7 illustrates the same effect with streamlines (colored
ith normalized vorticity), clearly showing the meandering flow

aths through the pore space. Such preferential flow paths emerge

ue to differences in flow resistance through different parts of the

orous medium, leading to asymmetric flow structures, as will be

iscussed in detail later. 

The non-dimensional viscoelastic normal stress component

long the flow direction 

τxx 
ηU/ R c 

, is shown in Fig. 8 for different

e numbers. Such viscoelastic stresses are absent in a Newtonian

uid. We observe that the viscoelastic normal stress increases with

ncreasing De number, and that the largest normal stresses are

resent near the walls of the sphere at locations which are shear

ominated. This will also be analyzed in detail in the subsequent

ection. 

Though the flow is in a non-inertial regime, at higher viscoelas-

icity the uniformity in the streamlines is found to be less, showing

ow asymmetry, compared to its Newtonian counterpart. 

To understand the effect of viscoelasticity on flow anisotropy

e have analyzed the velocity probability distribution function

PDF) across the entire three dimensional flow domain (each

orosity) for all the De numbers based on 

√ 

k . Fig. 9 shows the

istribution of normalized velocities along the flow direction x.

or low Reynolds numbers such as studied here one might ex-

ect the PDFs to collapse on each other. This is not the case. At

ow De number the PDFs of the x velocity component superim-

ose and are mostly positive. However, at increased De numbers

he PDFs also increase for negative velocities. This shows that there

s emergence of recirculation zones in the system. Though the driv-

ng force for the flow is along the positive x direction, the negative

omponents in the PDFs give a measure for recirculation appear-

ng in the system. Another interesting fact is that the width of the

DFs increases with increasing solids volume fraction, and show an

ppearance of a slower decaying tail for higher velocities. 

Fig. 10 shows the distribution of normalized velocities along the

ransverse flow direction y. In a non-inertial flow regime with ran-

om placement of the spheres we expect a symmetric distribution

f y-velocities. Fig. 10 , shows that for low De number the PDFs

f the transverse velocity components are completely symmetric.

owever with increasing De number the PDFs become slightly

symmetric, and the broadness of the PDFs also increases. The de-

ay is more exponential in nature. The reader should keep in mind

hat the vertical scales of the PDF distributions are plotted on a log

cale, so the tails represent very small probabilities. Thus, because

 finite number of samples are used, the PDFs are not smooth in

he tails. 

These observations quantitatively validate our findings of the

xistence of preferential flow paths, observed from the streamlines.

 possible mechanism might be that, at increased viscoelasticity,

trong elastic effects come into play, leading to asymmetric curved

treamlines and possibly causing elastic instabilities, as also shown

n the work of Pakdel et al. [30] . To understand these effects fur-

her we have performed a detailed analysis of the flow topology

nd dissipation function, and will be presented in the next section.

.3. Flow topology 

This section focuses on the flow topology. As explained in

ection 2.2 , the main idea is to investigate how the shear, exten-

ional and rotational parts of the flow are distributed and develop

n the three dimensional interstitial space. As explained Q = −1,

 = 0, and Q = + 1 correspond to pure rotational, shear and elon-

ational flows, respectively. 

Fig. 11 shows the flow topology parameter distribution for a

andom porous medium with solid fraction 0.5. We observe that

he flow becomes more shear dominated at higher De, while, per-

aps surprisingly, the presence of extensional flow regions seems

o decrease. 
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Fig. 15. Distribution of non-dimensional dissipation function versus flow topology parameter Q for different De numbers, for solid fractions (a) φ= 0.3, (b) φ= 0.4, (c) φ= 0.5, 

and (d) φ= 0.6. 
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To better quantify the effect of viscoelasticity on flow topol-

gy, in Fig. 12 we have plotted the histograms of flow topology

arameter for different De numbers, for each solids volume frac-

ion. The common feature observed from all histograms is that all

ow structures are more shear dominated than extensional flow

ominated. Although the extensional component ( Q = 1) increases

lightly up to De = O(1) , at larger De it sharply decreases again and

hear effects ( Q = 0) become more dominant. Note that the PDFs of

ormalized velocity ( Fig. 10 ) and flow streamlines ( Fig. 7 ) show a

ransition to flow asymmetry around the same De = O(1) . So the

ow topology analysis shows that the increase in flow resistance

t larger De, observed in a random porous medium of monodis-

erse spheres, may be caused by strong normal viscoelastic shear

ow stresses, rather than their extensional counterparts. 

Fig. 13 compares the flow topology histograms at the same

e k = 1.0 for four different solids volume fractions. This shows that

t this relatively high De number, the overall shear contribution

Q = 0) also increases with increasing solids volume fraction (de-

reasing porosity), and subsequently the extensional contribution
 t  
ecreases. These results are also consistent with our recent obser-

ations of viscoelastic fluid flow in a model porous media [49] . 

.4. Dissipation function 

Finally, we analyze the spatial distribution of the dissipation

unction, expressing the work done by the total stress (viscoelas-

ic + Newtonian solvent) per unit of time and per unit of volume,

s defined in Section 2.2 . This dissipation function can be both

ositive and negative, but we note that energy is always dissi-

ated from the Newtonian solvent contribution. As an example,

ig. 14 shows the nondimensionalised spatial distribution of E t for

 solid fraction of 0.5 and De number of 1.0, in a representative

lane of the random porous media. We have clipped the dissipa-

ion function color scale to clearly show regions in the domain

here energy is released (negative dissipation function) by the

olymer solution. For De = O(1) and higher, energy is dissipated by

he solvent, but also stored as elastic energy by the polymers, close

o the particle surfaces, and released after a pore throat has ended,
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further away from the particle surfaces. This is consistent with the

physical picture in which polymers in fast contraction flow are ex-

tended and therefore store energy in their entropic springs; this

energy is subsequently released when the polymers can recoil to

their upstretched state when the contraction flow has stopped. 

In the previous section, we showed that the fraction of shear

dominated regions increases significantly beyond De = O(1) . We

now ask whether these shear dominated regions are also responsi-

ble for the observed increase in flow resistance. To answer this, in

Fig. 15 we show what fraction of energy is dissipated in the flow

domain with a particular value of flow topology Q (per unit Q ). 

Only for the lowest solid fraction 0.3 (highest porosity of 0.7),

we find significant energy dissipation in mixed shear and exten-

sional flow (0 < Q < 1). For more closely packed domains this zone

significantly reduces: the width of the histograms reduce and their

peaks grow around Q = 0 with increasing solid fraction, while the

contribution of extensional flow to the energy dissipation gener-

ally decreases with increasing De. This conclusively shows that at

increased solid fraction and with increasing De, shear regions are

predominantly responsible for the increase in flow resistance in

the random porous media studied here. 

4. Conclusion 

We have employed a finite volume - immersed boundary

methodology to study the flow of viscoelastic fluids through an ar-

ray of randomly arranged equal-sized spheres representing a three

dimensional disordered porous medium, for a range of solid frac-

tions (or porosities). Irrespective of the solid fraction, we found

a strong increase in flow resistance after a critical De number is

reached. The increase in apparent relative viscosities measured for

different solids volume fractions overlap among each other if the

Deborah number is chosen with a length scale based on the per-

meability of the pore space (more precisely, D e k = λU/ 
√ 

k , with k

the permeability of the medium for a Newtonian fluid. The PDFs

of flow velocity suggest that with increasing viscoelasticity the

flow profiles become more asymmetric, and increasingly preferen-

tial flow paths are found. A detailed study of the flow topology

shows that for the porous media investigated in our study, shear

flow becomes more important than extensional or rotational flow

at higher De number. We have analyzed the distribution of the dis-

sipation function across the flow domain and correlated it to the

flow topology. These findings helped us conclude that the observed

increase in flow resistance should be attributed to an increase in

energy dissipation in shear flow dominated regions. More gener-

ally, simulations such as shown here help us to understand the

complex interplay between the fluid rheology and pore structure

in porous media. In our future work we will study flow through

three dimensional realistic porous media which have a larger dis-

tribution in pore and throat sizes than studied here. 
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