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Abstract

Cognitive processes have been used in recent years
for context sensing and this has shown promising
results. Multiple sets of features have shown good
performance but no set of features has been deter-
mined the best for classifying gaze data. This paper
looks at different feature sets and the heterogeneity
of gaze signals from subjects and hardware to de-
termine what impacts the performance of the classi-
fiers and what returns the best results. These results
are compared with deep learning classifiers using
the same data set to determine which performs bet-
ter.

For the different feature sets, saccade features show
great positive influence on the accuracy (88% ac-
curacy) but fixation features show a significant
lower ability to classify correctly (63% accuracy), a
combination of some fixation and saccade features
show the best results(95% accuracy). The way the
data is split, has a huge impact on the performance,
splitting the data on every activity gives an accu-
racy of 95%, while the splitting on subjects only
reaches a maximum of 60% accuracy. Deep learn-
ing algorithms perform only slightly better at 97%
accuracy but dropping down massively (38%) when
splitting the data over subjects.

The main conclusions from this research revolve
around feature selection and subject bias. Sac-
cade features have the most impact on the classi-
fication of activity recognition using eye tracking
data. Each subject performs each task in a sig-
nificantly different way which drastically decreases
performance when completely new subject data is
tested on a trained classifier. Deep learning clas-
sifiers show similar results and back up the impor-
tance of the heterogeneity of the data. The evalua-
tion of different types of hardware has not been ac-
complished in this research due to time constraints.

1 Introduction

In the recent past, research on visual behavior has emerged
and context sensing through cognitive processes has seen
convincing correlation[1]. Eye movement is one of the pro-
cesses that has been shown to be related to different pro-
cesses such as emotion[2] and visual memory[3]. Different
eye trackers have seen some use in the assistance of gather-
ing data for training purposes in professional gaming[4] and
monitoring drivers while driving[5]. Information about the
condition and doings of people while performing everyday
tasks can be used in a better understanding of what people
actually focus on during these tasks. Finding patterns in eye
movement in order to classify a set of tasks that people are
doing has shown great success, up to 74% [6]. In more re-
cent years, advanced algorithms have emerged that are able
to classify tasks without the restrictions of different types of
hardware or subjects. GazeGraph [7] recognizes cognitive
contexts, e.g. reading or watching a painting, live while wear-

ing an eye tracker within seconds. It shows up to a 45% in-
crease in recognition accuracy and a 80% decrease in system
adaption time in comparison to existing solutions.

1.1 Research Questions

Extracting features out of an eye tracker data is a task that has
shown different solutions throughout the years and different
sets of features are shown to have a good accuracy score using
different types of conventional machine learning algorithms,
e.g. K-NN, Random Forest and SVM[6], [8]. Although these
different sets show great accuracy, there has not been one set
of features that is shown to be the best for classifying cogni-
tive contexts. The first step for the research in this paper is
trying the find the best feature extraction method to answer
the following question: How to design and implement dif-
ferent feature extraction methods for eye movement sig-
nals?

Having these extracted features is the beginning of the op-
timization for the classification of desktop activities. After
the extraction, the best features have to be determined in or-
der to achieve the best results. This will done using feature
selection methods to answer the question: To achieve good
recognition accuracy, what are the best features that need
to be extracted and used for conventional machine learn-
ing algorithms?

Heterogeneity in data is something that cannot be ignored
[9]. Also in eye tracking data, there is a large difference be-
tween subjects and the way they perform the tasks at hand.
The heterogeneity of eye tracking data can alter the outcome,
especially when using features that negatively impact the per-
formance[10]. Different kinds of eye trackers return different
data which can also include a bias that is able to influence
the performance. Using different feature sets and ways to
split the data, this paper tries to answer the following ques-
tion: What is the impact of different subjects and sensing
hardware on the recognition performance?

Steps towards human activity recognition with deep learn-
ing models have been made over the last years[9]. Deep
learning has the opportunity to better recognize and remem-
ber patterns in data, which can be applied on gaze data to
match patterns for classification of human activities. Deep
learning models are a lot more complex and take longer to
train in comparison to conventional algorithms. The last part
of this paper will investigate the following: Compare deep
and conventional machine learning algorithms on accu-
racy and robustness against heterogeneity among sub-
jects.

1.2 Structure

This paper will start by explaining the methodology applied
for the experiments in section 2. The section will cover the
data set, preprocessing of the data, feature extraction and se-
lection and the classification. Section 3 will continue with
the implementation of the methodology for the experiments.
It will cover the implementation of the different filters applied
on the data, extracted fixation and saccade features, classifica-
tion results, subject bias calculations and the comparison with
deep learning classifiers. Subsequently, a part on responsible



research will show how this paper dealt with privacy and re-
sponsibility of the data in section 4. Lastly, in the section 5
all the results from the paper will be discussed together with
the limitations of this paper and future work.

2 Methodology

A number of different steps are applied on the raw data to get
to the classification of an activity. This section will follow
the pipeline from figure 1, explaining the reasoning behind
the steps. The specific implementation together with the re-
sults of the steps can be found in section 3. In 2.1, the data
set used in for this research will be elaborated on, followed
by the preprocessing part which consists of the normalization
and filtering of the data. Then feature extraction methods and
selection of the extracted features will be explained. The last
part of this section will cover the classifiers used in this re-
search.

Figure 1: This figure shows the pipeline starting with the raw gaze
data down to the classification. In between the data is normalized,
filtered and after feature extraction and selection the data is ready to
train or test the models.
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2.1 Desktop Activity Dataset

The dataset used in this research, is a dataset obtained in the
research from G. Lan et al[7]. The gaze data set is sampled
from a Pupil Core eye tracker [11] on eight participants (four
male, four female, fluent in English and between the age of
24 and 35). Each participant performs six common daily ac-
tivities on a computer: reading three different types of texts,
writing an essay, watching two short videos, freely browsing
public websites, e.g. news sites or blogs, playing two dif-
ferent online games (Classic Super Mario and Agario) and
searching the internet using a search engine, given a set of
predefined questions. All the activities were performed dur-
ing a time frame of 5 minutes, the participants were able to
freely move their head while doing the tasks. The data was
sampled at rate of 30 Hz, resulting in a data set of activities

containing 9000 data points where each data point has a x and
y coordinate representing the gaze relative to the other gazes
at a certain time.

Figure 2: This plot shows the raw data points from the reading ac-
tivity from subject 1.
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2.2 Preprocessing

Gaze data contains noise from, e.g. blinking or hardware in-
accuracies and this noise can affect the eventual outcome in a
negative way. The data can also contain gaps where new data
points need be sampled to achieve enough workable data. A
filter that can solve these problems is a median filter. The
median filter is non-linear filter used in signal processing to
remove noise and filter out outliers. The median filter used
in this paper takes a window of data points, calculates the
geometric distance of all points and samples the point with
the lowest distance. The geometric distance is the sum of the
distances to all other points in the window.

Two distinct gaze features have shown to be a profound ba-
sis for gaze based activity recognition [6]—[8]: fixations and
saccades.

Fixation. A fixation is a point in the data which represents
a moment in time where the subject is looking at one specific
part of the screen for an extended period of time. To extract
fixations from the data, the fixation filter from [12] will be
used. This filter gives the control over the average window
size and peak threshold, together with the distance between
the fixations, the radius. For every point the filter takes the
mean of a window from before and after the point and cal-
culates the difference. The filter compares these differences
of consecutive sliding windows, if there is a sliding window
that has a higher difference than the sliding window before
and after, it is considered a peak and the point is added to a
list as a potential fixation. Then for every peak in the list, it is
checked whether any peaks are within a sliding windows’ dis-
tance of each other. If this is the case, the peak with the high-
est value is selected. Following, only the peaks that are above
the threshold will be used to determine the fixations. Lastly,
the rest of the remaining points have to be at least the length
of the radius parameter apart, otherwise they get merged into



one fixation. This will return a list of points where each point
resembles fixation in the data.

Saccade. A saccade is the rapid movement between two
fixations when a person switches focus. Due to the relatively
low sampling rate of the data, the saccades are extracted by
connecting the fixations. This results in all the saccades hav-
ing the same duration which means that the duration cannot
be used as a feature for classification. Fortunately, there is
enough information left on the fixations and saccades to ex-
tract useful features to differentiate activities on.

2.3 Feature Extraction and Selection

From the fixations and saccades that were extracted during
the preprocessing phase different types of gaze features can
be extracted. In [8], a distinction is made between low, mid
and high-level gaze features. Low-level gaze features are fea-
tures that can be extracted directly from the fixations and sac-
cades, e.g. fixation duration or saccade length. Mid-level fea-
tures consist of patterns of multiple fixations or saccades, but
these features show a significantly low increase in accuracy
and were therefor omitted from the list of extracted features in
this research. High-level features take their information from
the Areas-of-Interest in the interface but are also beyond the
scope of this research.

The features that are extracted from the fixations and sac-
cades are shown in table 1, summing up to a total of 18 fea-
tures.

Category | Sub-Category Features
Fixation Duration fix-dur-mean,
fix-dur-var, fix-dur-std
Rate fix-rate
Slope fix-slope
Dispersion Area | fix-disp-area
Radius fix-radius
Saccade Length sac-len-mean,
sac-len-var, sac-len-std
Direction sac-dir-nne, sac-dir-ene,
sac-dir-ese, sac-dir-sse,
sac-dir-ssw,
sac-dir-wsw,
sac-dir-wnw,
sac-dir-nnw

Table 1: Table containing features on fixations and saccades ex-
tracted from the data

All features are calculated over a list of fixations and sac-
cades which can vary in length by using different sliding win-
dow sizes. The features are divided into the two distinct gaze
features: fixation and saccade.

Fixation features. The fixation duration feature takes the
duration length of the fixations and gives the mean, variance
and standard deviation. The fixation rate is the number of
fixations per second and the fixation slope is the slope of the
best fitted two dimensional line of the given fixations, resem-
bling the direction of the fixations. The dispersion area of the
fixations is the area that 75% of the fixations in the window
span. The 25% furthest fixations from the mean of all the

fixations are not included in the calculation of the dispersion
area. For the fixation radius the distances from the fixations
to the mean are again used but now from all fixations and the
largest distance is used to represent the radius that all fixa-
tions lie within.

Saccade features. The length of a saccade is calculated by
the euclidean distance between the two fixations that deter-
mine a saccade. From all the saccade lengths in a window the
mean, variance and standard deviation are used as features.
The second category of saccade features is the direction. For
the direction of a saccade the angle between two fixations is
used and the angles are split in eight different directions fol-
lowing a compass. The sections the compass has been divided
in are following the half-winds as the center of the section.
When the angle of a saccade is between the cardinal north
and inter cardinal northeast, the direction is set to the half-
wind north-northeast (NNE). The total number of saccades
per direction is summed up and normalized resulting in every
direction feature being between 0 and 1.

Figure 3: This compass is a visualization of the direction the sac-
cades have been divided in. If the angle of the saccade is between
north and northeast, the direction is NNE, etc.
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For the feature selection different metrics were used to de-
termine the importance of all the different features. The fea-
tures were tested under different circumstances in order to
avoid bias to certain features for specific situations in the data.
The results and feature selection methods can be found in sec-
tion 3.2. The selected features can then be used in different
conventional machine learning classifiers to obtain the accu-
racy on the data set.

2.4 Classification

The machine learning algorithms used for determining fea-
ture importance and classifying the activities are the follow-
ing: k-Nearest Neighbours (k-NN), Support Vector Machine
(SVM) and Random Forest (RF). Although the k-NN has
shown to have the lowest performance out of the three classi-
fiers [8], probably due to the high complexity in the number
of features, it is still a well-performing classifier to act as a
benchmark. In section 3 the k-NN will also be tested with less



features to see if reducing the dimensionalilty of the features
improves the performance. Multiple classifiers were selected
to compare and find consistent results and to see which classi-
fier performed the best using different feature sets on the data.
For the training of the classifiers, k-fold cross validation was
used to avoid as much bias in the data as possible.

3 Experimental Setup and Results

In this section the complete experimental setup with all the
specific parameters and results from different experiments
will be explained. Firstly, in the preprocessing part results
on different parameter settings for the median and fixation
filter will be discussed together with the final parameters that
are used to create the filtered data for the feature extraction.
Then the way the features are extracted is explained together
with experiments on these features to determine feature im-
portance and show the scale of the impact of every feature
and if it has a negative or positive impact. After this, differ-
ent feature sets will be tested using different classifiers and
show which sets perform the best on which classifier. Then,
three conventional machine learning classifiers are trained
and tested using the best before determined parameters and
features on two different splits regarding the data set. One
where the data is split on activities and the other on subjects
to test if the heterogeneity of the data has an impact of the
performance. To conclude, the conventional algorithms are
compared with deep learning algorithms on the same data set
and splits.

3.1 Data Filtering

The filter used for removing outliers in the data is a median
filter that uses a sliding window that moves over the data one
by one and for every point in the data set, selects the geomet-
ric median! from the sliding window. The size of the slid-
ing window has a great impact on the filtering of the data.
If the sliding window is too big, the same point will be se-
lected a great number of times in row, resulting in unnaturally
high concentration of points, which also results in fixations
lasting seconds and the fixations duration having a high vari-
ance. This will ultimately lead to losing characteristics from
the data and the features extracted will not be accurate any-
more. The final number of points used for the median filter is
6. This results in the following filtering of the raw data.

From figures 4 and 5 can be concluded that the median
filter removes a lot of outliers and noise from the data while
still maintaining the characteristics from the data in order to
be able to retrieve accurate fixations and saccades.

The extraction of the fixations and saccades from the pre-
viously filtered data is done by using the fixation filter from
[12]. The filter uses 3 parameters to extract the fixations:
sliding window size, threshold and radius. The average fixa-
tion duration can range from 300 to 500 ms as stated in [13],
where the average greatly depends on multiple factors which
are not known or cannot even be determined, e.g. intend of
the subject. This means the accuracy might have some small
error but as long as the fixation duration lies within these

"https://en.wikipedia.org/wiki/Geometric_median

Figure 4: This figure shows the x and y position over time. This is
the raw data from subject 1 doing the reading activity without any
filtering applied.
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Figure 5: This figure shows the x and y position over time. This is
the raw data from subject 1 doing the reading activity with a median
filter applied using a sliding windows size of 6.

Filtered Data Reading
0.8 — x
—y

boundaries, the results are assumed to not suffer significantly
from these factors. After trying different combinations of pa-
rameters a sliding window size of 7, a threshold of 0.003 and
a radius of 0.001 resulted in the best fixations. Table 2 shows
the average and standard deviation of the fixation duration for
every activity. The results are averaged over the subjects.

Activities | Fixation Duration Avg | Fixation Duration Std
Read 408.,9 139,0
Write 426,5 162,5
Watch 4373 185,9
Play 409,8 147.8
Browse 402,9 139,6
Search 411,8 153,3

Table 2: This table shows the average and the standard deviation of
the fixations extracted by the fixation filter for every activity aver-
aged over all subjects.

Now that the data is filtered and the fixations are correctly
extracted, the fixations can be used to extract more meaning-
ful features which can be used the determine the difference
between activities.
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3.2 Fixation and Saccade Features

One of the downsides of the data set is the small number of
subjects and the relatively small time window recorded for
each activity. At five minutes per activity per subject, sam-
pling the features per activity only results in eight feature
samples per activity to train and test the classifiers on. To
get more samples, a sliding window can be applied on the
data of each activity where the features are extracted over this
window. Different window sizes have been tested by [8] and
a sliding window size of 105 seconds shows the best results
regarding classifying accuracy.

Still 105 seconds only results in three times more samples
as it is more than 1/3 of the total time per activity. By
applying an overlap for the sliding windows, enough samples
can extracted. Each sliding window uses a portion of the
previous one and some new data to calculate the features
over. An overlap of 95% shows good performance on both
accuracy and stability of the classifiers and will be used in
the latter of the experiments.

The full list of extracted features can be found in table
1, these features have shown to have good performance [8]
in classifying gaze base activities across different classifiers,
e.g. SVM and Random Forest. The paper mainly focuses on
the addition of the mid-level features and although they do
show feature important for a portion of the features used, no
further information is given on the performance when omit-
ting some of the features. In order to get the most ideal set of
features, different sets of features have to be tested by differ-
ent classifiers. The Random Forest classifier has the ability
to return an importance value of each feature after training,
where the higher the value, the more important the feature.

Figure 6: This figure shows the importance value of every feature
after training the Random Forest classifier.
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The Random Forest is trained with all the data, has no max-
imum depth for the leaves and uses 100 trees for its classifi-
cation. A k-fold cross validation is used for dividing the data,
with k=4. To avoid subject bias, the splitting of the k-fold
cross validation is done on each activity from each subject
where 3/4 of the data is used for training and 1/4 for testing
purposes. Four different estimators are trained with each a

different combinations of training and testing parts to avoid a
bias. The results are averaged over the 4 estimators.

From figure 6 it can concluded that the features revolving
around fixations have the least impact on the classification.
Almost all saccade features have a good impact on the Ran-
dom Forest classifier, with the saccade length average having
the most. Training the classifier with different sets of features
confirms the findings in the feature importance graph, results
of these experiments are summarized in table 3. Using only
features that revolve around fixations the performance mas-
sively drops by 0.29 to even 0.36 on the SVM, k-NN and
Random Forest classifiers. Saccade features do a much bet-
ter job with only a 0.03 to 0.07 decrease in accuracy. The
feature set that performs the best is the one consisting of all
features except the fixation radius. There is no degradation in
performance and the k-NN classifier performs even slightly
better.

Feature Sets All | Fixation | Saccade | Best
Classifiers

SVM 0.95 0.59 0.88 0.95
k-NN 0.84 0.49 0.81 0.86
Random Forest | 0.92 0.63 0.86 0.92

Table 3: This table shows the accuracy of the three classifiers
SVM(c=1000, kernel=rbf), k-NN(nn=20) and Random Forest us-
ing different sets of features. The second column is run using all
features, the third column using only fixation features, the fourth
column only saccade features and the last column the features with
the best result based on the feature importance, which consists of all
features expect the ones around fixation radius.

3.3 Conventional Classifiers

For the final classification of the activities, the SVM, k-NN
and RF classifiers are used. After the feature selection, the
following features showed to serve the best results and will be
used in the latter experiments: Fixation rate, fixation slope,
fixation dispersion area, fixation radius, saccade length and
saccade direction. For the median filtering of the data a win-
dow size of 6, for the fixation filter a window size of 7, a peak
threshold of 0.003 and a radius of 0.001. In order to make the
classification work for every classifier, the features are scaled
down to a value between O and 1. The final best results can
be found in table 3, column 5. SVM, k-NN and RF scoring
respectively 0.95, 0.86 and 0.92 accuracy for on the whole
data set while this was split over activities.

3.4 Subject Bias

Humans perceive objects and activities differently, human vi-
sual behavior also differs based on personal interest [14], but
also on visual stimuli [6], [8]. This heterogeneity can create
a large subject bias in the data which could affect the perfor-
mance of the classifiers significantly. The splitting of the data
for training and testing sets in section 3.3 is done per activity.
This means the classifiers have information on each subject
for each activity, making classifying new data easier as the
classifiers know for each subject how they perform each ac-
tivity. If the data is split in a different way, where all the data



from six subjects is used for training the classifiers and two
complete new subjects are used for the testing set, the perfor-
mance drop is immense.

Classifiers Data Split Data Split
On Activities | On Subjects
SVM 0.95 0.60
k-NN 0.84 0.54
Random Forest 0.92 0.58

Table 4: This table shows the test set accuracy of three different con-
ventional machine learning classifiers, SVM, k-NN and RF, when
the data is split on the activities versus when the data is split on sub-
jects.

Table 4 shows the significant drop in performance when the
classifiers do not have any information on the new subjects
and their activities. The performance drop off is 0.35, 0.30
and 0.32 respectively for the SVM, k-NN and Random Forest
classifiers.

While the accuracy sharply drops when classifying activi-
ties from complete unknown subject, the feature importance
does not differ from the feature importance when the data is
split on the activities. Fixation radius still does not add much
value to the training while the other features have the same
impact on the training as found in section 3.2. This makes
the heterogeneity of the data the strongest component when it
comes to performance drop.

3.5 Deep Learning Classifiers

Another way to accomplish gaze based activity recognition is
through deep learning algorithms [15]. During this research,
two other papers focused on the same data set that is used in
this paper but applying different deep learning algorithms to
test their performance. A LSTM? and a CNN? were tested
on the data set by respectively [16] and [17]. Both have split
the data on activities and subjects as well resulting in a better
comparison between deep learning and conventional machine
learning algorithms.

SVM | LSTM | CNN
Activities | 0.95 | 0.95 | 097
Subjects 0.55 | 032 | 0.38

Table 5: This table shows the test set accuracy between the SVM,
LSTM and CNN on the same data set, split over activities and over
subjects.

From table 5 it can be concluded that there not is a large
difference when comparing deep learning and conventional
machine learning classifiers. When the data is split on activ-
ities and the classifiers have information on every activity on
every subject, the deep learning classifiers do not outperform
the conventional classifiers by much. On the contrary, both
deep learning algorithms show substantial decrease in perfor-
mance when the data is split over subjects, performing worse

*https://en.wikipedia.org/wiki/Long_short-term_memory
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than the conventional algorithms. Once more does this show
the influence of subject bias in the data on the performance of
activity recognition using gaze data.

Nevertheless, the deep learning algorithms do show great
potential, especially in the consistency of results where the
conventional algorithms show a large variance in results with
different hyper parameters for the specific features. Deep
learning algorithms do not depend on features and only look
at the data without having to know much about the data itself,
resulting in more robust learning. One downside of the deep
learning algorithms is the substantial training time which can
take hours where the conventional machine learning algo-
rithms only take around 30 seconds to train.

4 Responsible Research

Working with machine learning especially in combination
with something privacy invading like eye tracking comes
with responsibilities for the researcher. The gathering of the
data alone is already intrusive, where the subjects need to put
on an eye tracker on their head while performing the tasks.
This results also into one of the limitations for this research
due to the short amount of time you can put someone under
these conditions. To ensure no sensitive information is
published, the subjects are anonymous and only information
about the diversity of the subjects is given and known. There
is no possible way to determine which person belongs to
which subject in the data which means from the data only
the gazes are used and no other external information on the
subject.

The data used in this paper is extracted by a secondary re-
source [7], the gathering of the data was approved by the In-
stitutional Review Board of the paper and only general data,
e.g. age and gender was shared to show diversity which can-
not be linked to the subjects directly. No data is left out in this
research, the data is only altered to fit the data to the needs of
this research in order to get useful results. All the altering
done on the data and the reasoning behind this, can be found
in this paper in the sections 2 and 3.

5 Conclusions and Future Work

The introduction of this paper explained the research gaps on
optimal features, subject and hardware bias and deep learn-
ing algorithms. In this paper different feature extraction and
selection methods are tested and compared, heterogeneity of
gaze data is shown to have great impact on performance and
deep learning models did not show improvement in compar-
ison to conventional models. This section will analyse the
four questions raised in the beginning of this paper, go over
the results and answer each of them to conclude this paper.
Finally, some limitations and future work will be discussed.

5.1 Research Conclusions

How to design and implement different feature extraction
methods for eye movement signals? After reading differ-
ent papers on feature extraction for gaze data, the two distinct
features all of them have in common are fixations and sac-
cades. The fixation filter by [12] gives great control over the
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way the fixations and saccades are extracted by being able to
alter average window size, peak threshold and radius. From
these fixations and saccades, different types of gaze features
can be extracted to be able to differentiate activities with con-
ventional classifiers.

To achieve good recognition accuracy, what are the best
features that need to be extracted and used for conven-
tional machine learning algorithms? The best features to
use for activity recognition using gaze data revolve around
saccades. Due to the fact that saccades inherently focus more
on patterns, they perform significantly better than fixation
features. Every person reading from left to right does this
in kind of the same pattern, but not at the same speed or focus
level. Fixation features have roughly the same values over
different activities and they are not consistently different over
subjects and activities. Saccade features on their own already
show good performance but they do need some fixation fea-
tures to work optimally. Fixation features on their own per-
form poorly and they need the combination with saccade fea-
tures to perform well.

What is the impact of different subjects and sensing
hardware on the recognition performance? The hetero-
geneity of the data under subjects show great difference in
performance. The different ways each subject performs a
task, is probably why fixation features work so poorly as well.
When the data is split on each activity for training and test-
ing purposes, the classifier knows how every subject performs
each activity, which means it is easier for the classifier to de-
termine what activity a subject is doing when presented with
the testing data. When the data is split over subjects and the
classifier is trained only on six of the eight subjects, the two
unknown subjects differ too much in the way they perform
each of the tasks, it becomes significantly more difficult to
classify the activities correctly.

Compare deep and conventional machine learning algo-
rithms on accuracy and robustness against heterogeneity
among subjects. The deep learning algorithms used for com-
parison in this paper also show great performance regarding
the accuracy of classification on the data set. On the con-
trary, they do both show poor robustness against heterogene-
ity among subjects as well as the conventional algorithms,
where the conventional models perform even better than the
deep learning models. On top of that, the deep learning al-
gorithms take over 100 times longer time to train than the
conventional machine learning algorithms, making them not
the preferred option for the classification of this data set.

5.2 Limitations and Future Work

One of the limitations in this research is regarding the
data set, this is relatively small, especially when trying the
generalize over people. Due to the small amount of time
every activity is recorded for every subject, there is not a
lot of data to train and test the classifiers on. By applying
a sliding window with overlap this is somewhat fixed when
splitting the data over the activities, but the problem remains
when trying to generalize over subjects. Then there are just
not enough diverse subjects to train the classifier enough
to be able to determine data from a new unknown subject.
This problem can simply be reduced by gathering more data

from different subjects, although due to reasonably high
interference with the privacy of people, the actual gathering
of the data might not be that simple.

Another limitation in the research revolves around feature
extraction and selection. This paper tried to find the best fea-
tures with the least amount of information as possible. Differ-
ent papers [7], [8] have shown a variety of features to still be
tested and improved upon in order to increase performance.
More advanced patterns on fixations and saccades can be
added to the features, but also gaze data in combination with
visual recognition of the screen the person is looking at, can
improve the accuracy of activity recognition. Using more ex-
ternal information can lead to greater privacy conflicts which
is important to consider when building upon this research.

The last limitation in this research regards the difference of
sensing hardware. Due to time constraints it was not possible
to do any research on this topic and this can still be done in
future works using the information from the research.
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