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Variational methods have proven to be excellent tools to approximate the ground states of complex many-body
Hamiltonians. Generic tools such as neural networks are extremely powerful, but their parameters are not nec-
essarily physically motivated. Thus, an efficient parametrization of the wave function can become challenging.
In this Letter we introduce a neural-network-based variational ansatz that retains the flexibility of these generic
methods while allowing for a tunability with respect to the relevant correlations governing the physics of the
system. We illustrate the success of this approach on topological, long-range correlated, and frustrated models.
Additionally, we introduce compatible variational optimization methods for the exploration of low-lying excited
states without symmetries that preserve the interpretability of the ansatz.
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Studying many-body systems beyond analytically solvable
Hamiltonians is a formidable challenge due to the expo-
nential growth of the Hilbert space size with the number
of particles. While quantum Monte Carlo methods offer an
unbiased solution to that challenge, they are not applicable
to systems exhibiting the notorious sign problem [1–3]. For
models where numerically exact methods are not available,
we can resort to variational methods: A clever parametrization
of trial wave functions allows us to capitalize on physical
intuition. This approach has led to scientific breakthroughs
such as the Bardeen-Cooper-Schrieffer theory of supercon-
ductivity [4]. More sophisticated approaches were developed
based on the same principle of using knowledge about the
system’s physics to obtain an accurate parametrization. Exam-
ples include Slater-Jastrow [5,6] or Gutzwiller-projected wave
functions [2,7–12]. While these ansätze are able to represent
also highly correlated states parametrized in an interpretable
way, their simplicity comes with limited variational freedom.

Instead of starting from a system-specific wave function,
other more universal approaches have been developed that
rely on a generic parametrization of a submanifold of the
Hilbert space. Typically, the size of the spanned subspace
is controlled via a tuning parameter determining the num-
ber of optimizable variables and thereby the wave-function
accuracy. An example of this class are tensor-network states
(TNS), which span a submanifold of the Hilbert space de-
termined by specific entanglement properties [13–25]. More
recently, neural-network-based variational ansätze have been
brought forward, providing a flexible wave-function ansatz
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not limited by entanglement or dimensionality [26]. Pro-
posed architectures include restricted Boltzmann machines
(RBMs) [26] or feed-forward (convolutional) neural networks
[27–30]. Neural-network ansätze have been successfully ap-
plied to a range of different bosonic as well as fermionic
systems [29,31–47]. While in principle highly expressive
and efficiently trainable, previously proposed neural-network
architectures suffer from the fact that their parameters are
often not physically motivated or interpretable, such that an
efficient representation of the sought-after wave function is
not ensured. As a consequence, an exponential number of
parameters might be required to obtain high-accuracy wave
functions [48]. Especially for applications such as the study
of (topological) quantum phase transitions or identification of
excited states, this exponential scaling represents a significant
challenge.

Here, we propose a variational ansatz that combines the ad-
vantages of both physically motivated and generic variational
methods while at the same time combating their respective
limitations. In particular, we design a neural-network varia-
tional ansatz that is explicitly customizable to the form of the
expected dominant correlations of the system under consider-
ation. To this end, we extend the energy functional describing
an RBM by introducing coupling terms reflecting physical
intuition. The inclusion of such correlators leads to a signif-
icant increase in the precision and flexibility of neural nets,
while keeping the number of optimizable parameters minimal.
Moreover, we show that these correlated RBMs (cRBMs) can
capture ground and low-energy excited states equally well:
We formulate a variational approach to obtain excited states
without symmetries that does not modify the structure of the
ansatz and thus preserves the interpretability of the variational
wave function.

Before we discuss the performance of the cRBM vari-
ational ansätze on concrete examples, we note that by
generalizing the class of RBM wave functions, we can in
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principle describe systems outside the reach of quantum
Monte Carlo techniques (e.g., systems suffering from a sign
problem [3,49–52]) or tensor-network approaches (e.g., chiral
topological phases, or systems in three and higher dimensions
[34,53,54]).

We demonstrate the power of the cRBM variational ansatz
by providing a complete description of the phase diagram
of a model showcasing topological transitions: Kitaev’s toric
model in the presence of magnetic fields [55–59]. We fur-
ther demonstrate the interpretability of our ansatz by linking
the improved accuracy of the correlation functions to the
customized physical extension of the energy functional on a
long-range correlated model, the transverse field Ising model
at criticality. Finally, we evaluate the performance of the
ansatz on the antiferromagnetic Heisenberg model on a trian-
gular lattice. In particular, we show that introducing coupling
terms in the RBM ansatz can be used as a generic extension
alternatively to increasing the hidden neuron density.

Toric code model. We explain the main properties of the
cRBM ansatz on the perturbed toric code model with periodic
boundary conditions [55] described by the Hamiltonian

H = −
∑

s

As −
∑

p

Bp + �h ·
∑

i

�σi, (1)

where �σi denotes the Pauli matrices �σi = (σ x
i , σ

y
i , σ z

i ). The
stabilizer operators As = ∏

i∈s σ x
i and Bp = ∏

i∈p σ z
i mutually

commute. Vertices (plaquettes) of a square lattice are denoted
by the subscripts s (p) and i runs over the edges, where spin-
1/2 degrees of freedom are located. We apply a magnetic field
�h = (hx, hy, hz ) uniformly on each spin.

For �h = 0, Hamiltonian (1) corresponds to the well-
understood toric code, where in the ground state all operators
As and Bp yield an eigenvalue +1 [55]. This phase possesses
topological order characterized by a fourfold degenerate
ground state on a torus.

The applied magnetic fields induce a phase transition out
of the topologically protected phase. The nature and posi-
tion of this transition depend on the direction of the applied
field. While the magnetic fields hx and hz are responsible
for a second-order topological phase transition, a first-order
phase transition occurs when the transverse field hy dominates
[52,60].

The phase diagram (see Fig. 1) has been previously ex-
plored by a variety of methods, but providing a unified
approach capturing all features of this phase diagram has
proven to represent a particular challenge. Numerically exact
quantum Monte Carlo methods are only applicable to fields
�h ∝ (hx, 0, hz ), i.e., parallel to the operators As, Bp in (1)
[61,62]. One can circumvent this restriction by using either
approximate methods such as advanced perturbation theory or
by resorting to a specific class of variational wave functions in
the form of infinite projected entangled pair states [52,60,63].
In what follows, we show that the cRBM ansatz is able to
capture the complete phase diagram.

cRBM structure. We introduce our proposed family of
variational wave functions and highlight the differences to
existing approaches. After exposing how to tailor the ansatz to
a specific problem at hand we elaborate on how to determine
the variational parameters.

FIG. 1. Left: Conceptual phase diagram of the toric code. The
red arrows show field directions in which we probed the diagram and
the coordinates denote the obtained positions of the phase transition.
The right panel shows the conceptual cRBM structure for a plaquette
of the toric code model. Blue and green neurons and their connec-
tions to the hidden layer represent the added correlation terms.

We consider a system of N spin-1/2 degrees of freedom.
In Ref. [26], Carleo and collaborators introduced RBMs as a
variational ansatz for such a system,

�(s1, . . . , sN ) =
∑

�ρ
exp[ERBM(�)],

ERBM(�) =
∑

k

aksk +
∑

j

b jρ j +
∑
k, j

Wk, j skρ j, (2)

where the sk ∈ {−1, 1} represent the physical spins in a given
basis and, in the language of RBMs, are termed the visi-
ble layer. The wave-function ansatz �(s1, . . . , sN ) includes
a sum over all possible values of the M auxiliary spins �ρ =
(ρ1, . . . , ρM ), ρi ∈ {−1, 1}, denoted as the hidden layer. The
energy functional ERBM(�) can be understood as an inter-
action energy between classical spins. The parametrization
� = (a, b,W ) includes visible and hidden biases ak and b j as
well as weights Wk, j connecting the visible and hidden layer.

RBMs have been shown to represent exactly a wide class
of topological states, including the unperturbed toric code
ground state [64]. Here, we investigate to which extent mod-
ifications of RBMs are able to capture both extensions of the
toric code as in (1) as well as systems where no exact RBM
representation exists for any point of the phase diagram.

We modify the RBM ansatz by introducing correlators to
the energy functional (2). We achieve this by adding visible
neurons to the ansatz representing correlations between dif-
ferent spins. Concretely, the modification yields the energy
functional

E (�) = ERBM(�) +
∑

i

acorr
i Ci +

∑
i, j

W corr
i, j Ciρ j, (3)

where Ci = sl · · · sk are products between spins chosen to
reflect dominant terms influencing the system’s behavior. The
sum i runs over possible sets of spins entering the correlator
Ci. These additional visible neurons are accompanied by their
own biases and weights representing the interactions with
the auxiliary spins of the hidden layer as shown in Fig. 1.
Equation (3) represents the key idea of this Letter.

L012010-2
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The types of correlators Ci = sl · · · sk that are added to the
visible layer determine the efficiency of the use of the param-
eters in �. Moreover, it is in the design of these correlators,
where the power of the cRBMs in allowing for the use of
prior knowledge about the structure of the wave function can
be capitalized on. In the spirit of conventional Jastrow-factor
wave functions, the choice Ci = sl sk representing two spin
correlators can improve the wave-function accuracy without
an exponential growth in the number of hidden neuron den-
sities. Moreover, for specific problems we can include more
complex terms. For example, in the case of the Hamiltonian
(1) the relevance of plaquette operators can be mirrored on the
level of the wave function by including toric code stabilizer
operators Cp = Bp = ∏

i∈p si in the energy functional. These
extensions are depicted in Fig. 1. In order to further reduce
the number of parameters and achieve higher precision, we
symmetrize the ansatz (3) using translational symmetries as
is usually done [26]. The details of the ansatz and imposed
symmetries are further specified in the Supplemental Material
(SM) [65].

We fix the weights in � by minimizing the cost function C
corresponding to the variational energy

C := 〈E〉 = 〈�|H |�〉
〈�|�〉 (4)

using a stochastic reconfiguration, introduced by Sorella et al.
[66]. Expectation values are then calculated using variational
Monte Carlo sampling [65–68]. Computations using the stan-
dard RBM as comparison have been partly done with the help
of the library NETKET [69].

Results. We now turn to the application of cRBMs to the
investigation of the Hamiltonian (1). First, we assess the ac-
curacy of our wave function by benchmarking it against exact
results for small system sizes. In particular, we emphasize
the scaling of the accuracy with the number of variational
parameters. To explore larger system sizes we compare our
wave function with state-of-the art perturbation theory.

One can quantify the precision of the variational energy
Evar by comparing it with the exact value EED obtained by
exact diagonalization (ED) of Hamiltonian (1) on small lat-
tices. We choose a lattice with N = 18 spins, and compare the
relative error ν = (Evar − EED)/EED using a standard RBM
ansatz with α = 7, where α corresponds to the number of hid-
den neurons. We compare it to a cRBM ansatz with the same
amount of parameters (corresponding to α = 2). As shown in
Fig. 2, ν of the cRBM ansatz is several orders of magnitude
lower than the relative error obtained using the standard RBM
ansatz. As demonstrated in the SM [65], here the variational
energy of the standard RBM ansatz cannot be significantly
improved by increasing the hidden neuron density. Hence, the
addition of the correlator terms in (3) allows us to explore the
relevant section of the Hilbert space more efficiently.

We examine the performance of our ansatz for larger sys-
tem sizes by comparing to state-of-the-art perturbation theory
results using perturbative continuous unitary transformations
(PCUTs) [52,63]. For a lattice with N = 128 spins the varia-
tional and perturbative energies for the magnetic field (h, 0, 0)
are compared in Fig. 2. The second-order phase transition for
the chosen field direction is known to occur at hc = 0.3284
and the perturbation theory we compare to in Fig. 2 is know

FIG. 2. Upper left: Relative error of the variational energy ν vs
the field h for 18 spins. Lower left: The energy per spin for the cRBM
ansatz for 128 spins is shown together with the energy per spin
obtained via PCUTs. Upper right: Wilson loop expectation values
〈W (m = 4)〉 on the self-dual line for different lattice sizes cross at
the position of the phase transition. The literature value obtained via
continuous-time Monte Carlo [62] is marked with a gray dashed line.
Lower right: 〈W (m = 4)〉 for fields in the (1,0.2,0.5) direction.

to be reliable for h < hc. Figure 2 confirms that the varia-
tional energies match the perturbative energies well up to the
second-order phase transition, while yielding more accurate
results outside of the topological phase.

We can now use the cRBM ansatz to detect topological
phase transitions. In particular, we probe the toric code in
arbitrary field directions in order to recover the phase dia-
gram, as depicted in Fig. 1. We are not limited to specific
field directions as neither a sign problem occurs compared
to quantum Monte Carlo methods [62], nor is the method
restricted to a specific type of phase transition [52,63,70]. We
demonstrate our results on the self-dual line (h, 0, h) and a ray
including a generic field direction h(1, 0.2, 0.5). Recovering
the characteristics of the self-dual line represents a particular
challenge due to an occurring multicritical point and a first-
order transition line outside of the topological phase [61,62].
We detect the position of the topological phase transition in
both cases using a finite-size scaling analysis of the Wilson
loop

〈W (m)〉 =
〈

m∏
s

As

m∏
p

Bp

〉
, (5)

where m determines the size of the loop.
Figure 2 shows the expectation value 〈W (m = 4)〉 versus

the magnitude of the applied field for system sizes up to
N = 128 spins. The curves for different system sizes cross
approximately at the position of the phase transition which can
be determined via a standard finite-size scaling analysis. We
estimate the phase transition on the self-dual line (h, 0, h) to
occur at h ∼ 0.345, which is in accordance to literature values
[62,63] (see SM [65]). For the field direction h(1, 0.2, 0.5),
we obtain a transition at h ∼ 0.338. We confirm in the SM
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FIG. 3. Upper panel: The gap |E1 − E0| to the first excited state
is shown for the lattice sizes L = 3, 4, 6. For L = 3, the gap obtained
via ED is plotted as a red line. The phase transition occurs at the
crossing of the gaps for different lattice sizes (inset), since topolog-
ical ground-state degeneracy in the thermodynamic limit only holds
in the topological phase. Lower panel: The four lowest-lying ground
states obtained via ED (lines) and with constrained cRBM (dots)
for L = 3. The three colors correspond to the different topological
sectors.

[65] the found phase transitions by computing the fidelity, the
overlap between two ground states with a small difference
in field strength that has been shown to scale to zero at the
position of a second-order quantum phase transition [71–74].
Long-range entanglement in the topological phase is found by
probing the Renyi entanglement entropy [75] (see SM [65]).

Excited states. We have shown that our ansatz can rep-
resent the ground state of the studied topological model to
high precision. However, relevant physics such as the split-
ting of topological degeneracies and excitations are encoded
in the low-energy spectrum. Obtaining excited states with
an unknown quantum number poses a general challenge for
variational wave functions [30]. We propose here a generic
solution to this challenge that preserves the cRBM structure
and flexibility of our ansatz. In particular, we add the required
orthogonality to the ground state we have previously found
as a constraint to the cost function for the optimization of the
wave function

C = 〈�|H |�〉
〈�|�〉 + κ

|〈�0|�〉|2
〈�0|�0〉〈�|�〉 , (6)

where |�〉 corresponds to the excited state to be optimized
and |�0〉 is the ground-state approximation determined in a
previous step. The parameter κ tunes the strength of the added
constraint. The excited state is then obtained by minimizing
the cost function using again stochastic reconfiguration. Ex-
tending the cost function while keeping the wave-function
ansatz intact allows us to fully capitalize on the physically
motivated ansatz as it preserves the wave-function structure.

We compute the gap between the ground state and the first
excited state for the field h(1, 0.2, 0.5), as depicted in Fig. 3.

The energy gap quantitatively matches the exact diagonal-
ization result for small system sizes. Scaling of the energy
gap unravels the topological degeneracy: The gap scales with
system size as e−L (see SM [65]).

We introduce a further generalization of the cost function
that allows for targeting specific states and does not rely on
ground-state orthogonalization. In particular, when consider-
ing a generic operator M, it is straightforward to obtain the
state with the lowest variational energy fulfilling the constraint
〈M〉 = A by minimizing the cost function

C = 〈�|H |�〉
〈�|�〉 + κ

∣∣∣∣ 〈�|M|�〉
〈�|�〉 − A

∣∣∣∣
2

(7)

for sufficiently large weight κ and arbitrary constant A. This
constrained minimization allows us to “cherry-pick” for an
eigenstate with certain physical quantities. We can, e.g., con-
sider the four lowest-lying eigenstates of the perturbed toric
model. Operators yielding different expectation values for the
four states can straightforwardly identified as loops 	 winding
around the torus, as explained in the SM [65]. Minimizing (7)
with M = 	 for a sufficiently wide range of A and identifying
eigenstates as the states with vanishing local energy variance
or norm of variational energy derivatives [2] allows us to find
all lowest-lying states of different topological sectors without
the need to iteratively orthogonalize. Figure 3 depicts excited
states found using this method and the cRBM ansatz for the
field direction (0.5,0,1). Higher excited states such as anyonic
excitations [55] can in principle be obtained by a suitable
choice of operator M, e.g. stabilizers.

Transverse-field Ising model. We have shown on the exam-
ple of the toric code, that introducing correlators tailored to
the considered model to the energy functional increases the
precision of the neural-network ansatz by several orders of
magnitude. Additionally, let us demonstrate that the cRBM
ansatz is also beneficial in a more general sense: We show
that adding neurons representing generic correlations into the
visible layer [as in Eq. (3)] rather than the hidden layer leads
to a more efficient approximation of the sought-after wave
function. In particular, we compare the effect of adding simple
correlators Ci, j = sis j (with nearest-neighbor spins si and s j)
to the effect of increasing the hidden neuron density using the
example of the transverse-field Ising model at the critical point
[76,77].

The transverse-field Ising (TFI) model in one dimension
(1D) is described by the Hamiltonian

H = −
∑
〈i, j〉

σ z
i σ z

j − h
∑

i

σ x
i , (8)

where the sum runs over all nearest neighbors in the chain.
The parameter h tunes the strength of the transverse field.
At the critical point h = 1, the model exhibits long-range
(algebraically decaying) spin-spin correlations [76,77].

In the standard RBM the spin-spin correlations are encoded
in the sum over hidden neurons that forces the correlations
to take a specific form (for details, see SM [65]). Using the
cRBM extension, we are able to encode the spin-spin corre-
lations in the visible layer allowing for increased flexibility
of their representation. We show that this flexible encoding
captures long-range correlations arising in the TFI model.

L012010-4



CORRELATION-ENHANCED NEURAL NETWORKS AS … PHYSICAL REVIEW RESEARCH 4, L012010 (2022)

FIG. 4. 1D TFI correlations: z correlations and x correlations
obtained with an RBM (blue) and cRBM (green) ansatz are plotted
as a function of the correlation distance for N = 22 spins.

To make a simple comparison, we consider ansätze with
a small hidden neuron density. In particular, we choose a
standard symmetrized RBM ansatz [26] with α = 3 hidden
neurons and a cRBM with the same amount of parameters.
Figure 4 shows the spin-spin correlation obtained for both
variational wave functions. For both x and z correlations, the
cRBM ansatz provides more accurate results. The most strik-
ing improvement appears for long-range z correlations, where
z also corresponds to the choice of basis for the RBM (cRBM)
ansatz. In the SM [65] we illustrate the above-mentioned
improvement for the antiferromagnetic Heisenberg model on
a triangular lattice [9–12,78–84] and we show that the im-

proved accuracy of the cRBM ansatz can be further extended
to frustrated systems.

Perspectives. We showed that a combination of generic
neural-network-based ansätze and available knowledge about
the system can lead to significant improvements in the preci-
sion of variational methods. We introduced a cRBM ansatz
with a physically tunable flexibility and demonstrated its
power on topological, long-range correlated, and frustrated
models. In addition to formulating the cRBM ansatz we in-
troduced compatible variational optimization techniques that
allow for the study of the low-energy spectrum.

Neural-network-based ansätze have been shown to be
applicable for systems outside the reach of TNS, such as
chiral topological phases or systems in higher dimensions
[34,53,54]. Mapping neural-network architectures to TNS
explicitly demonstrates their ability to efficiently capture
volume-law entanglement [33,34,85,86]. We generalize this
mapping to the case of cRBMs in the SM [65]. We note, how-
ever, that while our cRBM approach can in principle be used
for systems not accessible to TNS, the example of the gener-
alized toric code studied here has an efficient tensor-network
representation [52]. We leave studies of systems outside the
realm of tensor networks to future studies.

In Ref. [87], we provide the code needed to calculate the
energies and topological quantities from a pretrained cRBM
wave function.
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