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Brief summary 28 

 29 

Current knowledge/study rationale: Sleep disruption is common in the paediatric intensive care unit, 30 

contributing to significant morbidity and prolonged length of stay. Currently, individual sleeping 31 

patterns cannot be optimized in critical care as objective real-time sleep classification at the bedside is 32 

not possible. 33 

Study Impact: The present study proposes a sleep index based on the gamma to delta power ratio, 34 

derived from single-channel EEG and combined with artefact detection, smoothing, machine learning 35 

and nested-cross validation. The sleep index can perform two and three state classification at the bedside 36 

with high balanced accuracy in hospitalised, non-critically ill children from six months old to 37 

adolescence, while remaining objective, easy to interpret and generalizable to multiple EEG channels. 38 

  39 



Abstract  40 

Introduction Although sleep is frequently disrupted in the pediatric intensive care unit (PICU),  it’s 41 

currently not possible to perform real-time sleep monitoring at the bedside. In this study, spectral band 42 

powers of electroencephalography (EEG) data are used to derive a simple index for sleep classification. 43 

Method Retrospective study at Erasmus MC Sophia Children’s Hospital, using hospital-based 44 

polysomnography (PSG) recordings obtained in non-critically ill children between 2017 and 2021. Six 45 

age categories were defined: 6-12 months, 1-3 years, 3-5 years, 5-9 years, 9-13 years and 13-18 years.   46 

Candidate index measures were derived by calculating spectral band powers in different frequent 47 

frequency bands of smoothed EEG. With the best performing index, sleep classification models were 48 

developed for two, three and four states via decision tree and five-fold nested-cross validation. Model 49 

performance was assessed across age categories and EEG channels. 50 

Results  In total 90 patients with PSG were included, with a mean (standard deviation) recording length 51 

of 10.3 (1.1) hours. The best performance was obtained with the gamma to delta spectral power ratio 52 

(gamma:delta-ratio) of the F4-A1 and F3-A1 channels with smoothing. Balanced accuracy was 0.88, 53 

0.74 and 0.57 for two, three and four state classification. Across age categories, balanced accuracy 54 

ranged between 0.83 – 0.92 and 0.72 – 0.77 for two and three state classification, respectively.  55 

Conclusion We propose an interpretable and generalizable sleep index derived from single-channel-56 

EEG for automated sleep monitoring at the bedside in non-critically ill children aged 6 months to 18 57 

years, with good performance for two and three state classification.  58 

 59 

Keywords: machine learning, sleep stage, sleep classification, pediatric intensive care unit, 60 

polysomnography 61 

  62 



Introduction  63 

Sleep is essential for overall health and development, and specifically for the recovery of critically ill 64 

children.1-3 Nonetheless, sleep deprivation and sleep fragmentation are common in the paediatric 65 

intensive care unit (PICU), due to various risk factors of pharmacological, pathological and 66 

environmental nature.4-6 Sleep deprivation is associated with significant morbidity and may prolong 67 

hospital stay.7-9 However, sleep is not routinely monitored in the PICU.  68 

 69 

The gold standard to monitor sleep and classify sleep stages is overnight, hospital-based Level 1 70 

polysomnography (PSG) testing.10 PSG consists of a multitude of measurement modalities, including 71 

electroencephalography (EEG), electromyography (EMG) and electro-oculography (EOG). These 72 

measurements capture the distinctive patterns in electrical brain activity, eye movement and muscle tone 73 

that the five sleep-wake stages exhibit.10 Sleep classification is performed manually in accordance with 74 

the American Academy of Sleep Medicine (AASM) criteria.11 PSG-based sleep classification is a 75 

laborious and invasive procedure, subject to interrater variation and typically done in retrospect.10-13 As 76 

such, PSG is currently unsuitable for real-time, bedside sleep monitoring in critically ill children. Real-77 

time sleep monitoring is desirable to optimize individual sleeping patterns, through informed decision-78 

making and with interventions that contribute to sleep quality and quantity. 79 

 80 

Several attempts have been made to develop an automated sleep classification algorithm, mainly in 81 

neonates and adults, but they are sparsely implemented in clinical practice.14,15 EEG poses a suitable 82 

signal for automated sleep classification, considering its distinctive frequency waveforms and spectral 83 

band powers across different sleep stages.16-18 Low frequency bands are common during non-REM 3 84 

(N3) sleep, also known as slow-wave-sleep (SWS), while high frequency bands are common during 85 

wake and non-SWS (NSWS) including rapid eye movement (REM), non-REM 1 (N1) and non-REM 2 86 

(N2) sleep.19,20 A promising development based on EEG spectral band powers is the intensive care unit 87 

depth of sleep (IDOS) index, defined as the ratio between spectral band powers of a single EEG 88 

channel.21 The IDOS is easy to interpret, generalizable, and has shown considerable agreement with 89 



PSG-based sleep classification in adults.21 However, this method has not been used and validated for 90 

critically ill children admitted to the PICU. In critically ill children, there is the additional challenge of 91 

developmental changes in both EEG and sleep patterns with increasing age, as well as the influence of 92 

morbidity and hospital admission on EEG spectra.22  93 

 94 

In a first step towards sleep monitoring in the PICU, the aim of the present study was to develop a 95 

method for automated sleep classification in non-critically ill children aged 6 months and older, based 96 

on spectral band powers of a single EEG-channel. We further aimed to evaluate this method for different 97 

sleep classifications and assess its generalizability over various age categories and EEG-channels.   98 



Methods 99 

Study population 100 

This retrospective study was conducted at the Erasmus MC Sophia Children’s Hospital (Rotterdam, The 101 

Netherlands). PSG recordings were anonymously obtained from a database of recordings performed in 102 

non-critically ill children who underwent an overnight, hospital-based PSG for diagnostic and follow-103 

up purposes between May 2017 to June 2021. The hospital registry of patients objecting to data usage 104 

for research purposes was consulted prior to inclusion of the patients’ data. This study was approved by 105 

the internal Medical Ethics Committee (MEC) of Erasmus MC (MEC-2021-0121). To take into account 106 

the developmental changes in the sleep EEG, six age categories were defined that globally correspond 107 

to the EEG changes during development: 6-12 months, 1-3 years, 3-5 years, 5-9 years, 9-13 years, 13-108 

18 years.23 We did not include children under 6 months of age, as their EEG is markedly different and 109 

they do not exhibit all subtypes of NREM sleep yet.24 For patients born preterm (<37 weeks gestational 110 

age), age was corrected until the postnatal age of two years. Fifteen recordings were randomly collected 111 

for each age category, resulting in a total of 90 recordings. PSG recordings were included if the PSG 112 

showed normal physiological sleep with presence of all sleep stages and without atypical EEG findings. 113 

Atypical EEG findings were reported in the PSG report and included epileptiform activity, polymorphic 114 

delta activity, absence of sleep spindles and K-complexes, burst suppression and isoelectric activity. 115 

PSG recordings obtained from patients with neuromuscular disease (e.g. myotonic dystrophy) and from 116 

patients who received sedative or analgesic medication were excluded. PSG recordings were also 117 

excluded if the hypnogram or PSG recording was incomplete or data quality was low due to the presence 118 

of numerous or long-lasting artefacts (> 30 min) due to e.g. movement or interference from electrical 119 

equipment.  120 

 121 

Data acquisition 122 

All PSG recordings were hospital-based and were performed overnight. 123 

The PSGs were performed with a commercially available device (BrainRT, OSG, Rumst, Belgium or 124 

Morpheus, Micromed Sp.A., Treviso, Italy) using an eight-channel EEG and two-channel EOG and 125 



EMG. EEG electrodes included the frontal (F3, F4), central (C3, C4), occipital (O1, O2) and auricular 126 

(A1, A2) electrodes and were placed according to the international 10-20 system with Ag/AgCl 127 

electrodes, sharing the same electrode as reference (Fz).25 All possible bipolar channels (n = 28) were 128 

calculated by subtraction of the signals of each pair of EEG electrodes. The EMG electrodes were placed 129 

on the submental muscles and the EOG electrodes were placed on the right and left outer canthus (ROC 130 

and LOC) of the eye, with the ROC electrode one centimetre superior and LOC one centimetre inferior 131 

of the outer canthus. The ROC-LOC channel was derived from the two EOG signals. EEG, EOG and 132 

EMG signals were sampled at 250 Hz or 256 Hz, depending on the PSG device used. All PSG recordings 133 

were divided into 30-second epochs and visually scored by experienced PSG technicians according to 134 

the AASM criteria.11 Scored PSG recordings were finally evaluated by an experienced clinical 135 

neurophysiologist. The raw PSG signals together with the visually scored hypnogram were manually 136 

exported from the PSG software environment BrainRT (OSG, Rumst, Belgium). Signal analysis was 137 

performed in Python (3.9.) using EEGlib (0.4), PyEDFlib (0.1.20), Skicit-learn (0.24.0), Scipy packages 138 

(1.6.1).26-29  139 

 140 

Classification tasks 141 

We evaluated classification performance for three different classification tasks: two-state, three-state 142 

and four-state classification. The term state is used to refer to the non-conventional sleep stages 143 

explained here. Two-state classification only concerned the differentiation between sleep and wake. In 144 

three-state classification, two sleep stages were distinguished: NSWS, by combining the conventional 145 

sleep labels N1, N2 and REM sleep and SWS (N3). In four-state classification, REM sleep was 146 

considered as a separate sleep stage in addition to wake, NWSW and SWS.  147 

 148 

Preprocessing  149 

All PSG recordings were divided into 30 second epochs. A simple artefact detection algorithm was used 150 

to identify and label epochs that contained significant artefacts in the PSG signals. Epochs with average 151 

absolute signal amplitude exceeding a predefined threshold (most often movement or 50-Hz electrical 152 

interference artefacts) or zero amplitude (impedance measurement artefact) were detected and removed 153 



from the dataset. Next, a 16th order Butterworth band-pass filter was used for each PSG signal for 154 

additional artefact reduction by removing irrelevant frequencies. All EEG signals were filtered between 155 

0.5-48 Hz. Spectral band powers in different frequency bands, i.e. delta (0.5 – 4 Hz), theta (4 – 8 Hz), 156 

alpha (8 – 12 Hz), beta (12 – 20 Hz) and gamma (30 – 80 Hz), were calculated according to Welch’s 157 

method.16,30 We used a discrete short-term Fourier transform on a 2-second Hann window with 50% 158 

overlap. Following filtering, we explored our data and assessed which spectral power ratios had the 159 

potential to be used in an index measure. A detailed description of this process is available in 160 

Supplemental Methods 1: Data Exploration. 161 

 162 

Smoothing 163 

We tested whether smoothing the indices with a moving average filter increased classification 164 

performance, since this technique allows the use of information of surrounding 30 s epochs too. The 165 

moving average was calculated using a geometric mean, as histograms of index data showed right skew 166 

(Supplemental Figure S1). Smoothing levels of 1, 2, 3, 4, 6, 8, 10, 12, 16, 20, 30 and 60 epochs were 167 

tested to assess potential positive and negative effects. 168 

 169 

Sleep index 170 

In order to assign sleep stages to epochs based on the value of an index measure, we used a decision 171 

tree. More information about decision trees is available in Supplemental Methods 2: Decision Tree. The 172 

decision tree was applied to data containing a single variable, the index measure and we set the 173 

maximum number of leave nodes (the final classification) equal to the number of sleep states (2, 3 or 174 

4). We used the Gini impurity as the criterion to decide where to make the split, and balanced class 175 

weights in order to maximize balanced accuracy. 176 

 177 

Model development 178 

Because the brain activity, and thus EEG signal, varies within the brain, the spectral composition of the 179 

EEG signal might also vary between the various EEG channels. Therefore, classification performance 180 

of the sleep indices was evaluated for each EEG channel with nested cross validation (details described 181 



in Supplemental Methods 3: Nested Cross Validation). Nested cross-validation was performed with five 182 

folds on every combination of EEG channel and index measure, with smoothing as a hyperparameter. 183 

With the optimal channel and index combination we determined the optimal level of smoothing. The 184 

decision tree was then fitted to the full dataset of the best performing channel index combination and 185 

the optimal smoothing level in order to create a final model for comparison with PSG-based sleep 186 

classification. 187 

 188 

Model evaluation  189 

Final models were visually evaluated based on their decision trees and confusion matrices, as compared 190 

to the validated hypnograms derived from PSG-based scoring. Classification performance was assessed 191 

with balanced accuracy obtained with five-fold cross validation. During this process, data was split into 192 

five sets, four for training and one for testing, stratified by participant. In each fold data was resampled 193 

to exhaust all possible combinations for training and testing. This process accounts for imbalanced data 194 

and equally considers model sensitivity and specificity. The relative measure of agreement was assessed 195 

with Cohen’s Kappa. Final model performance was also evaluated on other channels and across age 196 

categories. Lastly, to evaluate the performance of sleep classification for clinically relevant parameters, 197 

we calculated several sleep quality measures for each subject and compared these to the same measures 198 

derived from manually scored PSG. The parameters are listed and defined in Supplemental Table S1. 199 

Descriptive statistics were reported as count (percentage), mean (standard deviation (SD)) or median 200 

(first quartile, third quartile (Q1, Q3)). A two-sided p-value < 0.05 was regarded as statistically 201 

significant and 95% confidence intervals (CI) were reported where applicable.  202 

 203 

Results 204 

Patient and data characteristics 205 

We included 90 patients, of which 47 (52.2%) were male. Five (5.6%) were diagnosed with epilepsy, 206 

26 (28.8%) with neurocognitive impairment and 24 (26.7%) with a hereditary syndrome. With a total of 207 

111,076 epochs, the mean recording length was 10.3 (1.1) hours. The mean total sleep time was 8.0 208 



(1.4) hours. A complete overview of the distribution of epochs over different sleep stages is provided in 209 

Table 1. Impedance artefacts were present in 204 (0.18%) epochs, while high amplitude artefacts were 210 

exclusively present in 117,036 (13.2%) epochs of EEG electrodes relative to the reference electrode. 211 

 212 

Model development 213 

The highest rank correlations with sleep classification tasks were obtained with relative gamma, beta 214 

and delta power, as shown in Supplemental Table S2. These spectral band powers were combined into 215 

nine candidate index measures, presented in Supplemental Table S3. For two state classification, outer 216 

cross validation balanced accuracy ranged from 0.62 for relative gamma power on the O1-O2 channel 217 

to 0.88 for the gamma to delta power ratio (gamma:delta-ratio) on the F4-A1 channel. For three state 218 

classification, balanced accuracy ranged from 0.51 for relative beta power on the O1-O2 channel to 0.74 219 

for the gamma:delta-ratio on the F3-A1 channel. For four state classification, the worst and best channel-220 

index combinations were again relative beta power on the O1-O2 channel and the gamma:delta-ratio on 221 

the F3-A1 channel, respectively, with accuracies ranging from 0.38 to 0.57. The fifteen best channel-222 

index combinations are shown in Table 2 for each classification task. Notice that relative gamma power, 223 

relative delta power and the gamma:delta-ratio are the only index measures featuring in this table, and 224 

that the frontal (F) channels are included in 39 of the 45 combinations. While auricular (A) and central 225 

(C) channels are also frequently present in the top fifteen, ocular (O) channels are not present at all. 226 

Next, the effect of smoothing was assessed for three state classification. The balanced accuracy for each 227 

level of smoothing is shown in Supplemental Figure S2. On average, the best performance was obtained 228 

for a smoothing window of 8 epochs, while the worst performance was obtained for a smoothing window 229 

of 60 epochs, although this was on average only 0.03 lower than for 8 epochs. 230 

 231 

Final models 232 

The best performances were obtained with the gamma:delta-ratio on either the F4-A1 or F3-A1 233 

channels. Optimal smoothing was 8 epochs for two-, 10 epochs for three- and 6 epochs for four-state 234 

classification. Balanced accuracy was 0.88, 0.74 and 0.57 for two, three and four state classification, 235 

respectively. Final model results for two, three and four state classification are displayed in Table 3. 236 



Confusion matrices comparing model-based classification with PSG-based classification and 237 

corresponding histograms of the gamma:delta-ratio for all classification tasks are provided in Figure 2. 238 

Confusion matrices for two and three state classification show no irregularities. However, the confusion 239 

matrix of the four state model showed that NSWS was not predicted for any epoch. In the corresponding 240 

decision tree, two leave nodes were classified as wake and none as NSWS (Supplemental Figure S3). 241 

The histogram of the gamma:delta-ratio for each of the four states showed great overlap between REM 242 

and NSWS (Figure 2). A post-hoc analysis was performed to resolve this issue, as described in 243 

Supplemental Results 1: Four State Model. However, this did not improve the model and we will 244 

therefore discard four state classification from further evaluation. Results of sleep quality measures for 245 

three state classification are presented in Supplemental Table S4. Both smoothed and unsmoothed 246 

models underestimated total sleep time and sleep efficiency. Differences in root mean squared error 247 

(RMSE) between smoothed and unsmoothed models were small, except for the number of awakenings 248 

and the mathematically related sleep fragmentation index, where the unsmoothed and smoothed models 249 

respectively estimated a mean of 51.5 and 9.7 awakenings per night, versus the true mean of 11.3 250 

awakenings per night. 251 

 252 
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Figure 2A-F. Comparison of model-based and PSG-based sleep classification with confusion matrices and 

corresponding histograms of the gamma:delta-ratio of the two, three and four state models 

Figures 2A, 2C and 2E (left column) contain the confusion matrices with the predicted sleep stage (model-based 

classification) on the x-axis and the actual sleep stage (PSG-based classification) on the y-axis for two to four states 

in ascending row number. Each cell shows the percentage of all epochs with the corresponding predicted and true 

sleep stage. Note that in four state classification no NSWS is predicted, and that actual NSWS epochs are mostly 

classified as REM sleep. Figures 2B, 2D and 2F (right column) contain corresponding histograms depicting the 

distribution of the gamma:delta-ratio over different classes. Note that in four state classification ranges of the 

gamma:delta-ratio for REM and NSWS largely overlap. REM = rapid eye movement, NSWS = non-slow wave sleep, 

SWS = slow wave sleep. 

 254 

Age stratification  255 

Across age categories, balanced accuracy ranged from 0.83 to 0.92 for two state classification and 0.72 256 

to 0.77 for three state classification, as illustrated in Table 4. The highest classification accuracies are 257 

observed in the age categories 1- 3 years for two state and 5 – 9 years for three state, respectively. 258 

 259 



Channel generalization 260 

The accuracy of the final models across EEG channels is shown in Supplemental Figure S4. Balanced 261 

accuracy ranged from 0.66 to 0.88 while and from 0.53 to 0.75 for two and three state classification, 262 

respectively. Both models obtained the best performance across F-C and F-A channels.  263 

  264 



Discussion  265 

We aimed to develop an interpretable, single-EEG-channel sleep index for automated sleep 266 

classification in non-critically ill children aged 6 months to 18 years. We created several index measures 267 

based on individual spectral band powers that showed correlation with sleep classification. The highest 268 

classification accuracy was achieved using the ratio between the spectral gamma and delta powers of 269 

the F4-A1 and F3-A1 EEG channel, with smoothing levels of 8 and 10 epochs for two and three state 270 

classification, respectively. For four state classification the model failed to make a distinction between 271 

REM and NSWS, likely due to excessive overlap in gamma:delta-ratio between these stages. Smoothing 272 

slightly increased classification accuracy and markedly increased the accuracy of derived clinically 273 

relevant sleep parameters such as the number of awakenings. Classification accuracy was further 274 

influenced by age and by the EEG channel used to derive the sleep index. 275 

 276 

To our knowledge this is the first study on automated sleep classification with spectral power ratios in 277 

a pediatric age-stratified cohort of non-critically ill children between 6 months and 18 years admitted to 278 

the hospital. However, in healthy adults Ganesan et al. also performed two state sleep classification 279 

using the gamma:delta-ratio, obtaining lower performance than observed here (Cohen’s Kappa = 0.57, 280 

accuracy = 0.78).31 Similarly, Reinke et al. performed depth of sleep monitoring and sleep classification 281 

using the gamma:delta-ratio in a small cohort of adult ICU patients and healthy controls, reporting both 282 

high agreement with manual classification and high inter-observer agreement (Kappa = 0.84 and 0.82 283 

for two and three state classification, respectively).21  The high performance may be attributable to the 284 

use of individual thresholds to determine transitions between sleep stages, however, this cannot be 285 

applied to newly admitted patients where manual classification has not been performed yet.21 286 

Meanwhile, the sleep index proposed in the present study is widely applicable with high balanced 287 

accuracy and moderate agreement with manual classification. The latter may be the result of imbalanced 288 

data, as Kappa tends to be low as compared to balanced accuracy.32 However, since our objective is not 289 

to substitute a trained sleep scorer, substantial agreement comparable to the interrater agreement of 290 

manual classification (Kappa = 0.68) would already be sufficient.12 Alternative algorithms for automated 291 



sleep classification in non-critically ill children include pattern recognition, neural networks, long-short-292 

term memory systems and adversarial learning.33-37 Two algorithms may even be ready for clinical 293 

implementation.38,39 Phan et al. applied an ensemble of deep learning methods for five state classification 294 

(Kappa = 0.85, accuracy = 0.89) in 1216 children (aged 5 – 9 years) experiencing obstructive sleep 295 

apnea.38 In our study, we only observe similar accuracies for two state classification in the same age 296 

category. Nonetheless, they conclude that novel research should focus on interpretability, as attempted 297 

here with the sleep index. Vallet et al. developed an open source and ready-to-use algorithm for five 298 

state classification, requiring single channels of EEG, EMG and EOG, with high performance (Kappa 299 

= 0.82, accuracy = 0.84) in a cohort of 3163 healthy and non-critically ill children and adults (aged 5 – 300 

89 years).39 However, although several algorithms have been reported with higher performances 301 

compared to our sleep index, most are far more complex with limited interpretability and 302 

generalizability, have not been applied in the full age range from 6 months to 18 years and require more 303 

than two electrodes which hampers bedside feasibility and may even affect sleep itself. Finally, some 304 

research has explored alternative signals for automated sleep classification, such as respiratory rate and 305 

photoplethysmography, with varying performances (Kappa = 0.43 – 0.85, balanced accuracy = 0.58 – 306 

0.90) depending on age, classification task and health status of participants.40-42 Nonetheless, a 307 

combination of the proposed sleep index with additional physiological signals may improve accuracy. 308 

 309 

The spectral gamma to delta power ratio was found to be the best performing index for sleep 310 

classification, regardless of classification task. Data exploration showed that correlations between 311 

absolute spectral band powers and classification task are moderate at best. This observation likely stems 312 

from the nature of the EEG as a highly dynamic non-linear signal with varying spectral characteristics 313 

throughout sleep.16 Hence, EEG categorization is a highly complex task, prone to subjectivity. When 314 

awake, the EEG is characterized by high gamma power, albeit partly due to prominent muscle activity.43 315 

During sleep however, the EEG exhibits a characteristic shift in power spectrum from fast to slow wave 316 

activity, represented by the relative increase in delta power.16,18 Te proposed sleep index captures these 317 

temporal changes in EEG associated with depth of sleep, whilst remaining objective and interpretable. 318 

 319 



The proposed sleep index is promising for continuous two and three state sleep classification at the 320 

bedside. This allows optimization of individual sleeping patterns by aiding clinicians in informed 321 

decision making about medication administration, weaning protocols and other interventions that may 322 

disrupt sleep. To our knowledge, there are no examples of the prior in current clinical practice. Two 323 

state classification (i.e. sleep/wake monitoring) may especially be beneficial in patients where this is not 324 

visually obvious, for example in heavily sedated patients. Three state classification provides additional 325 

information with the distinction between deep sleep (SWS) and light sleep (NSWS). This may be 326 

beneficial at the bedside considering the restorative and memory consolidative function of deep sleep, 327 

which should be preserved in critical care.18 Both the two and three state model generalized well to 328 

frontal, auricular and central electrodes. As such, there are sufficient possibilities to perform single 329 

channel EEG-measurement for two and three state classification if the optimal F3-A1 and F4-A1 330 

channels are unavailable, e.g. due to head trauma or interference with other devices. Model performance 331 

for four state classification was insufficient, due to the inability to distinguish REM sleep from NSWS. 332 

This is due to similarity in the EEG signal, which is why in manual classification EMG and EOG are 333 

relatively more important to make this distinction.10 While we used balanced class weights and assessed 334 

the final models with balanced accuracy, it’s worth noting that the time spent in REM sleep in the 335 

included population is remarkably low compared to existing literature, possibly even insufficient for 336 

adequate training of REM detection.44,45 Since REM sleep is important for brain health and specifically 337 

neurocognitive function, the ability to classify REM directly at the bedside is desirable in the future.  338 

 339 

The present study has several strengths worth mentioning. Firstly, we used high quality data and applied 340 

a robust method consisting of artefact detection, smoothing and nested-cross validation. Artefacts are 341 

common in the PICU and can hamper signal quality.46 Smoothing can provide additional artefact 342 

reduction and also allows to take surrounding epochs into consideration during classification.47 343 

Unsurprisingly, smoothed models obtained better performance in this study. While other studies have 344 

performed regular cross-validation, with notable high accuracies (> 0.83), our study is unique with 345 

nested cross-validation using smoothing as a hyperparameter to attain the highest achievable 346 

performance without overfitting.33,35,39,48 However, some limitations of the present study also need to be 347 



addressed. Firstly, we did not compare performance of our models to visual scorer agreement. 348 

Furthermore, the generalizability of our models to clinical practice is not without question, due to 349 

exclusion of PSGs with numerous or long-lasting artefacts, not taking possible comorbidity of included 350 

participants into consideration and not performing external validation. 351 

 352 

With this study we make an essential first step in real-time bedside sleep monitoring in non-critically ill 353 

children using single-channel EEG only. Our findings implicate that spectral index measures of sleep, 354 

specifically the gamma to delta power ratio, are suitable for two and three state sleep classification in 355 

non-critically ill children across all age categories. Considering that bedside real-time sleep monitoring 356 

is currently not feasible at all, two or three state classification is already sufficient to improve individual 357 

sleeping patterns. The simplicity of the technique minimizes the effect on patient and caregivers. Future 358 

research should focus on evaluating sleep indices in an external population of non-critically ill children, 359 

and ultimately in critically ill children admitted to the PICU. The latter may pose a challenge, as research 360 

has suggested that critically ill children may experience different sleeping patterns compared to non-361 

critically children.49 (Cramer ABG et al, unpublished work, 2023). Interestingly, Kudchadkar et al. 362 

observed a clear distinction between healthy children and age-matched critically ill children based on 363 

nocturnal delta power alone.20 Furthermore, research should evaluate what additional parameters that 364 

are routinely monitored in the PICU, such as vital signs, may be added to optimize sleep classification 365 

performance. With a working algorithm for sleep classification in critically ill children, the door is open 366 

to conduct large-scale research into sleep in the PICU and the effects of sleep-enhancing interventions 367 

on clinical outcome. 368 

 369 

Conclusion 370 

Real-time sleep monitoring and classification at the bedside is essential to optimize individual sleeping 371 

patterns in the PICU. In our study, we show that the sleep index calculated from the gamma:delta spectral 372 

power-ratio of a single EEG-channel is able to perform two and three state sleep classification in non-373 

critically ill children aged 6 months to 18 years.  374 



 375 

Tables 376 

 377 

Table 1. Distribution of epochs over sleep stages of all PSG recordings 

Sleep stage Mean (SD) %1 Number of epochs 

Wake 16.5 (11.6)  n = 17,067 

REM 18.1 (6.3)  n = 18,963 

N1 9.8 (5.4)  n = 10,354 

N2 26.3 (10.3)  n = 27,099 

N3 29.2 (11.3)  n = 30,167 

1 Calculated as percentage of all epochs. PSG = polysomnography; REM = rapid eye movement 378 

 379 

Table 2. The 15 best performing channel-index combinations with the corresponding balanced accuracy  

 Two state Three state Four state 

RANK CHANNEL INDEX BALANCED 

ACCURACY 

CHANNEL INDEX BALANCED 

ACCURACY 

CHANNEL INDEX BALANCED 

ACCURACY 

1 F4-A1 γ/δ 0.88 (0.75 – 1.00) F3-A1 γ/δ 0.74 (0.62 – 0.87) F3-A1 γ/δ 0.57 (0.45 – 0.70) 

2 F3-A1 γ/δ 0.88 (0.75 – 1.00) F4-A1 γ/δ 0.74 (0.62 – 0.87) F4-C3 γ 0.57 (0.44 – 0.69) 

3 F4-A2 δ 0.87 (0.75 – 1.00) F4-C3 γ/δ 0.74 (0.61 – 0.86) F4-C3 γ/δ 0.57 (0.44 – 0.69) 

4 F3-A1 γ 0.87 (0.75 – 0.99) F4-C3 γ  0.74 (0.61 – 0.86) F4-C4 γ/δ 0.57 (0.44 – 0.69) 

5 F4-A1 γ 0.87 (0.74 – 0.99) F3-A2 γ/δ 0.73 (0.61 – 0.86) F3-C3 γ/δ 0.57 (0.44 – 0.69) 

6 F4-A2 γ 0.87 (0.74 – 0.99) F3-A1 γ 0.73 (0.61 – 0.85) F4-A1 γ/δ 0.57 (0.44 – 0.69) 

7 C3-A1 γ/δ 0.86 (0.74 – 0.98) F3-C4 γ/δ 0.73 (0.60 – 0.85) F3-A2 γ/δ 0.57 (0.44 – 0.69) 

8 F3-A2 γ/δ 0.86 (0.73 – 0.98) F4-A2 γ/δ 0.73 (0.60 – 0.85) F3-C4 γ/δ 0.56 (0.44 – 0.69) 

9 C4-A2 γ/δ 0.86 (0.73 – 0.98) F4-C4 γ/δ 0.73 (0.60 – 0.85) F4-A2 γ/δ 0.56 (0.44 – 0.69) 

10 F3-A2 γ 0.85 (0.73 – 0.98) F4-C4 γ 0.73 (0.60 – 0.85) F3-F4 γ 0.56 (0.44 – 0.68) 

11 C4-A1 γ/δ 0.85 (0.73 – 0.97) F3-C3 γ/δ 0.72 (0.60 – 0.84) F3-C4 γ 0.56 (0.43 – 0.68) 

12 C4-A1 γ 0.85 (0.72 – 0.97) F4-A1 γ 0.72 (0.60 – 0.84) F4-A1 γ 0.56 (0.43 – 0.68) 

13 C3-A1 γ 0.85 (0.72 – 0.97) F3-C3 γ 0.72 (0.60 – 0.84) F3-C3 γ 0.56 (0.43 – 0.68) 

14 C4-A2 γ 0.85 (0.72 – 0.97) F4-A2 γ 0.72 (0.60 – 0.84) F4-A2 γ 0.56 (0.43 – 0.68) 

15 F4-C3 γ/δ 0.85 (0.72 – 0.97) F4-A1 γ 0.72 (0.60 – 0.84) F4-A1 γ 0.56 (0.43 – 0.68) 

Balanced accuracy is the mean (95 CI%) of outer cross validation. Two state: Wake-Sleep; Three state: Wake-NSWS-SWS; Four 

state: Wake-REM-NSWS-SWS 

F: frontal channel; A: auricular channel; C: central channel; γ = relative gamma power; γ/δ = gamma:delta-ratio; Fz = ground 

electrode. 
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Table 3. Final models 

 Two state Three state Four state 

Channel F4-A1 F3-A1 F3-A1 

Index Gamma:delta-ratio Gamma:delta-ratio Gamma:delta-ratio 

Smoothing 8 epochs 10 epochs 6 epochs 

Cohen’s Kappa 0.60 (0.59 – 0.60) 0.52 (0.51 – 0.52) 0.31 (0.31 – 0.32) 

Balanced accuracy 0.88 (0.88 – 0.88)1 0.74 (0.74 – 0.75) 0.58 (0.57 – 0.58) 

1 0.883 (0.881 – 0.884). 

Balanced accuracy and Cohen’s Kappa are the mean of 5-fold cross-validation. 

Two state: Wake-Sleep; Three state: Wake-NSWS-SWS; Four state: Wake-REM-NSWS-SWS. 
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Table 4. Balanced accuracy across age categories for two and three state classification 

Age category Two state Three state 

6 – 12 months 0.89 (0.89 – 0.89) 0.75 (0.74 – 0.76) 

1 – 3 years 0.92 (0.92 – 0.92) 0.75 (0.74 – 0.76) 

3 – 5 years 0.91 (0.90 – 0.91) 0.74 (0.73 – 0.74) 

5 – 9 years 0.89 (0.89 – 0.90) 0.77 (0.76 – 0.78) 

9 – 13 years 0.83 (0.82 – 0.83) 0.72 (0.71 – 0.72) 

13 – 18 years 0.83 (0.71 – 0.95) 0.75 (0.75 – 0.76)  

Balanced accuracy is the mean (95 CI%) of 5-fold cross-validation. 

Two state: Wake-Sleep; Three state: Wake-NSWS-SWS. 
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Abbreviations 385 

A1; A2 Auricular electrodes 

AASM American Academy of Sleep Medicine 

C3; C4 Central electrodes 

CI Confidence intervals 

EEG Electroencephalography 

EMG Electromyography 

EOG Electro-oculography 

F3; F4 Frontal electrodes 

Gamma:delta-ratio Spectral gamma to delta power ratio 

IDOS Intensive care unit depth of sleep 

LOC Left outer canthus 

MEC Medical Ethics Committee 

NSWS Non-slow wave sleep 

O1; O2 Occipital electrodes 

PICU Pediatric intensive care unit 

PSG Polysomnography 

REM Rapid eye movement 

ROC Right outer canthus 

SD Standard deviation 

SWS Slow wave sleep 
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