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Summary 

Hyperspectral images present detailed spectral information of every pixel in 

the images where the spectral signal is sampled in hundreds of narrow and 

contiguous spectral channels, usually covering the 400-2500 nm spectral region 

where sunlight reflected by the Earth can be measured. Earth observation systems 

acquire spectral information by imaging spectrometers mounted in a platform 

flying over the Earth. Recent advances in technology make it possible to have 

miniaturised hyperspectral satellites in orbit. Much of the work presented in this 

thesis was inspired by the study of a CubeSat equipped with an imaging 

spectrometer and capable of onboard data processing.  

Utilising hyperspectral datasets, however, is a big challenge. At first glance, 

the volume of the data compared to multispectral images is huge, thus making data 

transmission, analyses and storage a challenge. Secondly, hyperspectral datasets 

suffer from redundant spectral information, since adjacent narrow spectral 

channels are usually highly correlated. The third issue with hyperspectral images is 

that a huge number of samples are required to characterise observed targets, as in 

object recognition and classification, because of the large number of spectral 

variables (channels) and of the high radiometric resolution. So, the number of 

available samples in the hyper-dimension of the data makes the feature space 

inherently sparse. This issue is also called the “curse of dimensionality”.  

The primary solution to the mentioned problems is the dimensionality 

reduction (DR) of hyperspectral datasets. To investigate DR, we identified three 

leading objectives to extract optimal information and reduce the dimensionality. 

These are 1- accurate spectral representation 2-independent spectral information 

3- optimal class separability. In this thesis, we propose a methodology to identify 

reduced spectral configurations to meet the three objectives. Our approach divides 

the spectrum into continuous spectral regions with different widths depending on 

the criterion used and the land cover in the scene, by applying either a top-down 

(the spectral region splitting (SRS) algorithm) or a bottom-up (the clustering-

merging (CM) algorithm) searching strategy. It is similar to feature selection (FS) 

technique preserving the relationship between the physical properties of targets 

and the spectral features.  
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In this study, various criteria per objective have been investigated. For spectral 

reflectance representation (first objective), five criteria are used. They are RMSE 

(root-mean-square-error), ECS (Euclidean distance of cumulative spectrum), SA 

(spectral angle), SID (spectral information divergence), and a hybrid metric. The 

results have also been compared with the best signal approximation method using 

piecewise constant function approximation (PCFA). For identification of 

independent spectral regions (second objective), a metric named total dependence 

(TD) has been proposed and applied. Besides, a detailed investigation of TD and 

evaluating its capability for the objective, we have compared the final feature sets 

with the sets obtained by well-known FS algorithms focusing on the selection of 

independent channels using the mutual information metric and the similarity-

based endmember extraction techniques. Six class separability metrics from the 

simple one that just considers the inter-class distance to the most advanced ones, 

e.g. Jeffreys-Matusita (JM) considering the intra-class distance as well, have been 

utilised to identify band-sets with the optimal separabilities between the available 

classes in a scene (third objective). The final feature sets have been compared with 

the sets obtained by the branch and bound (BB) algorithm, providing the best 

channel set regarding a given criterion, sequential forward selection (SFS), and 

sequential forward floating selection (SFFS).  

The proposed methodology has been applied to different spectra of a complete 

spectral library, and various hyperspectral datasets and the band configurations 

obtained have been evaluated and compared with well-known and advanced FS 

algorithms concerning material detection, image classification and the complexity 

of the algorithms in the supervised and unsupervised situations.  

The proposed algorithm, SRS, can make configuration that represent the 

spectral reflectance in hyperspectral images with a negligible error of 

representation, and, on average, is 40 times faster than the other method evaluated 

for this purpose. The independent band set obtained by the CM algorithm provides 

the set in a fraction of a second, while the result of image classification is better or 

comparable with the feature sets obtained by other algorithms with the same 

objective. Applying SRS to identify the spectral regions to optimal class separability 

give spectral bands providing a better class discrimination than the best channels 

selected by the BB algorithm using the same separability metric. 

This thesis, in the framework of the three DR objectives on hyperspectral 

datasets, presents a detailed study through spectral region analyses which leads to 

the identification of different spectral band configurations. Comparing the 

configurations, we conclude that in the case of a supervised dimensionality 

reduction, it is worth to identify separable spectral bands leading to more accurate 

image classification. However, in the case of the lack of information about the 

classes in a scene (unsupervised) or the lack of interest in a specific region in the 

scene, we suggest identifying the independent and representative band sets, while 

the former requires short computation time, and the latter provides a better 
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classification accuracy. This argument could address the issue regarding the 

onboard preprocessing of hyperspectral images in a Cubesat as well. 
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Samenvatting 

Hyperspectrale beelden geven gedetailleerde spectrale informatie van elke 

pixel weer, waarbij het spectrale signaal bemonsterd is in honderden smalle, 

aaneengesloten spectrale banden. Doorgaans omvatten de banden het bereik van 

400 tot 2500 nm, waarin gereflecteerd zonlicht kan worden gemeten. 

Aardobservatiesystemen verzamelen spectrale informatie met behulp van 

spectrometers aan boord van een vliegend platform. Recente ontwikkelingen in 

technologie maken het mogelijk om kleine hyperspectrale satellieten in een baan 

om de aarde te brengen. Veel van het werk in deze thesis is geïnspireerd op het 

bestuderen van data van een Cubesat, die uitgerust is met een spectrometer en die 

aan boord data verwerkt. 

Effectief gebruik van hyperspectrale data is een uitdaging. Ten eerste is het 

volume van de data enorm groot ten opzichte van multispectrale beelden, wat de 

datatransmissie, -analyse en -opslag bemoeilijkt. Ten tweede bevatten 

hyperspectrale data veel overtollige informatie, omdat aangrenzende spectrale 

kanalen vaak sterk gecorreleerd zijn. Het derde probleem is het grote aantal 

metingen dat nodig is om waargenomen objecten te beschrijven (in bijvoorbeeld 

objectherkenning en klassificatie), door het hoge aantal spectrale variabelen 

(kanalen) en door de hoge radiometrische resolutie. Dit zorgt ervoor dat de 

beschikbare gegevens de kenmerken van een object in de hyperspectrale ruimte 

slechts uiterst summier omschrijven.  Dit wordt ook wel de ‘vloek van de 

dimensionaliteit’ genoemd. 

De eerste oplossing voor de genoemde problemen is dimensionaliteitsreductie 

(DR) van de hyperspectrale data. Om DR te onderzoeken, hebben we drie 

hoofddoelen opgezet met als doel optimale informatie te extraheren, terwijl we de 

dimensionaliteit verkleinen. Dit zijn 1- nauwkeurige spectrale representatie, 2- 

onafhankelijke spectrale informatie, 3- optimale klassenscheiding. In dit 

proefschrift stellen we een methodologie voor om gereduceerde spectrale 

configuraties op te stellen, die de doelen bereiken. Onze methode verdeelt het 

spectrum in continue spectrale deelgebieden met verschillende breedtes, die 

afhankelijk zijn van de gebruikte criteria en de landbedekking in het geobserveerde 

gebied, door middel van een top-down (het spectrale-regio-splitsingalgoritme 
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(SRS)) of een bottom-up (het clusteren-samenvoegingsalgoritme (CM)) 

zoekstrategie. Het is vergelijkbaar met een kenmerkselectietechniek (FS), waarbij 

de verhouding tussen de fysieke eigenschappen en de spectrale kenmerken wordt 

behouden. 

In deze studie zijn verschillende criteria voor de doelstellingen onderzocht. 

Voor de eerste doelstelling (spectrale reflectierepresentatie) zijn vijf criteria 

gebruikt, waaronder: RMSE (kwadratisch gemiddelde afwijking), ECS (Euclidische 

afstand van het cumulatieve spectrum), SA (spectrale hoek), SID (spectrale 

informatiedivergentie) en een hybride test. De resultaten zijn ook vergeleken met 

de beste signaal benaderingsmethode gebaseerd op een stuksgewijs continue 

functiebenadering (PCFA). Voor de identificatie van onafhankelijke spectrale 

deelgebieden (tweede doelstelling), is de totale afhankelijkheidsmetriek (TD) 

voorgesteld en toegepast. Naast een gedetailleerd onderzoek van TD en een 

evaluatie van haar geschiktheid voor de doelstelling, hebben we een vergelijking 

gemaakt tussen de uiteindelijke kenmerkencombinaties en degene die bepaald zijn 

met behulp van bekende FS algoritmes. Hierbij is gefocust op de selectie van 

onafhankelijke kanalen, gebruikmakende van de wederzijde informatiemetriek en 

de overeenkomstgebaseerde endmember extractietechnieken. Zes 

klassenscheidingsmetrieken zijn gebruikt, van de eenvoudige interklasseafstand tot 

aan de geavanceerde Jeffreys-Matusita (JM), om bandcombinaties te identificeren 

om de klasses optimaal van elkaar te scheiden (derde doelstelling). De uiteindelijke 

kenmerkencombinaties zijn vergeleken met combinaties die gegenereerd zijn met 

het vertak en bindalgoritme (BB) , dat de beste combinatie oplevert bij een gegeven 

criterium, met sequentiële voorwaartse selectie (SFS, SFSS). 

De voorgestelde methodologie is toegepast op verschillende spectra van een 

complete spectrale bibliotheek en verschillende hyperspectrale datasets. 

Vervolgens zijn de verkregen bandcombinaties geëvalueerd en vergeleken met 

resultaten van de bekende en geavanceerde FS algoritmes voor materiaaldetectie, 

beeldklassificatie en op grond van de complexiteit van de algoritmes in 

gecontroleerde en ongecontroleerde situaties. 

Het voorgestelde algoritme, SRS, kan configuraties maken, die de spectrale 

reflecties representeren in hyperspectrale beelden met verwaarloosbare fouten, en 

daarbij gemiddeld veertig keer sneller is dan andere methode, die voor dit doel 

worden gebruikt. De onafhankelijke bandcombinaties, verkregen met behulp van 

het CM algoritme leveren de kenmerkencombinaties in een fractie van een seconde, 

terwijl de klassificatie op zijn minst gelijkwaardig en meestal beter is dan bij 

bestaande algoritmes. Door SRS toe te passen om spectrale deelgebieden te 

herkennen voor optimale klassenscheiding, worden klasses beter gescheiden dan 

met de  deelgebieden geselecteerd door het BB algoritme, gebaseerd op dezelfde 

metriek. 

Deze thesis presenteert, in het kader van de drie DR doelstellingen voor 

hyperspectrale datasets, een gedetailleerde studie van spectrale deelgebiedsanalyse, 
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die geleid heeft tot de identificatie van verschillende spectrale bandconfiguraties. 

Een vergelijking tussen de configuraties laat zien dat het nuttig  is om spectrale 

banden te scheiden ten behoeve van een betere beeldklassificatie. Echter, als men 

weinig informatie heeft over de klasses in een gebied, of alleen belangstelling heeft 

voor deelgebied, stellen wij voor om òf onafhankelijke òf representatieve 

bandcombinaties te identificeren, omdat het ene een korte berekeningstijd nodig 

heeft en het andere een hogere klassificatienauwkeurigheid geeft. Deze redenering 

kan ook gebruikt worden met betrekking tot het aan boord verwerken van 

hyperspectrale beelden in een Cubesat. 
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1. 

Introduction



 

 

 

2  1. Introduction 

Hyperspectral remote sensing imaging exploits solar illumination to acquire 

information from the surface by measuring reflectance spectra. The goal of 

hyperspectral imaging is the identification of materials and objects existing on the 

surface or in the atmosphere by using spectral information acquired as images. 

Along the advantages of hyperspectral images, the hyper-dimensionality of the data 

is a big challenge. It may cause 1- a large volume of data for storage and 

transmission; 2- redundant information in the spectral domain; and 3- complexity 

in data analysis. In this chapter, we explained these issues and explored the 

dimensionality reduction techniques of hyperspectral datasets which can be the 

principal remedy for these issues.  

1.1. Background 

By definition, remote sensing is the collection of information about an object 

without physical contact with it (Shaw and Burke 2003; Elachi and Van Zyl 2006). 

The acquisition of information is by detecting and measuring energy received from 

an object, such as electromagnetic or acoustic. The electromagnetic techniques of 

information acquisition are most commonly used in connection with the “remote 

sensing” term (Elachi and Van Zyl 2006), and are based on the interactions 

between the electromagnetic radiation and matter. The discipline that deals with 

the measurement and interpretation of spectra arising from the interactions 

between the electromagnetic radiation and matter is ‘spectroscopy’ (Herrmann and 

Onkelinx 1986; Skoog, Holler et al. 2007; Penner 2010; Hapke 2012). 

When an electromagnetic wave reaches a material, a fraction of the incident 

energy is scattered in all directions1, and the scattered photons are reflected away 

from the surface so they may be detected and measured. The study of light as a 

function of wavelength that has been scattered from a solid, liquid, or gas is 

reflectance spectroscopy (Clark and National Research Council (U.S.). 1966; Clark 

and Roush 1984). Reflectance spectroscopy, which is the basis of hyperspectral 

remote sensing imaging, allows us to derive information about the characteristics 

of materials from its reflected light, and also determines the absorption spectral 

regions of the materials investigated (Piecuch, Maruani et al. 2009; Hapke 2012). 

For example, metals have high reflectivity, but the reflectivity reduces with 

                                                             

1When the electromagnetic radiation interacts with an object; some amount is 

scattered, some transmitted and/or some absorbed, which can be summarized as ρ+α+τ=1, 

where ρ, α, and τ are the ratio of reflected, absorbed, and transmitted radiation to the 

incident radiation within a specific wavelength and temperature respectively (Swain, P. H. 

and S. M. Davis (1978). Remote Sensing: The Quantitative Approach. New York, NY, 

McGraw-Hill.; Elachi, C. and J. Van Zyl (2006). Introduction to the physics and techniques 

of remote sensing. Hoboken, N.J., Wiley-Interscience.). 
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temperature and drastically decreases with the formation of an oxide layer (Elachi 

and Van Zyl 2006).   

1.2. Hyperspectral remote sensing 

Hyperspectral remote sensing imaging is an image-based measurement of the 

spectra of the reflected energy arriving at the sensor from objects remotely 

observed, where a vector representing the energy across a specified range of 

wavelengths is measured for each image element (pixel). This technique is also 

known as imaging spectrometry. These spectra are used to extract information 

based on the signature of the interactions between the electromagnetic radiation 

and the target being observed as mentioned.  

The majority of hyperspectral sensors, focusing on Earth’s surface features, 

operate from the visible region (400 to 700 nm) through the shortwave infrared 

(about 2500 nm) spectral regions, exploiting solar illumination to acquire 

information from the surface by measuring their reflectance spectra. This spectral 

range provides rich information to identify and distinguish spectrally unique 

materials and many targets on the Earth surface (Shaw and Burke 2003; Bioucas-

Dias, Plaza et al. 2013). Hyperspectral sensors record the spectral information in 

hundreds of narrow contiguous bands, e.g. ten nanometers wide1 (Green, Eastwood 

et al. 1998).  

The spectral information in hyperspectral images can be used, often in 

combination with high-spatial-resolution, to identify terrestrial unknown objects 

remotely (Shaw and Burke 2003). For example, Thenkabail et al. (Thenkabail, 

GangadharaRao et al. 2007) used spectral matching techniques to recognize several 

objects using image data such as crop types, plant species and minerals. The 

spectral information is also utilized to identify the components of mixed pixels 

(Parra, Spence et al. 1999; Manolakis, Siracusa et al. 2001; Manolakis, Marden et 

al. 2003; Vishnu, Nidamanuri et al. 2013; Shanmugam and SrinivasaPerumal 

2014). 

The concept of hyperspectral imaging started in the mid-80's (Wang and Zhao 

2015), and to this point, it has been utilised most widely by geologists for the 

                                                             

1 In order to achieve a continious coverage of a hyperspectral sensor and the spectral 
resolution of the sensor, the full width at half maximum (FWHM) of center wavelength of 
the spectral response function of indivitual channels, which are overlapping each other, 
should be calculated (Green, R. O., M. L. Eastwood, et al. (1998). "Imaging spectroscopy and 
the Airborne Visible Infrared Imaging Spectrometer (AVIRIS)." Remote Sensing of 
Environment 65(3): 227-248, Gao, Z. Y., R. D. Jia, et al. (2016). "Simulation and Analysis of 
Spectral Response Function and Bandwidth of Spectrometer." International Journal of 
Aerospace Engineering.).  
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mapping and identification of minerals (Adams and Filice 1967; Adams 1974). For 

example, Goetz et al. (Goetz, Vane et al. 1985) tested the capability of imaging 

spectroscopy for mineral identification over the Cuprite mining district in Nevada, 

USA. The first Earth-looking hyperspectral imager was AVIRIS (Airborne 

Visible/Infrared Imaging Spectrometer) mounted on an aircraft platform in 1987 

(Green, Eastwood et al. 1998). 13 years later after the commissioning of AVIRIS, 

the first satellite carrying a hyperspectral sensor, named Hyperion, was launched 

on the EO-1 satellite (Folkman, Pearlman et al. 2001). An impressive spaceborne 

hyperspectral sensor is CHRIS (Compact High-Resolution Imaging Spectrometer), 

the prime instrument of PROBA-1 (Project for On-Board Autonomy) mission 

(Barnsley, Settle et al. 2004). The technology objective was to explore the 

capabilities of imaging spectrometers on small satellite platforms. The sensor is 

fully programmable and allows collecting hyperspectral images in different spectral 

and spatial modes. Table  1.1 compares the salient features of the hyperspectral 

sensors- AVIRIS, Hyperion, and CHRIS-PROBA. 

Table  1.1. Comparison of hyperspectral imaging systems. 

Parameters AVIRIS Hyperion CHRIS-PROBA 

Nominal altitude 

(km) 
20 705 600 

Swath (km) 11 7.6 14 

Spatial resolution 

(m) 
20 30 18 and 36 (at nadir) 

Spectral coverage 

(nm) 
400-2500 400-2500 410-1050 

Nominal spectral 

resolution (nm) 
10  10 

1.3 nm at 410nm to 12 nm at 

1050nm (i.e. it varies across the 

spectrum) 

Number of 

wavebands 
224 220 

19 bands at a spatial resolution 

of 18m 

63 bands at a spatial resolution 

of 36m 

Data-cube size 512*614*224 660*256*220 
748*748*19 at best spatial 

resolution 

Radiometric 

resolution  

12 bits in 1994 

and 16 bits in 

2005 

12 bits 
0.5% at 20% albedo (dynamic 

range) 

 

Figure  1.1 demonstrates how the three dominant earth surface materials, i.e. 

vegetation, soil, and water reflect the Sun irradiance in the VNIR /SWIR range. The 

reflectance spectrum has the potential of identifying the materials in a scene by 

matching the scene reflectance spectra to a spectral library of known materials. For 

example, the spectral reflectance of healthy green vegetation has a noticeable 

minimum of reflectance in the visible region of the spectrum resulting from the 

pigments in the green leaves. Alternatively, stressed vegetation can be detected 

because it has a lower reflectance in the infrared region (Grant, Daughtry et al. 
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1993; Gitelson, Stark et al. 2002; Sönmez, Emekli et al. 2010; Pleniou and Koutsias 

2013). 

 Another example is the water spectral reflectance that is characterised by a 

high absorption in near infrared spectral region and beyond. Because of this 

property, water bodies can be easily detected with remote sensing data. Clearwater 

has a lower reflectance in the visible region than turbid water and waters 

containing high chlorophyll concentrations. These reflectance properties are 

utilised to detect algae colonies as well as pollutants such as industrial wastewater 

(Hirtle and Rencz 2003; Zhang, He et al. 2017). 

 

 
Figure  1.1. Reflectance of vegetation, soil, and water in different wavelengths. 

 

1.3. Applications of hyperspectral imaging 

As noted, the objective in hyperspectral imaging is the identification of 

materials and objects existing on the surface or in the atmosphere of the Earth by 

using spectral information acquired as images. We can apply hyperspectral imaging 

sensors to a variety of distinctly different problems, adapting the processing used to 

extract relevant information such as for anomaly detection and target recognition 

(Shaw and Burke 2003). These applications comprise environmental monitoring 

including atmosphere, ecology (Cochrane 2000; Wang, Menenti et al. 2007; 

Pontius, Martin et al. 2008; Ghiyamat and Shafri 2010), geology (Cloutis 1996; 

Crouvi, Ben-Dor et al. 2006), and hydrology (Schmid, Koch et al. 2005; Weng, 

Gong et al. 2008); sensors calibration (Guanter, Richter et al. 2006), modeling and 

algorithms such as autonomous atmospheric correction(Barducci, Guzzi et al. 

2012).   

1.4. N-dimensional space  

Hyperspectral imagery is typically acquired (and represented) as a cube of 

spatial and spectral data where the spatial information is represented in the X-Y 

plane, and spectral information in the Z-direction (Figure  1.2, left). 
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The information for a given pixel corresponds to the reflectance spectrum of 

that pixel. The n-spectral bands sampled by an imaging spectrometer can be 

considered as the n-dimensions of a Cartesian space, called feature space. Each 

observed target (pixel) can be represented in such a space by a point with 

coordinates being the values of the observed radiometric magnitude, e.g. 

reflectance (Figure  1.2, right).  

 

 

 

Figure  1.2. A hyperspectral data cube (left), and an example of 3D feature space with 

three nominal bands (right). 

1.4.1. Issues with an n-dimensional feature space 

Along the advantages of hyperspectral images, the hyper-dimensionality of the 

data is a big challenge (Manolakis, Marden et al. 2003; Shaw and Burke 2003; 

Bioucas-Dias, Plaza et al. 2013). The hyper-dimensionality of the data may cause 1- 

a large volume of data for storage and transmission; 2- redundant information in 

the spectral domain; and 3- complexity in data analysis. In this section, we review 

and explain these three main issues of hyperspectral data. 

 A large volume of data for storage and transmission 

 At first glance, the amount of data produced by hyperspectral imaging sensors 

is very large, and compression is of significance to reduce storage costs and 

transmission times. The computational time of analysis of such large dataset is also 

very high (Motta, Rizzo et al. 2006). One pixel of Landsat TM with seven bands, for 

example, requires seven bytes memory (8 bits per channels) (Barsi, Markham et al. 

2007) for storage. A pixel of AVIRIS with 224 bands occupies 64 times more 

memory, i.e. 448 bytes memory per pixel1. So, a complete scene of Landsat TM with 

                                                             

1All AVIRIS data is stored in 16-bit integers per pixel per channel) 
(https://directory.eoportal.org/web/eoportal-/airborne-sensors/aviris#foot9%29, https://-
aviris.jpl.nasa.gov/html/aviris.datafacility.html#detailed) 

B1 

B2 

B3 

P1 (b1,b2,b3) 
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seven bands having 30 meters spatial resolution1 occupies about 242 Mb, while the 

volume of a dataset collected by AVIRIS covering the same area as a Landsat TM 

scene exceeds 34843 Mb with 20 m spatial resolution2.     

For the reduction of the volume of hyperspectral data for the storage and 

transmission, data compression algorithms might be used. These methods are 

lossless or lossy (Pickering and Ryan 2006). By definition, lossless compression is 

the reduction of the amount of data without loosing any information (Sayood 

1992). The Morse code is probably the earliest known lossless compression 

technique (Carron 1991). Lossless compression techniques are used in reducing 

various types of data. In hyperspectral domain for example, (Mielikainen, Toivanen 

et al. 2003) and (Mielikainen 2006) applied two lossless compression methods to 

different hyperspectral scenes acquired by AVIRIS and reduced the volume of data 

by a compression ratio about 3.4 and 3.3 respectively.  

Lossy compression can be tolerated when the loss of information is not 

perceptually significant (Sayood 1992). Garcia-Vilchez, Munoz-Mari et al. (Garcia-

Vilchez, Munoz-Mari et al. 2011) quantitatively substantiated the impact of 

different lossy compression techniques such as JPEG2000 (Taubman and 

Marcellin 2012) on spectral unmixing and hyperspectral image classification and 

revealed that different stages of analysing the data exhibit different sensitivities to 

lossy data compression. 

Lossless compression is usually required at the archive level to reduce storage 

capacity, while in many cases the lossy compression is used to decrease redundant 

information (Motta, Rizzo et al. 2006). Sayood (Sayood 1992) introduced image 

classification and clustering as the most efficient form of data compression in 

remote sensing applications. He mentioned that if an image is assumed to be 

constructed of a small number of objects,  by assigning each pixel in the image to 

one of the objects the data is highly compressed (Sayood 1992), although the 

information carried by the class spectral heterogeneity is lost. The dimensionality 

of a classified image is substantially less than the dimensionality of the original 

hyperspectral datacube, which can lead to transmitting the data in a short time 

from a satellite to a ground station if the data is classified or clustered onboard.  

For example, Hilbert (Hilbert 1977) proposed the cluster compression 

algorithm (CCA) to reduce the costs in relation to transmitting, storing, and 

interpreting of Landsat multispectral images. In (Conticello, Esposito et al. 2016; 
                                                             

1 The approximate scene size of The Landsat Thematic Mapper (TM) is 170 km north-
south by 183 km east-west, with the spatial resolution of 30 meters 
(https://landsat.usgs.gov/what-are-band-designations-landsat-satellites).    

2 The pixel size of the AVIRIS data depend on the altitude from which the data is 
collected. When collected by the ER-2 (20km above the ground) the spatial resolution is 
approximately 20 meters on the ground, and when collected by the Twin Otter (4km above 
the ground), each ground pixel is 4m square (https://aviris.jpl.nasa.gov/html/aviris.con-
cept.html). 
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Soukup, Gailis et al. 2016), a data processing chain was developed to convert 

hyperspectral datacubes into a segmented map onboard which can also reduce the 

transmission time of the data from a miniaturised hyperspectral satellite to ground 

stations. 

Redundant information in spectral domain  

The second point is more about the use of the data for different applications. 

Most of the time, we do not need all the data collected by imaging spectrometers to 

be analysed for specific applications (Shaw and Burke 2003; Bioucas-Dias, Plaza et 

al. 2013). For example, if the task is to distinguish a particular target material from 

the background, a few well-chosen wavelengths are usually sufficient to 

discriminate between the target and background materials (Manolakis, Marden et 

al. 2003). These wavelengths can be determined by knowing the interaction 

between the electromagnetic waves and the given target. For example, the 

absorption features of soil reflectance spectra are characterised by a few 

wavelengths at around 1.4,  1.9, and 2.2 µm due to ��� (Ben-Dor, Goldlshleger et 

al. 2003),  at 2.33 µm to ����� (Gaffey 1987), or at around 0.5-0.9 µm to 	
�� and 	
�� (Hunt, Salisbury et al. 1971).  

In reflectance spectra of plant pigments, for instance, an index employing 

three wavelengths at 0.51, 0.55, and 0.7 µm appears to give a robust solution to 

estimate total Carotenoids at the leaf scale (Blackburn 2007). Gamon and Surfus 

(Gamon and Surfus 1999) proposed a ratio of red to green spectral regions for 

quantifying Anthocyanins concentration in vegetation canopies. Another example 

is oil dispersed in water using AISA (Airborne Imaging Spectro-radiometer for 

Applications) hyperspectral images (Salem and Kafatos 2001). The study showed 

that high absorption at 0.67 µm indicates high oil concentration. 

As shown by some examples, different materials present different spectral 

properties. Therefore for recognising different materials, narrow and contiguous 

wavebands are essential to finding proper wavebands that help differentiate spectra 

since critical spectral features may be in various locations of the spectrum for each 

material (Clark and Roush 1984; Roy 1989; Clark 1999). Capturing all the spectral 

information in narrow contiguous bands, however, produces redundant and highly 

correlated data (Shaw and Burke 2003; Chang 2007). The high correlation between 

adjacent channels of reflectance spectra can be investigated by evaluating the 

dependency matrices of the data; such as a correlation matrix (Gu and Zhang 

2003) or a dependency matrix based on the mutual information between the 

channels (Martinez-Uso, Pla et al. 2007).  

Therefore, efficient data analysis needs specialized algorithms in the 

extraction of the required information, the reduction of redundant information for 

a given application, and identification of targets of interest (Schmid, Koch et al. 

2005; Lanthier, Bannari et al. 2008; Pontius, Martin et al. 2008). This concept is 
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summarised in the classification of a hyperspectral scene when the focus is on the 

identification of objects in a scene (Fauvel, Tarabalka et al. 2013), not just of an 

individual pixel (Manolakis, Marden et al. 2003). The classification result can be 

considered as the general outcome of assigning individual pixels of a scene to a 

small number of classes. 

In other applications, such as the retrieval of object properties, the data 

redundancy of hyperspectral images also creates some difficulties (Lee and Carder 

2002; Bajcsy and Groves 2004; Lee, Carder et al. 2007; Zhou, Marani et al. 2017). 

For example, (Bajcsy and Groves 2004) showed that the redundancy of data could 

cause convergence problems, and noise in spectral band propagates to the retrieval 

results. (Zhou, Marani et al. 2017) also revealed that hyperspectral data have 

limited advantages over multispectral data for suspended sediment concentration 

retrieval, mainly due to information redundancy and cross-band correlation.   

Complexity in data analysis 

Frequently used image processing algorithms are usually applied to 

multispectral images (Landgrebe 2005), i.e. up to ten bands, and when the number 

of bands or features increases, they encounter problems (Bickel and Levina 2004; 

Fan and Li 2006; Fan and Fan 2008). For example, a classifier like k-NN, which 

looks for k nearest neighbouring pixels of a target pixel in a feature space, becomes 

a prohibitive method when increasing the dimensionality of the searching space 

(Marimont and Shapiro 1979; Parsons, Haque et al. 2004; Houle, Kriegel et al. 

2010; Chen, Leon et al. 2016). In addition, usually in supervised classification 

methods, the classification accuracy increases gradually with the increase of the 

number of bands but decreases when the number of spectral bands becomes very 

large. This is called Hughes phenomenon, and it is due to the limited number of 

samples (relative to the number of bands) available in the training sets used in the 

supervised classification procedures and radiometric resolution (Hughes 1968; 

Kamandar and Ghassemian 2011). This phenomenon in a broader sense was 

named “curse of dimensionality” by Bellman (Bellman 1954; Bellman 2013). The 

term was later used in different domains such as numerical analysis (Zimek, 

Schubert et al. 2012), machine learning (Keogh and Mueen 2010), and data mining 

(Bernecker, Houle et al. 2011).  

Curse of dimensionality describes the problem caused by the exponential 

increase in volume associated with adding extra dimensions to Euclidean space 

(Bellman 2013). When the dimensionality rises, the data in feature space become 

sparse; and to obtain a reliable and statistically sound result, the number of 

samples needed to support the result increases exponentially with the 

dimensionality (Donoho 2000; Keshava and Mustard 2002). Jimenez and 

Landgrebe (Jimenez and Landgrebe 1998) illustrated the specific multivariate data 

behaviour with several examples that as the dimensionality increases the data will 
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concentrate in the outer boundary of the volume of the data in feature space, and 

neighbourhoods of the samples are empty. In one of their experiments, they 

randomly generated normally distributed data with N(0,1) for different numbers of 

dimensions and calculated the distance between the random vectors. They 

intelligibly revealed that when the dimensionality increases the distance from the 

zero coordinate increases as well. 

In three other experiments, they computed the fraction of the volume of 1-a 

hypersphere inscribed in a hypercube, 2- a hypersphere of radius r-ε inscribed 

inside a hypersphere of radius r, and 3- two hyperellipsoids in the same situation as 

no. 2.  They proved that by increasing the dimension, the volume explored by a 

hypercube, hypersphere, and hyper-ellipsoid in three cases concentrated in the 

outer boundary of the explored space. They concluded that high dimensional space 

is mostly empty, and if the high dimensional data is projected to a lower 

dimensional subspace, the data will not lose significant information regarding 

separability of the different classes. Moreover, in high-dimensional spaces, 

generally, the data distribution tends to concentrate in the tails, which seems to be 

contradictory with the assumption of having data with bell-shaped density 

functions of widely used algorithms (Jimenez and Landgrebe 1998; Landgrebe 

2002; Parsons, Haque et al. 2004; Zimek, Schubert et al. 2012).  

The Hughes phenomenon is more problematic for parametric methods which 

assume the sample data follow a probability distribution based on a fixed set of 

parameters (Alonso, Malpica et al. 2011). The relationship between the 

dimensionality of the data and the required size of the training set is extensively 

studied in the pattern recognition literature (Kanal and Chandrasekaran 1971; 

Foley 1972; Chandrasekaran and Jain 1974; Kulkarni 1978; Jain, Duin et al. 2000; 

McLachlan 2004). In general, the larger the sample size, the more confident an 

investigator can be that the answers truly express the reality, i.e. they are 

statistically significant1. 

It is apparently essential to have as many training pixels per class in a scene as 

possible, especially when the dimensionality of the feature space increases, since in 

higher dimensionality spaces there is an increased chance of having some 

individual dimensions poorly sampled (Richards and Jia 2006). Swain and Davis 

(Swain and Davis 1978) recommended that at least 10n samples per class are 

needed for training of supervised image processing algorithms, where n is the 

dimensionality of the feature space, and 100n, is highly desirable if it can be 

attained. 

                                                             

1 In statistical hypothesis testing, when an observation, that involves drawing sample 
from a population, is statistical significant it means that an investigator may conclude that 
the samples reflect the characteristics of the whole population (Sirkin, R. M. (2005). 
Statistics for the Social Sciences, SAGE Publications.).   
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1.4.2. Dimensionality reduction 

The primary solution for the issues mentioned is to reduce the dimensionality 

while retaining the information required for specific applications. An alternative is 

a lossless compression when the objective is just to reduce the storage of a vast 

volume of hyperspectral images (Motta, Rizzo et al. 2006). In the case of lossless 

compression, there is still a need for DR again for analysing the images. So, 

dimensionality reduction (DR) can be the principal remedy for the large volume of 

the data, the redundant information and the “curse of dimensionality”. In other 

words, by applying DR to hyperspectral datasets, the volume of the data would be 

smaller, the information would be less dependent, and the data in feature space 

would not be sparse.  

In general, DR is the process of reducing the number of variables under 

consideration and can be categorized in several ways. Below is a short review of the 

categories most applied to hyperspectral images. 

Feature extraction vs feature selection 

a) Feature extraction (FE) transforms the observed feature space into a new 

data space with a particular criterion (Kumar, Ghosh et al. 2001; Jimenez-

Rodriguez, Arzuaga-Cruz et al. 2007), such as eliminating the linear 

dependency between the components (new features) in the new feature 

space, as obtained by Principal Component Analysis (PCA) (Kaewpijit, Le 

Moigne et al. 2002). The main problem with this technique is the loss of 

some critical and crucial information that might have been compromised 

or distorted by the transformation since the original spectral 

measurements are no longer mapped in the new data space.  

 

b) Feature selection (FS) approaches try to find a subset of the original 

variables. This method is also called band/channel selection in the 

hyperspectral community. Compared with FE, this technique has the 

advantage of preserving the original information that can be used to 

understand how spectral features relate to the properties of observed 

materials (Chein and Su 2006; Martinez-Uso, Pla et al. 2007; Carmona, 

Mart et al. 2011; Jia, Ji et al. 2012; Jia, Zhu et al. 2014).   

Supervised vs unsupervised DR  

a) Supervised DR: Having labelled information, i.e. prior knowledge, about 

land-cover in several areas of a scene paves the way for supervised DR, i.e. 

by selecting image samples for each class, a supervised DR algorithm 

provides a class-specific feature set which improves the accuracy of 

classification. An example is the selection of the bands to achieve the 
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maximum discrimination between the given classes in the feature space 

(Huang and He 2005; Yang, Du et al. 2011). 

 

b) Unsupervised DR: contrary to supervised algorithms, unsupervised DR 

techniques do not require any prior information and can be applied when 

information on the observed land cover is scarce (Du and Yang 2008; 

Cariou, Chehdi et al. 2011; Jia, Ji et al. 2012).  

1.5. Scope and objectives 

This study was inspired by the design of a nanosatellite to be equipped with a 

hyperspectral imager (Esposito and Marchi 2015). Recent advances in remote 

hyperspectral sensor and electronics miniaturisation technology allow utilising 

such sensors in a platform as small as 3-unit CubeSat and even capable of real-time 

processing (Conticello, Esposito et al. 2016; Soukup, Gailis et al. 2016). The design 

of a nanosatellite equipped with a hyperspectral imager is constrained by the 

insufficient downlink and storage capacity due to the platform power and size. A 

reduction of the hyperspectral data volume by an onboard data processing chain 

can be a solution for the limitation of the nano-satellite (Soukup, Gailis et al. 2016).   

This study is focused on dimensionality reduction of the data. The critical 

point in the application of DR techniques to hyperspectral datasets is to identify a 

criterion to select/extract the proper features. Different criteria can be used for the 

definition of the optimal spectral configuration for a given application and a given 

image. Investigating various criteria, we distinguish three overall criteria relevant 

to the analysis of hyperspectral images, which are explained in the next section. 

Here, we highlight two issues as the rationale of the study: 

a) As mentioned, the FS techniques preserve the connections between the 

spectral features and the physical properties of the observed materials, 

making a correct interpretation of the data more accessible. Hence, the 

feature selection methods are preferable in the hyperspectral domain 

(Chein and Su 2006; Martinez-Uso, Pla et al. 2007; Sotoca, Pla et al. 

2007). In our study, we proposed a new DR algorithm for hyperspectral 

images that can be an alternative to FS.    

 

b) In this approach, we construct parsimonious spectral configurations by 

applying the DR-criteria investigated to hyperspectral images. The 

proposed strategy determines a new spectral configuration instead of 

selecting individual spectral channels from the original dataset. It is 

subdividing the spectrum in a number of intervals of different widths. The 

intervals are fewer and usually wider than the original channels. The value 

of each interval per pixel is the mean value of its constitutive channels at 
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that pixel. Through the following chapters, we present more detail of the 

methodology and demonstrate the advantages of determining such spectral 

configurations over channel selection. In this strategy, the final spectral 

configuration consists of contiguous spectral regions covering the entire 

spectrum. Furthermore, the final band set comprises narrow and broad 

bands with respect to a predefined criterion.  

1.5.1. The criteria for DR 

a) Representation accuracy: A spectral configuration may provide an 

accurate representation of the spectrum with fewer spectral bands than the 

number of channels at full spectral resolution. The optimal configuration is 

the one that yields the smallest error with a given number of bands or the 

one that needs fewest bands for a given maximum error (Price 1975; 

Angelopoulou 2000; Angelopoulou, Molana et al. 2001; Huynh and 

Robles-Kelly 2008). When expanding the values of the reduced spectral 

configuration for each pixel back to the original channel configuration (by 

duplicating the values of each band over the merged channels) and 

computing the difference between the expanded and the original spectra, 

summed up over all channels and all pixels, an error measure is obtained 

which drives the search for the required spectral configuration.  

 

b) Independent spectral regions: since adjacent channels in a hyperspectral 

dataset are often highly dependent, we encounter redundant information 

when working with such a dataset. In the process of DR of hyperspectral 

datasets, decreasing redundant information is one of the main objectives 

(Peng, Long et al. 2005; Martinez-Uso, Pla et al. 2007; Sotoca, Pla et al. 

2007; Kamandar and Ghassemian 2011). By choosing a band set with low 

dependence, the number of features is reduced, while the redundant  

information would be decreased. So, the optimal configuration would then 

be the one with the lowest dependence between spectral features. 

 

c) Class separability: Having “ground truth” available, i.e. known class labels 

at a sufficient number of pixels, various methods to compute class 

separability can be applied. The Jeffreys-Matusita distance is well-known 

(Richards and Jia 2006) as a class separability metric, but alternatively, 

one can apply a classifier, determine the error matrix (after separating the 

ground truth into training and evaluation sets) and compute the overall 

accuracy or Kappa-statistic (Zhang, Zhang et al. 2013). Again, the 

maximum value of class discrimination identifies the optimal 

configuration with a given number of bands (Chang, Du et al. 1999; 
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Kumar, Ghosh et al. 2001; Ifarraguerri and Prairie 2004; Skurichina, 

Paclik et al. 2004; Gu, Li et al. 2012; Xiang, Nie et al. 2012).  

This last type of band selection methods using the labelled class information is 

called supervised band selection (Jensen and Solberg 2007; Yang, Du et al. 2011; 

Feng, Jiao et al. 2014). The metrics of representation and information content can 

also be applied to an entire hyperspectral scene without any prior knowledge 

(unsupervised band selection) (Martinez-Uso, Pla et al. 2007; Sotoca, Pla et al. 

2007; Bioucas-Dias and Nascimento 2008). The class separability criterion gives in 

principle results different from the two other criteria, as it depends on an 

additional data source, the ground truth. We expect different band configurations 

between the first and the second criterion too. The comparison of the 

configurations obtained with each criterion is dealt with in Chapter 5.  

1.5.2. Research questions  

The core of this thesis is to identify the spectral regions covered by most of the 

hyperspectral sensors with respect to the three aforementioned criteria of 

dimensionality reduction. The research question addressed by this thesis is to 

determine:  

a) What is the advantage of determining spectral configuration versus 

individual channel selection per objective? 

b) How similar or dissimilar are the spectral configuration obtained based 

on different DR criteria? How large and significant are the differences of 

spectral configurations in the cases of using the entire scene 

(unsupervised) or using specific classes in the scenes (supervised)? Is it 

necessary to determine different spectral configurations?  

c) What are the performances of different band configurations in 

distinguishing various classes in a scene and what is the accuracy of 

image classification?  

d) Finally, which band configuration would be suitable for miniaturised 

hyperspectral satellites? 

To answer the first question and to determine the spectral configurations, the 

three objectives are investigated in detail in three separate chapters (Chapter 2, 3, 

and 4). We identify the spectral configurations through top-down or bottom-up 

search strategy, applying various metrics per objective, and compare them with 

several well-known feature selection algorithms. 

According to the algorithms proposed and the band configurations obtained in 

the three chapters, we present a comparative evaluation of the spectral 

configurations determined to meet each objective in Chapter 5. This assessment is 
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on the basis of three different comparisons: 1- the positions of the splits dividing 

the full spectrum into a set of spectral bands, 2- the computational load to apply 

different algorithms, and 3- the accuracy of scene classification using the different 

spectral configurations. In all the comparisons, the performance of the evaluation 

is presented versus a different number of spectral features obtained to reveal the 

trend of variations. 

1.5.3. Practical consideration 

In order to either determine a new spectral configuration by the proposed 

methods or select channels by feature selection techniques, the searching algorithm 

has an impact. The searching algorithm is a method to find m items with specified 

properties among n collections of items (m≤n), where in our approach m is the 

number of bands of the final spectral configuration and n is the number of channels 

of the original hyperspectral dataset. To this end, two strategies are used in 

different experiments presented in this study:  

a) Exhaustive search: This method, also called brute-force search, is the 

simplest one but it is computationally heavy (Nievergelt 2000). It 

considers and evaluates all m-combinations of bands out of n possible 

situations based on a criterion. This method guarantees to find the best 

subset of variables, in a practical situation, however, the computational 

cost for large datasets like hyperspectral images is prohibitive. For 

example, if we consider selecting 20 bands out of a 200-channel 

hyperspectral dataset, the total number of combinations is 1.61*1027. We 

may assume that our computer can evaluate 10000 combination per 

second, which is reasonable for a very simple criterion. The time required 

to evaluate all the combinations is 5.12*1015 years. 

  

b) Heuristic search algorithms: Heuristic algorithms are ones designed to 

solve a problem in a faster and more efficient fashion than exhustive search 

by sacrificing optimality or accuracy for speed. These algorithms solve a 

problem heuristically, i.e. they give nearly the right solution or provide a 

solution not for all instances of the problem (Kokash 2005). For example, a 

greedy search algorithm is a heuristic algorithm which does not produce an 

optimal solution, makes a locally optimal choice at each iteration with the 

hope of finding a global optimum in a reasonable time (Cormen, Leiserson 

et al. 2001; Bendall and Margot 2006).  

 

The proposed algorithms, in this thesis, suggest a greedy search strategy which 

are evaluated by comparison either with the best solution provided by simulating a 
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dataset with the lower number of channels than the origenal dataset or with the 

existing and well-known algorithms applied with the same objectives.  

1.6. Outline 

This thesis is organised as follows: 

Chapter 2 provides band configurations according to the spectral 

representation criterion. It addresses the DR issues when the representation of 

reflectance spectra is investigated and reviews the methods and metrics used. A 

newly developed algorithm is introduced, and the performance is evaluated with 

comparisons with an algorithm providing the best spectral representation. 

Different metrics mostly used for spectral representations are also studied in this 

chapter.  

Chapter 3 focuses on the second objective, i.e. independent spectral regions. 

This chapter reviews the studies on reducing the dependence in the hyperspectral 

domain. A new metric to compute the overall dependence is introduced and its 

properties are investigated. More detailed, mathematical and numerical evidence is 

provided on the metric and the properties are presented in Appendix B. Then the 

metric is applied to a new bottom-up search algorithm to identify independent 

spectral regions. An assessment with comparisons with other existing algorithms is 

presented.  

Chapter 4 investigates the importance of having broad spectral regions over 

narrow channels in class separability (third objectives). A review of frequently used 

search algorithms in the hyperspectral domain and the class separability metrics is 

presented. The advantage of broad spectral regions are presented mathematically, 

first, and later demonstrated experimentally by several implementations. 

Chapter 5 combines and compares the results of three main chapters in terms 

of the location of the spectral regions, time consumption and the classification 

accuracy to evaluate different spectral configurations. Chapter 6 concludes the 

dissertation by presenting the most relevant products and findings of the research, 

followed by recommendations for further investigation. 
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18  2. Representation of reflectance spectra 

Hyperspectral imaging acquires the detailed spectral of reflectance and 

emittance of land surfaces, which can be used to describe, understand and model 

surface processes and ecosystem changes. However, efficiently analyzing huge 

hyperspectral datasets is very challenging. This chapter introduces an algorithm to 

reduce the dimensionality of hyperspectral images. In this study, we focused on the 

representation of the reflectance spectra using a reduced number of bands. The 

algorithm, spectral region splitting (SRS), merges adjacent narrow channels and 

constructs wider spectral bands whenever it is necessary. We compared the 

algorithm with other existing algorithms with respect to the error of representation 

and the running time over single spectra and an entire hyperspectral scene. We 

applied the algorithm using different spectral matching metrics to a complete 

spectral library for a material detection purpose and revealed how many spectral 

bands are needed to correctly detect the material signatures.  

2.1. Introduction 

1Hyperspectral imagers, also termed imaging spectrometers, capture reflected 

radiance from a scene in a regular, rectangular grid of pixels, where every pixel 

contains detailed spectral information represented by using a contiguous set of 

spectral channels, corresponding to narrow wavelength intervals. A well-known 

hyperspectral imager is the NASA AVIRIS (Airborne Visible InfraRed Imaging 

Spectrometer) instrument (Green, Eastwood et al. 1998). When mounted on a 

high-altitude aircraft, it covers areas 11 km wide (at 20 km flying height) and up to 

800 km long with 20m spatial resolution, with a spectral range of 400-2500 

nanometers, subdivided into 224 narrow contiguous channels, each about 10 nm 

wide. 

We propose in this study a method to reduce the dimensionality of the feature 

space, named the Spectral Region Splitting (SRS) method. Depending on the 

image, it yields a set of contiguous spectral bands that is much smaller than the 

original number of spectral channels. Each band covers a number of adjacent 

channels of the original image, and each channel is used in exactly one band. At 

every pixel, the signal value in a band is the average of the values of the adjacent 

channels included in each band. In this study, we distinguish between the spectral 

channels and the spectral bands, i.e. “channels” refer to the narrow width spectral 

features in the original hyperspectral dataset, and “bands” refer to the spectral 

features having different widths in the final dataset. Expected advantages of band 

formation include the reduction of random noise (due to averaging) compared to 

                                                             

1 Parts of this chapter have been published in Hosseini Aria, S. E., M. Menenti, et al. 
(2017). "Spectral region identification versus individual channel selection in supervised 
dimensionality reduction of hyperspectral image data." Journal of Applied Remote Sensing 
11(4): 046010. 
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narrow channel, as well as the fact that no data gets just thrown away (like the not-

selected channels in a channel selection).  

Different criteria can be used for the definition of the optimal spectral 

configuration for a given image, under constraints such as the (maximum) number 

of bands or the minimum (or maximum) bandwidth. We distinguish the three 

criteria mentioned in Chapter 1. In this chapter, we focus on the representation 

accuracy as the criterion to obtain reduced spectral configurations. Our objective is 

to represent a spectral signal using a spectral configuration with fewer spectral 

bands, while minimizing the loss in accuracy. The spectral signal sampled by an 

imaging spectrometer may be represented by using fewer and / or different spectral 

bands at the required accuracy (Price 1994; Jensen and Solberg 2007). When 

expanding the reduced spectral configuration at each pixel back into the original 

channel configuration, the values of each band are duplicated in the adjacent 

channels covered by the band, then the reconstructed and full spectra are 

compared. The difference between the expanded and the original spectra can be 

computed and averaged over all channels and all pixels to obtain an error measure.  

Different error metrics may be applied instead of the absolute error or the 

square root of the mean squared error (RMSE). Spectral Angle (SA) (Zhang, Zhang 

et al. 2015), Spectral Information Divergence (SID) based on the mean divergence 

(Chang 2000), and Goodness-Fitting Coefficient (GFC) (Romero, Garcia-Beltran et 

al. 1997; Hernandez-Andres, Romero et al. 2001) have been used as metrics of the 

representation of spectral signals.  

The accuracy of the representation of spectral data is relevant to applications 

based on the direct comparison of observed against reference spectra, such as 

recognition of objects and materials (Manolakis, Marden et al. 2003; Kolodner 

2007) or the interpretation of absorption features (Cochrane 2000; Gitelson, Zur et 

al. 2002). Our method constructs a spectral configuration which can represent the 

data accurately for such applications but using fewer spectral bands. 

To evaluate our proposed algorithm, we have compared it with two existing 

algorithms with respect to the accuracy of spectral representation and the running 

time. The algorithms used in the comparison represent a spectrum with a piecewise 

constant function as well, i.e. they also average adjacent channels to form wider 

spectral bands. Therefore, the band configurations, i.e. the spectral locations of 

breakpoints (or splits) over the spectrum identified by different algorithms, exert 

the major influence on the spectral representations. 

The first algorithm is the Adaptive Piecewise Constant Approximation (APCA) 

method (Chakrabarti, Keogh et al. 2002), a well-known signal approximation 

method used in time series analysis, and the second one is the Piecewise Constant 

Function Approximations (PCFA) algorithm (Jensen and Solberg 2007) that finds a 

globally optimal representation. Jensen and Solberg (Jensen and Solberg 2007) 

proposed the PCFA algorithm and applied it to the hyperspectral signatures of a 

scene and found one spectral configuration suitable to represent the spectra of all 
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the classes in the scene. They partitioned the full spectra into a number of 

contiguous intervals, where the spectral locations of the breakpoints were the same 

for all pixels. We applied the method to identify the best spectral configuration 

separately for each spectrum as well. In this case, different spectra would be 

represented using different spectral configurations and the mean error of 

representation would be smaller. 

In the second experiment, the spectral representations obtained by SRS using 

various spectral matching metrics were applied for material detection, and the 

accuracy of the detection was computed and compared with the PCFA results. The 

second experiment illustrates how the reduced spectral configurations can capture 

the signatures of vegetation and minerals at the accuracy required for 

identification, but using fewer spectral bands. In the third experiment, the methods 

were applied to all the spectra of an entire hyperspectral scene to obtain the same 

spectral configuration for all pixels. The error of representation and the running 

time of the algorithms were compared.   

The chapter is organized as follows. Section  2.2 articulates the different 

aspects of the approximation of detailed reflectance spectra. Section  2.3 gives a full 

description of the SRS algorithm. The characteristics of the applied datasets are 

presented in Section  2.4 Section  2.5 presents the evaluation of the proposed 

algorithms with three different experiments and their results. Section  2.6 

summarizes the study. 

2.2. Review of methods 

Two issues have to be addressed when the representation of reflectance 

spectra is investigated: 1- the algorithm applied to determine the spectral 

configuration and 2- the metric applied to compare the original with the new 

spectral configuration. In the following paragraphs, we review known algorithms 

and metrics, and then, we explain the need for the new proposed algorithm. 

2.2.1. Algorithms  

There are several methods for spectral approximation and representation 

(Price 1975; Price 1990; Li, Becker et al. 1999; Angelopoulou 2000; Angelopoulou, 

Molana et al. 2001; Wang, Menenti et al. 2007; Huynh and Robles-Kelly 2008), 

mostly used in colorimetric sciences. Their scope is to describe spectra accurately 

with a limited number of bands. These methods usually use a set of basis functions 

to represent the spectra. For example, Price (Price 1975) developed a method to 

represent high-resolution spectra with a limited number of independent variables 

or Mansouri et.al. (Mansouri, Sliwa et al. 2008) proposed an adaptive principal 

component algorithm to estimate reflectance spectra. Both methods require basis 
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functions to reconstruct the spectrum, and the reconstruction is an approximation 

of the original reflectance spectrum.  

There are other methods to represent spectra directly by performing 

dimensionality reduction on the data, e.g. Discrete Fourier Transform (DFT) 

(Agrawal, Faloutsos et al. 1993), Singular Value Decomposition (SVD) (Keogh, 

Chakrabarti et al. 2001) or Discrete Wavelet Transform (DWT) (Kahveci and Singh 

2001). A common way for direct approximation is the replacement of local 

variations in a spectrum with a constant value over a small range in wavelength. 

Chakrabarti et.al. (Chakrabarti, Keogh et al. 2002) presented such a technique, 

named Adaptive Piecewise Constant Approximation (APCA), and proved that this 

technique yields a better representation than other existing methods such as DFT 

and DWT for approximating signals in time series analyses. The APCA algorithm 

degrades a curve into a constant segment-based approximation, where the user 

specifies the number of segments. It includes two main steps. At first, it converts 

the signal approximation issue into a wavelet compression problem, for which 

there are well-known optimal solutions, and next, it converts the solution back to 

the APCA representation and makes minor modifications. The term ‘segment’ is 

equivalent to ‘band’ in our approach. More details on APCA can be found in 

(Chakrabarti, Keogh et al. 2002). Approximating spectra by piecewise constant 

functions has also been used in other fields, taking into account the physical 

characteristics of the spectra to determine the location of the spectral segments 

(Zehentbauer and Kiefer 2012; Thomson, Lue et al. 2014).    

Konno and Kuno (Konno and Kuno 1988) proposed a method that provides 

the best piecewise constant approximation. They used the maximum norm and the 

Euclidean norm to find the approximation of a function of a single variable with 

less than a predefined number constant-value segments. Another study applied the 

Bayesian approach for piecewise smoothing of one-dimensional signals (Winkler 

and Liebscher 2002). Later, an extension of this method was used for multiple 

spectral curves to reduce the dimensionality of hyperspectral scenes (Jensen and 

Solberg 2007). The goal of the last approach was also to partition the spectra of a 

hyperspectral scene into a fixed number of continuous intervals using the piecewise 

constant function approximations (PCFA) algorithm. The intensity in a spectral 

band is the mean value of the signal in its constitutive channels per pixel. 

Considering the number of bands, the algorithm examines all the possible spectral 

locations for the breakpoints and finds the best approximation having the lowest 

error of representation. The authors applied it to a set of sampled spectra of a 

hyperspectral scene and identified a single spectral configuration for all the spectra 

to reduce the dimensionality of the data.  

The point here is the possibility of finding the best spectral representation of a 

signal, which may seem the contrary of obtaining the best selection of m out n 

(m≤n) spectral channels of hyperspectral data (Section 1.4.2). However, if the 

criterion used for the selection has the vector addition property of linear functions, 
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i.e. ���� + ���� = ��� + ���, where ���� is the criterion function of feature ��, 

finding the best solution is doable, since there is no need to evaluate all the 

situations. (Jensen and Solberg 2007) used the sum of squared error (SSE) that 

met the mentioned property and provided the best spectral representation for a 

given numebr of spectral bands. 

Cariou et.al. (Cariou, Chehdi et al. 2011) proposed an unsupervised band 

clustering method for DR of hyperspectral images with the criterion of minimizing 

the mutual information between two adjacent band-clusters. The algorithm, named 

BandClust, follows a recursive binary search to find the spectral boundaries of 

band-clusters, and all the previously created sub-bands are split unless no lower 

value of the criterion can be found across any pair of consecutive band boundaries. 

Finally, the signal in each cluster is represented by the average over its constitutive 

channels. 

2.2.2.  Metrics  

The algorithms reviewed above yield representations of reflectance spectra 

which deviate from the original spectra at full spectral resolution. Different metrics 

can be applied to measure the difference between the original and the 

approximated spectra. For example, some metrics give more weight to lower 

reflectance values, or vice versa. Giving weights to specific spectral ranges leads to a 

higher discrimination capability of particular materials. For instance, the visible 

spectral region of the vegetation reflectance is frequently used to retrieve plant 

properties such as chlorophyll or carotenoid content (Cochrane 2000; Gitelson, Zur 

et al. 2002; Bell and Baranoski 2004). (Imai, Rosen et al. 2002) carried out a 

comparative study of eight metrics to evaluate spectral matching quality and to 

document advantages and disadvantages of each metric. Some metrics are well-

known and are widely used, e.g. the Root-Mean-Square-Error (RMSE) and Spectral 

Angle (SA) in hyperspectral studies (Price 1994; Chang 2000; Cochrane 2000; Du, 

Chang et al. 2004; Deborah, Richard et al. 2015). Other metrics performed 

differently when applied to identify materials using reflectance spectra. For 

example, by using the Spectral Information Divergence (SID) (Du, Chang et al. 

2004), many concepts of information theory can be readily applied to evaluate the 

representation of reflectance spectra.  

To illustrate this brief review five spectral matching metrics: RMSE, SA, SID, 

SID-SA, ECS (Euclidean distance of cumulative spectrum) are explained in detail.  

Given n samples of an original (reference) signal � = {��, ��, … , ��}, and of its 

approximated one, � = {��, ��, … , ��}, the metrics are obtained as follows:  

 

RMSE: the absolute error of estimate of the spectral signal (radiance or 

reflectance) is calculated as: 
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�����, �� = �1! "�# − �#���
#%�  

( 2.1)  

 

If the term 
�� is omitted, the metric is the Euclidean distance used by 

(Chakrabarti, Keogh et al. 2002).  

 

SA: is normalized to the magnitude of the signal so that the metric is 

insensitive to the magnitude. It determines the similarity between the reference 

and the approximated spectra by calculating the angle between the two vectors in 

the feature space:  

 ���, �� = �'(�� ∑ *+.-+./ 0+1∑ *+2-+./ .1∑ 0+2-+./  (in radians) 
( 2.2)  

 

In the remote sensing community, these two metrics have been widely used as 

spectral similarity metrics for material detection.  

 

SID: this metric has been derived from the spectral information measure 

(SIM) which considers the spectral variability as a result of signal randomness 

(Chang 2000). The SIM can be assumed as a single-pixel-based information 

measure. Spectral information divergence or SID uses the same concept to measure 

the difference between the two spectra, R and A applying their probability mass 

functions 3 = {4�, 4�, … , 4�} and 5 = {6�, 6�, … , 6�}, where 4# = *+∑ *7∈9  and 6# = 0+∑ 0:∈; . 

SID is calculated as 

�<=�, �� = "[4# log4#/6#��
#%� + 6# log6#/4#�] 

( 2.3)  

 

SID-SA: Du et al. (Du, Chang et al. 2004) combined SID and SA to form a 

new mixed metric as �<= �, �� ∗ tanH���, ��I and �<= �, �� ∗ sinH���, ��I and 

showed that the new metric has the strengths of both SID and SA metrics.  

 

ECS: The Euclidean distance of cumulative spectrum is computed as  
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����, �� = L" MN �OPQ − N �O PQM�
O R�/� 

( 2.4)  

 

where Q is the wavelength and Q ⊂  [1, n]. Deborah et al. (Deborah, Richard et 

al. 2015) using simulated reflectance spectra demonstrated that ECS, in 

comparison with more than ten other measures, has a better performance in the 

cases of magnitude changes in hyperspectral data across image pixels. 

2.2.3. Required improvements  

One issue about the approximation methods mentioned above is that they 

have mostly been developed applying the l2 norm of the representation error, such 

as RMSE, and they cannot easily utilize other metrics, like SID, used in the 

hyperspectral domain. Furthermore, they are mainly focused on finding the 

approximation of a single spectrum, not an entire scene. The method proposed by 

Jensen and Solberg (Jensen and Solberg 2007), although it provides the optimal 

representation of all spectra in a scene, is slow. The complexity of the algorithm is �HTUVUW�I; where k, UV, and UW are the number of bands in the final bandset, the 

number of pixels, and the number of channels in the original dataset, 

respectively(Jensen and Solberg 2007). The BandClust (Cariou, Chehdi et al. 2011) 

algorithm is a suboptimal method, since each previously created band cluster 

(comprising more than one spectral channel) is divided by the algorithm again.    

 The review above suggests the need for an algorithm that easily accepts 

different metrics to approximate the spectrum with an adequate accuracy, taking 

into account different specific objectives which may apply to the further use of the 

approximated spectral signal. For this purpose, we introduce the spectral region 

splitting (SRS) method to determine a reduced spectral configuration to represent 

spectral signals.  

2.3. Method  

The proposed algorithm constructs a reduced spectral configuration, 

consisting in a set of contiguous bands with variable spectral width, to minimize 

the difference between the approximated and original (reference) spectrum. The 

reduced spectral configuration determined by the algorithm consists of wider, 

contiguous, spectral bands with the signal value being the average over all  spectral 

channels merged into each band. The latter filters out random noise and increases 

the signal to noise ratio (SNR). The reduced spectral configuration, i.e. a set of 

contiguous bands, represents the full spectrum without using a spectral 

interpolation function. SRS can be applied using different performance metrics to 
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address various applications. In addition, this method preserves the physical 

meaning of the original data, unlike feature extraction techniques. In feature 

extraction (Richards and Jia 2006; Fauvel, Chanussot et al. 2009), the features in 

the low-dimensional space are combinations of individual original channels which 

are obtained by a transformation. The transformation compromises and distorts 

the data, and some critical information may be lost (Chein and Su 2006; Jensen 

and Solberg 2007; Feng, Jiao et al. 2014; Sun, Geng et al. 2014; Tan, Li et al. 2014).  

2.3.1. Spectral Region Splitting 

In the Spectral Region Splitting (SRS) method, the spectrum is split into 

spectral bands of different spectral width. This method is an iterative top-down 

algorithm, and therefore, a termination point must be chosen to stop the iterations.  

Let R be an original hyperspectral image with UW channels and UV pixels: � = Y�#Z| 1 ≤ ] ≤ UW , 1 ≤ ^ ≤ UV_, and �#Z is the ith signal value in the jth pixel. 

Assume that a reduced spectral configuration (A) with k bands, T ∈  ℤ� and T ≤ UW, 

is � = Y�aZ| 1 ≤ b ≤ T, 1 ≤ ^ ≤ UV_, and �aZ is the signal value in the tth band in the 

jth pixel. The number of splits is k-1, with UW − 1 possible spectral locations. The set � = {(�, (�, … , (c��} gives the split locations sorted with respect to their wavelength, 

so (� < (� < ⋯ < (c��. Determining the splits does not necessarily occur in the 

same order, e.g. the first split found can be any ( ∈ �. By defining (f and (c as the 

beginning and the end of the spectrum in S, then � = {(f, (�, … , (c��, (c}, and � is 

defined by: 

 

�aZ = g 〈�#Z〉#∈[jkl/,jk�                ]� b < T  〈�#Z〉#∈[jkl/,jk]                ]� b = T   ( 2.5)  

 

where 〈. 〉 is the average of all elements in the subset, and when t=k, all the 

spectral signals in the closed interval between (a�� and (a are averaged.  

If one band is required, there will be no split and the signal per pixel in this 

band will be the mean value of all spectral channels. If the measurements in the 

individual channels are noisy due to the narrow spectral bandwidth of the 

spectrometer, a wider band will have a much better signal to noise ratio than the 

individual channels. Therefore, an advantage of the broadband over the narrow 

channels is that a radiance is obtained with less random noise, but with less 

spectral details. If k > 1, then the algorithm will search for the location of the first 

split. The location is determined based on the predefined criterion (see 

Introduction). The critical point is to translate the criterion into a score that gives a 
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value depending on the split location for the entire spectrum. By scanning all 

possible locations of the split, the maximum or the minimum score determines the 

best location of the split in that iteration. The new band configuration is evaluated 

using Eq. ( 2.5) for every location of the split, and calculates the score. Finally, the 

best location of the split at that iteration will be found, then the subsequent 

locations of splits are determined sequentially, and at each iteration, a new split is 

placed in the spectrum. After each iteration, the termination point must be 

checked. In conclusion, the algorithm yields a continuous bandset comprising 

several narrow and wide bands, identified by the spectral locations of the splits. 

SRS can be applied to a single spectrum and an entire hyperspectral scene. The SRS 

procedure is described schematically in Table  2.1. 

Table  2.1. Spectral region splitting algorithm (pseudo-code). 
Algorithm SRS(R, T)             // R is original dataset, and T is the termination point 

begin 

    S �{(f, (c}                                  // The set of split locations 

    P � {p�, … , ppq��}                     // The set of potential split locations 

     Sc=Sc(A(S))                     // Computing the score for one broad band covering the entire 

spectrum 

    while T is not valid 

          for all p in P 

              A(S ∪ p) is generated (Eq. ( 2.5)) and the score Sc=Sc(A(S ∪ p)) is computed 

          end_for 

          Split at the position pmax with the highest score (Scmax)  

          S � S ∪pmax                        // Adding the location of the new split to S 

          P � P\pmax                         // Subtracting the new split from P 

    end_while 

    return S 

end 

 

Using a spectral matching metric (Section  2.2.2) for spectral representation, 

the SRS algorithm yields a band configuration minimizing the error of estimate 

with the reduced spectral configuration. To calculate the error, such as Eq. ( 2.1), 

each band of the reduced spectral configuration is expanded into the full set of its 

constitutive spectral channels.  

2.3.2. Computational complexity of the proposed algorithm  

The SRS algorithm complexity alone for a single spectrum is of the order �TUW�, where k is the number of bands, and UW is the number of channels in the 

original dataset. As mentioned SRS accepts various criteria. We assumed that the 

complexity of the metric for spectra representation is of the order �HUVUWI, where UV is the number of pixels. Hence, the overall computation time of the SRS 

algorithm is �HTUVUW�I.  
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2.4. Dataset 

The SRS algorithm was evaluated by applying it to the spectra acquired by a 

hyperspectral imager and to a spectral library. The hyperspectral image was 

captured over a vegetation/urban/water area in Moffett Field, CA, by the imaging 

spectrometer AVIRIS in 1997 with 224 channels covering 400-2500nm 

wavelengths (Figure  2.1). It is made available free-of-charge on the Internet by the 

Jet Propulsion Laboratory, California Institute of Technology, USA 

(http://opticks.org/confluence/display-/opticks/Sample+Data). We have done all 

the necessary pre-processing steps before using the datasets, including atmospheric 

correction and removal of the noisy channels. The noisy channels are those that do 

not have any signal, located at water absorption spectral regions, and the ones 

having low signal to noise ratio (SNR). The channels with low SNR were identified 

by estimating the SNR using the geostatistical method described in (Curran and 

Dungan 1989), and visual inspection (Appendix A). The final hyperspectral image 

data has 188 channels, with the omitted channels located at 365.9-385.3, 1353.1-

1432.9, 1811.5-1948.1, and 2437.5-2497.0 nm wavelength.   

 

 
Figure  2.1. True color images of Moffett Field. 

 

The second dataset used for the evaluation is a spectral library that comprises 

1365 spectra from different materials and was developed by researchers at the 

Spectroscopy Lab, USGS, in 2007. The library is divided into six chapters: 

1.Minerals, 2.Mixtures, 3.Coatings, 4.Volatiles, 5.Man-Made; and 6.Plants, 

Vegetation Communities, Mixtures with Vegetation, and Microorganisms. For 

completeness of the spectral library, different factors have been considered during 
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the collection of the spectra such as the type of the spectrometer, the spectral 

resolution, the purity of the materials, the grain size, the presence of other elements 

in the sample, etc. There might be more than one spectrum for a material. The 

chapters contain 881, 138, 12, 24, 110, 200 spectra respectively. The library is used 

as a reference for material identification in remote sensing images. More details of 

the spectral library can be found at https://speclab.cr.usgs.gov/spectral-lib.html. 

The database is over 6000 webpages. We used the convolved version of the library 

corresponding to the AVIRIS channels. After analyzing the spectral library, we 

found out that three pairs of the spectra are exactly the same and they cannot be 

distinguished from each other. These spectral pairs are from Mixtures, and Plants 

chapters and the duplicated spectra were removed from the chapters mentioned. 

The final number of spectra in Chapter 2. and 6. became 136, and 199 respectively.  

2.5. Results and discussion 

Three different experiments were performed to evaluate the SRS algorithm. In 

the first experiment, the SRS algorithm was compared with two other existing 

algorithms to assess the error of representation using various spectra. Both existing 

algorithms represent spectra with a set of constant signal value segments as SRS. 

The first algorithm, named piecewise constant function approximations 

(PCFA)(Jensen and Solberg 2007), provides the best spectral configuration 

minimizing the error of representation for a given spectrum. We applied the 

method to find the best spectral configuration per spectrum. The second method, 

adaptive piecewise constant approximation (APCA) (Keogh, Chakrabarti et al. 

2001; Chakrabarti, Keogh et al. 2002), outperformed other methods in 

approximating time series signals. In this experiment, the three algorithms, PCFA, 

APCA, and SRS were compared using the RMSE metric and the running time. It 

should be noticed that PCFA was developed to minimise SSE as the approximation 

error, however, minimising SSE with respect to the approximated spectrum with m 

predefined number of bands is equivalent to minimising RMSE with the same 

conditions. 

In the second experiment, the reduced spectral configurations obtained by the 

algorithms were evaluated for material detection, i.e. different materials were 

detected by comparing the approximated spectra with the full spectra available in 

the spectral library. In this experiment, we applied five different error metrics to 

SRS.  

The third experiment compares the PCFA and SRS algorithm with respect to 

the error of representation and the running time to find one spectral configuration 

for all the spectra in an entire hyperspectral scene.   
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2.5.1. Evaluation of the algorithm using single spectra 

This evaluation was performed as a benchmark to identify the error of 

representation of single spectra using the three methods. The reflectance spectra of 

soil, water, and vegetation were compared. First, the algorithms were applied to 

represent the spectra with 5, 10, and 15 bands. These reflectance spectra were 

obtained from the pixels with the same land cover in the Moffett Field scene. We 

applied the RMSE metric to evaluate the reduced spectral configurations. 

Figure  2.2 illustrates the results, and Table  2.2 gives the error of estimate by 

different algorithms for all the spectral configurations.  

As expected the PCFA algorithm gave the smallest error of estimate in all 

cases, while APCA gave the largest error (Table  2.2). Interestingly, SRS represented 

the spectra almost twice as accurately as APCA and with an accuracy comparable 

with the PCFA algorithm. For example using ten bands to approximate the soil 

spectrum, the error of estimate was 0.0230 with APCA, 0.0115 with SRS, and 

0.0096 with the PCFA algorithm. The difference in the error between SRS and 

PCFA is less than 0.002, and it became lower when 15 bands were used, with the 

difference in RMSE being 0.0005 only. It is also observed (Figure  2.2) that the 

locations of the splits (breakpoints) determined by the PCFA and SRS algorithms 

are almost identical.  

 

The SRS and PCFA algorithm always divide the spectrum into the predefined 

number of bands, while APCA does not, as shown in this experiment. This situation 

occurred, for example, when seeking to approximate the water spectrum, with ten 

bands by the APCA algorithm. In this case, the reduced spectral configuration had 

one spectral band less than the prescribed number of bands, while the error of 

estimate would have been lower with one additional band. 

Table  2.2. The approximation error in reflectance units of three dominant types of 

spectra using different number of spectral bands. 

RMSE APCA SRS PCFA 

Maximum 5 bands 

Water 0.0108 0.0070 0.0068 

Soil 0.0321 0.0214 0.0211 

Vegetation 0.0675 0.0409 0.0352 

Maximum 10 bands 

Water 0.0062 0.0038 0.0038 

Soil 0.0230 0.0115 0.0096 

Vegetation 0.0424 0.0200 0.0194 

Maximum 15 bands 

Water 0.0049 0.0031 0.0029 

Soil 0.0128 0.0078 0.0073 

Vegetation 0.0251 0.0139 0.0133 
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Figure  2.2. Spectral representation of three different land-cover spectra using 

APCA (upper row), SRS (middle) and PCFA (lower row). The original and the 

approximate representations of the spectra are the blue, brown and green lines 

for water, soil and vegetation respectively. 
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APCA is based on the Haar wavelet transform, so the number of samples in the 

original signal fed into the algorithm has to be a power of two. In the case that the 

signal does not have enough samples, it is padded with zeros, and later truncated. 

This process sometimes may yield fewer bands than expected. 

We repeated the same experiment using more than 1000 pixels of the Moffett 

Field AVIRIS image with different reflectance spectra. The pixels were chosen to 

sample various land cover types including different types of water, soil, vegetation, 

man-made features such as buildings, roads, etc. The reflectance spectra were 

represented separately for each pixel with a different number of bands starting 

from 5 to 30, in steps of 5. The mean RMSEs decrease with increasing number of 

bands (Figure  2.3). Similar to the previous results, the APCA RMSE was the largest 

one, while the RMSE for SRS and PCFA algorithms were very similar and lower 

than when using APCA. The mean RMSE difference between PCFA and SRS over 

all spectra samples was about 0.0003 with the 5-band representation to 0.0001 

with the 30-band one (the RMSE is in the unit of the spectral reflectance, i.e. in 

[0,1]). The difference between SRS and PCFA representation errors decreased with 

increasing number of bands.  

 

 
Figure  2.3. The mean approximation error of various 

spectra obtained by three methods with respect to the 

maximum number of bands. 
  

 We also considered the run time required to carry out the numerical 

experiment on the dataset with more than 1000 spectra (Table  2.3). The time 

estimate is based on the implementation of the algorithms on a desktop computer 

having following characteristics: Operating system: Windows 7, Processor: Intel 

Core 2, and 16 GB RAM. The algorithms were written in IDL programing language, 

version 8.2.  
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The APCA algorithm is fast. The running time was less than two seconds for all 

the spectral configurations, while it was increasing with the number of bands for 

SRS: started at less than 14 seconds for the 5-band representations and reached 

more than two and half minutes for the 30-band ones. PCFA consumed much more 

time than the two other algorithms. In the worst case, i.e. the 30-band 

representation, the run time was more than two days to find the representations for 

the 1089 spectra, which was about 1200 times slower than SRS. On average, SRS 

ran 660 times faster than PCFA. The main issue affecting the running time of the 

PCFA algorithm is that the algorithm recursively calls itself with respect to the 

number of bands, and checks all the possible situations. When the number of bands 

increases, the run time increases dramatically.    

Table  2.3: Run time (sec.) of the three representation algorithms applied to 1089 

spectra. 
Time (sec.) APCA SRS PCFA 

5 bands 1.418 13.318 694.304 

10 bands 1.420 34.476 3711.606 

15 bands 1.445 59.049 17810.871 

20 bands 1.449 85.471 37822.459 

25 bands 1.466 124.688 67871.63478 

30 bands 1.486 161.561 187344.1304 

 

2.5.2. Material detection using approximated spectral signatures  

The previous experiment showed that the SRS algorithm yields comparable 

spectral configurations as the best representation provided by PCFA with a much 

shorter run time. In the second experiment, we evaluated the spectral 

configurations obtained by SRS by applying them to material detection using five 

spectral matching metrics: RMSE, SA, SID, SID-SA, and ECS. The SID-SA mixed 

metric was calculated by the multiplication of SID and the tangent of the SA, since 

using the sine function would produce similar result (Du, Chang et al. 2004).  

This experiment reveals how many bands are needed to correctly identify a 

target spectral signature using the reduced spectral configurations. We used the 

second dataset, the spectral library on specific materials, that contains different 

and well–defined spectra. We also applied the PCFA algorithm to material 

detection, to evaluate the accuracy of detection when using the reduced band 

configuration determined with SRS. The APCA algorithm was omitted, since the 

spectral representations provided by this algorithm are not as accurate as the 

representations obtained by the other algorithms.  
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The algorithms were applied to every spectrum of the spectral library, i.e. they 

start with a single wide band and calculate the split points in such a way that the 

full spectrum is represented by the reduced spectral configuration with increasing 

accuracy. At each iteration, the reduced spectral signature of the target spectrum 

was compared with all the spectra in the spectral library to check whether the 

approximated spectrum could correctly identify a material, i.e. the spectral 

approximation of a target spectrum has the maximum similarity (or minimum 

error) when compare with its original spectrum. The iterative procedure was ended 

when the reduced spectral configuration of the target signature had been correctly 

identified or the number of bands was more than 30. We used a distance-based 

identifier and a spectral angle based identifier to measure the difference between 

the known and unknown spectra (Kruse, Lefkoff et al. 1993; Price 1994; Cochrane 

2000). The identifiers use Eq. ( 2.1) and Eq. ( 2.2), respectively, to identify the 

unknown materials with the reduced band configurations. Finally, we calculated 

the percentage of the spectra correctly identified vs. the number of bands, and 

called it as the accuracy of detection (Figure  2.4).  

 

Figure  2.4. The percentage of materials correctly identified using the reduced band 

configurations obtained by different methods/metrics. In the legend, the metric 

utilized in SRS per experiment is identified.  

 
In general, the experiment demonstrates that materials can be identified using 

the reduced spectral configuration with much fewer spectral bands than the 

detailed full spectra. When the distance-based identifier is used, the accuracy is 

much higher. For instance out of 224 spectral channels, the 10-, 15-, and 20-band 

spectral configurations achieved correct identification of materials in 97% , 99%, 

and 100% of cases with the distance-based identifier and 61%,79 %, 85% with the 

angle-based identifier. The latter normalizes the spectra, and removes the signal 

intensity (reflectance in this experiment) dependence.  
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Using either identifier, the reduced spectral configurations obtained with 

PCFA and SRS using RMSE, SA, SID, and SID-SA gave a comparable accuracy in 

material detection. When ECS was used in SRS, the accuracy of detection was 

lowest. SRS gave similar accuracy of detection when applied with either RMSE or 

SA. This is due to the fact that when the spectral angle is small, SA and RMSE are 

essentially equivalent as regards spectral discrimination (Chang 2000; Chang 

2003). The spectral configurations obtained with PCFA gave slightly more 

identifications than the ones obtained with either SRS(RMSE) or SRS(SA). The 

difference in performance between PCFA and SRS(RMSE) was higher when the 

number of bands is small, and it decreased with increasing number of bands. 

However, if the spectral configuration obtained with SRS(RMSE) has just one band 

more than the PCFA configuration, the detection accuracy for SRS(RMSE) is 

higher. For example using the angle–based identifier and the 16-band 

configuration obtained by SRS(RMSE), the identification of materials was correct 

in 80.7% of the cases, while the 15-band configuration obtained with PCFA was 

correct in 80.6 % of cases. It should be noted that the computational cost of the 15-

band PCFA configuration is much higher than the one of the 16-band configuration 

obtained with SRS. In the example mentioned, SRS was more than 2000 times 

faster than PCFA. 

When applying SRS with the metrics SID and SID-SA, the accuracy of 

identification was often higher than when using RMSE or SA, and, interestingly in 

some cases, it is even higher than the accuracy obtained with PCFA. This occurred 

mostly when the angle-based identifier was used. As an example, the accuracy of 

detection with the 14-band configuration was 78.8% with SRS(SID) and 79.0% with 

SRS(SID-SA), while it was 78.6% with PCFA. The accuracy of identification when 

applying SRS(SID) and SRS(SID-SA) was higher than with PCFA when the number 

of bands increased. It is because the SID and SID-SA are more comprehensive 

spectral discrimination metrics than RMSE and SA and they model a spectrum as a 

probability distribution (see Eq. ( 2.3)), so the spectral variabilities across spectral 

channels can be captured more efficiently in a stochastic manner. Therefore, when 

SID and SID-SA are used in SRS, the spectral configuration provided have better 

discriminability. Du et al. (Du, Chang et al. 2004) also illustrated that the 

discriminatory power of SID and SID-SA is much better than a metric like SA.   

 As mentioned, the distance-based identifier had a much better performance 

for material identification than the angle-based one. With a few exceptions, most 

materials were identified correctly using the reduced band configuration with 11 

spectral bands and a 99% accuracy. Table  2.4 shows the number of bands of the 

reduced spectral configurations required for 99% accurate identification of 

different categories of materials using SRS(RMSE).    
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Table  2.4: The number of bands of the reduced spectral 

configurations obtained with SRS(RMSE) needed for correct 

material identification with 99% accuracy. 
Chapter No. of bands 

Minerals 14 

Mixtures 9 

Coatings 8 

Volatiles 11 

Man-Made 7 

Plants 11 

 

These results confirm that materials can be identified correctly with much 

fewer bands than the original narrow spectral channels (e.g. 224 channels). For 

instance, we selected six vegetation materials and three minerals in the spectral 

library to illustrate the spectral representations obtained by SRS(RMSE) 

(Figure  2.5). The figure demonstrates the location and the number of bands 

required to identify correctly the selected materials, when using the distance-based 

identifier.  

 

Figure  2.5. Reflectance spectra and the representations of two sets of material 

signatures: the vegetation set (left) containing six types of grass and the mineral set 

(right) containing three clay minerals. 
 

The first set contains six reflectance spectra of various types of grass starting 

from Grass 1 with the highest greenness and the lowest dryness and ending to 

Grass 6 with the opposite characteristics. So, the greenness and the dryness 

gradually change in reverse order. The SRS(RMSE) gave a spectral configuration 

with six bands for Grass 1 and five bands for the remaining grass types. As 

illustrated, three split locations are almost identical for all the configurations, i.e. at 
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the start and the end of the near infrared plateau (~710nm and 1320nm) and at 

1870nm. There is another split (at 510 nm) in the visible region of the spectrum for 

the grasses with lower greenness. So, this region is divided into two spectral regions 

where the split location of Grass 6 with the most depressed greenness is closer to 

the red spectral region (590nm). For the greenest grass (Grass 1), there is a need 

for two other splits, besides the first three, to be detected correctly. So for this type 

of grass, the near infrared plateau was divided into two bands where there is a 

sudden drop at 1150nm, and the red edge (720-750nm) was also selected as a 

separate band. 

The second data set is minerals spectra. We took three clay minerals having 

similar and not easily distinguishable spectral signatures (Crowley and Vergo 1988; 

Frost 1995). These minerals are dickite, kaolinite, and halloysite. As already 

mentioned, some materials have more than one spectrum. In the cases of selected 

minerals, there exist 4, 17, 7 spectral reflectances for dickite, kaolinite, and 

halloysite respectively, which have even closer spectral signatures and would make 

the detection more difficult. The spectral configuration obtained by SRS(RMSE) 

demonstrated that the configuration with seven bands for dickite, with four bands 

for Kaolinite, and with five bands for halloysite was sufficient for correct 

identification. The splits were at 510, 1292, 1442, 1920, 2110, and 2160nm for 

dickite; 510, 1890, and 2130nm for kaolinite; and 510, 1322, and 2150nm for 

halloysite.  

2.5.3. Evaluation of the algorithms using entire scene 

When the number of pixels is large, like an entire scene of a hyperspectral 

image, applying the algorithms to the individual pixel is a time-consuming process. 

Furthermore, the spectral locations of the splits must be the same for all pixels in a 

hyperspectral scene if the dimensionality reduction of the image is the goal. In this 

experiment, we extended the PCFA and SRS(RMSE) algorithm to apply to an entire 

hyperspectral scene. The final band configuration for all the pixels per algorithm is 

the same, despite the previous experiment having different band configurations for 

each single pixel. In this case, we computed an error representing the mean 

spectral approximation error over all pixels. This error is the average of the spectral 

approximation error for individual pixels. In this experiment, we computed the 

RMSE of the spectral configurations provided by the PCFA and SRS(RMSE) 

algorithms for the Moffiet field scene with respect to the number of bands in the 

reduced spectral configuration. The APCA algorithm is not applicable in this 

experiment since its error of approximation was much higher than the two other 

algorithms (Section  2.5.1). Figure  2.6 shows the results and Table  2.5 presents 

more details of six different number of bands.  
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number of bands is high. As an alternative, we proposed an algorithm, SRS, that is 

much faster and yields spectral representation almost as accurate as the ones 

provided by PCFA and the location of splits are almost identical. This result was 

observed in three experiments. Furthermore, we can obtain different spectral 

configurations by applying other metrics with SRS. This option may lead to a better 

outcome in applications. For example, in the second experiment the reduced 

spectral configurations obtained by for example SRS(SID) gave better identification 

accuracy than the ones obtained with PCFA. In addition, it is worth to have spectral 

configurations provided by SRS(RMSE) with one more band than the 

representations obtained with PCFA, since the accuracy of material identification is 

similar or even higher, while the SRS algorithm is faster. When the same spectral 

configuration is required for dimensionality reduction of an entire scene, SRS 

represents the spectra with the same error as PCFA, while the time required to 

obtain the configuration is much shorter. 

2.6. Conclusions 

In this chapter, we proposed an algorithm, the spectral region splitting (SRS) 

method, to represent the spectral signals captured by imaging spectrometers and 

reduce the dimensionality of the data. The final band configurations obtained by 

the algorithm are sets of continuous spectral bands covering the whole spectrum. 

Compared with the PCFA method, which provides the best spectral configuration 

minimizing the representation error, SRS yields band configurations almost as 

accurate as PCFA, but in a much faster way. Applying the algorithms to more than 

1000 diverse spectra to provide spectral configurations with 5 to 30 bands, SRS 

was 50 to 1200 times faster than PCFA, while the mean difference in RMSE was 

0.0002 on reflectance scale, i.e. in [0,1] . The difference was even less when both 

algorithms provided the same spectral configuration for an entire hyperspectral 

scene, i.e. 0.0001. SRS readily accepts various spectral matching metrics as well. 

We have applied the SRS method using five different metrics to the spectra of a 

complete spectral library for material identification. The configurations obtained 

with SRS(RMSE) led to material identification nearly as accurate as with PCFA, 

while sometimes with SRS(SID) and SRS(SID-SA) the accuray of identification was 

higher. Overall, a spectral configuration per material signature with 11 spectral 

bands out of 224 channels was sufficient to identify the materials in a complete 

spectral library with 99% accuracy.  
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Hyperspectral channels are highly dependent (Motta, Rizzo et al. 2006; 

Bioucas-Dias, Plaza et al. 2013), especially within adjacent spectral regions, i.e. 

many channels provide redundant information to some extent. Therefore, a 

method that can reduce the redundancy of hyperspectral datasets without losing 

much information is a solution to deal with constraints on data transmission and 

storage. As explained in the Introduction, our objective is to achieve a method that 

can be implemented onboard on a nano-satellite, i.e. it must be fast and 

uncomplicated. A fast approach can be developed by applying an unique score for 

measuring dependence to identify highly dependent spectral features in a hyper-

dimensional space. Finding the score and a dimensionality reduction (DR) method 

to address these objectives is the main research question of the study described in 

this Chapter.  

3.1. Introduction 

There are different objectives (see Chpater 1) to apply DR to hyperspectral 

datasets. One of them is to select the channels that have a lower dependence with 

other channels (Chein and Su 2006; Martinez-Uso, Pla et al. 2007; Sotoca, Pla et al. 

2007; Li and Liu 2009; Feng, Jiao et al. 2014). By choosing a channel set with low 

dependence, the number of channels and redundant information are reduced. 

Furthermore, by selecting the channels carrying independent information, the 

physical meaning of the spectral properties of observed objects is retained. This 

type of DR techniques is named feature selection (Bruzzone, Roli et al. 1995; 

Serpico and Bruzzone 2001). The alternative is feature extraction using a 

transformation from the original data space to a new feature space having the 

minimum dependence between the new components (Kumar, Ghosh et al. 2001; 

Serpico and Moser 2007; Serpico, Dellepiane et al. 2012). The transformation leads 

to a more complex relation between spectral attributes and object properties. 

Hence, feature selection techniques are preferable in the hyperspectral domain 

(Chein and Su 2006; Martinez-Uso, Pla et al. 2007).  

The other categorization of DR in the hyperspectral domain is supervised vs. 

unsupervised techniques, where the former usually need a priori knowledge of the 

land-cover in a scene, and the latter can be implemented without extra 

information. Using the dependence as the criterion for DR of hyperspectral images 

paves the way for applying unsupervised methods, i.e. based on the inherent 

complexity of the spectral signal rather than on ancillary information on relevant 

classes. Available unsupervised algorithms to select independent channels from the 

datasets are usually complicated and time-consuming (Martinez-Uso, Pla et al. 

2007; Sotoca, Pla et al. 2007; Du and Yang 2008; Jia, Ji et al. 2012). A fast 

approach can be developed by applying an unique score for measuring dependence 

to identify highly dependent channels in a hyper-dimensional space.       
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There are several metrics of dependence that can be applied to hyperspectral 

datasets. Usually, these metrics just calculate the dependence between two 

variables, e.g. the correlation coefficient. For more than two variables, the 

dependence is evaluated for paired variables, and shown in a pairwise dependence 

matrix. There exist some dependence metrics based on information theory (Timme, 

Alford et al. 2014), e.g. mutual information (Studholme, Hill et al. 1996; Masulli 

and Valentini 2001; Bettencourt, Gintautas et al. 2008), Kullback-Leibler 

divergence (Cover and Thomas 2006) and total correlation (Watanabe 1960) that 

can provide a unique score by measuring shared information for more than two 

dimensions. These metrics are mostly computationally expensive, however, 

especially when the number of bands is large. Furthermore, difficulties may arise 

when they are applied to more than two variables. For, example, Matsuda (Matsuda 

2000) analyzed higher-order mutual information (HMI) to show the correlation 

properties of general complex systems. The author concluded that HMI can be 

either positive or negative whereas the usual mutual information is always non-

negative. Sotoca, et al. (Sotoca, Pla et al. 2007) also showed that the total 

correlation metric is not appropriate for multivariate dependence since part of the 

dependence information between variables is recounted several times. They 

proposed another metric to measure dependence, but this metric is time-

consuming and needs large computer memory, since the metric is estimated from 

the joint entropy of different bands and the computational cost grows exponentially 

with the number of bands (Sotoca, Pla et al. 2007).  

In this study, we propose and use a metric of dependence in multi-

dimensional spaces with low computational cost. This metric, called Total 

Dependence (TD), is based on the eigendecomposition concept and makes it 

technically possible to compare the overall dependence of multi-dimensional 

datasets having different dimensionality.  

 Considering the properties of TD (see Section  3.2), a DR technique is applied 

to hyperspectral images with the aim of identifying the spectral regions with 

minimum dependence. In this study, we apply the metric to a clustering approach 

to define a new, reduced spectral configuration with minimum dependence. At 

first, the adjacent channels are clustered based on their dependencies in a bottom-

up searching strategy. Then, instead of selecting an individual channel from each 

cluster to represent the cluster, we merge the spectral channels by averaging the 

signal, obtaining a continuous spectral configuration covering the entire spectrum. 

This implies that the least dependent bandset is chosen among different spectral 

configurations via a single dependence metric. This chapter is structured as 

follows: 

Detailed explanations on the TD metric and its properties are provided in 

Section  3.2. Section  3.3 presents the details of the proposed bottom-up search 

strategy to define the reduced spectral configuration. The characteristics of the 

datasets used in this study are given in Section  0. In section 3.5, TD properties are 
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exploited in three experiments on multispectral and hyperspectral data, both real 

and synthetic ones. Section 3.6 gives an evaluation of the spectral configurations 

obtained by the algorithm. Section 3.7 summarises the approach and the results.    

3.2. Total Dependence (TD) 

The general approach to represent the dependence in multi-dimensional 

spaces is to calculate the dependence between each pair of variables to obtain a 

dependence matrix. This matrix is a square matrix where each element shows the 

dependence between the named variables in the specific row and the specific 

column. This matrix is symmetric. For example, given n random variables such as 

spectral bands s = {s�,  s�, … , s�}, the dependence matrix can be presented as 

follows: 

 

 t = u�s�,  s�� �s�,  s���s�,  s�� �s�,  s�� … �s�,  s��… �s�,  s��⋮ ⋮�s�,  s�� �s�,  s�� ⋱ ⋮… �s�,  s��x ( 3.1) 

 
where t is the dependence matrix of X, and �s# ,  sZ� is the value of the dependence 

of the named variables. The most common dependence matrix is the variance-

covariance matrix (covariance matrix). This matrix includes the variance of each 

variable on the main diagonal and the covariance in the non-diagonal positions. 

The covariance matrix can easily be replaced by the correlation matrix showing the 

correlation between each pair of variables. In this matrix, if all the non-diagonal 

elements have the absolute minimum (zero) or maximum (one) value then the 

dependence among all the variables is minimum or maximum respectively. 

However, if not, the overall dependence of the entire set of variables cannot be 

directly estimated.  

The simplest single measure of dependence of multiple variables is the mean 

value of the pairwise correlation coefficients. The same mean value, however, can 

be obtained with different matrices. As an example, the non-diagonal elements of 

two following correlation matrices have the same mean value (0.3); while in the left 

matrix two variables are highly correlated, i.e. leaving out one of the two may 

preserve the required information content. In the case of the right matrix, there 

might be a need to have all the three variables, because of the low correlation 

between the variables.    

 

t� = y 1 0.9 0.00.9 1 0.00.0 0.0 1 |                   t� = y 1 0.3 0.30.3 1 0.30.3 0.3 1 | 
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One way to measure the linear dependence in a multivariate data set with a 

single metric is to use eigendecomposition of the dependence matrix. The 

eigendecomposition of a square dependence matrix, e.g. the correlation matrix, 

gives a transformed matrix, where the eigenvalues lie on the diagonal and the non-

diagonal elements are zero. The first (largest) eigenvalue contains the maximum 

information in the transformed space (Shannon 1948; Garner and Mcgill 1956; 

Nering 1970). The first eigenvalue also carries information about the dependencies 

between the variables in the original data space (Friedman and Weisberg 1981; 

Salinelli and Sgarra 2011). 

Kaiser (Kaiser 1968) showed that a correlation matrix can be expressed by a 

single metric based on the eigendecomposition theory. The metric, that we named 

Total Dependence (TD), is a function of the first eigenvalue of a correlation matrix. 

Friedman and Weisberg (Friedman and Weisberg 1981) proved that the first 

eigenvalue is a function of the central tendency of the correlations when the 

correlations are all positive. We also investigated the first eigenvalue numerically in 

this study, and showed that by increasing the dependence between any paired 

variables, the first eigenvalue becomes larger (see Appendix A). The first eigenvalue 

is an indicator of the dependence of the variables sampled by the data. To be 

scalable, the first eigenvalue is normalized to its range of variation, to vary between 

zero and one. The final metric, TD, can measure the dependence in a n-

dimensional space and makes it possible to compare the overall dependence of 

multi-dimensional datasets having different dimensionality. In the context of 

hyperspectral imaging, the metric can be calculated quickly, irrespective of the 

number of bands. Experimental results on multispectral and hyperspectral data, 

both real and synthetic ones, shed light on the capability of TD to measure the 

overall dependence (see Section  0). In this research, we have extracted some 

properties of the metric found useful for hyperspectral DR purposes.  

As mentioned, the metric is a function of the first eigenvalue of the absolute 

correlation matrix. The eigenvalues are obtained by a method like Principal 

Component Analysis (PCA), which transforms a dataset with dependent variables 

into independent variables. To be more accurate, PCA is defined (Jolliffe 2002) as 

an orthogonal linear transformation that transforms the data to a new coordinate 

system such that the greatest variance by some projection of the data comes to lie 

on the first coordinate (called the first principal component), the second greatest 

variance on the second coordinate, and so on. By considering the first eigenvalue of 

a correlation matrix that all its elements are replaced by their absolute values, it has 

been shown that the higher the dependence, the greater the first eigenvalue (Mayer 

1976; Friedman and Weisberg 1981). The proposed metric is expressed as follows: 

 

 TD = λ� − 1n − 1  ( 3.2) 
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where Q� is the first eigenvalue derived of the correlation matrix of a data set 

on spectral data in n – bands, in which the elements have the absolute values. In 

the case of two example matrices mentioned above, the left and right matrices have 

the total dependence of 0.45 and 0.3 respectively, showing the overall dependence 

among the variables in the left matrix is higher than the right one.  

 

For a given bandset as s = {s�,  s�, … , s�}, TD satisfies  

a)  0 ≤ �=s�, s�, … , s�� ≤ 1. 

b)  �=s�, s�� = |�s�, s��| where r is the correlation coefficient.  

c)  �=s�, s�, … , s�� = 0  if and only if s�, s�, … , s� are linearly fully 

independent. 

d)  �=s�, s�, … , s�� = 1  if and only if s�, s�, … , s� are linearly fully 

dependent. 

e)  �=s�, s�, … , s�� = �=Hs���, s���, … , s���I for every � permutation of <� ≔ {1,2, … , !}. 

f)  TD is a non-monotonic function i.e.  �=s�, s�, … , s���� ≤ �=s�, s�, … , s�� or  �=s�, s�, … , s�� < �=s�, s�, … , s����  
As TD is a function of Q�, the properties mentioned above are mostly obtained 

from the characteristic of Q�. The proof of the properties with some experimental 

results is given in Appendix B. 

3.3. The Clustering-Merging (CM) method 

For identification the spectral regions with low dependence, the SRS method is 

not applicable. The reason is that the SRS algorithm is a top-down algorithm. Using 

the minimum correlation as the criterion, SRS would determine the noisiest 

channels, i.e. in each iteration, it divides the spectrum into the spectral regions 

having the lowest correlation leading to identification of several narrow channels 

usually located in the ends of the spectrum and one broad band in the middle. This 

issue can be solved by considering a bottom-up search algorithm and instead of 

looking for the minimum correlated bands, searching for the maximum correlated 

ones. 

Therefore, we use, first, the TD metric in a bottom-up clustering search 

algorithm, named Clustering-Merging (CM) algorithm, to identify highly 

dependent adjacent channels and cluster them. The intra-cluster correlation is 

high, while the inter-clusters correlation is low. The next procedure is the creation 

of the new spectral bands by averaging the signal in the channels per cluster and 

creating spectral band. Therefore, no channel spectral information gets just thrown 

away. Moreover, wider spectral bands increase the signal to noise ratio and 
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improve the quality of the image for further investigation. Finally, the algorithm 

produces a spectral configuration comprising both narrow and wide bands, which 

covers the whole spectrum. The narrow or wide bands are scene-dependent, i.e. the 

final bandset of a soil scene would be different from a vegetation scene. 

Furthermore, we expect that this method selects in a noise-free hyperspectral 

dataset the most uncorrelated spectral bands, causing a reduction in redundant 

information. 

The method starts with the correlation matrix of the channels in a 

hyperspectral dataset, where the elements are positive, i.e. the absolute value of the 

correlation coefficients. In this step, the number of clusters and channels is equal, 

since every spectral channel is in one cluster. Given n spectral channels as s ={s�,  s�, … , s�} there are m clusters, � = {��, ��, … , ��}, where m=n initially. There 

are m-1 correlations between the adjacent clusters, � = {��, ��, … , ����}  and �= = {�=�, �=�, … , �=���} where �=# = |�#�# , �#���| (see Property (b) in 

Section  3.2). Next, the algorithm searches for the most correlated adjacent clusters 

and insert them in one cluster, by replacing two highly dependent clusters with one 

cluster. The algorithm computes the dependence with the new cluster comprising 

the two highly dependent adjacent clusters using TD and update the TD sets to find 

the most highly correlated adjacent clusters in the next iteration. Based on Property 

(f) of TD, it is possible to compare the dependence of different clusters with a 

different number of channels. So, the algorithm finds highly dependent 

neighboring clusters and merges them in an iterative manner, until it reaches a 

predefined termination point based on the number of bands. 

Table  3.1. Clustering-Merging algorithm 
Algorithm CM(X, t)                              // X is n-channel dataset, and t is the termination point 

begin Σ�∗� = abscorrX��                              // t�∗� is the correlation matrix of X comprising the 

absolute value of the correlation coefficients 

 C��� = {C�, C�, … , C�} TD��� = {TD�, TD�, … , TD���} 

m=n 

while (m > t) 

i =index(max(TD���)) C�  ← {C�, C���}                                  // merging two clusters and update �j�a TD��� ← TD���/TD�                           // Subtracting the ith TD form �=j�a  TD��� = TDC���, C��                  // TD function calculates the total dependence of two 

adjacent clusters using t�∗�  TD� = TDC�, C���� 

m=m-1 

endwhile 

Final_bandset=the average of the channel signals per cluster in C��� 

return Final_bandset 

end 
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The final step is to average the channel signals per cluster and substitute a 

spectral region (band) instead of the cluster. The pseudocode of the algorithm is 

presented in Table  3.1. 

3.4. Dataset  

First, we examined the potential of TD to compute the overall dependence in 

multi- and hyper-dimensional spaces: by using a multispectral, a simulated and a 

hyperspectral dataset in three different experiments. Then the algorithm was 

evaluated by applying it to two hyperspectral datasets acquired by AVIRIS 

(airborne visible/infrared imaging spectrometer). The AVIRIS sensor covers the 

spectrum from 400nm to 2500nm in 224 spectral channels (Vane, Green et al. 

1993; Green, Eastwood et al. 1998). We used the following datasets for the 

experiments:  

a) A Landsat 8 image that covers agriculture, open water, and bare lands 

(Figure  3.1). We used six bands of the dataset (Table  3.2) in two 

experiments. 

 

 

 

Table  3.2: six 

bands of Landsat 8 
Band 

# 

Wavelength 

(nm) 

1 0.43 - 0.45 

2 0.45 - 0.51 

3 0.53 - 0.59 

4 0.64 - 0.67 

5 0.85 - 0.88 

6 1.57 - 1.65 

  
 

Figure  3.1: True-colour image of Salton Sea in Southern 

California and nearby irrigated fields, taken Mar. 24, 

2013, by Landsat 8. 

 

 

b) Moffett field: The data has been acquired by AVIRIS in California with 

224 bands. The bandset covers the spectrum from 365nm to 2497nm 

continuously with approximately 10nm-wide bands. The bands located at 

366-385,1353-1433,1811-1948,2337-2497nm wavelength were removed 
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due to noise and water absorption. So the final dataset has 177 bands 

(Figure  3.2). 

 

Figure  3.2: True color of the Moffied Field 

hypesrpectral scene taken by AVIRIS in 1997. 

 

c) Indian Pines: the scene consists of 145*145 pixels with a spatial resolution 

of about 20m. Two-thirds of the Indian Pines scene is covered by 

agriculture, and one-third by forest and other natural perennial vegetation 

(Figure  3.3). The ground truth available documents sixteen classes, not 

mutually exclusive. Since three classes in the scene contain less than 50 

samples, we do not use them for the experiments. After the atmospheric 

correction and the removal of bad channels, the number of channels was 

reduced to 178. We removed water absorption channels (104-108, 150-163, 

and 220), noisy bands (1-4, 103, 109-111, 148-149, 164-166, and 217-219), 

and seven channels that are spectrally overlapping channels (32, 33, 95, 

96, 158, 191, and 192). The Indian Pines dataset is available free of charge 

via Purdue  University website: https://engineering.purdue.edu/~biehl/-

MultiSpec/hyperspectral.html. 

 

d) Salinas: This scene (Figure  3.4) is characterized by high spatial resolution 

(3.7m). The area covered comprises 512 lines by 217 pixels. The dataset is 

available at http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral-

_Remote_Sensing_Scenes only as at-sensor radiance. 
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Figure  3.3: True colour image of the Indian Pines 

scenes and the reference data of the classes used 

taken in 1992 (see Table  4.1 for the legend of the 

land-cover classes).  
 

So, it has been atmospherically corrected and the noisy and duplicated 

channels have been removed. The final dataset has 190 channels. The 

ground-truth is also available and documents 16 classes including 

vegetables, bare soils, and vineyard fields, which we used in the 

experiments.  

  
Figure  3.4: True colour image of the Salinas 

scenes and the reference data of the classes 

(see Table  4.2 for the legend of the land-cover 

classes). 
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3.5. Evaluation of the TD metric 

In this section, The characteristics of TD, which are useful for identifying 

independent spectral features are explained and evaluated in practical cases. In 

each case, the total dependence (TD) metric is computed, and some of its 

properties are shown. Three different data sets: multispectral, simulated 

multispectral, and hyperspectral data are applied to evaluate TD. It should be 

noticed that this section is devoted to the TD metric, and in each experiment 

individual spectral channels are evaluated and selected, and there is no aggregation 

of channels. 

3.5.1. TD for comparing n-D spaces 

In the first experiment, three bands of Landsat 8 image are used, and the 

overall dependence is calculated for two different situations: 1-computing TD for 

the entire scene, and 2- computing TD for a soil-dominated sub-scene. This 

experiment shows the behaviour of the TD metric, when different land covers are 

compared on dependence. The results are also compared with a metric proposed by 

(Sotoca, Pla et al. 2007), (���), that measures dependence on the basis of 

information theory. This measure is already used for band selection in 

multispectral cases. In the second experiment, TD is used to identify the three 

lowest dependence bands from the spectral bands mentioned in Table  3.2.  

Experiment 1: Bands 4, 5, and 6 are selected from the dataset. The dependence 

metrics are calculated for the two given areas of the scene using the three bands 

(Table  3.3). For both areas the ellipsoid of the data distributions and the 

correlation matrix are also given in Table  3.3. 

As expected, the correlation between bands in one type of land cover (soil) is 

higher than the correlation for a generic scene including several land cover types. 

This fact can be observed from the shape of the ellipsoid in the feature space and 

the correlation matrix. The three bands are highly correlated in the bare soil area, 

so the ellipsoid is narrow. Using the entire scene, the correlation between just two 

bands (5 & 6) is high (0.90). The data distribution is wider than the first situation 

as well.  

Comparing the dependence metrics, ��� gave higher dependence for the entire 

scene than the soil subscene, while TD has the opposite behaviour. The main 

reason is that ��� is a cumulative measure for dependence (Sotoca, Pla et al. 2007), 

not a normalized measure, since this metric is a summation of all dependences 

between bands. If an image covers a larger area with different land types, it has 

more information. When the image comprises several spectral bands, it is more 

likely that the amount of shared information among the various spectral channels 

is greater as well. So ��� that is the summation of shared information gives a higher 

value.  
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Table  3.3: The Ellipsoid shape of the data distribution, correlation matrix, the 

dependent information measure, and the total dependence metric for bands 4, 5, 

and 6 of the given areas in the Landsat 8 scene.  
 Bare soil subset Complete Scene 

Data 

distribution 

Correlation 

matrix 

Band# 4 5 6 

4 1 0.94 0.83 

5 0.94 1 0.92 

6 0.83 0.92 1 
 

Band # 4 5 6 

4 1 0.15 0.90 

5 0.15 1 0.44 

6 0.90 0.44 1 
 Θ�� 2.40 4.25 

TD 0.90 0.53 

 

In this experiment, the complete scene gives a higher ��� value than the bare 

soil subset (4.25 vs. 2.40), although it can be seen from the correlation matrix that 

the overall dependence of the soil scene must be higher than the complete scene. 

This fact illustrates that Θ�� may not be a suitable measure to compare the overall 

dependence of different datasets. On the other hand, the TD metric reveals that the 

complete scene is more independent than the soil sub-scene (0.53 vs. 0.90), which 

emphasizes that TD provides acceptable results in terms of comparing dependence 

of different data sets: when TD was used, the 3-bandset of the complete scene was 

identified as the dataset with lower dependence.   

Experiment 2: in the second experiment we investigated how to identify the 

least dependent three out of six bands for the entire scene. TD was computed for 20 

band combinations (��� = 20), which are shown in Table  3.4. The correlations 

between the band pairs are also given in Table 3.5.  

Table  3.4: Total dependence (TD) and the first eigenvalue (��) for all combinations of 

three out of six bands of the Landsat-8 dataset.  

Combination # Bands TD 
Combination 

# 
Bands TD 

Combination 

# 
Bands TD 

1 1,2,3 0.99 8 1,4,5 0.51 15 2,4,6 0.91 

2 1,2,4 0.98 9 1,4,6 0.91 16 2,5,6 0.52 

3 1,2,5 0.52 10 1,5,6 0.52 17 3,4,5 0.52 

4 1,2,6 0.91 11 2,3,4 0.98 18 3,4,6 0.92 

5 1,3,4 0.98 12 2,3,5 0.53 19 3,5,6 0.54 

6 1,3,5 0.53 13 2,3,6 0.92 20 4,5,6 0.53 

7 1,3,6 0.92 14 2,4,5 0.51    
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From Table  3.4, it is observable that the most independent band combinations 

are number 8 and 14. The bands are 1, 4, 5 and 2, 4, 5 with TD = 0.51. Bands 1, and 

2 are completely dependent (��� = 1.00), so substituting one instead of the other 

does not change TD. Looking at the different combinations and the correlations of 

the band pairs in that combination, it can be seen that TD is equivalent to the 

overall dependence. It is also obvious that the most dependent combination is the 

first one with three consecutive bands :1, 2, and 3. 

Table 3.5: Correlation matrix of the six bands of the entire Landsat-8 scene. 

Band # Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 

Band 1 1 1.00 0.99 0.97 0.16 0.87 

Band 2 1.00 1 0.99 0.97 0.16 0.87 

Band 3 0.99 0.99 1 0.98 0.20 0.89 

Band 4 0.97 0.97 0.98 1 0.15 0.90 

Band 5 0.16 0.16 0.20 0.15 1 0.44 

Band 6 0.87 0.87 0.89 0.90 0.44 1 

 

3.5.2. Sensitivity of TD  

This experiment indicates the sensitivity of the TD metric to an additional 

band in a dataset. The new band may have either high dependence or low 

dependence with other bands in the dataset. We generated a synthetic data set for 

this experiment. The first seven bands (s�, s�, …, s�) were generated with random 

integer values in [0,10]. Each band has 100 pixels, and they have very low 

correlation with each other. Then, different combinations of the simulated bands 

are generated, and the metrics are calculated. These combinations start with two 

bands (s� and s�), and then s� is duplicated twice and added to the bandset. Next, 

the other bands (s� to s�) are added one by one. So, the final band combination is 

given by s�, s�, s�, s�, s�, … , s�. Table  3.6 shows the correlation matrix for the 

complete combination with nine bands. TD is computed whenever a new band is 

added, and the results are illustrated in Figure  3.5. The values of the metric are 

given in Table  3.7.  

Table  3.6: Correlation matrix for the simulated multispectral data 

Band # Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 Band 9 

Band 1 1 -0.05 -0.05 -0.05 -0.15 0.11 -0.02 0.05 0.00 

Band 2 -0.05 1 1.00 1.00 -0.04 0.06 0.02 0.02 0.02 

Band 3 -0.05 1.00 1 1.00 -0.04 0.06 0.02 0.02 0.02 

Band 4 -0.05 1.00 1.00 1 -0.04 0.06 0.02 0.02 0.02 

Band 5 -0.15 -0.04 -0.04 -0.04 1 0.08 0.16 0.04 -0.17 

Band 6 0.11 0.06 0.06 0.06 0.08 1 0.10 0.04 -0.06 

Band 7 -0.02 0.02 0.02 0.02 0.16 0.10 1 0.06 -0.06 

Band 8 0.05 0.02 0.02 0.02 0.04 0.04 0.06 1 0 

Band 9 0.00 0.02 0.02 0.02 -0.17 -0.06 -0.06 0 1 
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Figure  3.5: Variation of TD and Q� with respect to different band 

combinations for simulated multispectral data. 
 

Table  3.7: Total dependence and the first eigenvalue for the simulated dataset.  
No. of bands TD λ� 

2 bands 0.050 1.050 

3 bands 0.503 2.005 

4 bands 0.668 3.004 

5 bands 0.502 3.007 

6 bands 0.403 3.013 

7 bands 0.336 3.014 

8 bands 0.288 3.015 

9 bands 0.252 3.016 

 

In Figure  3.5, the TD graph starts with very low dependence for two 

independent bands (s� and s�). After adding bands, one by one, the TD metric 

varies. When a band is duplicated and added (e.g. band 4), the overall dependence 

should be larger which is clearly illustrated by TD. On the contrary, TD shows that 

the total dependence decreases when an independent bands is added, as expected. 

For example, 5-band dataset has lower overall dependence than the 4-band one in 

this experiment, i.e. as expected due to the design of the synthetic data set.  

We also computed the first eigenvalue of the correlation matrix to compare it 

with TD. Looking at the Q� graph, it is observable that Q� is always ascending 

(Figure  3.5). It is already proven that by increasing the dependence the first 

eigenvalue also rises. Q� increases sharply when s� is duplicated. Later the 

independent bands are added, and there is slight increase in the first eigenvalue 

(Table  3.7). It is because, the new bands have very low correlation with the other 

existing bands (see Table  3.6).  
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In general, Q� does not appear to be an appropriate metric of dependence as it 

monotonically increases, and we can not compare the dependence of different band 

sets. On the contrary, TD increases by adding a dependent band to the other bands 

and decreases when an independent band is added, as it should.  

3.5.3. TD applied to real hyperspectral data 

Here we carried out the same experiments as in Sections  3.5.1 and  3.5.2, but 

using a real hyperspectral image, Moffett field. First, the sensitivity of TD is 

examined with specific land cover types and, second, TD is applied to band 

selection from a hyperspectral data set.  

 

Experiment 1: A region of interest from a vegetation area was extracted from 

the scene with 900 pixels. Similar to the experiment with synthetic data 

(Section  3.5.2), TD is calculated for the first two bands at the beginning of the 

spectrum, and then the other bands are added one by one sequentially at longer 

wavelengths, and the metric is calculated at each step. 

Figure  3.6 (left) shows the TD values. It reveals that the metric can be 

computed for n bands and shows the overall dependency in an hyper-dimensional 

space. When the graph is ascending it means that the added bands are highly 

dependent with the other existing bands, and vice versa. For example, the bands 

located in the red edge spectral region for a vegetation scene, 34-37 (700-735nm 

wavelength), have very low correlations with the visible bands (the absolute mean 

correlation is less than 0.1). So by adding these bands to the previous bands, TD 

decreases (Figure  3.6 (left)).  

Figure  3.6 (right) demonstrates the changes of the first eigenvalue with respect 

to the band numbers (corresponding to the wavelengths). Likewise the second case, 

the eigenvalue increases when a new band is added due to the dependency of the 

new band on the other bands. The first eigenvalue is always ascending, while the 

TD metric increases or decreases, depending on how dependent a new added band 

is on the bands already included in the data set. 

 

Experiment 2: Suppose, five channels with the lowest dependence should be 

selected from a original hyperspectral bandset. In general, all the combinations 

should be considered. Because the number of combinations is huge, we have 

constructed 45 contiguous bands with 20 nm spectral width covering visible and 

Near Infra-Red (NIR) spectral regions. This bandset is derived from the Moffett 

Field dataset by averaging every two adjacent bands from 400 to 1240nm. Then, 

two sub-scenes were selected from vegetation and bare soil areas. TD is computed 

for all band combinations for the two scenes to find the spectral configuration with 

the lowest overall dependence. 
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Figure  3.6: Variation of TD (left panel) and the first eigenvalue (right panel) as a 

function of number of bands from real hyperspectral data. 
 

The number of combinations is ���� = 1221759. Figure  3.7 shows the TD 

values sorted from the minimum to maximum value for different band 

combinations and the two scenes. The minimum TD of the vegetation scene is less 

than the TD in the scene with bare soil areas 0.353 vs 0.451 respectively.  

 

Figure  3.7: Sorted TD for all 5-band combinations of a hyperspectral scene over soil 

(right), and vegetation (left) areas. 
 

Table  3.8 gives the five bands with the lowest, the mean, and the highest 

overall dependence. The 5 bands with minimum TD were selected from different 

parts of the spectral region. For the soil scene, three channels selected from the 

blue spectral region, and two separated bands from NIR, while for the vegetation 

scene, there are one blue, two green, and two continuous bands from NIR. On the 

other hand, the highest dependency 5 bands are contiguous for both scenes, with 

TD about one. 
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Table  3.8: Five selected bands from a hyperspectral image with the lowest, themean, 

and the highest overall dependence 

 Combination with Bands Wavelength (nm) TD 

Soil scene 

Min (TD) 1, 4, 5, 35, 40 404, 463, 483, 1043, 1139 0.451 

Avg (TD) 
3, 24, 39, 40, 

42 

444, 832, 1120, 1139, 

1178 
0.739 

Max (TD) 
34, 35, 36, 37, 

38 

1024,1043, 1062, 1082, 

1101 
0.999 

Vegetation scene 

Min (TD) 1, 8, 9, 36, 37 404, 542, 562, 1062, 1082 0.353 

Avg (TD) 3, 5, 36, 37, 42 
444, 483, 1062, 1082, 

1178 
0.722 

Max (TD) 
23, 24, 25, 26, 

27 
813, 832, 851, 870, 889 1.000 

 

 

3.5.4. Discussion  

TD was evaluated for three different cases in Section  0. From the first case, it 

appears that TD gives a normalized score of dependence to compare two or more 

different configurations of a multispectral dataset. The metric can be used to select 

a bandset with the minimum overall dependency from different band 

combinations, which is a key requisite in feature selection techniques. The second 

case reveals the behavior of TD when a new band is added to an existing bandset. 

The metric is not always ascending, unlike the first eigenvalue. Based on how 

dependent the new band is on the existing bandset TD might ascend or descend. 

Also, the second case illustrates that TD can be applied for a higher (any) number 

of spectral bands. This fact is also confirmed by the third case with 177 bands. In 

the third example, a real hyperspectral image from a vegetation scene is analysed. 

Here, it is shown that TD is applicable in practice. The sensitivity of TD to new 

additional bands is also clearly observable in the third experiment. The second 

experiment in case 1 and 3 demonstrated that TD can be applied to select the most 

independent band subset from multi and hyperspectral bandset. 

Selecting bands with minimum dependence is a common approach to choose 

the optimal bands from hyperspectral data (Kumar, Ghosh et al. 2001; Martinez-

Uso, Pla et al. 2007; Sotoca, Pla et al. 2007; Jia, Kuo et al. 2013). The TD metric 

can be used in feature selection techniques to provide a feature-set having the 

minimum overall dependency which can lead to a significant reduction in the 

dimensionality of hyperspectral datasets. In the next section, we applied TD to CM 

algorithm to identify independent spectral regions, instead of the selection of 

individual channels.  
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3.6. Evaluation of the spectral regions identified by CM 

3.6.1. Comparison based on independence 

For the evaluation the CM algorithm, we applied it to two entire hyperspectral 

scenes (Indian Pines and Salinas) and obtained reduced spectral configurations.  

Table  3.9: TD computed for different band configurations over the entire scenes: Indian Pines 

(up) and Salinas scene (down). The band configurations were obtained in unsupervised and 

supervised cases. 

No. of 

bands 

Unsupervised Supervised 

Split location (nm) TD Split location (nm) TD 

In
d

ia
n

 P
in

e
s 

sc
e

n
e

 

4 725, 1138, 1302 0.547 725, 1138, 1322 0.552 

5 715, 725, 1138, 1302 0.548 715, 725, 1138, 1322 0.551 

10 
706, 715, 725, 937, 1129, 

1138, 1148, 1302, 1322 
0.578 

706, 715, 725, 735, 937, 1138, 

1302, 1322, 1342 
0.583 

15 

518, 706, 715, 725, 735, 937, 

1129, 1138, 1148, 1283, 

1302, 1322, 1332, 1789 

0.590 

567, 706, 715, 725, 735, 937, 

1129, 1138, 1148, 1302, 1322, 1332, 

1343, 1789 

0.590 

20 

439, 518, 706, 715, 725, 735, 

937, 1120,1129, 1138, 1148, 

1158, 1283, 1302, 1313, 

1322, 1332, 1343, 1789 

0.591 

567, 706, 715, 725, 735, 851, 937, 

1120, 1129, 1138, 1148, 1283, 1302, 

1313, 1322, 1332, 1343, 1789, 2450 

0.606 

25 

439, 518, 706, 715, 725, 735, 

812, 937, 1120,1129, 1138, 

1148, 1158, 1177, 1196, 

1206, 1273, 1283, 1302, 

1313, 1322, 1332, 1343, 

1789 

0.589 

518, 567, 706, 715, 725, 735, 745, 851, 

937, 1120, 1129, 1138, 1148, 1158, 

1283, 1302, 1313, 1322, 1332, 1343, 

1789,2430, 2440, 2450 

0.638 

178 All channels 0.724 ---- ---- 

S
a

li
n

a
s 

sc
e

n
e

 

4 711, 1143, 1324 0.465 702, 1143, 1324 0.466 

5 702, 711, 1143, 1324 0.514 702, 711, 1143, 1324 0.514 

10 
517, 566, 702, 711, 721, 

1143, 1324, 1344, 1802 
0.596 

517, 702, 711, 721, 1143, 1314, 1324, 

1344, 1813 
0.606 

15 

428, 517, 566, 692, 702, 711, 

721, 942, 1143, 1314, 1324, 

1344, 1434, 1802 

0.617 

428, 517, 566, 702, 711, 721, 942, 

1143, 1314, 1324, 1334, 1344, 1574, 

1813 

0.620 

20 

428, 517, 566, 692, 702, 711, 

721, 731, 942, 1143, 1305, 

1314, 1324, 1335, 1344, 

1434, 1544, 1802, 1813 

0.614 

409, 428, 478, 517, 566, 693, 702, 711, 

721, 731, 942, 1143, 1305, 1314, 1324, 

1334, 1344, 1574, 1813 

0.621 

25 

409, 428, 517, 566, 606, 692, 

702, 711, 721, 731, 942, 

1134, 1143, 1305, 1314, 

1324, 1335, 1344, 1434, 

1544, 1793, 1802, 1813, 

1948 

0.615 

409, 418, 428, 478, 517, 566, 636, 693, 

702, 711, 721, 731, 942, 1134, 1143, 

1295, 1305, 1314, 1324, 1334, 1344, 

1574, 1803, 1813 

0.621 

190 All channels 0.686 ---- ---- 
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The spectral regions identified by the configurations have overall lower 

dependence. The number of bands started with 2 and ended with 30. TD was 

computed for of all bandsets. Table  3.9 gives the details of five band-sets (5-, 10-, 

15-, 20- and 25-band) per scene. This information is under the heading 

“unsupervised” Additionally, Table  3.9 presents the band configuration that has the 

minimum TD, and the total dependence of all the spectral channels of the scenes. 

In most cases, the dependence increases with the number of bands, although 

the TD metric is normalised to the number of bands, e.g., TD is 0.578 with 10-band 

and 0.591 with 20-band of Indian Pines scene. Using all the spectral channels gives 

the maximum TD = 0.724 and 0.686 for Indian Pines and Salinas scenes 

respectively. The minimum TD was obtained with four band configurations with 

0.547 and 0.465 for the first and second datasets.  

In the last experiment, we used the entire scenes to identify the independent 

spectral regions, i.e. without any a priori knowledge of specific areas in the scenes 

in an unsupervised manner. On the other hand, if some regions of interest in a 

scene are analysed with the CM method (supervised), and a new band 

configurations is obtained, how would the band configurations in supervised and 

unsupervised cases compare, as regards the dependence and the location of the 

splits? In the next experiment, we use particular pixels of the scenes, not all of 

them. Therefore, an equal number of samples per class of each scene was collected 

and utilised with the CM method. This is an experiment on supervised 

dimensionality reduction. 

To identify how the overall dependence changes when different band 

configurations are used, we calculated TD for the entire scene using the bandsets 

obtained in the second experiment. This experiment reveals how different the 

independent spectral bands are when the method is applied in supervised and 

unsupervised ways.  

In the supervised experiment, we selected 200 samples per class of the Salinas 

scene and 90 samples per class of Indiana Pines. So the number of samples used 

for identifying independent spectral regions are 3200 (200*16) and 1170 (90*13) 

for the Salinas and Indian Pines scenes respectively. Table  3.9 shows the details.  

It is observed that the overall dependence between the bands is lower in the 

unsupervised than supervised cases, showing that changes in the spectral 

configurations increase the dependence between the spectral bands. For example, 

the total dependence is 0.596 in a 10-band dataset of the Salinas scene, while TD is 

more, 0.606, when the band configuration in supervised case was used. In the 

other words, using the entire scene provides a bandset with the lowest overall 

dependence among the bands.  

Looking at the split locations obtained in unsupervised and supervised DR, 

several split locations are identical, since a large fraction of the scene is covered by 

the classes selected by the experiment. For instance, 7 out of 9, 12 out of 14, and 16 
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out of 19 split locations are the same in 10-, 15-, and 20-band sets of the Indian 

Pines scene.  

3.6.2. Running time of the CM algorithm 

We kept track of the running time of the CM algorithm and presented it in 

Table  3.10 for four band sets with 5, 10, 15, and 20 bands of the Indian Pines and 

Salinas datasets.  

Table  3.10: The running time (sec.) of the CM algorithm with respect to the number of 

bands for two hypespectral scenes. 
No. of bands Indian Pines Salinas 

5 0.2510 0.2150 

10 0.2210 0.1670 

15 0.1950 0.1460 

20 0.1750 0.1170 

 

As observed, the CM method selects independent spectral regions for all the 

cases in less than half a second which is suitable for on-board data processing. It is 

because, in the CM algorithm, the dependence between the channels of the original 

dataset is, first, collected in a correlation matrix and then the CM algorithm is 

applied to the matrix in a clustering-merging procedure; therefore the method is so 

fast. Using TD in the clustering process is not time-consuming as calculating the 

metric is simple. Table  3.10 also reveals that when the number of bands is higher, 

the elapsed time is less since the algorithm is a bottom-up algorithm, i.e. it starts 

with the maximum number of bands and reduces it in each iteration. Therefore, the 

higher the number of bands, the less the elapsed time.   

3.6.3. Comparison with existing algorithms 

A common methodology to compare different feature sets obtained by various 

algorithms is to compare the accuracy in the detection of materials and objects in 

an image from reduced band configurations (Shaw and Burke 2003). The result of 

material detection per pixel in an image can be summarised in a similar way as 

classification accuracy since image classification is formally the process of 

assigning a label to the observations collected in an image dataset. Although 

selecting independent bands aims to a reduction of redundant information and 

does not have a direct influence on classification, it is expected that an independent 

bandset does not lose the required information for correct recognition of materials 

in a scene. 

To validate the performance of the proposed method, we presented a 

comparison with three other unsupervised feature selection methods, focusing on 
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minimizing the shared information between the channels of hyperspectral data. 

The evaluation has been done by examining the number of features selected by the 

proposed and reference methods vs. the classification accuracy using different 

classifiers to check the relevance of the features selected. Since the running time of 

the algorithm is of importance for onboard processing, we compared the running 

time of all algorithms evaluated. These algorithms are as follows: 

 

Clustering-based band selection: The method was proposed by Martínez-Usó 

et al. (Martinez-Uso, Pla et al. 2007) through a clustering-based strategy. This 

method, first, clusters the channels based on a dissimilarity measure and then 

selects the best representative per cluster. The advantage of this method is that it is 

not a ranking or incremental method that selects bands taking into account the 

previously selected bands, i.e. m selected bands in the clustering-based method is 

not equal to the m-1 selected bands plus another relevant band.  

Two dissimilarity criteria based on information theory were used: 1) mutual-

information-based criterion and 2) divergence-based criterion. The authors utilized 

the measures to compute the amount of dissimilar information between two 

channels, and make a symmetric dissimilarity matrix for the entire hyperspectral 

dataset. Then, a hierarchical clustering process (Jain and Dubes 1988) was applied, 

to form clusters of channels as similar as possible within each cluster. After 

obtaining K desired clusters, a channel was selected by using a weighted method to 

provide the best representative channel predicting the information content of the 

other channels in each cluster. This algorithm used the Ward’s linkage method 

(Ward 1963) in hierarchical clustering, so it is named WaLuMI (Ward’s Linkage 

strategy using Mutual Information), and WaLuDi (Ward’s Linkage strategy using 

Divergence). Since WaLuMI and WaLuDi usually obtain the same results 

(Martinez-Uso, Pla et al. 2007), we use just WaLuMI in this experiment.      

 

Linear prediction and orthogonal subspace projection: Du et al. (Du and 

Yang 2008) applied two similarity-based endmember extraction algorithms (Plaza, 

Martinez et al. 2004) to select bands in an unsupervised manner. They searched 

the most distinctive bands based on linear unmixing methods to model a 

hyperspectral image pixel as a linear mixture of a set of finite image endmembers 

(Du, Ren et al. 2003). The two methods are 1) linear prediction (LP) and 2) 

orthogonal subspace projection (OSP), which were used as the criteria to select the 

most distinctive bands in a sequential forward selection searching strategy. They 

can jointly evaluate the similarity between a channel and multiple channels. The 

former criterion gives a linear estimate of the selected channels and searches for 

the most dissimilar one. The latter maps a channel onto an orthogonal subspace 

defined by the previously selected channels, and then, the channel that yields the 

maximum orthogonal component is considered as the most dissimilar channel to 

the selected ones.  
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In this approach, the authors proposed to use noise whitening after bad 

channel removal to obtain informative bands as well. They applied it to reduce the 

effect of the noise in the channels with large noise components which might be 

identified as informative while they are not. The noise whitening can be achieved 

by the eigendecomposition of the data covariance matrix. After noise whitening the 

linear-based methods are applied. The proposed methods are slow for large images, 

and the authors suggested to resample the data spatially since each band image is 

spatially highly correlated. 

Comparison based on classification accuracy 

We applied the three mentioned methods to compare the results with the 

feature sets obtained by the CM method. These comparisons were performed with 

regards to the classification accuracy of the two datasets.  

 

Figure  3.8: Classification accuracy of different feature sets for the Indian Pines (up) 

and Salinas (down) scenes. 
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We used two types of classifier: maximum likelihood classifier (MLC), and 

support vector machine (SVM), the former is a parametric classifier and the latter 

is non-parametric. Figure  3.8 shows the results.  

In general, the proposed method gives better classification accuracy than its 

competitors. When MLC is applied, the classification results are clearly better than 

the other methods. When, using SVM, WaLuMI sometimes provides channel sets 

with comparable classification accuracy. The channel selection algorithms based on 

linear prediction always give less accurate results than CM.  

1.1.1.1. Comparison based on the running time 

We compared the CM method to the other ones  on the basis of running time. 

Table  3.11 gives the elapsed time for the predefined number of channels or bands 

using different methods. As observed, the CM method is much faster than other 

methods. Therefore, it selects independent spectral regions rapidly which is 

suitable for an on-board band selection process. The main reason is that CM is 

independent of the number of pixels in a scene since all the calculation is based on 

the correlation coefficient matrix derived from the original dataset (assuming the 

effect of the number of pixels on running time to compute the correlation matrix is 

negligible).  

Table  3.11: The running time (sec.) of different independent feature identification 

algorithms vs. number of channels/bands. 
Indian Pines Salinas 

Number of 

features 
LP OSP WaLuMI CM LP OSP WaLuMI CM 

5  6.580 11942  301.216 0.251 49.519 168442 555.06 0.215 

10  18.000 20848 301.214 0.221 170.028 422118 555.03 0.167 

15  45.870 30092  301.189 0.195 398.528 694587 554.96 0.146 

20  83.398 39811  301.203 0.175 707.345 991460 555.76 0.117 

 

The other three methods depend on the number of pixels in the scene, so the 

higher the number of pixels in a scene, the longer the time needed for 

implementation e.g. Salinas scene with 111104 pixels is more costly than Indian 

Pines with 21025 pixels. The LP and OSP use a sequential forward selection 

searching algorithm, so a higher number of bands requires more time. Both 

methods are very time consuming for large datasets, especially OSP.  

Although WaLuMI uses a hierarchical algorithm that is fast for clustering the 

channels of hyperspectral datasets, computing the dependencies matrixes fed to the 

algorithm is time-consuming. As shown, the difference between the elapsed time 

using different number of channels is negligible, while the total time is very 

long,which is caused by the computation of the mutual information matrix derived 

from the hyperspectral dataset.  
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3.7. Conclusion 

In this study, we proposed a fast band selection algorithm for onboard 

implementation on miniaturised hyperspectral platforms. Using TD, as a measure 

of overall dependence in a multivariate system, in a bottom-up searching algorithm 

(CM), we identified independent spectral regions from a hyperspectral dataset. We 

clustered adjacent highly dependent channels by considering a property of TD that 

allows comparing the overall dependence in various band sets. The final band set 

yields the relevant spectral regions in a contiguous manner. Band configurations 

selected by CM in an unsupervised manner were compared with the band 

configurations obtained by supervised DR, i.e. a set of sampled pixels from the 

available classes in the scenes were fed to the algorithm. The results showed the 

band configurations identified in unsupervised mode had a lower dependence. 

Besides, CM is a very fast algorithm that can be implemented onboard Cubesats. 

The elapsed time was independent of the size of the scene and was less than 0.3 

seconds making the algorithm perfect for missions such CubeSats. The final band 

configuration is scene-dependent and includes uncorrelated spectral regions, which 

leads to significant reduction of the data dimensionality. 

The band configurations selected by CM were compared with three other 

unsupervised band selection techniques on the classification accuracy of the given 

scenes and the running time. The results showed the CM method provided band 

sets giving a higher or comparable classification accuracy, and it was quicker than 

other algorithms. 
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Hyperspectral images may be applied to classify objects in a scene. The 

redundancy in hyperspectral data implies that fewer channels or spectral features 

might be sufficient to discriminate the objects captured by a scene. The availability 

of labeled classes of several areas in a scene paves the way for a supervised 

dimensionality reduction (DR), i.e. by using a discrimination measure between the 

classes in a scene to select spectral channels or spectral features. In this study, we 

show that averaging adjacent spectral channels and using wider spectral regions 

yields a better class separability than the selection of the individual channels from 

the original hyperspectral dataset. We used the spectral region splitting method 

which creates a new feature space by averaging neighboring channels. Besides the 

common benefits of channel selection methods, the algorithm constructs wider 

spectral regions when it is useful. Using different class separability measures over 

various datasets resulted in a better discrimination between the classes than the 

best-selected channels. The reason is that the wider spectral regions leads to a 

reduction in intra-class distances and an improvement of the class discrimination. 

The overall classification accuracy of two hyperspectral scenes gave about a two-

percent increase when using the spectral regions determined by applying SRS. 

4.1. Introduction 

1Hyperspectral imagery can provide a complete spectral coverage in the 400–

2500 nm spectral range with narrow spectral channels, causing an increase in the 

data dimensionality (Vane, Green et al. 1993; Green, Eastwood et al. 1998; Goetz 

2009). On the one hand, the high dimensionality of hyperspectral data has the 

potential to identify observed targets and patterns reliably. On the other hand, it 

increases the complexity of the data that must be analysed (Kumar, Ghosh et al. 

2001; Le Moan, Mansouri et al. 2011; Chen, Li et al. 2014). The main challenge of 

using hyperspectral images is to reduce the cost of data inspection without 

degrading the potential of image classification and pattern recognition (Shaw and 

Burke 2003; Jia, Ji et al. 2012; Fauvel, Tarabalka et al. 2013).  

Dimensionality reduction (DR) techniques are usually applied to hyperspectral 

images before classification procedures, to mitigate the so-called curse of the 

dimensionality of hyperspectral datasets (Plaza, Martinez et al. 2005; Oommen, 

Misra et al. 2008; Peng, Zhou et al. 2015). In classification procedures, for 

example, the problem of hyper-dimensionality can usually be observed, i.e. the 

classification accuracy increases gradually with the number of features or 

dimensions but decreases when the number of features (spectral bands) becomes 

                                                             

1 Chapter 4 is based on: Hosseini Aria, S. E., M. Menenti, et al. (2017). "Spectral region 
identification versus individual channel selection in supervised dimensionality reduction of 
hyperspectral image data." Journal of Applied Remote Sensing 11(4): 046010. 
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large (Hughes 1968; Kamandar and Ghassemian 2011). Sometimes, using 

algorithms less dependent on the number of dimensions, such as the Support 

Vector Machine (SVM) (Oommen, Misra et al. 2008; Gheyas and Smith 2010; 

Alonso, Malpica et al. 2011), is a solution. Another way is to obtain a limited 

number of features and applying frequently used classification algorithms to 

achieve a high classification accuracy (Huang and He 2005; Martinez-Uso, Pla et 

al. 2007; Yang, Du et al. 2011; Jia, Ji et al. 2012; Han, Lee et al. 2013).  

The main objective of the DR method used in our approach is to evaluate the 

potential of wider spectral regions versus the narrow channels of original 

hyperspectral data in providing a better class separability and a good classification 

accuracy with a limited number of features. Having sufficient labelled classes based 

on ground truth in an image captured by a hyperspectral sensor, it is feasible to 

measure the separability of the classes in the feature space. In general, the objective 

is to achieve maximum separability of the labelled classes, since by maximising 

class separability, the minimum-error in the classification is expected (Duda and 

Hart 1973; Swain and Davis 1978; Schowengerdt 1997). It can be achieved by 

selecting the spectral bands increasing the class discrimination. This type of band 

selection using a set of pre-defined classes is a supervised method (Huang and He 

2005; Richards and Jia 2006; Yang, Du et al. 2011).  

Ideally, the best bands for an image classification and class separability are 

those which provide larger inter-class distances and smaller intra-class diameters 

in the selected feature space (Duda and Hart 1973; Richards and Jia 2006; Han, 

Lee et al. 2013). For example, the inter-class distance can be obtained simply by 

measuring the Euclidian distance between the class means; and the class variances 

can provide the intra-class diameter. Separability measures such as Mahalanobis 

distance and Jeffreys-Matusita (Schowengerdt 1997) account for both the inter- 

and the intra-class distance implicitly, i.e. a larger Mahalanobis distance gives a 

higher ratio of inter- to intra-class distances. These separability measures can be 

plugged in a DR method to obtain a channel set that maximizes class 

discrimination (Huang and He 2005). 

There are several supervised band selection methods (Chang, Du et al. 1999; 

Kumar, Ghosh et al. 2001; Huang and He 2005; Yang, Du et al. 2011; Han, Lee et 

al. 2013), mostly aiming at maximising class separability. In this Chapter, we apply 

a method called the Spectral Region Splitting (SRS) to identify spectral regions 

which maximize class separability. This method allows the use of different metrics 

to obtain the required spectral configuration, given a hyperspectral dataset. SRS, 

similar to other dimensionality reduction techniques, mitigates the curse of 

dimensionality (Hughes 1968) although it may not be categorised into the standard 

DR methods. 

Usually dimensionality reduction is obtained by feature extraction and feature 

selection techniques with the aim of exploiting the most useful information carried 

by hyperspectral data (Martinez-Uso, Pla et al. 2007; Le Moan, Mansouri et al. 
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2011; Jia, Ji et al. 2012). Feature extraction methods transform the data into a new 

coordinate system to provide the required features, but the transformation may 

compromise critical information associated with the original spectral bands (Wang 

and Chang 2006). On the other hand, feature (channel) selection techniques 

identify a subset of the original channels for a given purpose, having the advantage 

of preserving the original information in the dataset (Guo, Gunn et al. 2006; Yuan, 

Zhu et al. 2015). 

SRS is an alternative method to channel selection techniques, which merges 

adjacent channels into spectral regions (bands), instead of selecting a subset of the 

original spectral channels. Each band covers a number of adjacent channels of the 

original image, and each channel is used in exactly one band. The final band 

configuration is also contiguous, so it covers the whole spectrum captured by an 

imaging spectrometer. At every pixel, the signal value in a band is the average of 

the values of the adjacent channels included in this band. The primary advantage 

over channel selection is that no information gets just thrown away.  

There are also other methods that cluster adjacent spectral channels for 

different purposes and substitute them with a value per pixel, e.g. the mean 

reflectance spectrum (Kumar, Ghosh et al. 2001; Jensen and Solberg 2007; Prasad 

and Bruce 2008; Cariou, Chehdi et al. 2011). For example, Jensen, et al. (Jensen 

and Solberg 2007) averaged adjacent spectral channels when needed to minimize 

the square representation error of spectral curve in a scene (see also Chapter 2); or 

Cariou, et al. (Cariou, Chehdi et al. 2011) used an unsupervised method to find the 

least dependent spectral regions by averaging adjacent channels (see also Chapter 

3). The final bandset obtained by these methods including SRS is a set of 

contiguous spectral regions with different widths covering the whole spectrum. 

Besides the higher signal to noise ratio of the wider bands than of the narrow 

channels of the original hyperspectral data, in this approach, we demonstrate the 

advantage of averaging adjacent channels in increasing class discrimination. 

We applied different separability metrics with SRS, and we evaluated all the 

metrics with two hyperspectral datasets. The separability metrics used were 

Euclidean, Mahalanobis, divergence, Bhattacharyya, transformed divergence and 

Jeffreys-Matusita distance (Schowengerdt 1997). We also compared SRS with three 

well-known search algorithms used in channel selection: Branch and Bound (BB) 

(Narendra and Fukunaga 1977), Sequential Forward Selection (SFS) (Whitney 

1971), and Sequential Forward Floating Selection (SFFS) (Pudil, Novovicova et al. 

1994).  

The selected feature sets were also evaluated regarding classification accuracy, 

although we obtained the features independently of the classification method. This 

type of FS process is called filter approach (Kohavi and John 1997; Sebban and 

Nock 2002; Lodha and Kamlapur 2014), where there is no classifier involved in the 

feature selection procedure, and the features selected are entirely independent of 

the classifier applied in the subsequent classification procedure. As mentioned, in 
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our study, we identify features by focusing on class separability, which is just one of 

the factors to determine the final results of the classification. The other approaches 

are so–called wrapper models (Kohavi and John 1997; Sebban and Nock 2002; 

Lodha and Kamlapur 2014) that select features on the basis of classification 

accuracy. In general, the wrapper approaches search for a subset of features using 

the induction algorithm, and utilise its performance, usually, accuracy, as the 

criterion to select features. We also compared our classification results with the 

ones obtained with an algorithm based on the wrapper approach. 

This study is organized as follows. Next section reviews frequently used search 

algorithms in channel selection and the separability metrics and their properties 

utilized in this approach. Section  4.3 explains the concept of the SRS method, and 

Section  4.4 describes the datasets utilized. Section  4.5 presents four different 

experiments and the results including evaluation of SRS by comparing it with the 

BB, SFS, and SFFS techniques and the classification accuracy achieved. A 

discussion is presented at the end of the section. Finally, the findings of this study 

are summarized in Section  4.6.  

4.2.  State of the art 

In this section, we review search algorithms widely applied in supervised 

channel selection methods. These algorithms select the channels where spectral 

information is more relevant to assign pixels to pre–defined classes in the given 

scene and “relevance” is measured by a specific separability metric. The selected 

channels can later be used in a classification procedure. The review also covers the 

separability metrics used in such algorithms. The review provides a framework to 

evaluate the application of SRS in combination with a separability metric for 

supervised selection of spectral features. 

4.2.1.  Search algorithms  

The aim of the feature (channel) selection methods is to select the best 

combination of n out of N variables on the basis of a predefined metric of 

performance. In the supervised feature selection for DR of hyperspectral images, 

finding a truly optimal combination is very challenging due to the dimensionality of 

data. The selection of a limited number of channels, e.g. 10, from an original 

hyperspectral image, with e.g. 224 channels, requires the evaluation of a huge 

number of combinations, i.e. 7.15*10��, which makes the evaluation of all of them 

impossible. This problem is known to be NP-hard (Amaldi and Kann 1998; Guyon, 

Andr et al. 2003). Therefore instead of an exhaustive search, a greedy algorithm is 

the solution, which solves the problem heuristically to find a near optimal solution 

(Cormen 2009). 
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There are several search strategies to select n out of N spectral channels of an 

original hyperspectral dataset. Here, we briefly explain three frequently used 

search algorithms, which later will be compared with the SRS method.  

Branch and Bound (BB): This technique was developed to select the best 

subset of n features from an N-feature set (Narendra and Fukunaga 1977). The 

algorithm avoids the exhaustive search by rejecting suboptimal subsets without 

direct evaluation and guarantees that the selected subset yields the globally best 

value of any monotonic metric. However, the BB algorithm is applicable for small 

datasets, and if the number of features in the original dataset is high, the utilization 

of BB is expensive (Pudil, Novovicova et al. 1994). This is due to the rapid growth 

with the number of features of the enumeration scheme (solution tree) in the BB 

algorithm, leading to a dramatic increase in computational cost (Somol, Pudil et al. 

2004; Bader, Hart et al. 2005). 

Sequential Forward Selection (SFS): This method has been used in many 

feature selection approaches (Sotoca, Pla et al. 2007; Le Moan, Mansouri et al. 

2011; Yang, Du et al. 2011; Han, Lee et al. 2013) and can be applied to large 

datasets. This method is much faster than BB (Pudil, Novovicova et al. 1994). SFS 

is an iterative process that selects a single element (such as a channel) that appears 

to be the best when combined with a previously selected subset of elements 

(Whitney 1971). The principle of SFS and SRS is similar (see Section  4.3). The 

method reduces the complexity of selection significantly by progressively ranking 

the evaluated selections. It permits an analyst to make trade-offs between system 

complexity and performance. However, SFS suffers a problem, the so-called 

“nesting effect”, i.e. a feature once selected cannot be discarded later.  

Sequential Forward Floating Selection (SFFS): This method is also a 

sequential search method that is characterized by dynamically changing number of 

features included or eliminated at each step (Pudil, Novovicova et al. 1994). 

Features selected can be later discarded in a search strategy which avoids the 

nesting effect problem. There is no guarantee, however, that SFFS always provides 

a better subset of features than SFS. SFFS is also faster than BB (Pudil, Novovicova 

et al. 1994).  

4.2.2.  Separability metrics 

The separability distance shows how well the given classes are separated in the 

feature space, which provides guidance for the actual classification of images. 

Swain and Davis  define the separability analysis as a performance assessment 

based on the training data to estimate the expected error in the classification for 

various feature combinations (Swain and Davis 1978). The training samples per 

class in a scene should be selected from the homogenous areas which provide a 
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Mahalanobis distance (Mh in Eq.( 4.2)). It comprises both the inter- and intra-class 

distances. 

 

 �ℎ = ¨μ0 − μ¢�¦ ©Ʃ0 + Ʃ¢2 «�� μ0 − μ¢�¬�/�
 ( 4.2) 

One of the problems of this metric is that the distance is zero when the class 

means are the same, no matter what the variances are. For example in Figure  4.1, if μ0 = μ¢ while �0� ≠ �¢�, the Mh metric equals zero, showing that the metric is not 

comprehensive. The divergence (D in Eq.( 4.3)) and Bhattacharyya (B in Eq.( 4.4)) 

metrics overcome this problem, where tr[A] and |A| denote the trace and 

determinant of matrix A.  

 

 
= = 12 b�®Ʃ0 − Ʃ¢�HƩ0�� − Ʃ¢��I¯

+ 12 b�®HƩ0�� + Ʃ¢��Iμ0 − μ¢�μ0 − μ¢�¦¯ ( 4.3) 

 

 ° = 18 �ℎ + 12 ²! ¨|Ʃ0 + Ʃ¢�/2||Ʃ0||Ʃ¢|��/� ¬ ( 4.4) 

These two metrics are never zero unless both the means and the covariance 

matrices for the two classes are identical. Both metrics are the summation of two 

terms, where one of the terms is independent of class means keeping the metrics 

non-zero when the class means are equal. However, these two metrics are not yet 

entirely satisfactory as they do not have a maximum value and can get any positive 

value. The Mh and ED metrics have the same issue as well, which becomes a 

problem when evaluating the separability of multiple classes. In these cases, the 

separability is estimated by averaging the separability values over all class pairs. 

When the separability metric has no maximum value, the average may be biased 

due to one or more classes being far away from other overlapping classes in feature 

space (Swain and Davis 1978; Han, Lee et al. 2013). A separability metric with a 

known maximum value always provides a value showing whether the given classes 

have overlap or not. Furthermore, we can estimate how far the classes are. The 

closer the separability metric to the maximum value, the better separated the 

classes are. For example assume that there are four classes and the maximum value 

of the separability metric is M. To compute the separability in this multi-class case, 

we have to calculate the separability for the six class pairs and average them. If the 

average value is equal to M, it means that there is no overlap between the classes, 

otherwise there is.  

The problem conserning the maximum value of the separability metrics is 

solved with the transformed divergence (Dt in Eq. ( 4.5)) and Jeffreys-Matusita 

(Bruzzone, Roli et al. 1995) (JM in Eq. ( 4.6)) metrics, which have a maximum value 



  

 

 

 

71  4.3. Proposed Method 

of 2 and 1.4142, respectively. The maximum value is achieved when classes do not 

overlap with each other. 

 

 =a = 2®1 − 
��/³¯ ( 4.5) 

 

 ´� = [21 − 
�µ�]�/� ( 4.6) 

 

The square root in the JM metric is sometimes omitted, which makes the 

maximum value of JM equal to 2 (Richards and Jia 2006). All of the mentioned 

separability metrics compute the distance between two classes. In multiclass cases, 

a common solution is to calculate the mean distance over all class pairs (Jensen 

2015): 

 

 ¶0·¸ = ∑ ∑ ¶0¢�¢%¹�����0%� �  ( 4.7) 

 

where ¶#Z is a separability measure between the classes a and b, m is the 

number of classes and C is the number of class pairs. 

4.3. Proposed Method 

4.3.1. Spectral Region Splitting 

The spectral region splitting (SRS) method is a top-down algorithm i.e. it 

starts with a single broadband and breaks it down into narrower spectral bands. 

The signal in the initial broad band per pixel is the mean signal (radiance or 

reflectance) of all channels of the original dataset captured by an imaging 

spectrometer. The algorithm searches for the best spectral location to split the 

broad band into two bands, then applies iteratively the same procedure to the new 

spectral bands..  

The search is based on the given objective and corresponding metric, which in 

this Chapter is the best class discrimination. The first two spectral regions give the 

maximum separability on average of the classes defined in the scene. Next, the 

algorithm searches for the second spectral location giving the highest separability, 

taking into account the location of the first split. This process continues iteratively 

till either a predefined mean separability (Eq. 4.7) is achieved with the selected 

bands, or the number of spectral regions reaches the predefined termination point. 

Finally, we have a set of continuous bands with different widths covering the entire 

spectrum. The SRS procedure is described schematically in Table 2.1.  

4.3.2.  SRS with the class separability metric 
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The channel selection methods operate keeping the original channel width 

(Huang and He 2005; Yang, Du et al. 2011; Han, Lee et al. 2013). Such methods 

search in the original hyperspectral space consisting of hundreds of narrow 

channels and select the channels providing the optimal value of the given metric. If 

the target application is classification, this metric is usually a separability metric., 

which is calculated based on the known classes in the scene. In each channel, the 

class attributes, such as mean or variance, are known and constant, and the search 

algorithm finds the best channel combination maximizing separability.  

In the SRS algorithm, besides the possibility of selecting narrow channels, 

there is also the freedom to average the narrow channels and construct wider 

spectral regions with new class means and variances. The algorithm can average 

the channels to yield a better class discrimination than the selection of just 

individual channels. By averaging the channels, two situations may cause a better 

discrimination among the classes: 1) a larger distance between the class means (i.e. 

an increase in the inter-class distance), and 2) a smaller class variance (i.e. a 

reduction in the intra-class distance). 

Here, we prove that the intra-class distance becomes smaller in the new 

feature space. Let s = {s�, s�, … , s�} be a class in a hyperspectral dataset having n 

independent spectral channels with m sample pixels per channel. The class 

variance is a vector given as �� = {���, ���, … , ���}. The variance of the linear 

combination º = ∑ �#s#�#%� , where ��, ��, … . �� are real constants (�# ∈ �), is: 

 

�»� = " �#��#�
�

#%�  ( 4.8) 

 

In SRS, when the neighbouring channels are averaged to yield a wider band, 

the variance of each class will be the summation of all the class variances in the 

channels divided by the factor !�, where n is the number of constitutive channels of 

the band. In fact, if the class variances in all channels are equal to ��, the class 

variance for a band obtained by averaging those channels is �� !�¼ , leading to a 

smaller intra-class distance. This argument can be the main point to achieve a 

better class separability when the SRS method is applied. 

4.3.3.  SRS iterations 

SRS, likewise most search algorithms, detects a suboptimal feature subset 

based on the selected criterion, to avoid an exhaustive search for all possible 

combinations. The total number of subsets of size n out of N possible elements, 

n<N, is ��p = p!p���!�!. In the case of hyperspectral images, the number of 
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combinations is indeed very large, e.g. the number of possible selections of 10 out 

of 200 channels is 2.25*10��. Whitney (Whitney 1971) proposed the sequential 

forward selection method, to reduce the number of subsets evaluated and obtain a 

suboptimal subset. This iterative process selects a single element (like a channel) 

that appears to be the best when combined with a previously selected subset of 

elements. SRS follows the same rule as well. Since SRS searches for the location of 

the split to divide the spectrum, the number of possible locations is N-1 at each 

iteration, where N is the number of channels. Therefore, the number of subsets 

searched to find a subset of n bands from an original dataset (2 ≤ ! ≤ U) is given 

by 

 

"U − ]� = ! − 1� ¾U − !2¿���
#%�  ( 4.9) 

 

Thus, the previous example of selecting 10 bands out of 200 channels requires 

evaluating 1746 band sets, i.e. 13 orders of magnitude (10��) less than the number 

of band-sets searched by the exhaustive search strategy. 

4.4. Dataset 

The algorithm was evaluated by applying it to two hyperspectral datasets 

acquired by AVIRIS over a mostly vegetated area in North-Western Indiana, and 

the Salinas Valley, California, USA. The AVIRIS sensor covers the spectrum from 

400nm to 2500nm in 224 spectral channels (Vane, Green et al. 1993; Green, 

Eastwood et al. 1998). The details of the images are as follows: 

Indian Pines: The scene consists of 145*145 pixels with a spatial resolution of 

about 20m. Two-thirds of the Indian Pines scene is covered by agriculture, and 

one-third by forest and other natural perennial vegetation. The available ground 

truth on land cover is based on sixteen classes, but it does not completely cover the 

entire scene. Since three classes in the scene contain less than 50 samples, we did 

not use them for the experiments. After the atmospheric correction and the 

removal of noisy channels (Appendix  A), the number of channels was reduced to 

178. We removed water absorption channels (104-108, 150-163, and 220), noisy 

channels (1-4, 103, 109-111, 148-149, 164-166, and 217-219), and seven channels 

that are spectrally overlapping (channels 32, 33, 95, 96, 158, 191, and 192). The 

Indian Pines dataset is available free of charge via Purdue's University website: 

https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html.  

Figure  4.2 shows the scene and its reference ground truth data with 13 classes. 

Table  4.1 is the legend of the reference data giving information about all the 

available classes in the scene in addition to the unclassified pixels (unknown class). 
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The classes not included in our evaluations are shown as black, the same as the 

unclassified pixels. 

 

  
Figure  4.2. True color image of Indian Pines scene and the reference data. 

 

Table  4.1. The legend of the Indian Pines reference data and their respective samples 

number. 
# Class Samples Color 

1 Alfalfa 46  
2 Corn-notill 1428  
3 Corn-mintill 830  
4 Corn 237  
5 Grass-pasture 483  
6 Grass-trees 730  
7 Grass-pasture-mowed 28  
8 Hay-windrowed 478  
9 Oats 20  

10 Soybean-notill 972  
11 Soybean-mintill 2455  
12 Soybean-clean 593  
13 Wheat 205  
14 Woods 1265  
15 Buildings-Grass-Trees-Drives 386  
16 Stone-Steel-Towers 93  
17 Uknown samples 10776  

 

Salinas: This scene is characterized by high spatial resolution (3.7m). The area 

covered comprises 512 lines by 217 samples. The dataset is available at 

http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes only 

as at-sensor radiance with 20 water absorption channels (108-112, 154-167, and 

224) discarded. We corrected the data atmospherically and removed the noisy (see 

Appendix A) (1-4, 107, 113, and 220-223) and duplicated channels (33, 34, 97, 98). 

The final dataset has 190 channels.  
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Figure  4.3. True color image of the Salinas scene 

and the reference data. 
 

Table  4.2. The legend of the Salinas reference data and their respective samples 

number.  
# Class Samples Color 

1 Brocoli_green_weeds_1 2009  
2 Brocoli_green_weeds_2 3726  
3 Fallow 1976  
4 Fallow_rough_plow 1394  
5 Fallow_smooth 2678  
6 Stubble 3959  
7 Celery 3579  
8 Grapes_untrained 11271  
9 Soil_vinyard_develop 6203  

10 Corn_senesced_green_weeds 3278  
11 Lettuce_romaine_4wk 1068  
12 Lettuce_romaine_5wk 1927  
13 Lettuce_romaine_6wk 916  
14 Lettuce_romaine_7wk 1070  
15 Vinyard_untrained 7268  
16 Vinyard_vertical_trellis 1807  
17 Uknown samples 56975  

The ground-truth on the land cover is also available, which contains 16 classes 

including vegetables, bare soils, and vineyard fields, which all the classes used in 
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the our experiments. Figure  4.3 shows the scene and the ground – truth reference 

data, and Table  4.2 shows the legend. 

4.5. Experiments and results 

SRS was applied to the two hyperspectral datasets with the criterion of optimal 

separability between the classes in the scenes. To assess SRS, we compared it with 

the search algorithms used for channel selection and described in Section  4.2.1. 

This evaluation was performed by comparing the mean separability (Eq. ( 4.7)) and 

classification accuracy vs. the number of features in each step. We also compared 

the classification accuracy obtained by SRS with a wrapper algorithm. 

For the experiments, we separated the available samples (pixels) for each 

land-cover class into training and testing data using a random subsampling 

method, so that the training set represents the distribution of class attributes well. 

The training datasets were generated by taking 35%, 50% and 70% of the total 

number of samples (pixels) per class and the remaining samples were considered as 

validation data. Finally, the results obtained with the three datasets were averaged. 

We repeated random sub-sampling validation using different partitions of the 

samples per class and averaged the results (Bubitzky, Granzow et al. 2007) to 

derive a more accurate estimate of the model performance and generalise the 

statistical analyses.  

4.5.1. SRS vs. best-selected channels  

In the first experiment, we compared the spectral bands constructed by SRS 

with the best channels having the maximum separability selected by the BB search 

algorithm. As mentioned, BB selects the best n features with the highest value of 

the given metric out of an N-feature dataset. All other channel selection methods 

would choose n channels giving a lower or at best equal value of the metric than the 

channel set selected by BB. However, BB is costly when applied to large datasets 

(Pudil, Novovicova et al. 1994). Therefore, we used smaller datasets with 20 

channels in this experiment. 

The 20-channel datasets were chosen from two spectral regions of the Indian 

Pines scene: 1- visible (VIS) spectral region 400-637nm, and 2- near-infrared (NIR) 

spectral region 647-822nm. The two common separability measures; Mh and JM, 

were applied as separability metrics with the SRS and BB algorithms. We also 

applied the two other search algorithms to select channels: SFS and SFFS. These 

two algorithms do not select the channels having a better result than BB since they 

select a suboptimal channel set (see Section  4.2.1). We used them in this 

experiment to benchmark their performance against BB, prior applying them to the 

entire scene in the second experiment. 
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Figure  4.4. The mean class separability vs. the number of features obtained by 

applying the Mahalanobis (left panel) and Jeffreys-Matusita (right panel) distances 

and the four algorithms described in the text; the datasets used are two spectral 

subsets with 20 channels of the Indian Pines scene in the visible (VIS) and near 

infrared (NIR) spectral region. 
 

The first experiment shows the SRS method can provide a better class 

discrimination than the best selection of spectral channels (Figure  4.4). When the 

number of bands is small (in the worst case was three); SRS may not give a better 

class separability than channel selection. After a few iterations, however, the SRS 

method creates spectral regions providing better separability. The spectral regions 

identified by SRS would discriminate the classes better than the same number of 

selected spectral channels. This result was obtained in all cases, regardless of 

whether Mh (Eq. ( 4.2)) or JM (Eq. ( 4.6)) was used. Table  4.3 also gives the value of 

JM on the NIR subset for more clarification.  

The performance with both SFS and SFFS is almost as good as the BB 

selection in most cases. SFFS sometimes gave a lower separability than SFS, e.g. 

when Mh is used over NIR spectral regions. The result of the final selection, i.e. 20 

features, was the same for all the algorithms, since all available features were 

applied to determine separability with all the algorithms. 

Overall, a spectral configuration determined by SRS identifies features that 

give better class separability than the other search algorithms used for channel 

selection in this study (Figure  4.4 and Table  4.3). The widely used search methods, 

SFS and SFFS, result in channel sets providing lower class separability than the 

channels selected by BB per dataset to maximize separability, although the 

differences are rather small. 
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Table  4.3. Mean Jeffreys-Matusita distance 

between the class pairs using the bands 

and channels obtained by different 

algorithms over the NIR dataset.  
No. of 

features 
SFS SFFS BB SRS 

1 1.1762 1.1585 1.1762 0.7635 

2 1.3304 1.3314 1.3325 1.3347 

3 1.3692 1.3676 1.3694 1.3666 

4 1.3784 1.3772 1.3793 1.3833 

5 1.3858 1.3850 1.3859 1.3905 

6 1.3899 1.3901 1.3901 1.3948 

7 1.3926 1.3926 1.3926 1.3962 

8 1.3945 1.3944 1.3945 1.3974 

9 1.3963 1.3963 1.3963 1.3984 

10 1.3978 1.3979 1.3979 1.3995 

11 1.3992 1.3994 1.3994 1.4004 

12 1.4004 1.4006 1.4006 1.4013 

13 1.4017 1.4017 1.4017 1.4022 

14 1.4026 1.4025 1.4026 1.4030 

15 1.4034 1.4034 1.4034 1.4037 

16 1.4042 1.4042 1.4042 1.4044 

17 1.4049 1.4049 1.4049 1.4050 

18 1.4055 1.4055 1.4055 1.4056 

19 1.4061 1.4061 1.4061 1.4061 

20 1.4065 1.4065 1.4065 1.4065 

 

4.5.2. SRS vs. conventional channel selection methods 

The second experiment compares the SRS with SFS and SFFS by applying 

them to the complete datasets. The BB algorithm is not applicable for a large 

dataset (see Section  4.2.1). We used the six separability measures mentioned in 

Section  4.2.2, and both datasets were used, Indian Pines and Salinas. Figure  4.5 

and Figure  4.6 illustrate the trends in mean separability vs. the number of features 

for the two different hyperspectral scenes, where the number of features increases 

from two to maximum 30. 

Overall, SRS yields a better separability with a higher number of bands in all 

cases except when Euclidean distance was applied. The main difference between 

the Euclidean distance and the other metrics is the class variance that is not taken 

into account by the Euclidean distance, which only accounts for inter – class 

distance. 
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Figure  4.5. The mean separability of the features obtained by different algorithms for 

the Indian Pines dataset. 
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Figure  4.6. The mean separability of the features obtained by different algorithms for 

the Salinas dataset. 
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It means that a new feature space is generated by SRS, but if based on the class 

mean only, it gives a worse discrimination. On the other hand, when other 

separability metrics are used, SRS achieves a better class discrimination than SFS 

and SFFS. These metrics consider both the class mean and the class variance, 

which contributes to improve the separability. Initial selections usually give better 

performance with individual channels than with wider spectral bands. The number 

of wider bands needed for higher separability than with spectral channels, is 

different from case to case, but at some points SRS always provides a better 

separability. For example, even with two bands SRS gave a better result than 

channel selection methods when Bhattacharyya or Divergence metrics were applied 

with the Indian Pines dataset. In the worst case, at least seven bands are needed to 

achieve a better SRS performance for the Salinas scene, when the Dt metric is 

applied.  

Sometimes SFFS does not select the number of channels predefined by the 

termination point since SFFS remains in a local loop during the search and cannot 

determine the required number of features. It occurs during the “conditional 

exclusion” of the features already selected in the backward process of the algorithm 

(see reference (Pudil, Novovicova et al. 1994) for the details).  

 

Table  4.4: A hypothetical example of steps in a run of the SFFS 

algorithm remaining in a local loop. 

Step Action k �c J(�c) J(�c��) 

1 Add feature 1 1 [1] 1 -- 

2 Add feature 2 2 [1,2] 3 1 

3 Add feature 3 3 [1,2,3] 5 3 

4 Add feature 4 4 [1,2,3,4] 7 5 

5 Add feature 5 5 [1,2,3,4,5] 9 7 

6 Remove feature 2 4 [1,3,4,5] 8 4 

7 Add feature 6 5 [1,3,4,5,6] 10 8 

8 Add feature 2 6 [1,3,4,5,6,2] 12 10 

9 Remove feature 5 5 [1,3,4,6,2] 11 6 

10 Remove feature 6 4 [1,3,4,2] 7 4 

11 Remove feature 4 3 [1,3,2] 5 2 

12 Remove feature 3 2 [1,2] 3 1 

 

We developed a hypothetical example (Table  4.4) of the steps in a run of the 

SFFS algorithm, since in the practical cases of this experiment, the number of steps 
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is too large to reveal this issue. Let k be the number of features in the set SÁ and 

J(SÁ) be the criterion function for the given set, then the example is as in Table  4.4.  

At Step 2, the features are [1,2], which are again obtained ten steps later, at 

Step 12. When the iteration continues, the same loop will be repeated, and the 

other features of the original data set will not be selected. This situation is more 

likely to occur when the number of features is large. In these cases, we considered 

the maximum number of channels provided by SFFS. 

Using the Euclidean distance, the result of SFS and SFFS were the same. 

Furthermore, SFFS does not always provide a higher separability than SFS  (Spence 

and Sajda 1998), and the result with the two methods are almost the same, while 

the SRS results were better. Table  4.5 also gives more details about the spectral 

location of the channels and the splits selected by the two algorithms using the JM 

metric. 

  

Table  4.5. The spectral locations (in nm) of the channels and splits selected by SFS-JM 

and SRS-JM respectively for the Indian Pines dataset in the order of selection. 

SFS-JM 
677, 976, 1641, 2113, 754, 528, 697, 1983, 716, 1091, 627, 783, 1293, 1512, 1770, 

587, 2262, 1139, 706, 1760, 1993, 548, 667, 2093, 2202, 725, 745, 617, 947, 1283. 

SRS-JM 

697, 1148, 2003, 735, 687, 1571, 841, 657, 577, 1789, 1323, 1120, 1621, 1283, 

1730, 1983, 1442, 985, 899, 617, 1462, 488, 1091, 2153, 2083, 2242, 2192, 956, 

677. 

 

4.5.3. Separability with wider spectral bands  

The second experiment suggests that the class variance (intra-class distance) 

is the major determinant of the better separability achieved by SRS, since we just 

obtained the worst result by SRS when the Euclidean distance was used. We 

evaluated in detail the role of the class variance (intra-class distance) in 

determining class separability by analysing the variations of both intra- and inter-

class distances. This evaluation was performed by averaging of all the intra- and 

inter-class distances for Indian Pines dataset using the features identified by SRS 

and SFS at each iteration. There are 13 intra-class (class variance) per feature and 

78 inter-class distances per feature set. The number of features in a set is increasing 

in each iteration. Therefore, for a given feature set with k bands or channels, we 

calculated the mean value of k*13 intra-class and 78 inter-class distances. We 

consider the results of the two most comprehensive separability measures: JM and 

Dt (Figure  4.7). 
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Figure  4.7. The mean intra-class (left panel) and inter-class (right panel) distance of 

13 classes for the Indian Pines dataset with different number of features when 

Jeffreys-Matusita (JM) and transformed divergence (Dt) measures are applied with the 

SRS and SFS search algorithms. 
 

As expected (see Section  4.3.2), the mean intra-class distance (class variance) 

obtained with the spectral bands is smaller than with individual channels in most 

cases, i.e. the mean intra-class distance becomes smaller when the channel signals 

are averaged. The difference increases with the number of bands. Analysing the 

inter-class distances (Figure  4.7 right) reveals that none of the methods performs 

better than the other ones, since each method sometimes gives a higher mean inter-

class distance (distance between the class centroids).  

From the three experiments, it can be concluded that a bandset created by SRS 

with the proper number of bands gives better separability than any other channel 

selection method for a given class set, and this is mainly due to the reduction of the 

intra-class distances, because of averaging the channel signals. The SRS 

separability is lower in the initial iterations, because the initial SRS bands are 

usually very broad. In this case the class variances of the constitutive channels are 

not usually equal, and an individual channel having a small class variance may 

yield a better class separability. For example, a vegetation class has a larger NIR 

than VIS variance, so a narrow VIS channel is likely to give a smaller variance than 

the average of all the variances across the spectrum. After the first iterations, 

however, the newly formed spectral bands give comparable variances and yield a 

better separability of the classes in a scene. As an example, the sequence of the first 

20 splits selected by SRS using JM on the Indian Pines scene is: 702, 1115, 2048, 

1596, 721, 856, 642, 1517, 1794, 582, 990, 692, 523, 2158, 740, 894, 1685, 1998, 

2257 and 493 nm.  

4.5.4. Classification accuracy  
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Finally, we applied two classifiers to the selected bands and channels, and 

computed the accuracy of classification to evaluate and compare performance. 

Although the classification accuracy depends on several factors, the separability of 

classes usually has a significant impact on the final result of the classification. In 

this experiment, Maximum Likelihood Classifier (MLC) and Support Vector 

Machine (SVM) were applied to the final channels and bands identified by SFS, 

SFFS, and SRS using the JM and Dt metrics. The classification accuracies of the two 

datasets were averaged and illustrated in Figure  4.8 for the two scenes. able  4.6 

also gives the accuracy of six instances of  feature sets determined by SFS-JM, SRS-

JM. 

 

Figure  4.8. The classification accuracy obtained with the classifiers MLC and SVM 

applied to the bands and channels identified by SRS, SFS, and SFFS and applying the 

Jeffreys-Matusita and Transformed Divergence separability metrics ; Indian Pines 

(upper panel) and Salinas (lower panel) scenes. 
 



  

 

 

 

85  4.5. Experiments and results 

Table  4.6 The classification accuracy of two DR methods (SFS-JM and SRS-JM) based 

on the filter approach and one method (SVM-RFE) based on the wrapper approach.    

Dataset Indian Pines Salinas 

Classifier MLC SVM MLC SVM 

Method 
SFS-

JM 

SRS-

JM 

SFS-

JM 

SRS-

JM 

SVM-

RFE 

SFS-

JM 

SRS-

JM 

SFS-

JM 

SRS-

JM 

SVM-

RFE 

 N
u

m
b

e
r 

o
f 

fe
a

tu
re

s 
 5 68.73 

 

71.78 

 

75.53 

 

74.18 

 

43.01 

 

78.69 

 

82.22 

 

77.67 

 

76.96 

 

73.38 

 
10 80.65 

 

83.27 

 

83.43 

 

84.94 

 

72.22 

 

80.09 

 

85.35 

 

79.21 

 

78.33 

 

81.28 

 
15 83.53 

 

86.99 

 

83.43 

 

84.94 

 

76.70 

 

84.71 

 

87.42 

 

79.33 

 

79.10 

 

83.16 

 
20 85.50 

 

88.72 

 

86.80 

 

87.55 

 

81.21 

 

86.71 

 

87.72 

 

80.04 

 

79.47 

 

87.03 

 
25 86.76 

 

89.86 

 

87.68 

 

88.19 

 

84.21 

 

86.85 

 

88.15 

 

80.28 

 

80.62 

 

88.05 

 
30 87.95 

 

90.76 

 

88.41 

 

88.78 

 

87.76 

 

86.82 

 

88.04 

 

80.61 

 

81.17 

 

88.17 

 
 

The classification accuracy obtained with the spectral bands identified by SRS 

is higher than the accuracy obtained with the channel selection methods. When the 

number of features is small, SFS and SFFS may give better results. On the other 

hand, with maximum four spectral features, SRS gives higher accuracy than either 

SFS or SFFS for the Indiana Pines scene when MLC was used as the classifier. For 

the Salinas scene, there are larger fluctuations in the classification accuracy, i.e. 

sometimes the channel selection methods gave better results when the number of 

bands is low, while with higher number of bands SRS had better accuracy. MLC 

gave a larger improvement in classification accuracy with the bandset created by 

SRS than with SVM. On average, the improvements are about 3.24% and 0.96% 

when MLC and SVM were used respectively. This is due to the reduction in class 

variances having a larger impact on a parametric classifier like MLC that considers 

the distributions of class attributes explicitly. 

4.5.5.  Comparison with a wrapper approach 

The last results revealed that the band configurations identified by SRS gave a 

noticeable improvement in classification accuracy compared with the channel 

selected by SFS and SFFS, especially when the MLC was used. Although our focus 

was on feature selection based on the filter approach, we compared the results of 

classification with an algorithm based on the wrapper models (Kohavi and John 

1997; Sebban and Nock 2002; Lodha and Kamlapur 2014) as well. In the wrapper 

models, features (channels) are usually selected given the classifier based on a the 

accuracy of classification. It is usually assumed that the wrapper approaches 

achieve better classification accuracy than the filter approaches since they identify 

features that better suit the classification algorithm regarding the performance 
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(Guyon, Weston et al. 2002; Bazi and Melgani 2006; Kuo, Ho et al. 2014). The 

wrapper approaches, on the other hand, are computationally more expensive than 

the filter approaches (Santos, de S Celes et al. 2012; Sarhrouni, Hammouch et al. 

2012). We examined a well-known wrapper algorithm for channel selection on the 

basis of classification accuracy in comparison with a method giving a better 

classification results in our experiments: SRS-JM combined with MLC. Infact, SRS-

JM identifies features based on maximising class separability, to be applied with 

the classification algorithm, while a wrapper algorithm selects features to maximise 

classification accuracy. 

We used SVM-RFE (recursive feature elimination) as a wrapper algorithm 

(Guyon, Weston et al. 2002; Pal 2006; Zhang and Ma 2009; Huang, Hung et al. 

2014; Kuo, Ho et al. 2014) in this study. In RFE, the decision function of the SVM, 

i.e. finding an optimal hyperplane that maximizes the marginal distance between 

two classes, is used as the criterion to select features in a backward elimination 

approach. It computes ranking weights based on the training samples for all the 

features and sorts the features according to weight vectors (Guyon, Weston et al. 

2002; Huang, Hung et al. 2014). 

For the SVM-RFE algorithm implemented in this experiment, we considered 

the commonly used “one-against-all’ strategy (Bazi and Melgani 2006; Huang, 

Hung et al. 2014). The “One-against-all” strategy converts the problem of k classes 

(k>2) into k dual-class problems. The radial basis function (RBF) (Pal 2006; Zhang 

and Ma 2009; Kuo, Ho et al. 2014) is utilised as the kernel function to map the 

original feature space into the higher dimensional space. For the kernel width 

factor (γ) and regularization parameter (C), we applied different values suggested 

in literature and chosen the ones giving the best classification performance, i.e. γ 

=0.1 and C=2000 proposed by  

In this experiment, we investigated which combination of features and 

classifiers would give a higher classification accuracy. So, the accuracy achieved 

with the spectral configuration constructed by SRS-JM, combined with MLC, was 

compared with the accuracy obtained by SVM-RFE for each dataset (Figure  4.9). 

Table  4.6 also gives the accuracy obtained with six feature sets determined by SVM-

RFE in comparison with SRS-JM.  
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Figure  4.9. The classification accuracy obtained by a filter approach i.e. features 

identified by SRS-JM and the classification with MLC, and one wrapper approach 

(SVM-RFE) for two datasets. The legend gives in each row the feature 

identification algorithm, the classification method, and the dataset used 

respectively. 
 

It was observed in this experiment that the combination of the features 

identified by SRS-JM and MLC gave a better or comparable classification accuracy 

than the wrapper method. The SVM-RFE combination starts with classification 

accuracy of about 70% for Salinas scene and increases gradually, and reaches the 

accuracy of SRS-JM with MLC when the number of features is about 25. For the 

Indian Pines dataset, SVM-RFE had a lower accuracy than SRS-JM in all cases, 

while the difference became less by increasing the number of features. The SRS-

JM-MLC gave about 3% higher classification accuracy with 30 features. 

In comparison with the SVM-RFE algorithm, the spectral configuration 

determined by SRS gave a better or comparable classification accuracy when MLC 

was used as the classifier and the number of features was less than 30. 

4.5.6. Discussion  

We compared SRS with three search strategies used in channel selection: 

branch and bound, sequential forward selection, and sequential forward floating 

selection, by applying different separability metrics: Euclidean, Mahalanobis, 

Bhattacharyya, Divergence, Transformed Divergence, and Jeffreys-Matusita.  

In the first experiment, the comparison between SRS and BB indicated that 

SRS gives better results than the best-selected channels over small data sets. Then, 

SRS was compared with widely used algorithms in channel selection, i.e. SFS and 
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SFFS, using different separability metrics over complete hyperspectral datasets. 

The second experiment had a very similar outcome, i.e. better class discrimination 

by SRS with a higher number of bands. On average, at least four spectral bands are 

needed to have better separability than by selecting narrow channels. 

 The third experiment analysed the effect of the broader spectral regions 

formed by SRS on two main factors of class discrimination: inter-class and intra-

class distances. The results of this experiment and the second one revealed that the 

main reason why SRS provides a better class separability is the reduction of intra-

class distances due to the broader spectral bands identified by SRS. Having a better 

separability between the classes in a scene leads to a higher classification accuracy 

in a filter-based approach, and finally, a better identification of observed targets, as 

shown by the fourth experiment. Comparison with a wrapper approach, in the fifth 

experiment, revealed that the combination of SRS and MLC gave a better or 

comparable accuracy of classification.  

4.6. Conclusion: 

The approach we propose demonstrates the importance of averaging narrow 

channels in improving the class separability by utilizing a new dimensionality 

reduction method of hyperspectral data, which identifies spectral regions with the 

aim of optimal class discrimination. We have shown that the algorithm, i.e. the 

Spectral Region Splitting (SRS), applied with a class separability metric can provide 

a bandset with a better class separability than the best channels selected from the 

original dataset with the same criterion. The reason is that SRS does not preserve 

the width of the original spectral channels, unlike the channel selection methods, 

and defines a new feature space by merging the adjacent spectral channels if it is 

necessary. Averaging the narrow adjacent channels results in smaller intra-class 

distance by reducing the class variances leading to an increase in class separability. 

We concluded that whenever the separability measures include the intra-class 

parameters, SRS provides a better class discrimination when there is an adequate 

number of bands. The experiments were implemented on two different 

hyperspectral datasets including various types of classes. Eventually, the scenes 

were classified applying the selected bands showing that SRS increased the 

accuracy of classification by about 2%.  
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This chapter presents a comparative assessment of the bandsets obtained with 

the methods described in the previous chapters and designed to meet the three 

objectives articulated in the Introduction. There are three different comparisons 

were performed for the assessment using two different hyperspectral datasets. 

These comparisons are based on the spectral configurations determined, the 

running performance of the algorithms, and the image classification accuracy.  

After each comparison, a discussion about the results is presented.  

5.1. Introduction 

The main scope of this thesis was to develop and evaluate methods to reduce 

the dimensionality of hyperspectral images by extracting the necessary spectral 

information. For this purpose, we identified three objectives: spectral 

representation, independent spectral bands, and spectral bands for optimal class 

separability (Section  1.5.1). The implementation of the methods to achieve these 

three objectives has been presented in detail in the Chapters 2, 3 and 4, along with 

numerical experiments to evaluate alternate solutions.  

In this chapter, we present a comparative evaluation of the spectral 

configurations determined to meet each objective.  

This assessment is based on three different comparisons. First, the spectral 

configurations determined for each separate objective were compared with each 

other on the basis of the positions of the splits dividing the full spectrum into a set 

of spectral bands. This evaluation shows how different the spectral configurations 

are to meet each one of the three identified objectives. In addition, we compared 

the computational load to apply different algorithms. Finally, we compared the 

accuracy of scene classification using the different spectral configurations, i.e. the 

ones obtained to meet each objective. The last comparison yields an assessment of 

the relevance of determining objective–specific spectral configurations. Image 

classification is a frequently used application to evaluate reduced spectral 

configurations. The three comparisons are presented in Section  5.2,  5.3, and  5.4 

respectively. 

We conducted all the experiments on the two hyperspectral scenes having 

ground truth data: Indian Pines and Salinas AVIRIS scenes (Section 4.4). As 

already mentioned, the Indian Pines dataset has 178 channels, while the landcover 

was mapped into 13 classes and comprises 21025 pixels (Figure 4.1 and Table 4.1). 

The Salinas scene has 190 channels, while the landcover was mapped into 16 

classes and comprises 111104 pixels (Figure 4.2 and Table) 4.2).  

The band configurations obtained based on the two first objectives can be 

determined either in a generic (unsupervised) way or taking into account the 

spectral features of the available classes in the scene (supervised). In this 

assessment, both supervised and unsupervised band sets were produced and 

evaluated. As mentioned in Introduction, supervised DR techniques are used when 
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there are some regions of interest, such as classes, in a scene so that a band 

configuration may be obtained based on these regions or for a specific class. In this 

comparison, we will assess how different the band configurations are if they are 

obtained based on a portion of the scene or based on the entire scene.   

5.2. Comparison of spectral configurations.  

In the first comparison, we determined different spectral configurations for 

each objective and compared them on the basis of the position of the splits. We 

applied supervised and unsupervised dimensionality reduction whenever possible. 

It should be noted that in each experiment, one spectral band configuration is 

finally achieved for all the pixels in the datasets. For the supervised situation, we 

used almost half of the pixels having known land cover of each scene. To obtain the 

representative and independent band configurations, we applied the algorithms to 

the selected pixels together. As mentioned, in this situation we would achieve a 

band configuration derived from a portion of a given scene where is of interest to 

an analyser. We selected the samples from the known classes in order to compare 

different experiments and to better interpret the final results. The “known pixels” 

are specified by the ground truth maps. The details about the available classes per 

scene and their locations were presented in Section 4.4. 

In each case, 20 spectral bands are identified, the details of the split locations 

are tabulated, the 20-band configurations are illustrated, and the results are 

discussed in each section.  

5.2.1. Spectral representation 

The spectral region splitting (SRS) method was used to obtain the spectral 

configurations to represent the spectra of the datasets accurately (see Chapter 2). 

In Chapter 2, we compared the SRS results with the best band configurations with 

the minimum error of the representation obtained by PCFA and showed that SRS 

represents the spectra with comparable representation accuracy with the PCFA 

representation, but it requires a much shorter computation time. In this 

experiment, we used RMSE as the metric of the quality of the representation. 

Table  5.1 and  5.2 give the spectral locations of the splits obtained by SRS and the 

sequence of selection for the Indian Pines and Salinas scene respectively. From the 

tables, the spectral configurations with a predefined number of bands (less than 21) 

can be derived. 

The spectral configurations with 20 bands are illustrated as well in Figure  5.1 

for both the supervised and unsupervised case. In the figures, we also illustrated µ, 

and µ±σ per channel of the original datasets and per band of 20-band dataset 

shown by dashed and continuous lines respectively, where µ is the mean and σ is 

the standard deviation in each spectral feature.  
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Table  5.1: The spectral configurations of representative bands for the Indian Pines 

scene. 
 Supervised Unsupervised 

No. of splits 

Location 

of split 

(channel 

#) 

Location of 

split 

(wavelength 

(nm)) 

Time 

(sec.) 

Location of 
split (channel 

#) 

Location of 

split 

(wavelength 

(nm)) 

Time 

(sec.) 

1 28 706 20 94 1343 39 

2 94 1343 36 29 716 62 

3 130 1789 48 130 1789 82 

4 72 1129 61 72 1129 99 

5 156 2242 72 156 2242 114 

6 31 735 79 31 735 129 

7 12 548 87 105 1542 143 

8 104 1532 95 13 557 157 

9 51 928 102 51 928 171 

10 29 716 109 27 697 184 

11 20 627 116 91 1313 198 

12 6 488 123 61 1024 211 

13 142 2083 130 8 508 224 

14 61 1024 137 142 2083 237 

15 91 1313 144 33 754 251 

16 160 2282 152 30 725 264 

17 27 697 159 100 1492 277 

18 41 831 166 160 2282 290 

19 33 754 172 28 706 304 

 

To calculate µ, and σ of a spectral feature, in the unsupervised case, all pixels 

in the image are used, and in the supervised one, the pixels located in the portions 

of the image are used, where ground truth is available. As discussed in 

Section  4.3.2, the standard deviation of broader spectral regions created by 

averaging the adjacent narrow channels was reduced noticeably, which is 

demonstrated in the figures. These illustrations give a general view of the spectral 

reflectance in original datasets which is split into different spectral regions by 

applying the objective. 

On the one hand, the spectral representations of two scenes are rather 

different. Although the majority portions of both datasets are covered by plants, the 

vegetation types are different (see Table  4.1 and Table  4.2). It reveals that the 

spectral band representation obtained by SRS is highly dependent on the land 

cover types of a scene. On the other hand, it can be observed for both datasets that 

the spectral regions identified in the supervised and unsupervised case had some 

similarity. For example, there are several narrow bands in the red spectral region 

for both datasets, giving the idea that the red and red edge spectral regions are 

essential in investigating the entire scene or some parts of the scene covering 

vegetation areas. 
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Table  5.2: The spectral configurations of representative bands for the Salinas scene.  
 Supervised  Unsupervised  

No. of splits Location 

of split 

(channel 

#) 

Location of 

split 

(wavelength 

(nm)) 

Time 

(sec.) 

Location of split 

(channel #) 

Location of 

split 

(wavelength 

(nm)) 

Time 

(sec.) 

1 98 1345 78 31 702 221 

2 32 712 126 98 1345 399 

3 138 1813 168 138 1813 517 

4 76 1134 205 75 1125 623 

5 171 2269 237 169 2249 733 

6 16 557 268 16 557 822 

7 35 741 300 34 731 909 

8 110 1534 333 54 923 997 

9 54 923 364 110 1534 1085 

10 30 693 394 9 488 1167 

11 42 808 424 158 2139 1248 

12 10 497 454 24 636 1328 

13 95 1315 484 42 808 1408 

14 155 2109 517 93 1295 1489 

15 33 721 550 174 2299 1569 

16 64 1019 580 32 712 1650 

17 23 626 610 65 1029 1727 

18 114 1574 639 144 1999 1805 

19 128 1713 668 77 1144 1883 

 

The reason of the similarity in the spectral configurations for the supervised 

and unsupervised cases can be, firstly, that the pixels selected in supervised cases 

cover about half of the scenes, not a small portion (Figure 4.1 and 4.2). Secondly, a 

visual inspection of the spectral reflectance of the pixels that are not used in the 

supervised experiments suggests that their reflectance characteristics were almost 

the same as the pixels used. As noticed in Figure  5.1, µ and σ for the two datasets in 

both situations (supervised and unsupervised) are very similar, which may not be 

even distinguishable; showing that the general spectral behaviour of pixels used in 

the supervised and unsupervised cases are almost the same in these experiments.  
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Figure  5.1: 20-band configurations obtained by SRS for spectral representation per 

scene in the supervised and unsupervised cases. The vertical black lines indicate the 

location of the splits. The blue and red lines illustrate μ and μ±σ of the spectral 

reflectance per channel in the original datasets (dashed lines), and per band in the 

final dataset (solid lines), where μ is the mean and σ is the standard deviation of all 

the pixels used in the experiments.  
 

When looking at the figure and the tables in the supervised and unsupervised 

cases more accurately, dissimilarities appear. For example, the locations of several 

splits were in the same spectral regions while the order of the selection might be 

different. E.g., the first and the second splits were at the start of the NIR region and 

around 1340nm in the supervised and unsupervised case in both datasets, but the 

order of the selection was not the same (Table  5.1 and Table  5.2). The dissimilarity 

of the split locations gradually increased with the iterations. The number of exactly 
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similar bands for the supervised and unsupervised cases for the two finally datasets 

was 11 and 2 out of 20 identified bands of the Indian Pines and Salinas dataset 

respectively. 

5.2.2. Independent spectral bands 

To obtain spectral configurations with independent bands we applied the 

clustering-merging (CM) algorithm using the total dependence metric (see Chapter 

3). These experiments were also performed for the supervised and unsupervised 

cases. Table  5.3 and Table  5.4 give the split locations in each iteration for the two 

datasets, and Figure  5.2 illustrates the 20-band spectral configurations for each 

case. 

Table  5.3: The spectral configurations of independent spectral bands for the Indian 

Pines scene. 
 Supervised  Unsupervised 

No. of split Location 

of split 

(channel 

#) 

Location of 

split 

(wavelength 

(nm)) 

Time 

(sec.) 

Location of split 

(channel #) 

Location of 

split 

(wavelength 

(nm)) 

Time 

(sec.) 

1 30 725 0.3 30 725 0.4 

2 73 1139 0.6 73 1139 0.6 

3 90 1303 0.9 90 1303 0.9 

4 29 716 1.1 29 716 1.1 

5 53 947 1.3 52 937 1.4 

6 92 1323 1.5 92 1323 1.6 

7 74 1148 1.7 74 1148 1.8 

8 72 1129 1.9 28 706 2.0 

9 93 1333 2.1 72 1129 2.2 

10 31 735 2.3 93 1333 2.5 

11 28 706 2.5 31 735 2.7 

12 133 1993 2.7 130 1789 2.9 

13 88 1283 2.9 9 518 3.0 

14 91 1313 3.1 88 1283 3.2 

15 9 518 3.2 71 1120 3.4 

16 71 1120 3.4 91 1313 3.6 

17 75 1158 3.6 75 1158 3.8 

18 94 1343 3.8 94 1343 4.0 

19 79 1196 3.9 1 439 4.2 

 
In this experiment, there were splits located in the same place in the 

supervised and unsupervised cases for both datasets as well. There were more splits 

in the same spectral locations than in the previous experiment to identify the 

representative bands. For the Indian Pines dataset, 13 out of 20 bands and for the 

Salinas dataset 12 out of 20 bands were exactly identical in both cases.  
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Table  5.4: The spectral configurations of independent spectral bands for the Salinas 

scene. 
 Supervised  Unsupervised  

No. of split Location 

of split 

(channel 

#) 

Location of 

split 

(wavelength 

(nm)) 

Time 

(sec.) 

Location of split 

(channel #) 

Location of 

split 

(wavelength 

(nm)) 

Time 

(sec.) 

1 32 712 0.4 32 712 0.3 

2 96 1325 0.6 96 1325 0.6 

3 77 1144 0.8 77 1144 0.8 

4 17 567 1.0 31 702 1.0 

5 98 1345 1.2 98 1345 1.2 

6 31 702 1.4 17 567 1.3 

7 33 721 1.6 33 721 1.5 

8 95 1315 1.7 137 1803 1.7 

9 138 1813 1.9 12 517 1.8 

10 55 933 2.0 56 942 2.0 

11 6 458 2.2 95 1315 2.1 

12 97 1335 2.3 3 428 2.2 

13 94 1305 2.5 30 693 2.4 

14 30 693 2.6 111 1544 2.5 

15 115 1584 2.7 97 1335 2.6 

16 34 731 2.9 94 1305 2.8 

17 76 1134 3.0 100 1435 2.9 

18 1 409 3.1 34 731 3.0 

19 137 1803 3.2 138 1813 3.1 
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Figure  5.2: 20-band configurations obtained by CM for independent spectral regions 

per scenes in the supervised and unsupervised cases. The vertical black lines indicate 

the location of the splits. The blue and red lines illustrate μ and μ±σ of the spectral 

reflectance per channel in the original datasets (dashed lines), and per band in the 

final dataset (solid lines), where μ is the mean and σ is the standard deviation of all 

the pixels used in the experiments. 
 

There were several narrow adjacent bands identified in all cases. These narrow 

spectral regions can be categorized into two parts. First, they were adjacent to the 

water absorption spectral regions that had been already removed from the original 

datasets, e.g. around 1330nm. It seems that those selected bands were still 

contaminated with noise due to the presence of carbon dioxide, water and oxygen 

in the atmosphere, which led to the identification of them as narrow independent 

bands by the algorithm. Second, the red edge spectral region also contained narrow 

bands, revealing that the narrow channels in this region have more uncorrelated 

information and should be kept as independent spectral bands.   

5.2.3. Spectral regions for class separability 

We applied the SRS algorithm to the datasets to identify the spectral regions 

being most useful for class separability (see Chapter 4). We used the JM distance as 

the criterion in SRS. The results of the split selection of both datasets were 

tabulated in Table  5.5, and Figure  5.3 showes 20-band configurations of so-called 
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separable bands. There is no very narrow band in these band configurations, except 

the red edge although the visible spectral region has been divided into narrower 

spectral regions. The overall comparison of different band configuration is given in 

next section.   

Table  5.5: The spectral band configurations that maximize the class separability using 

JM for the two datasets. 
 Indian pines  Salinas  

No. of split Location 

of split 

(channel 

#) 

Location of 

split 

(wavelength 

(nm)) 

Time 

(sec.) 

Location of split 

(channel #) 

Location of 

split 

(wavelength 

(nm)) 

Time 

(sec.) 

1 27 697 6 100 1435 21 

2 70 1110 11 54 923 35 

3 138 2043 14 48 865 46 

4 110 1591 16 58 961 58 

5 29 716 19 136 1793 71 

6 43 851 22 66 1038 82 

7 21 637 24 118 1614 94 

8 102 1512 27 24 636 106 

9 130 1789 30 78 1154 118 

10 15 577 33 72 1096 131 

11 57 985 37 33 721 145 

12 26 687 40 29 683 159 

13 9 518 44 36 750 174 

14 149 2153 49 11 507 191 

15 31 735 53 17 567 208 

16 47 889 58 92 1285 226 

17 119 1680 63 4 438 245 

18 133 1993 69 124 1674 265 

19 157 2252 75 32 712 286 

 

5.2.4. Overall comparison  

In this section, we compared the spectral regions identified to meet the three 

objectives discussed in the previous sections. The band configurations obtained in 

three different experiments were compared in relation to the spectral 

representation, the independence between the bands, and the separability between 

classes. For the first and second experiments (Sec.  5.2.1 and  0), we used all the 

pixels of the scenes (unsupervised) as well as a part of the pixels of the scenes 

(supervised) and showed the differences regarding the spectral locations of the 

splits. The third experiment (Sec.  5.2.3) was performed in the supervised case only. 
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Figure  5.3: 20-band configurations obtained by SRS for the spectral regions 

maximizing class separability per scene. The vertical black lines indicate the location 

of the splits. The blue and red lines illustrate μ and μ±σ of the spectral reflectance per 

channel in the original datasets (dashed lines), and per band in the final dataset (solid 

lines), where μ is the mean and σ is the standard deviation of all the pixels used in the 

experiments.  
 

The band configurations in these three experiments were obtained by 

employing the metrics specified and the algorithm developed per objective 

(Chapter 2, 3, and 4) as follows:  

1- The spectral band representations were determined by applying the 

SRS algorithm to the spectra and minimising the RMSE between the 

approximated spectra and the original ones. 

2- The independent bands were obtained using the Total dependence (TD) 

metric applied to CM algorithm to identify the spectral regions with the 

lowest correlation. 

3- The separable bandset was identified by applying the Jeffreys–Matusita 

separability distance plugged into the SRS algorithm to find the spectral 

regions maximising the discrimination between the classes in the 

scenes.    

Now, in this section, we evaluated the spectral region configurations obtained 

to meet the three objectives in relation with each other. For example, how 
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separable the independent bands or representative bands are; or how much the 

accuracy of representation is if we use the separable bands. These comparisons 

would help us to answer the research question mentioned in the Introduction about 

the relevance of having objective-specific band configurations.   

Table  5.6 presents the details of the comparison. In this table, the RMSE and 

TD metrics are computed using entire hyperspectral scenes, and the JM distance is 

calculated based on the mean of the class separabilities.  

 

Table  5.6: Overall comparison of different band configurations obtained to meet the 

three objectives. 

20-band sets  
Indian Pines Salinas scene 

RMSE TD JM RMSE TD JM 

Representative bands-

supervised 
0.00826 0.6786 1.3959 0.00632 0.6258 1.4104 

Representative bands-

unsupervised 
0.00814 0.6749 1.3950 0.00627 0.6262 1.4105 

Independent bands-

supervised 
0.01740 0.6064 1.3866 0.01208 0.6211 1.4098 

Independent bands-

unsupervised 
0.01570 0.5911 1.3854 0.01190 0.6143 1.4100 

Separable bands 0.02415 0.7568 1.4010 0.01488 0.6268 1.4110 

 

As observed in both cases, the minimum error of representation (RMSE), the 

minimum dependence (TD) and the maximum class separability (JM) were 

obtained by the representative bands-unsupervised, independent bands-

unsupervised, and by separable bands for both datasets respectively. For instance, 

the minimum RMSE and TD are 0.0081 and 0.59, and the maximum JM is 1.40 for 

the Indian Pines dataset, which apply to the objective - specific cases. This result is 

in agreement with the design and motivation of this research, i.e., in each case, we 

achieved the best result with the best configuration obtained to meet each 

objective. 

 The difference between RMSE of various band configurations revealed that 

the representative bands, either supervised or unsupervised, had almost half 

representation error than the other band sets, e.g. RMSE was 0.006 and 0.012 for 

the representative and independent bands of the Salinas scene respectively. TD 

showed that the overall dependence was the least for the independent bands, then 

representative bands and finally the separable bands, while the TD values were 

closer to each other for the Salinas scene than Indian Pines. It can also be observed 

from the experiments on both datasets that the mean class separability of 

representative bands was higher than for the independent band configuration.      

Figure  5.4 is a collection of the 20-band configurations determined to meet the 

three objectives for both datasets. We used the band configurations determined in 

the supervised mode so that the pixels used in each evaluation are the same. The 
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comparison between the supervised and unsupervised cases per objective are given 

in Figure  5.1, Figure  5.2, and Figure  5.3.  
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Figure  5.4: 20-band spectral configurations with respect to the three objectives for 

two datasets: Indian Pines  and Salinas. The vertical black lines indicate the location of 

the splits. The blue and red lines illustrate μ and μ±σ of the spectral reflectance per 

channel in the original datasets (dashed lines), and per band in the final dataset (solid 

lines), where μ is the mean and σ is the standard deviation of all the pixels used in the 

experiments.   
 

In general, there was a slight similarity in the spectral configurations 

determined for the three objectives. Although there were splits located at the same 

spectral locations, adjacent splits of them were mostly placed at different locations 

creating different spectral regions. In the Salinas scene for example, there were 

splits exactly at the same spectral location, 1813nm, identified in both the 

representative and the independent bandset, but the adjacent bands created by this 

split were different, i.e. 1713-1813nm and 1813-2109nm identified as the 

representative bands, and 1803-1813nm and 1813-2460nm identified as 

independent ones.  

The first and the third objectives led to more similar spectral configurations, 

while the ones determined for the second objective were rather different. It appears 

that the spectral configuration determined to represent full spectra with fewer 

bands is more sensitive to spectral gradients to minimise the error of the spectral 

representation. Independent bands consider the correlation of samples in a band 

with other bands, and random noise increases the independence of spectral bands, 

thus leading to selection. The spectral configuration to maximise separability 
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depends on land cover and pre–defined classes, so is likely to differ from the 

previous two (Figure  5.4).  

A fine spectral sampling of the red – edge region, i.e. from 680 nm to 730 nm, 

was determined when pursuing all three objectives. At least two narrow bands in 

this spectral region were identified in all spectral configurations and for both 

datasets. This region was necessary to represent the full spectrum with fewer bands 

(Objective 1) due to the large spectral gradient in this region. There is also less 

correlation between the adjacent spectral regions within the red – edge region 

(Objective 2), so the region was divided into narrow independent bands as well. It 

is also known that the red edge is important for recognising different types of 

vegetation classes. Both datasets have several vegetation classes. Therefore, narrow 

spectral bands were determined when pursuing class separability (Objective 3).  

5.3. Comparison of execution time 

The details of the execution time of the methodology for identifying spectral 

configuration were presented in Section  2.3.2,  3.6.2, and  4.3.3. In this section, we 

evaluated and compared the execution time required to obtain the spectral 

configurations to meet each objective. As already mentioned, given the application 

of DR algorithms for onboard processing, the computational performance is a 

critical issue. Table  5.1, Table  5.2, Table  5.3, Table  5.4, and Table  5.5 give the 

details of the running times of the algorithms per iteration. Table  5.7 summarised 

the times for 20-band datasets. The execution time obtained is based on the 

implementation of the algorithms on a desktop computer having following 

characteristics: Operating system: Windows 7, Processor: Intel Core 2, and 16 GB 

RAM. The algorithms were written in IDL1 programing language, version 8.2. 

As already mentioned in Chapter 2, the execution time of the SRS algorithm 

depends on the number of samples (pixels) analysed. This algorithm was utilised in 

this comparison experiments to obtain the representative and separable bands. To 

determine the representative bands in the unsupervised case an entire scene is 

                                                             

1 IDL, stands for Interactive Data Language, is a programming language used for data 

analysis. It is famous in particular areas of science, such as atmospheric physics, astronomy, 

and medical imaging.It was developed and used by the solar physics group at NASA in the 

early 1980s for analysing satellite data (Landsman, W. (1993). The IDL astronomy user's 

library. Astronomical Data Analysis Software and Systems II, Hassanien, A., M. Tolba, et al. 

(2014). Advanced machine learning technologies and applications. Second international 

conference, AMLTA.) It offers all the power, adaptability, and programmability of high-level 

languages like FORTRAN, C, and C++. Today, IDL has become the universal treatment 

system for analysing big data. More detailed information about IDL can be found at 

http://www.idlcoyote.com/documents/idllinks.php. 
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used and this requires a longer execution time than the supervised case, where only 

the samples (pixels) in the training set are used, e.g. 304 sec. vs. 172 sec. needed to 

provide the representative bands in unsupervised and supervised cases 

respectively. The comparison between the two datasets showed that the execution 

time of SRS was longer for the Salinas dataset: this was due to the number of 

samples since the Salinas dataset is more than five times larger than the Indian 

Pines one. 

Table  5.7: The execution time(s) required to determine spectral configurations to 

meet each objective; the maximum number of bands was constrained to 20; the 

experiments were performed for both the supervised and unsupervised cases and the 

two datasets. 

Objectives 
Indian Pines Salinas 

Supervised Unsupervised Supervised Unsupervised 

Representative bands 172 304 668 1883 

Independent bands 4 4 3 3 

Separable bands 75 --- 286 --- 

 

When the execution time to obtain the representative bands and the separable 

bands was compared, it was observed that the execution time was more than twice 

in the former case than in the latter, i.e. 172 sec. vs. 75 sec., with the same number 

of samples. It is because, the full spectral reflectance per pixel have to be evaluated 

for representative bands, while for the separability, the mean and the variance-

covariance matrix of a class of pixels are evaluated.   

On the other hand, the CM algorithm to obtain the independent bands was 

much faster than SRS since at each iteration it computes the correlation matrix of 

the entire data set, rather than a metric per pixel. The number of samples had a 

negligible effect on the running time and, because of that, there was no difference 

in time for the supervised and unsupervised cases. So, obtaining a spectral 

configuration based on the second objectives was much faster than for the two 

other objectives.  

5.4. Comparison of image classification 

The third comparison is based on the image classification and the accuracy of 

correct recognition of the pixels in the scenes in relation to the ground-truth 

reference maps. In this experiment, we applied two frequently used classifiers to 

the band configurations obtained for the three objectives in the supervised and 

unsupervised cases. The classifiers were maximum likelihood classifier (MLC), and 

support vector machine (SVM).  

We separated each known land-cover in the scenes into training and testing 

data using a random subsampling method so that the training set represents the 

distribution of class attributes well. Two training datasets were generated by taking 

40%, and 60% of the total number of pixels per class and the rest were considered 
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as testing data to assess the classification accuracy. Finally, the classification 

accuracies of the two types of experiments were averaged and illustrated in 

Figure  5.5 for the two scenes.  

 

This experiment demonstrated that overall the separable band configurations 

gave better classification accuracies than other configurations, then the 

representative bands and the last was independent bands. It was expected that the 

separable bands would provide more accurate classification, especially when 

applying MCL. This is because the SRS algorithm using the JM distance gave a 

spectral configuration maximising the class separability which is needed to 

improve the classification accuracy.  

Figure  5.5: Classification accuracy of different band configurations obtained based 
on the three DR objectives of hyperspectral images for the Indian Pines (upper 
panel) and Salinas (lower panel) scenes. ‘Sep’, ‘Rep’, and ‘Indep’ stand for separable 
bands, representative bands, and independent bands respectively; ‘sup’ and ‘unsup’ 
for supervised and unsupervised. The results of MLC and SVM are depicted in left 
and right side pannels respectively.  
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The representative bands capture the main spectral features, i.e. the key 

attributes related to land cover types. So, when the classifiers were applied to the 

representative bands, the classification accuracy was acceptable, although lower 

than with the separable bands. The supervised and unsupervised cases for the 

representative bands did not make much difference in the classification accuracy 

since as mentioned, there were similarities between the spectral features of pixels 

used in both cases. So, the band configurations obtained in one case were also 

suitable for the other one when applied to classification. The representative 

spectral configurations were obtained in a shorter time in the supervised case. 

The independent bands gave a lower classification accuracy than two other 

band sets. It is because the independence of spectral bands does not relate to 

separability and accuracy of classification. By finding independent spectral regions, 

we reduce the dimensionality of hyperspectral data by eliminating redundant 

information. This spectral configuration may happen to increase the distance 

between the classes in the feature space, which is suitable for classification 

performance but is not an aspect “measured” by independence. Usually, in 

literature, the independence metric is applied for DR in the unsupervised case. In 

this experiment, we observed that unsupervised independent bands had almost 

better classification accuracy than supervised. It revealed that the unsupervised 

independent bands retained more information useful for classification 

performance.  

5.5. Conclusion 

Three different comparisons were conducted to evaluate different spectral 

configurations based on the mentioned objectives of hyperspectral dimensionality 

reduction. We conclude from the evaluation that in the case of a supervised 

dimensionality reduction, it is worth to identify separable spectral bands that 

grants a higher accuracy of image classification, compared with other spectral 

configurations. However, in the case of the lack of information about the classes in 

a scene (unsupervised) or the lack of interest in a specific region in the scene, we 

suggest identifying the independent and representative band sets. The independent 

bandset has an advantage of requiring very short computation time, so it is more 

suitable for the cases that execution time of the algorithm is of importance. The 

representative bands, though they are identified more slowly, provided more 

accurate classification result in comparison with the independent bands. One way 

to boost the running time of providing representative bands is to apply the SRS 

algorithm to some regions of interest in a scene, instead of using the entire scene. 
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As mentioned through chapters, reducing the dimensionality (DR) of 

hyperspectral images is the most challenging step prior to application–specific 

analyses of data carrying a large amount of spectral information. Applying DR to 

hyperspectral data can be performed by applying various criteria providing reduced 

spectral configurations. Investigating different criteria in the literature, we 

categorised them into three main objectives covering broad criteria utilised in the 

hyperspectral community. A reduced spectral configuration can be determined to 

pursue three broad objectives: a) representing the spectral reflectance of pixels in a 

scene accurately, b) minimising redundant spectral information by selecting 

independent spectral features, and c) maximising class separability. Based on the 

objectives, four research questions were defined (Section  1.5.2).  

 In this final chapter, we summerize the answers to the research questions and 

highlight the most relevant products and findings of the research documented in 

this dissertation, followed by recommendations for further investigations. 

 

6.1. Conclusions  

 

a) What is the advantage of determining spectral configuration versus 

individual channel selection per objective? 

As already mentioned, individual channel selection techniques preserve the 

connections between the spectral features and the physical properties of the 

observed materials, making a correct interpretation of the data easier. In our study, 

we developed a method for hyperspectral images to determine reduced spectral 

configurations instead of the selection of individual channels. In this method, the 

connections between the spectral feature and the physical properties of the 

materials in images are retained.  

The primary advantage of identifying reduced spectral configurations and 

creating wider spectral bands by averaging narrow channels is to filter out random 

noise and increases the signal to noise ratio (SNR). It is known that the SNR of a 

sensor increases in proportion to the radiance signal from each pixel, which is 

decomposed into n spectral channels. Averaging the spectral channels causes a 

reduction in the variance of the signal and an increase in the SNR of the sensor. 

  The second advantage was pointed out in Chapter 2, where it was shown that 

a reduced spectral configuration, i.e. a set of contiguous bands, represents the full 

spectrum without using a spectral interpolation function. There are methods for 

spectral approximation and representation which use a set of basis functions to 

represent the spectra, while the proposed methodology represent spectra directly.   

In Chapter 4, we specifically addressed this research question, and 

investigated the main advantage of having a reduced spectral configuration vs. 
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individual channel selection. This chapter revealed that the importance of creating 

wider spectral bands from narrow channels is in the discrimination between the 

classes in a scene and the improvement of image classification that can be the final 

result of a dimensionality reduction algorithm applied to hyperspectral datasets. 

Applying various class separability metrics to two datasets, we showed that the 

method provides band configurations with a better class separability than the 

channels selected from the original dataset and maximized the separability.  The 

reason is that the method does not preserve the width of the original spectral 

channels, unlike the channel selection methods, and defines new spectral bands by 

merging the adjacent spectral channels if it is useful to improve separability. 

Averaging narrow adjacent channels results in smaller intra-class distances by 

reducing the class variances leading to an increase in class separability. 

b)  How similar or dissimilar are the spectral configuration obtained based 

on different DR criteria? How large and significant are the differences of spectral 

configurations in the cases of using the entire scene (unsupervised) or using 

specific classes in the scenes (supervised)? Is it necessary to determine different 

spectral configurations?  

According to the three main objectives to reduce the dimensionality of 

hyperspectral images, Chapters 2, 3, and 4 separately presented in detail the 

methodologies achieving these objectives, along with implementations and 

numerical experiments to compare with alternate solutions. These three chapters 

provided different band configurations based on the specified objectives. Chapter 5 

presented a comparative evaluation of the spectral configurations determined to 

meet each objective, and answers these research questions.  

In general, there was some similarity between the spectral configurations 

obtained based on the three objectives. The representative and separable spectral 

configurations were rather similar, while the ones identified for independent 

bands, were more different. It appears that the spectral configuration determined 

to represent full spectra with fewer bands is more sensitive to spectral gradients to 

minimise the error of the spectral representation. Independent bands consider the 

correlation of samples in a band with other bands, and random noise increases the 

independence of spectral bands, thus leading to selection. The spectral 

configuration to maximise separability depends on land cover and predefined 

classes, so is likely to differ from the previous two.  

In the case of supervised and unsupervised DR for each objective, the 

comparison (Section  5.2) showed that the band configurations are highly 

dependent on the land cover types and the portion of the scene covering an image. 

Different land cover types gave different band configuration, and spectrally similar 

materials provide nearly identical bandset. If the region of interest covers a small 
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portion of an image and presents spectrally unique materials, the configuration is 

very different from the configuration obtained for entire scene and vice versa.  

It was concluded that the necessity of determining different band 

configurations concerning the objectives is dependent on the application. In the 

case of a supervised dimensionality reduction, it is worth to identify separable 

spectral bands that give a higher accuracy of image classification, compared with 

other spectral configurations. However, in the case of the lack of information about 

the classes in a scene or the lack of interest in a specific region in the scene, we 

suggest identifying the independent and representative band sets. The independent 

bandset has an advantage of requiring very short computation time, so it is more 

suitable for the cases that execution time of the algorithm is of importance. The 

representative bands, though they are identified more slowly, provided more 

accurate classification result in comparison with the independent bands. One way 

to boost the running time of providing representative bands is to apply the SRS 

algorithm to some regions of interest in a scene, instead of using the entire scene.  

c)  What are the performances of different band configurations in 

distinguishing various classes in a scene and what is the accuracy of image 

classification?  

Chapter 4 gave evidence of the advantage of broader spectral bands over 

narrow channels in image classification. Applying various class separability metrics 

to identify spectral bands compared with narrow spectral channels demonstrated 

that the land-cover classes in a scene are more distinguishable than the best 

channel selected for this purpose.  

The assessment of different band configurations on image classification 

(Section  5.4) demonstrated that, overall, the separable band configurations gave 

better classification accuracies than other ones, then the representative bands and 

the last was independent bands. For example, Figure  5.5 shows that by applying the 

20-band configuration of Indian Pines dataset to MLC, the classification accuracies 

were about 90, 87, and 85 for separable bands, representative bands, and 

independent bands respectively. The higher accuracy of separable bands is because 

the algorithm gave a spectral configuration maximising the class separability which 

is needed to improve the classification accuracy.  

The representative bands captured the main spectral features, i.e., the critical 

spectral attributes related to land cover types. So, when the classifiers were applied 

to the representative bands, the classification accuracy was acceptable, although 

lower than with the separable bands. The independent bands gave a lower 

classification accuracy than two other band sets. It is because the independence of 

spectral bands does not relate to separability and accuracy of classification. By 

finding independent spectral regions, we reduce the dimensionality of 

hyperspectral data by eliminating redundant information. This spectral 
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configuration may happen to increase the distance between the classes in the 

feature space, which is suitable for classification performance but is not an aspect 

“measured” by independence. Usually, in literature, the independence metric is 

applied for unsupervised DR, where there is a lack of ancillary information about 

the classes.  

d) Finally, which band configuration would be suitable for miniaturised 

hyperspectral satellites? 

Since the capability of a hyperspectral nanosatellite for onboard processing of 

is not explicitly specified, an absolute answer to this question is impossible. The 

first miniaturised hyperspectral satellite with the capability of onboard processing 

was launched on 2 February 2018, and to build a complete hyperspectral dataset 

onboard,  a chain of processing stages have to be implemented. Then, the dataset is 

ready to be used in a DR algorithm. The faster the algorithm, the less power is 

needed for onboard processing. Based on this fact, three scenarios can be described 

as follows: 

I- Assume that the power budget is low, and there is no ancillary 

information about the classes in a scene. In this case, the best option is 

to identify the independent band configuration. It is shown in Chapter 

3 and 5 that the CM algorithm provides independent bands in less a 

second.   

 

II- If the electric power is high, and the ancillary data of the classes in the 

scene is not available again, a better option is to apply the SRS 

algorithm to the dataset and provide the representative band 

configuration in an unsupervised way. In this situation, besides 

achieving more accurate classification results, the spectral features of 

materials in the image can be extracted.    

 

III- The third scenario is when extra information about the classes in a 

scene is available, and the power budget is high. In this case, the best 

option is to obtain the separable band configuration which leads to the 

most accurate classification results.   

 

The methodology developed and presented in this thesis to provide reduced 

spectral band configurations is one solution among others for the major issues of 

hyperspectral images (HSI) introduced in Section 1.4.1. As mentioned in Section 

1.4.2, the other main category of DR applied to HSI is feature extraction. If the only 

scope of analyzing hyperspectral datasets is to achieve a more accurate image 

classification, the feature extraction techniques may give higher accuracy; since the 



 

 

 

 

 6. Conclusions and Recommendations 

 

112 

data can be transformed into a new feature space providing a better separability 

between the classes in the scene. However, it should be noticed that the relation 

between the spectral features and the physical properties of materials in the classes 

is distorted or compromised; making the interpretation of final results obscure. 

As mentioned in Section 1.5.3., in general achieving the best solution, i.e., 

finding the locations of m spectral splits from n possible locations obtaining the 

best score based on the given criterion, is a prohibitive method. Although in this 

thesis, the advantages of identifying reduced spectral band configurations 

compared to the selection of individual channels are revealed, there might be other 

heuristic solutions in the future that could determine band configurations more 

optimal than the algorithms developed in this study. What’s more, since the SRS 

algorithm can easily accept various criteria, applying metrics based on the wrapper 

approaches might provide band configurations giving more accurate classification 

results than the filter approaches (see Section 4.5.5).     

  

6.2. Contributions 

Given the research objectives, focused on reducing the dimensionality of 

hyperspectral while minimizing the loss of information as defined in Chapter 1, the 

study led to the following innovative contributions: 

1.  A new DR algorithm applicable to hyperspectral images named Spectral 

Region Splitting (SRS) has been proposed. This method may not be 

categorised into the usual DR methods i.e. feature selection (FS) and 

feature extraction (FE). Similar to the FS algorithms, SRS provides a 

reduced feature set preserving the physical meaning of the original data. 

Unlike FE techniques, it does not throw any spectral information away, 

which the FS algorithms do. SRS is a greedy top-down searching strategy, 

that divides the spectrum into spectral regions. In each case, the spectral 

configuration is a set of contiguous bands with different widths. 

Furthermore, the wider bands identified by SRS have a better signal to 

noise ratio than narrow spectral channels, due to averaging the spectral 

signal over the spectral channels merged into the new spectral band. 

 

2. SRS accepts different metrics and objectives to determine a spectral 

configuration. This capability allows to choose the best metric for a given 

objective to achieve a better outcome. For example, we applied five 

different metrics to SRS to represent the spectral reflectance of a complete 

spectral library. Then the approximated spectra were used in a material 

detection procedure. We found out that SRS using a metric such as SID 
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gives a better accuracy of material detection than a method providing the 

best spectral representation but just can use RMSE as the metric.  

 

3. Comparing the spectral configurations obtained by SRS with the best 

representation of the spectra obtained by the piecewise constant function 

approximation (PCFA) algorithm, SRS provided almost identical spectral 

configurations with a negligible mean difference in the RMSE.  

 

4. When SRS is applied to an entire hyperspectral scene, i.e. providing the 

same band configuration for all the pixels in the scene, the approximation 

error on spectral reflectance obtained by PCFA and SRS are identical, 

while SRS was about 40 times faster than PCFA. We can apply the method 

to hyperspectral images in supervised and unsupervised cases with the 

supervised one providing the representative spectral configuration much 

faster. 

 

5. The Total dependence (TD) metric for measuring dependence in 

multivariate systems was introduced and developed to be used for the DR 

of hyperspectral images. We proved the mathematical properties of the 

metric and showed its utility for identifing independent spectral features. 

TD is a normalised metric, so the dependence of various spectral band 

combinations with different numbers of bands can be compared leading to 

a selection of a spectral configuration with minimum dependence. TD is 

sensitive to the dependence of a new band added to an existing band set, 

and it is not always increasing. It can easily be calculated regardless the 

number of bands. 

 

6. We developed a new algorithm to determine a spectral configuration called 

Clustering-Merging (CM). This algorithm, likewise SRS, provides a 

continuous spectral configuration covering the whole of the spectrum by 

averaging the adjacent spectral channels, but in a bottom-up searching 

strategy. Instead of iteratively splitting the spectrum as in SRS, it merges 

the spectral channels iteratively, so the final spectral configurations have 

similar broad characteristics to the ones determined by SRS. With the 

utilisation of the TD metric in CM, we obtain independent spectral regions. 

We revealed that small changes in the spectral configuration obtained by 

CM increase the overall dependence. This is a rapid method i.e. less than a 

second to get a required spectral configuration for an entire hyperspectral 

scene.  

 

7. By comparing the classification accuracies using the independent spectral 

regions obtained by CM and channels selected by unsupervised FS 
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algorithms with the aim of minimising information shared by different 

spectral channels, we revealed that the band sets obtained by CM gave 

better or comparable accuracy. Furthermore, CM determines the spectral 

configurations much faster than the other algorithms. 

 

8. In the supervised DR strategy, we applied six different class separability 

metrics with the SRS algorithm and obtained spectral configurations 

maximising class separability. Comparing with the most separable channel 

set obtained with the branch and bounds algorithm, we showed that the 

SRS spectral configuration gave better separability than the original 

spectral channels. We demonstrated that averaging spectral channels to 

obtain wider spectral bands reduces the intra-class distance, causing an 

increase in class separability. Having a better separability of the classes in 

a scene leads to a higher classification accuracy and a better identification 

of materials.  

 

9. The three proposed objectives lead to determine different spectral 

configurations. Large spectral gradients may lead to cases where 

independent spectral bands are identified which are also useful for class 

identification. The spectral configurations obtained to pursue the first and 

the third objectives where rather similar. The independent band 

configuration is more sensitive to the noise in the scene and it may select 

noisy narrow channels as separated spectral bands. The experiments on 

classification accuracy with the spectral configurations obtained for the 

three objectives showed that the highest accuracy was achieved with the 

separable configuration, followed by representative and independent 

bands respectively. The shortest execution time with the three algorithms 

was achieved when determining independent bands, followed by separable 

and then representative bands.  

 

10. Dimensionality reduction of hyperspectral images through spectral region 

identification contains the following advantages: a) preserving the 

relationship between the characteristics of an object and its reflectance 

spectrum; b) having the freedom to identify spectral features with broader 

spectral resolution when it is necessary; c) increasing the signal to noise 

ratio by averaging narrow spectral channels; d) obtaining a higher class 

separability leading to more accurate image classification and material 

identificaion; and e) using all the spectral information of the original 

dataset. 

 



  

 

 

 

115  6.3. Recommendations 

6.3. Recommendations  

This study covered the three primary objectives dimensionality reduction 

applied to hyperspectral images to tackle the principal preprocessing issue of these 

datasets. Following the research presented in this thesis, efforts should be made in 

the following domains for future studies.  

 

1- In this thesis, we focused on analysing of hyperspectral datasets in the 

spectral domain, while these datasets carry spatial information as well. 

To reduce the volume of the datasets for more straightforward analyses 

of the data in different applications, focusing on methodologies for the 

reduction of information in both spectral and spatial domain while 

keeping the necessary information, is recommended. For instance, an 

integration of a method like segmentation applied to the spatial domain 

with an algorithm such as the SRS method, which has been used, in this 

thesis, in the spectral domain. 

2- In this thesis, the dimensionality reduction in the context of image 

classification was based on the filter approaches, i.e. the identification 

of spectral regions was completely independent of image classification. 

It is worth to identifying spectral regions using the wrapper approaches 

as well, i.e. with the focus on the classifier that will be used for 

evaluation of the final bandset. 

 

3- Applying the spectral region identification algorithms using different 

criteria to a specific target to determine predominant spectral regions 

for recognising the target from background is recommended. A 

collection of such experiments over different targets, would help to 

identify the best spectral regions per target and validate the spectral 

regions identified regarding the objectives. These experiments would 

also pave the way to determine the spectral regions needed for onboard 

processing of hyperspectral images which is devoted to a region of 

interest. 
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A.1. Signal to noise ratio 

Hyperspectral sensors acquire images in narrow and contiguous spectral 

bands throughout the visible, near infrared and shortwave-infrared regions, 

including several bands which do not provide surface information because of 

atmospheric particles, one of the most influential particle is water vapour. The 

effect of water vapour is significant at about 940, 1140, 1400 and 1880nm 

(Lillesand, Kiefer et al. 2008). Furthermore, the temporal and spatial distribution 

of atmospheric water vapour can vary significantly. Several atmospheric particles 

affect the radiance measured by hyperspectral sensors and cause weak signals at-

sensor (irrespective of the surface observed), i.e. a low Signal to Noise Ratio (SNR). 

To avoid the effect of the noisy bands on the results obtained by different 

dimensionality reduction methods, they should be chosen and eliminated from a 

dataset. Sometimes noisy channels are selected through visual inspection. Jia et al. 

(Jia, Ji et al. 2012) were proposed a strategy to automatically choose channels 

without manual band removal by projecting the signal onto a set of wavelet bases 

with various scales. We calculated SNR for identifying noisy channels, as it is a 

good indicator that gives the amount of the contamination provided by random 

noise. However, there is no single definition of SNR, and it should be chosen to be 

meaningful for the problem at hand (Schowengerdt 1997). It is reasonable to 

assume that random noise has zero mean over a large area of an image, and 

therefore consists of positive and negative fluctuations in the noiseless signal. By 

definition, SNR is the ratio of the noise-free image contrast to the noise contrast. 

For computing the contrast of signal and noise, the standard deviation gives a 

reliable estimation (Schowengerdt 1997), so the formula of SNR can be as follows: 

 

 ��� = ���	
���
���  ( A.1) 

 

Schowengerdt (Schowengerdt 1997) suggested that in the case of low noise 

level, it might suffice to use the entire image and a uniform area in an image for 

approximating the signal and the noise respectively. 

An alternative, the noise level can be estimated from homogeneous areas of an 

image which are assumed to yield a constant signal (Duggin, Sakhavat et al. 1985; 

Fujimoto, Takahashi et al. 1989; Gonzalez and Woods 2008). A homogeneous area 

in a hyperspectral image has nearly constant reflectance. In this case, the standard 

deviation of the spectral radiance can be solely attributed to the noise, while the 

mean value (µ) reveals the signal. So, the signal to noise ratio can be estimated as: 

 

 ���� = ���	
����
����  ( A.2) 
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where ���� is the signal to noise ratio in channel i. Deep water pixels in 

satellite images is considered as a suitable homogeneous area. The problem of this 

method is finding a perfectly homogenous area in a given scene, which in several 

cases is not available, due to the variety of objects on the ground having different 

reflectance and the coarse spatial resolutions of conventional hyperspectral 

sensors. 

 Another method is the GeoStatistical (GS) method, developed and applied to 

estimate the SNR for AVIRIS data (Curran and Dungan 1989). This method is 

preferable to the previous ones because it differentiates automatically between the 

underlying spatially correlated variance of interest (the true values) and the 

spatially uncorrelated random noise without requiring homogenous areas (Asmat, 

Atkinson et al. 2010). The GS method uses the semivariogram to describe the 

spatial dependence of the variable of interest and assumes that the nugget variance, 

a parameter of a model fitted to the semivariogram, is the variance of the spatially 

uncorrelated noise in the image. Intuitively, this is reasonable because the nugget 

variance is generally composed almost entirely of measurement error and micro-

scale variation (Curran and Dungan 1989; Asmat, Atkinson et al. 2010). In the GS 

method, the SNR can be estimated by dividing the mean value by the square root of 

nugget variance: 

 

 ��� = �
���

 ( A.3) 

 

where �� is the nugget variance. The procedure and the rationale for using �� 

in this way are given in (Curran and Dungan 1989). After determining the SNR 

value for each channel, the channels which have SNR values lower than a 

predefined threshold are eliminated.  

A.2. Implementation 

The GeoStatistical method has been applied to estimate the SNR for all 

AVIRIS spectral channels in our study. On each image, three parallel transects were 

extracted across a uniform area to obtain a finer semivariogram and better 

estimation of the nugget value by an extrapolation. Since both the noise and the 

SNR are related to the land cover type (Atkinson, Sargent et al. 2005), the transects 

should sample the same land cover. These transects were long enough to enable the 

estimation of a semivariogram with at least 15 lags in the statistically significant 

first fifth of their length (Webster 1985). The semivariogram was calculated for 

each transect over the 224 wavebands and averaged. The mean signals were also 

calculated, and the nugget variance was determined by extrapolating the slope of 

the semivariogram to a zero lag. The signal and the square root of the nugget 
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variance were used to plot SNR versus wavelength for two hyperspectral scene in 

Figure  A.1 .  

 

 

 
Figure  A.1.: Signal to noise ratio in different wavelength for Cuprite (up) and Moffett 

Field (down).  
 

It is observable that the spectral regions which have low SNR value occur at 

almost two regions corresponding to ��� and ��� absorption spectrum: around 

1350-1400nm, and 1800-1900 nm. There are also some other sources of error like 

instrumental error affecting the signal value, and cause losing information, such as 

three channels at begin and end of the spectrum for two datasets.  

After obtaining the SNR for every channel of hyperspectral data, the channels 

having low SNR were eliminated by choosing a threshold based on the visual 

inspection of the low-SNR channels. The thresholds were 22 and 4 for Cuprite and 

Moffett field respectively. So, 31 channels located at 365-385, 1353-1413, 1811-1938 

and 2457-2497 nm and 29 channels placed at 370-390, 1363-1413, 1812-1949 and 

2477-2507 nm were eliminated from Cuprite and Moffett scene respectively. 
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coefficients (r) and the first eigenvalue 
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B.1. Introduction 

Since �� = �(��, �), the proof of the properties mentioned in Secion 3.2. are 

based on the characteristics of the first eigenvalue of the correlation matrix. In 

(Kaiser 1968), there is a mathematical solution leading to Eq. 3.2. Below, we used a 

numerical experiment to prove the equation and later we provide proofs the 

properties of TD. 

 

r=0.000   λ�=1.000 r=0.333   λ�=1.333 

r=0.666   λ�=1.666 r=0.999   λ�=1.999 
Figure  B.1: First eigenvalue (!") vs. the correlation coefficient (r) in a 2D space. 

 



 

 

 

 

138  B. Relation between the correlation coefficients (r) and the first eigenvalue 

(!") 

The eigenvalues are affected by two statistical parameter in multivariate 

systems: the variances and the covariances. The variance of a variable itself does 

not give any information about the dependence on other variables. To obtain a 

metric which is just influenced by the dependence of variables on each other, the 

correlation matrix may be applied. The 1st eigenvalue of this matrix is just a 

function of the dependence of variables on each other. The correlation between 

variables can be either positive or negative while their sign is not relevant to 

evaluate their interdependence. Consequently, the absolute values of matrix 

elements are used to compute the first eigenvalue. The first eigenvalue of an 

absolute correlation matrix is an approximation of the mean correlation of the 

variables (Friedman and Weisberg 1981). Figure  B.1 demonstrates the relation 

between the correlation coefficient (r) and the first eigenvalue (λ�) in a 2D feature 

space.  

This concept is developed to explain the dependence in n-dimensional spaces. 

For ease of understanding in the following explanations, the assertion is proven 

analytically in the lowest possible dimension (2D), and for higher dimensions it is 

investigated numerically. 

B.2. Two dimensinal space analysis 

Let us consider two bands each consisting with pixel-wise intensities in m 

pixels, i.e. X = $x�,  x�, … , '() and Y = $y�, y�, … , y(). The correlation matrix of these 

two variables is Σ = -1 rr 10. This matrix is symmetric. Solving the following 

equation gives the eigenvalues (λ’s): 

 

 123(4 − �6) = 0 ( B.1) 

where I is the identity matrix and det(.) is the determinant of Σ. The 

parametric solution of the equation gives the unknowns λ’s : 

  

 
� = 1 ± |:| 

( B.2) 

 

There is a linear relation between the correlation coefficient and the two roots 

of λ. We consider the first component (the greatest eigenvalue), max(λ) = λ�. This 

value is obtained from Eq. A.2 with the plus sign between the parts of the equation. 

It shows that by an increase of the correlation, the first eigenvalue also increases. It 

means that if there is no dependence between the two variables (r = 0), λ� has its 

minimum value which is equal to one. On the other hand, if the dependence is 

higher, λ�is larger as well. The maximum λ� is when |r| = 1. This is the state where 

the maximum dependence is experienced.  
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B.3. Higher dimensional spaces 

When the number of bands is larger than two, the analytical solution to obtain 

the variation of the first eigenvalue as a function of the pairwise dependence 

requires a long parametric expression. For this reason, we applied a numerical 

analysis in 3D space. A 3×3 correlation matrix is taken into account showing the 

pairwise correlations of three bands X, Y, and Z. This correlation matrix can be 

shown in a parametric way: 

 

 4 = = 1 :� :>:� 1 :�:> :� 1 ? ( B.3) 

 

Now, we change the correlations in equal increments within [-1,1]. Then as 

already mentioned, the absolute value of the correlations is taken to obtain the first 

eigenvalue. Given a new correlation matrix in each step, the eigenvalues are 

computed, and the first eigenvalue is inserted in a list with the corresponding 

correlations. Finally, we have a list showing different dependencies between each 

pair of the variables and the corresponding first eigenvalue. Now, it is possible to 

identify the variation of the first eigenvalue. 

Figure  B.2 illustrates these variations with respect to the changes of 

correlations between the pairs of the bands. The colors of the dots in the plot 

correspond to the values of the first eigenvalue; starting from one in blue to three in 

red. 

The maximum of the first eigenvalue is obtained in the corners of the cube, 

which are shown with black circles. It reveals that the maximum λ� is achieved 

when the absolute values of correlation coefficients for all combinations are one. λ� 

is decreasing when the absolute values of correlations are lower (more bluish 

colors), and the minimum λ� is exactly at the center of the cube when r�, r�, and r> 

are equal to zero. 

Figure  B.3 demonstrates two cross-sections of Figure  B.2, when r> = 0 and r> = 1. It shows the variation of the first eigenvalue on the changes of the 

correlation between two pairs of variables (r� and r�), The third axis gives the 

changes in the first eigenvalue as a function of the correlations. 

In this figure also, the lowest λ� is given when the correlations are zero, and 

the largest is at the maximum absolute correlation between the pairs. This 

numerical analysis can be extended for more than 3D as well, which the final result 

for each two pairs of variables is similar to the shapes demonstrated in Figure  B.3. 

If the first two axes in Figure  B.2 are used for correlation between the other 

variables the shape of the mesh always remains the same, i.e. it is always concave 

up. Just the concavity may be wider or narrower. 
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(!") 

 
 

Figure  B.2. Variation of the first eigenvalue with respect the correlation between pairs 

of variables in 3D space. The colours correspond to !" which changes between one 

and three. 
 

 
Figure  B.3: Variations of the first eigenvalue with respect the correlation (@"and @A) 

between two pairs of variables in 3D space in two cases: @B = C (left) , and  @B = " 

(right). 
 

B.4. The total dependence metric 

Changes in the dependencies between different variables (spectral bands) 

affect the first eigenvalue of the data in such way that the first eigenvalue increases 
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when the dependence rises. However, using the first eigenvalue as a measure of 

dependence is not ideal, because it can get any positive real value depending on the 

number of bands and the correlation between the bands in the original dataset. 

Therefore, for having a normalized metric for dependence, the lower and upper 

bound of the first eigenvalue is taken into account.  

In a variance-covariance matrix, the lower bound of the first eigenvalue is 

reached when there is no correlation between any pair of bands. In this case, the 

maximum eigenvalue equals the maximum variance of the original dataset. For the 

upper bound, the correlation between all pairs of spectral bands must be 

maximum. It means all the bands are completely correlated, and all observations 

lie on a line corresponding to the first eigenvector. In other words, there is just one 

eigenvalue higher than zero, and the rest are zero. Since ∑ ���
�E� = ∑ ��
�E� , where σ�� is the variance of ith variable and n is the number of variables, by having just �� > 0, �� must be equal to the summation of all variances in the covariance matrix. 

Therefore the bounds on the first eigenvalue are: 

 

 maxH∈$�,�,…,J)(σ��) ≤ �� ≤ L ���



�E�
 ( B.4) 

 

where the lower bound applies to a fully independent dataset, and the upper 

one to a completely dependent dataset. Using correlation matrix instead of 

covariance matrix changes Eq. A.4 to: 

 

 
1 ≤ �� ≤ � 

( B.5) 

 

where n is the number of bands. Hence, the total dependence metric (Eq. 3.2) 

is derived from Eq. A.5 by a simple normalization. Now, the properties of the 

metric given in Section 2 are proven as follows:   

  

Proof. 

(a)  Eq. A.5 can be written as 0 ≤ �� − 1 ≤ � − 1  ⇒  0 ≤  NOP�

P� ≤ 1. 

(b)  Eq. A.2 gives �� = 1 + |:|, by substituting in Eq. 3.2, �� = �R|S|P�

P� = |:|. 

(c)  �� = 1 in Eq. A.2 if and only if T�, T�, … , T
 are linearly fully independent; 

meaning �� = 0, and if :(T�, T�) ≠ 0 then 1 < �� ⇒ �� ≠ 0. 

(d) �� = � in Eq. A.2 if and only if T�, T�, … , T
 are linearly fully dependent; 

meaning �� = 1, and if  :(T�, T�) ≠ ±1 then �� < � ⇒ �� ≠ 1. 

(e) Since �� is independent to the order of the variables so (e) follows. 
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(f) Since �� is always a monotonic function, i.e.  ��(T�, T�, … , T
P�) ≤ ��(T�, T�, … , T
).  ��(T�, T�, … , T
P�) = ��(T�, T�, … , T
), 

if and only if |:(T
, T�)| = 0, for every i, W ∈ $1,2, … , � − 1) ; then 

(��(T�, T�, … , T
P�) = NOP�

P� ) > (��(T�, T�, … , T
) = NOP�


P� ), so TD is not a 

monotonic function. 
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