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Time dependence of susceptible-infected-susceptible epidemics on networks
with nodal self-infections

Piet Van Mieghem * and Fenghua Wang
Delft University of Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, P.O Box 5031,

2600 GA Delft, The Netherlands

(Received 4 March 2020; accepted 28 April 2020; published 18 May 2020)

The average fraction of infected nodes, in short the prevalence, of the Markovian ε-SIS (susceptible-infected-
susceptible) process with small self-infection rate ε > 0 exhibits, as a function of time, a typical “two-plateau”
behavior, which was first discovered in the complete graph KN . Although the complete graph is often dismissed
as an unacceptably simplistic approximation, its analytic tractability allows to unravel deeper details, that are
surprisingly also observed in other graphs as demonstrated by simulations. The time-dependent mean-field
approximation for KN performs only reasonably well for relatively large self-infection rates, but completely fails
to mimic the typical Markovian ε-SIS process with small self-infection rates. While self-infections, particularly
when their rate is small, are usually ignored, the interplay of nodal self-infection and spread over links may
explain why absorbing processes are hardly observed in reality, even over long time intervals.

DOI: 10.1103/PhysRevE.101.052310

I. INTRODUCTION

Inspired by the curious steady-state behavior of the Marko-
vian ε-SIS (susceptible-infected-susceptible) process with ar-
bitrarily small self-infection rate ε > 0, that was reported
earlier in [1], we investigate the time dependence of the av-
erage fraction yN (τ, ε∗; t ) of infected nodes, briefly called the
prevalence, in a graph with N nodes. Self-infections naturally
occur in metapopulations, where each group consists of items
(computers, animals, individuals, etc.) that are indistinguish-
able and exchangeable. Each group in a metapopulation can
be represented by a node in the contact graph and interactions
in that graph occur between groups, but also items within
the group can infect other items in that same group. That
intragroup type of infection is modeled as a self-infection. The
ε-SIS epidemic process can also model information spread in
social networks, where individuals themselves can generate
information, which is then spread over links to neighbors. In
social networks, happiness of persons [2] and obesity [3,4]
has been modeled by an ε-SIS infection over a social contact
network. Furthermore, the self-infection nodal process can
also be interpreted as a “drift field” [5] that drives the infection
in each node with a same strength. The infectious environment
may be modeled by a self-infection process, usually with
a small infection rate ε as a “background” or “imminent”
infection [6]. The biological argument for such “background”
infection stems from immunity of a species. When the virus
dies out completely, the population will start losing immunity
against that virus and a sudden reappearance of the virus
may decimate a significant fraction of the population. Hence,
the existence of very few infected nodes on average keeps
the population fit against the virus because their immunity
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system is constantly challenged. Related studies on contagion
in networks consider a slightly more complex local rule than
in ε-SIS, with either memory of infection doses [7] or a
spontaneous self-infection dependent on a fixed number of
infected neighbors [8].

Here, we focus on a simple, though stochastic, epidemic
model with self-infections. In a graph G with N nodes, the
viral state of a node i at time t is specified by a Bernoulli
random variable Xi(t ) ∈ {0, 1}: Xi(t ) = 0 for a healthy node
and Xi(t ) = 1 for an infected node. Thus, at each time t , a node
i can only be in one of the two states: infected, with probability
vi(t ) = Pr[Xi(t ) = 1] = E [Xi(t )] or healthy, with probability
1 − vi(t ), but susceptible to the virus. The curing process per
node i is a Poisson process with rate δ and the infection rate
per link is a Poisson process with rate β. Aside from infections
over links from infected neighbors with rate β, the node i
can also infect itself by a Poisson process with self-infection
rate ε. Only when a node is infected, it can infect its direct,
healthy neighbors. All Poisson processes are independent.
This is the continuous-time description of the homogeneous
self-infectious Markovian susceptible-infected-susceptible (ε-
SIS) process on a contact graph. The ε-SIS model reduces
to the “classical” SIS model when the self-infection rate is
ε = 0. In the ε-SIS heterogeneous setting, the curing rate δi

and self-infection rate εi are coupled to a node i and the
infection rate βi j specifies the link from node i to node j. In
any continuous-time Markovian process, the interevent times
are exponentially distributed [9, p. 210]. Thus, a self-infection
rate ε means that, on average, every 1/ε time units a self-
infection event occurs. Appendix analyzes the time-dependent
ε-SIS Markovian process on the complete graph KN and
demonstrates that a closed form analytic solution is unlikely
to exist.

Earlier, the ε-SIS model was introduced in [10] to compute
a realistic steady state of the SIS epidemic on any finite graph
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[11], close to the mean-field steady state, but very different
from the steady state in the classical Markovian SIS process.
The steady state of the Markovian SIS process (with ε = 0)
on any finite graph is the absorbing state, that complicates the
analysis [5,12] and, perhaps more importantly, is only attained
after an exponentially in N long time [13,14]. Brightwell
et al. [15] have shown that the (scaled) time to extinction or
absorption below the mean-field epidemic threshold τ (1)

c = 1
N

tends to a Gumbel distribution [9, p. 57] if N → ∞. The
mean-field SIS epidemic threshold in any graph is [16]

τ (1)
c = 1

λ1
,

where λ1 is the largest eigenvalue of the adjacency matrix of
the contact graph and lower bounds [17] the Markovian SIS
epidemic threshold τc. In the ε-SIS model with ε > 0, there is
no absorbing state and the Markov process is irreducible in a
connected contact graph, which implies that there is a unique
steady state, which is, for specially chosen self-infection rate
ε as explained in [11], very close to observations and to the
SIS mean-field steady state. We emphasize that the Markovian
setting is important and that a mean-field analysis is unable to
describe the “typical ε-SIS temporal behavior,” which is the
topic of this paper.

II. TIME-DEPENDENT ε-SIS PREVALENCE IN
THE COMPLETE GRAPH

A. Markovian setting

In [1], it was shown that there always exists a phase
transition around τ ε

c in the ε-SIS process on KN , above which
the effective infection rate τ = β

δ
> τε

c causes the average
steady-state fraction y∞;N (τ, ε∗) of infected nodes, briefly
called the prevalence, to approach the N-intertwined mean-
field (NIMFA) prevalence [18]

y(1)
∞;N (τ ) = 1 − 1

(N − 1)τ
, τ >

1

N − 1
= τ (1)

c (1)

no matter how small, but not zero, the self-infection rate ε∗ =
ε
δ

is. The phase transition τ ε
c can be bounded by

1

e

(
10−s

ε∗(N − 1)!

) 1
N−1

< τε
c <

(
10−s

ε∗(N − 1)!

) 1
N−1

,

where s specifies an agreed level for the onset of the phase
transition at which y∞;N (τ, ε∗) = 10−s is first reached, when
τ is gradually increased from τ = 0 at y∞;N (0, ε∗) = ε∗

1+ε∗ on.
The observation of a remarkable phase transition, increas-

ingly explosive with the size N of the graph, was only possible
by a purely analytical study the complete graph KN (see
Appendix in [1]). Unfortunately, that phase transition is hard
to simulate for large N because the absorption time increases
exponentially with N . Therefore, we present here simulations
for small graphs of N = 30 nodes. The simulations were per-
formed with our simulator, first described in [11] and later in
[19, Appendix C]. The simulator has been tested in accuracy
against exact solutions of the 2N -Markovian SIS process [10]
on small graphs of N = 10 nodes. The unit of time equals the
average curing time, i.e., we have set in simulations the curing
rate equal to δ = 1 (so that ε∗ = ε here). For N = 30 in most

FIG. 1. The prevalence yN (τ, ε∗; t ) of the ε-SIS process on the
complete graph KN on N = 30 nodes with effective infection rate
τ = 2τ (1)

c = 2
N−1 versus time on a logarithmic scale for various

values of the self-infection rate ε. The epidemic started with one
infected node. Both simulations and numerical solutions of the
differential Eqs. (A7) and (A8) (smooth lines) are presented for each
self-infection rate ε.

graphs, the absorbing time at which the virus is eradicated
from the network is attained within 105 time units, i.e., within
an interval equal to 105 times the average curing time.

We first concentrate on the complete graph, whose anal-
ysis is entirely possible analytically. Apart from simulations,
averaged over 100 realizations, Fig. 1 also shows (in smooth
lines) the prevalence y30(2τ (1)

c , ε∗; t ) with τ (1)
c = 1

29 , obtained
by numerically solving the set of differential equations of the
ε-SIS process on the complete graph KN in (A7) and (A8)
of Appendix. The advantage of a small size N is that the
entire time interval can be covered as illustrated in Fig. 1.
Indeed, for small self-infection rates ε = 10−5, the prevalence
y30(2τ (1)

c , ε∗; t ) in Fig. 1 starts with one infected node, in-
creases rapidly, almost exponentially fast, toward about 20%
of infected nodes between 1 and 10 time units, after which
the prevalence y30(2τ (1)

c , ε∗; t ) decreases slowly toward its
steady state around 4%. Figure 1 generalizes the “classical”

FIG. 2. The steady-state prevalence y∞;N (τ, ε∗) in a complete
graph KN on N = 30 nodes versus the effective infection rate τ , for
various self-infection rates varying from ε∗ = 10−1 down to ε∗ =
10−10. The dotted line at τ = 2τ (1)

c = 2
N−1 corresponds to the setting

in Fig. 1. The bold curve is the NIMFA steady-state prevalence (1).
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FIG. 3. The prevalence yN (τ, ε∗; t ) in the complete graph N =
30 versus time for self-infection rate ε∗ = 10−5 and effective in-
fection rates τ (1)

c � τ � 3τ (1)
c and each curves differs 0.2τ (1)

c from
its neighboring curves. The curves are numerical solution of the
differential Eqs. (A7) and (A8).

ε = 0 SIS prevalence as a function of time, shown in [20,
Fig. 12b] and [9, Fig. 17.2], where eventually the prevalence
tends to zero for any effective infection rate τ in any graph
with finite number N of nodes. When the self-infection rate ε

is relatively high, the curves resemble the mean-field typical
SIS behavior. In-between (for ε = 10−3 and 10−4 in Fig. 1)
characteristic ε-SIS behavior in time is exhibited, that we will
explain below.

The disadvantage of a small size N , however, is that the
transition from almost zero prevalence toward the NIMFA
prevalence is not so steep as plotted in Fig. 2 for the steady-
state prevalence, whose closed form

y∞;N (τ, ε∗) =
∑N

k=1

(N−1
k−1

)
τ k�

(
ε∗
τ

+ k
)

∑N
k=0

(N
k

)
τ k�

(
ε∗
τ

+ k
) (2)

is derived in [1, Appendix]. Figure 2 compares the preva-
lence y∞;N (τ, ε∗) with the NIMFA y(1)

∞;N (τ ) in (1), while a
Markovian SIS process, in which dying out is prohibited
[12] and thus absorption is prevented [21], is closer than
NIMFA as shown in [21, Fig. 2] for the complete graph
KN . When N increases, the transition from small to NIMFA
values is increasingly steep as illustrated in [1], resulting in
a discontinuous step function if N → ∞. However, in [1],
only computations for the complete graph KN were possible
and, although it was claimed based upon physical arguments
that the behavior is general for all graphs, that claim was not1

supported by simulations. We fill this gap here and present
simulations on various types of graphs. A key result is that the
two plots in Figs. 1 and 2 are typical for any graph, as shown
below, in the sense that the main behavior of the prevalence
yN (τ, ε∗; t ) over time in any graph follows that in Fig. 1.

Figure 3 on the complete graph K30 with self-infection rate
ε∗ = 10−5 shows the characteristic ε-SIS prevalence with two
plateaus. For sufficiently high effective infection rates τ , the

1Alternatively, from (A11) by differentiating (A13) in the Ap-
pendix with respect to x, using (A5) and evaluating at x = 1 again
leads to (2).

FIG. 4. The prevalence on K30 over time for a high effective
infection rate τ = 3τ (1)

c = 3
29 and several self-infection rates ε. The

curves are numerical solutions of the differential equations.

first plateau is rapidly reached and is due to link infections.
The second, higher plateau is attained roughly around time 1

ε

(in units of the average curing time). The interarrival time of
self-infection events generated at each node is exponentially
distributed with mean 1

ε
. The minimum of N-independent

exponential random variables each with rate εi is again an
exponential random variable with rate equal to their sum∑N

j=1 εi, a property of the exponential distribution that lies
at the basis of Markov theory.2 Thus, the first appearance
of self-infections is expected around time 1

Nε
, which is here

about 3 × 103 time units. Figure 3 indeed illustrates that the
onset toward the second plateau occurs around time 3 × 103.
The precise time changes as observed in Fig. 3 also depend
on the effective infection rate τ over links because the onset
starts for different τ , in particular for small τ , at slightly
different times.

For smaller effective infection rates τ , the second plateau
in the prevalence, that corresponds to its steady-state value, is
lower than the first plateau caused by spreading over links in
the graph. That lower value is due to a curious equilibrium
between absorption (due to a series of rare curing events
as explained in [1]) and self-infection. Recall that if ε =
0, thus in the “classical” Markovian SIS process without
self-infections, the prevalence tends always to zero in any
finite graph after sufficiently long time. In other words, the
epidemics is eradicated from the graph with finite size N
due a sequence of curing events that happens with very low,
though positive, probability. Hence, the observation interval
must be long enough to observe such a rare event of successive
curing events, which explains the long absorption time in the
classical ε = 0 stochastic SIS process. If the size N is larger,

2The Markov process is physically explained in [9, p. 399] for the
shortest path problem with exponential link weights in a complete
graph. Actually, that shortest path computation in the complete graph
describes the exact SI Markovian process, leading to a shortest path
tree that is a uniform recursive tree. Hence, for very small curing
rates δ (and small self-infection rates that can be zero), equivalent to
large effective infection rates τ , the viral spread in an ε-SIS in the
complete graph follows a uniform recursive tree.
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FIG. 5. The prevalence yN (τ, ε∗; t ) in the complete graph N =
30 versus time for self-infection rate ε∗ = 10−1 with the same values
of effective infection rates τ as in Fig. 3. The mean-field approx-
imation (6) (dotted lines) lies above ε-SIS Markovian prevalence,
computed via the numerical solution of the differential Eqs. (A7) and
(A8).

the steady state of the ε-SIS process in Fig. 2 sweeps fast,
i.e., in a narrow range around τ ε

c from virtually zero to the
mean-field prevalence y(1)

∞;N (τ ) in (1). That phenomenon for
large N as reported in [1] is a kind of explosive percolation.

The onset of the second plateau, due to the self-infection
process, is shown in Fig. 4 for several self-infection rates
and a relatively high effective infection rate τ = 3τ (1)

c ≈ 0.1.
On average, every 1

ε
time units, a self-infection in each

node is created, but the onset toward the second plateau is
observed already earlier at about 1

Nε
time units as explained

above. Figure 2 illustrates that for higher effective infection
rate τ and a fixed ε∗ ∈ [10−5, 10−1] band, the corresponding
prevalence band decreases. In other words, for the same set
of ε∗ = ε values as in Fig. 1 with τ = 2τ (1)

c , the range of
prevalence values in Fig. 4 with τ = 3τ (1)

c is considerably
smaller. Furthermore, Fig. 2 at τ ≈ 0.1 illustrates that the
curve ε∗ = 0.1 slightly lies above the NIMFA bold curve (1),
which explains why the corresponding curve Fig. 4 at large
time slightly lies above the ε∗ = 10−2 to ε∗ = 10−4 curve and
similarly why ε∗ = 10−5 lies below the NIMFA bold curve.

Figure 5 is the companion of Fig. 3 and demonstrates
the ε-SIS process with high self-infection rate ε = 0.1. Both
the link and the node spreading occur roughly at the same
timescale and we observe a combined effect, leading to the
“traditional mean-field” curves, specified by a tanh function
[19] as computed in Sec. II B. In summary, only for small
self-infection rate ε, anomalous behavior in the ε-SIS process
with respect to the mean-field theory is observed.

B. N-intertwined mean-field approximation for ε-SIS

The governing differential equation of the N-intertwined
mean-field approximation (NIMFA) for the heterogeneous ε-
SIS epidemics on a graph with adjacency matrix A is

dvi(t )

dt
= −δivi(t ) + [1 − vi(t )]

⎛
⎝ N∑

j=1

ai jβi jv j (t ) + εi

⎞
⎠. (3)

Indeed, the change with respect to time of the nodal infec-
tion probability vi(t ) of node i at time t consists of two
competing actors at time t : (a) if the node i is infected with
probability vi(t ), then node i can cure with own curing rate
δi and (b) if the node i is healthy, a situation that occurs
with probability 1 − vi(t ), then node i can be infected by all
its infected neighbors [for which ai j = 1 and infected with
probability v j (t )] at a specific link rate βi j . In addition, the
node i can infect itself with its own self-infection rate εi.
The nodal differential Eq. (3) can be written as in [18,22] in
matrix form

dv(t )

dt
= η + Bv − diag(v)(Bv + c + η), (4)

where the vector v = (v1, v2, . . . , vN ), the self-infection
vector η = (ε1, ε2, . . . , εN ), the curing vector c =
(δ1, δ2, . . . , δN ), and the N × N matrix B has elements βi jai j .
We denote the N × 1 all one vector by u. The prevalence
y = uT w

N = 1
N

∑N
i=1 vi(t ), defined as the average fraction of

infected nodes, follows as

N
dy(t )

dt
= uT η − vT (c + η) + (u − v)T Bv. (5)

The differential Eq. (4) can be transformed in various forms,
analogously as in [9, Secs. 17.4–17.5]. Here, we confine to the
complete graph KN and to the homogeneous setting because
the NIMFA differential equation can be solved analytically
for KN .

Only in the steady state, symmetry holds in regular graphs
with degree r so that vi∞ = v∞ = y∞ and vT v = Ny2

∞ and
the prevalence reduces to y∞ = 1 − 1

τ r . Thus, only when the
initial condition vi(0) is the same for each node i, sym-
metry applies and the mean-field prevalence in KN equals
y(1)

N (τ, ε∗; t ) = v(t ) = vi(t ). After rewriting (3) in the normal-
ized time t∗ = δt ,

dv(t )

dt∗ = ε∗ + {τ (N − 1) − (1 + ε∗)}v(t ) − τ (N − 1)v2(t ),

we recognize a Ricatti differential equation [23, Appendix C]
with solution

y(1)
N (τ, ε∗; t )

= τ (N −1)−(1+ε∗)

2τ (N−1)
+ ϒ

2τ (N −1)

× tanh

[
t

2
ϒ+arctanh

(
τ (N −1)(2y0−1)+(1+ε∗)

ϒ

)]
,

(6)

where

ϒ =
√

[τ (N − 1) − (1 + ε∗)]2 + 4τ (N − 1)ε∗.

The mean-field approximation upper bounds the Markovian
SIS process [17], which is manifested in Figs. 5 and 6.

III. BEYOND THE COMPLETE GRAPH

This section presents the time-dependent prevalence
yN (τ, ε∗; t ) on other graphs than the complete graph KN .

Figure 7 displays the characteristic ε-SIS prevalence
yN (τ, ε∗; t ) and confirms that graphs, different than the com-
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FIG. 6. The prevalence yN (τ, ε∗; t ) of the ε-SIS with same pa-
rameters as in Fig. 1 to which the the mean-field approximation (6)
is added. Same colors have same self-infection rate ε. In contrast to
Fig. 5 for a large self-infection rate, the mean-field approximation
(dotted line) deviates considerably for smaller self-infection rates.

plete graph KN , essentially show the same characteristic ε-SIS
prevalence time behavior, with two plateaus. A surprising fact
concerns the Barabasi-Albert power law graph (BA) with N =
500 nodes. For large N and ε = 0, we would expect that the
absorbing state is only reached after O(eNc) time units, where

the constant c depends upon the effective infection rate and the
graph’s topology. However, the green curve for the BA graph,
corresponding to τ = 2.6

λ1
, initially increases confirming that

the effective infection rate lies above the epidemic threshold,
but decreases relatively fast.

Figure 8 for an Erdős-Rényi (ER) graph with N = 100
nodes, on the other side, does not depict such decrease; the
green curve stays much longer in the quasistationary state, as
expected for an exponentially in N increasing absorbing time.

Figure 9 for the star graph (a center node with N − 1
leaves) is the companion of Fig. 3 for the complete graph.
Both plots look amazingly similar. For the star graph with
spectral radius λ1 = √

N − 1 and mean-field epidemic thresh-
old τ (1)

c = 1
λ1

= 1√
N−1

, analytic computations [12] indicate
that the actual epidemic threshold for sufficiently large N is

τc = α√
N−1

with α =
√

log N
2 + 3

2 log log N . Although N = 30

is small, that estimate gives τc � 1.872√
29

, which explains that

the lowest curve corresponding to τ = 2τ (1)
c just exceeds the

(actual) epidemic threshold τc. Again, the “two plateaus”
expose a clear manifestation of the Markovian ε-SIS time-
dependent process and illustrate that the steady state of the
average fraction of infected nodes can be understood from the
complete graph computations: In contrast to the “classical”
SIS process (ε = 0) where all prevalence curves eventually

FIG. 7. The prevalence yN (τ, ε∗; t ) with self-infection rate ε∗ = 10−5 versus time for four different types of graphs: the square lattice with
N = 36, the ring graph with N = 30, the Erdős-Rényi random graph with N = 30 and link density p = 0.098 and the Barabasi-Albert power
law graph with N = 500. Initially, one node is infected and the plots are based upon (i.e., averaged over) 100 realizations of each ε-SIS process.
The prevalence curves shown increase with a step of τ = 0.2τ (1)

c . The three curves in color illustrate the three different behaviors: blue shows
two plateaus and upward bending, red the almost constant plateau, and green depicts the downward bending.

052310-5
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FIG. 8. The “two-plateau” ε-SIS prevalence curve versus time
for an Erdős-Rényi (ER) graph with N = 100 nodes and link density
p = 2pc and ε = 10−5. The downward bending of the green curve
only occurs for considerably larger times.

end up at zero (absorbing state), Fig. 9 and also Fig. 7 indicate
that, in the steady state (not the metastable or quasistationary
state!), all possible values of the prevalence between zero
and the mean-field steady state are possible as claimed earlier
in [1].

IV. CONCLUSION

The prevalence yN (τ, ε∗; t ) of the Markovian ε-SIS pro-
cess with small self-infection rate ε > 0 has been studied
as a function of time. The typical “two-plateau” behavior,
first explained for the complete graph KN based on analytic
computations, is demonstrated to hold generally for other
graphs than KN as well. In fact, we claim that it may hold
for any finite graph. In practice, if a disease or the spread
of items on a graph can be modeled as a Markovian ε-SIS
process with small self-infection rate ε, the second plateau
may play a significant role: after the epidemics arrives at
the first plateau (in relatively short time), the epidemics will

FIG. 9. The ε-SIS prevalence yN (τ, ε∗; t ) in the star graph on
N = 30 node as a function of time (in units of the average curing
time). Initially, one (leave) node is infected and the prevalence is
averaged over 104 realizations. The curves depicted have an effective
infection rate, starting with the lowest curve at τ = 2τ (1)

c = 2√
N−1

up

to the highest curve τ = 6.4τ (1)
c with a step of τ = 0.2τ (1)

c .

not disappear as in the “classical” ε = 0 SIS case nor stay
constant as in the mean-field approximation, but will tend to
the second plateau, that can be either higher or lower than the
first plateau, depending on its self-infection rate ε.

The time-dependent mean-field approximation for KN per-
forms only reasonably well for relatively large self-infection
rates, but completely fails to mimic the typical Markovian
ε-SIS process with small self-infection rates. While self-
infections, in particular when their rate is small, are usually
ignored, we have shown that the interplay of nodal self-
infection and spread over links may explain why absorbing
processes are less observed in reality.
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APPENDIX: DIFFERENTIAL EQUATION FOR THE
MARKOVIAN ε-SIS PROCESS ON KN

In spite of the simplicity of the Markovian continuous-
time SIS model, there does not seem to exist an exact time-
dependent solution for any graph. Most analytic results are
known for the complete graph as shown in [9, Sec. 17.6]. Be-
fore elaborating on the exact analytic solution of the Marko-
vian continuous-time SIS model on the complete graph KN

containing N nodes, we briefly review the classical mean-field
approximation.

For the complete graph KN , mean-field approximations are
accurate [12,17]. Very likely, although there does not seem
to be a rigorous proof, among all graphs, mean-field approxi-
mations are the most accurate in the complete graph. In the
N-intertwined mean-field approximation (NIMFA) [18,22],
the governing equation for the probability v(t ) of infection
in a node at time t in a regular graph G with degree r equals

dv(t )

dt
= rβ(t )v(t )[1 − v(t )] − δ(t )v(t ), (A1)

where the infection rate β(t ) and the curing rate δ(t ) are
general non-negative real functions of time t . Since the rates
are time varying, the infection and curing process are indepen-
dent, inhomogeneous Poisson processes [9]. The differential
Eq. (A1) can be solved exactly [24], resulting in

v(t ) = exp
( ∫ t

0 [rβ(u) − δ(u)]du
)

1
v0

+ r
∫ t

0 β(s) exp
(∫ s

0 [rβ(u) − δ(u)]du
)
ds

, (A2)

where v0 is the initial fraction of infected nodes. The ε-SIS
companion of (A1) with time-dependent rates in a regular
graph with degree r, assuming the same initial condition v(0)
in each node, is

dv(t )

dt
= ε(t ) + {rβ(t ) − [δ(t ) + ε(t )]}v(t ) − rβ(t )v2(t ).

(A3)
Unfortunately, we could not solve (A3) explicitly as in (A2)
mainly due to the first term ε(t ) at the right-hand side, which
causes deviations from the Bernoulli differential equation.

As shown in [11] for regular graphs, the governing dif-
ferential equations are precisely the same for NIMFA and
the heterogeneous mean-field (HMF) approximation [25] of
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Pastor-Satorras and Vespignani. Hence, Eq. (A1) constitutes
a general SIS mean-field approximation for regular graphs.
An interesting feature of (A1) is its independence on the
size of the network, which avoids (or ignores) finite-size
effects that often complicate studies of phase transitions. For
regular graphs, the NIMFA average fraction of infected nodes
y(t ) = v(t ) and y(t ) is coined the order parameter in statistical
physics. Equation (A1) with constant rates, β(t ) = β and
δ(t ) = δ, has been investigated earlier by Kephart and White
[26]. Many variations on and extensions of the epidemic
Kephart and White model have been proposed (see, e.g.,
[22,27,28]). In fact, the differential Eq. (A1) with constant
rates has already appeared in earlier work before Kephart and
White (see, e.g., [29,30]) and is also known as the logistic
differential equation of population growth, first introduced by
Verhulst [31].

1. Number of infected nodes in KN

We consider the time-dependent ε-SIS process on the com-
plete graph, where a positive self-infection rate ε is crucial
for the existence of a nontrivial steady state as shown in [9,
Chap. 17]. The number of infected nodes M(t ) at time t in the
complete graph KN is described by a continuous-time Markov
process on {0, 1, . . . , N} with the following rates:

M 	→ M + 1 at rate (βM + ε)(N − M ),

M 	→ M − 1 at rate δM.

Every infected node heals with rate δ, which explains the
transition rate M 	→ M − 1. Every healthy node (of which
there are N − M at state M) has exactly M infected neighbors,
each actively transferring the virus with rate β in addition to
the self-infection rate ε. Alternatively, each of the M infected
nodes can infect its N − M healthy neighbors with a rate
β and the N − M healthy nodes can infect themselves with
self-infection rate ε.

This Markov process M(t ) is a birth and death process with
birth rate λk = (βk + ε)(N − k) and death rate μk = kδ when
it is in a state with M(t ) = k infected nodes. The steady-state
probabilities π0, . . . , πN , where πk = limt→∞ Pr [M(t ) = k],
of a general birth-death process can be computed exactly [9,
p. 230], [10] as

πk = π0

(
N

k

)
ε∗τ k−1 �

(
ε∗
τ

+ k
)

�
(

ε∗
τ

+ 1
) (k > 0) (A4)

and

π0 = 1

∑N
k=0

(N
k

)
τ k

�
(

ε∗
τ

+k
)

�
(

ε∗
τ

)
, (A5)

where the effective infection rate τ = β

δ
and ε∗ = ε

δ
. Thus,

π0 is the steady-state probability that the complete graph
KN is infection free or overall healthy. When ε → 0 for N
fixed, we observe from (A4) that limε→0 πk = 0 for k > 0
and, consequently, that limε→0 π0 = 1, which reflects that the
steady state of the SIS process (in any finite graph) is the
overall-healthy state or absorbing state.

2. A generating function approach

We denote the probability that the number of infected
nodes M(t ) at time t equals k (or that the ε-SIS process at
time t is in state k) by

sk (t ) = Pr [M(t ) = k]. (A6)

By convention, we agree that sk (t ) = 0 if k > N or if k < 0.
Thus, s0(t ) is the probability that the epidemic dies out at time
t or that the complete graph KN is infection free at time t ,
but only remains infection free provided the self-infection rate
ε = 0. Further, the steady-state probabilities

πk = lim
t→∞ sk (t )

are explicitly known in (A4). The birth rate λk =
(βk + ε)(N − k) = −βk2 + (Nβ − ε)k + Nε is quadratic in
k and the death rate μk = δk is linear in k for any state
k ∈ {0, 1, 2, . . . , N}. The time-dependent evolution of the
constant birth and death process [9, p. 239] as well as the
linear birth and death process is described in [9, p. 243].
Here, we study the quadratic birth and death process, whose
solution has, by the best of our efforts, not yet appeared in the
literature.

Applying the differential equations of a general birth and
death process to ε-SIS process yields the set

s′
0(t ) = δs1(t ) − Nεs0(t ), (A7)

s′
k (t ) = {βk2 − (Nβ + δ − ε)k − Nε}sk (t )

+ {−β(k − 1)2 + (Nβ − ε)(k − 1) + Nε}
× sk−1(t ) + δ(k + 1)sk+1(t ), (A8)

where all involved rates β, δ, and ε can depend upon time t .
The first differential Eq. (A7) is incorporated in the general
one (A8) for k = 0 since s−1(t ) = 0 by our convention. If k =
N , then λN = 0 as well as sN+1(t ) = 0, so that (A8) reduces
to

s′
N (t ) = −δNsN (t ) + {β(N − 1) + ε}sN−1(t ).

The ε-SIS epidemic must always be in one of the possible
states, which translates to

∑N
k=0 sk (t ) = 1.

Following the general method illustrated in [9, Secs.
11.3.3–11.3.4] for the constant and linear rate birth and death
process, we start by defining the probability generating func-
tion (pgf)

ϕ(x, t ) = E [xM(t )] =
N∑

k=0

sk (t )xk (A9)

which we can equally well write as ϕ(x, t ) = ∑∞
k=0 sk (t )xk ,

according to the convention that sk (t ) = 0 if k > N or if k <

0. For any probability generating function ϕX (z) = E [zX ] =∑∞
k=0 Pr [X = k]zk , the radius R of convergence around z = 0

in the complex z plane is at least equal to one, because
for |z| � 1, it holds that |ϕX (z)| � ∑∞

k=0 Pr [X = k]|z|k �∑∞
k=0 Pr [X = k] = ϕX (1) = 1.
Theorem 1. In the time-dependent ε-SIS process on the

complete graph KN , the probability generating function ϕ(x, t )
of the number of infected nodes M(t ) at time t obeys the
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partial differential equation

∂ϕ

∂t
= (x−1)

{
−βx2 ∂2ϕ

∂x2
+{[(N −1)β−ε]x−δ}∂ϕ

∂x
+Nεϕ

}
.

(A10)

Proof. After multiplying both sides in (A8) by xk

and summing over all k � 0, the first line in (A8) is
transformed as

T1 =
N∑

k=0

{βk2 − (Nβ + δ − ε)k − Nε}sk (t )xk .

With ∂ϕ

∂x = ∑N
k=0 ksk (t )xk−1 and ∂2ϕ

∂x2 = ∑N
k=0 k(k−1)sk (t )xk−2,

we have

T1 = βx2 ∂2ϕ

∂x2
− [(N − 1)β + δ − ε]x

∂ϕ

∂x
− Nεϕ.

Similarly, the transform of the second line in (A8) taking our
convention s−1(t ) = 0 into account is

T2 =
N∑

k=1

{−β(k − 1)2 + (Nβ − ε)(k − 1) + Nε}sk−1(t )xk

leading to

T2 = −βx3 ∂2ϕ

∂x2
+ [(N − 1)β − ε]x2 ∂ϕ

∂x
+ Nεxϕ.

Finally, the transform of the third and last line in (A8) is, with
sN+1(t ) = 0,

T3 = δ

N∑
k=0

(k + 1)sk+1(t )xk = δ

N+1∑
k=1

ksk (t )xk−1

= δ

N∑
k=1

ksk (t )xk−1 = δ
∂ϕ

∂x
.

Equating the three right-hand side contributions T1 + T2 + T3

and the transform of the left-hand side in (A8) yields

∂ϕ

∂t
= −βx2(x − 1)

∂2ϕ

∂x2
+ {(N − 1)βx(x − 1) − εx(x − 1)

− δ(x − 1)}∂ϕ

∂x
+ Nε(x − 1)ϕ.

Thus, we find the partial differential Eq. (A10). �
The factor (x − 1) at the right-hand side of (A10) is a

consequence of the conservation of probability at any time
t , namely, that ϕ(1, t ) = ∑∞

k=0 sk (t ) = 1, implying that the
ε-SIS stochastic process is surely in one of the possible states.
Furthermore, ∂ϕ

∂x |
x=1

= ∑∞
k=0 ksk (t ) is the average number

of infected nodes at time t . Hence, the average fraction of
infected nodes at time t equals

yN (τ, ε; t ) = 1

N

∂ϕ(x, t )

∂x

∣∣∣∣
x=1

. (A11)

Initial condition. The ε-SIS process can start with a certain
probability distribution, which then requires that the initial
state vector s(0) = (s0(0), s1(0), . . . , sN (0)) is given. When

precisely m nodes in KN are infected initially at t = 0, then
the boundary condition ϕ(x, 0) = ∑∞

k=0 δkmxk = xm. Clearly,
the value of m > 0 must exceed zero because ϕ(0, t ) =
s0(t ) is the probability that the complete graph is infection
free at time t and, in the long run, limt→∞ ϕ(0, t ) = π0 is
given by (A5).

Confinement. In the sequel, we limit ourselves to constant
rates: none of the infection rate β, self-infection rate ε, or
curing rate δ are a function of time t . In addition, we assume
that the ε-SIS process starts at t = 0.

Steady-state probability generating function ϕ∞(x)

The steady-state probability generating function (assuming
constant rates) equals with (A4)

lim
t→∞ ϕ(x, t ) =

∞∑
k=0

lim
t→∞ Pr [M(t ) = k]xk

=
∞∑

k=0

πkxk = ϕ∞(x),

where

ϕ∞(x) = π0 + ε∗π0

τ�
(

ε∗
τ

+ 1
)

N∑
k=1

(
N

k

)
�

(
ε∗

τ
+ k

)
(τx)k .

(A12)

Thus, if ε = 0, then π0 = 1 and there holds that
limt→∞ ϕ(x, t ) = ϕ∞(x) = 1. If ε > 0, the steady-state
probability generating function ϕ∞(x) is a polynomial of
degree N in x, which is more elegantly written as

ϕ∞(x) = π0

�
(

ε∗
τ

)
N∑

k=0

(
N

k

)
�

(
ε∗

τ
+ k

)
(τx)k (A13)

and the general relation for any pgf, ϕ∞(1) = 1, also follows
from (A5). Finally, ϕ∞(x) is a function of three parameters

ϕ∞(x) = ϕ∞(x; τ, ε∗, N ).

The partial differential Eq. (A10) simplifies, in the steady state
for t → ∞ and ∂ϕ

∂t = 0, to

−βx2 ∂2ϕ∞
∂x2

+ {[(N − 1)β − ε]x − δ}∂ϕ∞
∂x

+ Nεϕ∞ = 0.

(A14)
Introducing the integral for the gamma function �(s) =∫ ∞

0 us−1e−udu, valid for Re (s) > 0, into (A13) and invoking
Newton’s binomium leads to an integral representation3 of the

3Assuming a positive real x and letting w = (τx)u, we find

ϕ∞(x) = π0

(τx)
ε∗
τ �

(
ε∗
τ

)
∫ ∞

0
e− w

τx w
ε∗
τ −1(1 + w)N dw.

We conclude that the steady-state probability generating function
ϕ∞(x) can be written as

ϕ∞(x) = π0

(τx)
ε∗
τ

U

(
ε∗

τ
,
ε∗

τ
+ 1 + N,

1

τx

)
, (A15)
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steady-state probability generating function for ε > 0:

ϕ∞(x; τ, ε∗, N ) = π0

�
(

ε∗
τ

)
∫ ∞

0
u

ε∗
τ

−1e−u(1 + uτx)N du.

(A16)

3. General solution of the partial differential Eq. (A10)

Theorem 2. In the time-dependent ε-SIS process on the
complete graph KN with constant infection rate β, self-
infection rate ε, and curing rate δ, the probability generating
function ϕ(x, t ) of the number of infected nodes M(t ) at time
t can be written as a Laplace transform

ϕ(x, t ) =
∫ ∞

0
e−ct g(x; c)dc, (A17)

where the function g(x, c) obeys the differential equation

− x2(x − 1)
d2g

dx2
+

{[
(N − 1) − ε∗

τ

]
x − 1

τ

}
(x − 1)

dg

dx

+ 1

τ
[Nε∗(x − 1) + c∗]g = 0 (A18)

and τ = β

δ
, ε∗ = ε

δ
, and c∗ = c

δ
� 0.

Proof. The usual recipe of the separation of the variables t
and x, by assuming that a solution in product form as ϕ(x, t ) =
g(x)h(t ) exists, transforms (A10) to

∂ ln h

∂t
= (x − 1)

g

{
−βx2 d2g

dx2
+ {[(N − 1)β − ε]x − δ}dg

dx

+ Nεg

}
. (A19)

By taking the derivative of both sides with respect to x, we
find with ∂

∂x
∂ ln h

∂t = 0 that

(x−1)

g

{
−βx2 d2g

dx2
+{[(N−1)β−ε]x−δ}dg

dx
+ Nεg

}
= c1,

(A20)
where c1 is a constant that is neither a function of x nor of
t because the left-hand side in (A20) is independent of t .
Similarly, by taking the derivative of both sides in (A19) with
respect to t , we find that

∂ ln h

∂t
= c2 (A21)

and (A19) shows that c1 = c2 = −c. We rewrite (A20) with
ε∗ = ε

δ
and c∗ = c

δ
to find (A18).

From (A21), we find h(t ) = h(0)e−ct for the time
t � 0. If c were complex and Im (c) �= 0, then h(t ) =
h(0)e− Re (c)t [cos t Im (c)+i sin t Im (c)] and ϕ(x, t ) =
g(x)h(t ) is generally complex for t > 0. However,
the definition (A9) of the pgf ϕ(x, t ) illustrates that

where the confluent hypergeometric function [32, Chap. 13.2.8]

U (a, b, z) = 1

�(a)

∫ ∞

0
e−ztwa−1(1 + w)b−a−1dt

is one of the independent solutions of Kummer’s differential equation
x d2 f

dx2 + (b − x) df
dx − a f = 0 (see, e.g., [32, Chap. 13]).

ϕ(x, t ) is real for real x at any time t � 0. Hence,
c must be real. Moreover, since the asymptotic pgf
limt→∞ ϕ(x, t ) = ϕ∞(x) exists, c must be non-negative,
otherwise limt→∞ h(t )=h(0) limt→∞ e−ct=∞. We conclude
that the eigenvalue c is real and non-negative.

The general solution of the eigenvalue differential Eq.
in c consists of a linear combination

∑
c�0 e−ct g(x; c)

if the eigenvalues c are discrete. Generally, one read-
ily verifies that ϕ(x, t ) = ∫ ∞

0 e−ct g(x; c)dc satisfies the par-
tial differential Eq. (A10) provided that g(x; c) is a so-
lution of the differential Eq. (A18) as a function of the
“eigenvalue” c. �

In fact, we need to solve an eigenvalue problem that can
be expanded in a Sturm-Liouville series [33]. For c = 0, the
differential Eq. (A18) reduces to the differential (A14) and we
conclude that

g(x, 0) = ϕ∞(x).

The ε-SIS process on the complete graph KN with N nodes
is described by a general birth-death process by the differ-
ential equations (A7) and (A8). This set of linear differential
equations possesses a general (N + 1) × (N + 1) tridiagonal
matrix, whose eigenstructure is studied in depth in [9, Sec.
A.6.3]. The N + 1 non-negative, real eigenvalues (and one
of them is zero) imply that the eigenvalues c are a discrete
set {c0 = 0, c1, . . . , cN }, so that the Laplace integral in (A17)
will reduce to a sum ϕ(x, t ) = ϕ∞(x) + ∑N

k=1 e−ckt g(x; ck ) for
finite size N .

The second-order differential Eq. (A18) in the function g is
of the type

x2(1 − x)
d2g

dx2
+ (ax + b)(1 − x)

dg

dx
+ [λ + d (1 − x)]g = 0,

(A22)
where a = ε∗

τ
− (N − 1), b = 1

τ
, d = N ε∗

τ
, and λ = c∗

τ
are

real numbers. Unfortunately, (A22) does not seem to be of
a known type. Gauss’s hypergeometric function F (a, b; c; x)
obeys the differential Eq. [32, Chap. 15]

x(1 − x)
d2g

dx2
+ [c − (a + b + 1)x]

dg

dx
− abg = 0.

Slightly more general, (A18) is of the type

p3(x)g(2)(x) + p2(x)g(1)(x) + p1(x)g(x) = 0,

where pk (x) is a polynomial in x of degree k, whereas the
hypergeometric differential equation is of the form

p2(x)g(2)(x) + p1(x)g(1)(x) + p0(x)g(x) = 0.

In conclusion, unless an analytic solution of the differential
(A22) can be found, we are afraid that the probability sk (t ) =
Pr [M(t ) = k], that the number of infected nodes M(t ) at time
t equals k in the Markovian continuous-time ε-SIS process on
the complete graph KN , cannot be determined in closed form.
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