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A B S T R A C T

In recent years, prognostics gained attention in various industries by optimizing maintenance, boosting opera-
tional efficiency, and preventing costly downtime. Central to prognostics is the Remaining Useful Life (RUL),
representing the critical time before system failure. Deep learning advancements facilitate RUL forecasting by
extracting features from diverse data formats such as time series, images, or sequences thereof, in one, two,
or three dimensions, respectively. Yet, predicting RUL from image sequences often relies heavily on resource-
intensive techniques like digital image correlation, complicating data acquisition. To address challenges with
high-dimensional data and unreliable models, this study introduces ISTRUST, an innovative Transformer-based
architecture. ISTRUST (Interpretable Spatiotemporal TRansformer for Understanding STructures) tackles the
dual challenges posed by high-dimensional data and the black-box nature of existing models. Leveraging
Transformers’ attention mechanism, ISTRUST breaks down the spatiotemporal domain, effectively realizing
interpretable RUL predictions under uncertainty using only sparse raw image sequences as input. Evaluated
on fatigue-loaded composite samples showcasing crack propagation, ISTRUST interprets the relation between
cracks and RUL via the attention mechanism. The results substantiate its capacity to interpret and clarify
instances in which predictions may exhibit variability in accuracy. Through the attention mechanism, a strong
correlation between the model’s spatiotemporal focus and the RUL predictions is established, making it, to
the best of our knowledge, the first model to provide interpretable stochastic RUL predictions directly from
sequential images of this nature.
1. Introduction

In today’s rapidly evolving technological landscape, the reliabil-
ity and performance of complex systems are of paramount impor-
tance. From aerospace and automotive industries to manufacturing and
healthcare sectors, the seamless operation of critical systems is not
only a matter of economic significance but also a concern for safety,
sustainability, and efficiency. The discipline of Prognostics and Health
Management (PHM) has emerged as a key enabler in ensuring the
continuous and optimal functioning of these systems by providing early
insights into their health status and predicting potential failures [1].

The term ‘‘PHM’’ encompasses a set of multidisciplinary approaches
and tools designed to monitor, assess, and manage the health of systems
and their components in real-time [2]. By integrating data-driven an-
alytics, advanced sensors, Machine Learning (ML), and domain knowl-
edge, PHM offers a proactive means of identifying anomalies [3–5],
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predicting impending failures [6–8], and prescribing timely mainte-
nance or remedial actions [9–11]. As such, PHM has the potential
to revolutionize the way industries approach maintenance, improving
asset utilization, reducing downtime, and minimizing life cycle costs.

One of the central pillars of PHM that has garnered increasing
attention in recent years is the estimation of Remaining Useful Life
(RUL). While PHM encompasses a broad spectrum of techniques for
monitoring and assessing system health, RUL estimation stands out
as a critical component in the quest for enhanced system reliability
and performance optimization. The concept of RUL can be succinctly
defined as the remaining time a system or component can be ex-
pected to operate within acceptable performance and reliability limits
before experiencing failure or degradation beyond tolerable levels.
Under the expansive umbrella of PHM, the estimation of RUL has seen
significant advancements, particularly in the context of data-driven
https://doi.org/10.1016/j.compositesb.2024.111863
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approaches. While it has been widely applied to univariate or multivari-
ate time-series data [12,13], such as vibration-based signals, and image
data [14,15], it is important to acknowledge that its application to
sequential images, which represents high-dimensional time-series data,
is still in its nascent stages.

In the realm of univariate and multivariate time series data, RUL
estimation has demonstrated remarkable success across various indus-
tries. This approach typically involves analyzing historical sensor mea-
surements and operational data to predict when a system or component
is likely to reach a predefined End-of-Life (EOL) threshold. Numerous
algorithms and models, ranging from classical statistical [10,16,17] and
numerical [12,13] methods to sophisticated ML techniques [6,18–22],
have been developed to handle this type of data. These approaches
have proven invaluable in scenarios where data is collected over time,
making them suitable for applications like structural health monitoring,
predictive maintenance, and failure prognosis. In the context of crack
propagation, this type of data often relates to strains extracted by
measuring the structure’s crack growth. Existing works considered post-
processed strain data as input to predict RUL end-to-end utilizing
different deep learning models, such as recurrent neural networks
(RNN) and convolutional neural networks (CNN) [23,24]. Despite the
simplification of the process of predicting Remaining Useful Life (RUL)
through reduced memory requirements and the construction of simple
deep learning models, these methods may lead to a loss of detailed
information. This is primarily due to the complex patterns inherent
in raw images not being fully captured, which necessitates significant
computational effort to extract the requisite information, as observed in
digital image correlation (DIC). Furthermore, the dependency of strain
data on measurement techniques can introduce errors, rendering it less
reliable and comprehensive compared to the direct analysis of high-
resolution images. This underscores the need to consider the direct
utilization of raw image data.

Similarly, the extension of RUL estimation to image data, where
predictive models are trained to make RUL predictions based on a single
image or snapshot, has shown promise in diverse fields. Applications
range from predicting the remaining lifespan of critical components in
manufacturing machinery [14,15] to assessing the structural integrity
of infrastructure components such as concrete structures [25]. With the
emerging field of deep learning, CNN, a specific type of Neural Network
(NN), has played a pivotal role in enabling RUL predictions from
images, revolutionizing the way assets are monitored and managed.

However, when dealing with video data, such as sequences of
images, the landscape becomes more intricate. For RUL estimation,
these data mainly consist of video frames, reflecting the damage of
the examined structure and how it progresses. While the potential of
such data in RUL estimation is evident, the complexity and dimension-
ality of this information pose unique challenges. Extracting meaningful
features, handling spatiotemporal dependencies, and building models
capable of predicting RUL accurately from frames remain active areas
of research. Consequently, NNs, with their capacity to automatically
learn hierarchical representations from raw data, have shown remark-
able capabilities in handling the challenges of high-dimensional data.
State-of-the-art approaches include a combination of RNN, such as
Long Short-Term Memory (LSTM), with CNN to effectively capture the
temporal and spatial features, respectively [26,27].

Very recently, the LSTM-CNN approach started being replaced by
transformers [28], an advanced technique initially proposed in Natural
Language Processing (NLP) that has now been applied in engineer-
ing applications as well. In addition to the success of transformers
in NLP, advancements have enabled their application in computer
vision. [29] proposed vision transformers that split images into patches
and forward them as a sequence of linear embeddings to a transformer-
encoder. Subsequent developments incorporated the ability to analyze
a sequence of images by separating the attention mechanism into a
spatial and temporal domain [30–32]. However, these studies either

encountered challenges in fully separating the temporal and spatial

2 
domains throughout their architecture [30,31] or struggled to reduce
the network’s depth [32].

The attention mechanism, the main building block of transformers,
has given remarkable outcomes in a variety of engineering studies.
Concerning RUL [33–38], however, all of these works are considered
as lower-dimensional data that are easier to handle. Nevertheless,
transformers are gaining increasing popularity in volumetric data as
well. From video recognition [39] and object detection [40], to se-
mantic segmentation [41] and damage detection [42], they enable the
development of models which have achieved unprecedented levels of
performance due to their capacity for capturing important information
of the complex input data. More importantly, they have the ability
to interpret the results and visualize how the input–output pairs are
correlated via the attention weights [43], which is a huge step to-
wards unfolding the black-box barriers of deep learning and being
advantageous over the typical LSTM-CNN techniques.

In spite of the substantial progress achieved by transformers in
various engineering applications, their utilization in RUL prediction
with raw sequential image data as the input remains largely unex-
plored. This is primarily due to the inherent limitations of raw images,
which do not provide adequate or accurate information for reliable
predictions. Mitigating this constraint requires the application of exten-
sive image processing techniques, notably the incorporation of DIC to
capture pertinent features [44,45]. Additionally, surrogate modeling is
employed to augment interpretability, however, it is noteworthy that it
may inadvertently oversimplify the complex analysis of structures [46].
These approaches can be correspondingly time and computationally
inefficient, and there is no evident connection between the sequence of
images and the predictions of RUL. This makes the idea of developing
a single model that can handle everything from raw sequential image
data to RUL prediction end-to-end by harnessing the interpretabil-
ity inherent to the attention mechanism. Additionally, the capability
to predict RUL directly from raw images enhances the framework’s
applicability in real-world scenarios where the asset lacks sufficient
computational resources for an intricate feature extraction process.
Simultaneously, this approach unlocks prognostic possibilities for any
system outfitted with a camera.

Although limited work exists on tracking crack damage via image-
based techniques, deep learning has been considered on other brittle
structures. The authors in [47] proposed a CNN model for detecting
crack damage on images of earthquake-affected urban scenes accompa-
nied by crack annotations. Another work considered deep learning for
pixel-level crack segmentation on masonry surfaces [48]. The authors
developed a CNN model for crack detection on patch- and pixel-level
images. By training with different network architectures and utilizing
transfer learning they succeeded in accurate crack classification and
segmentation. A limitation of these implementations is inherent in the
selected deep learning architecture, which relies on CNNs. This reliance
may result in a potential loss of precision in crack detection and
segmentation, particularly in discontinuous areas of the structure, as
CNNs are highly dependent on neighboring pixel values. Furthermore,
the aforementioned works, along with others in the literature [49–
51], do not address the task of end-to-end crack damage tracking and
remaining useful life (RUL) prediction using sequential image data as
input. This highlights the novelty of our approach.

While Physics-informed machine learning techniques are avail-
able [52,53], they tend to be highly task-specific. The objective of this
research is to develop an ML model that achieves both generalizability
across various applications and interpretability. Consequently, this
study proposes a novel, interpretable deep learning model – namely
Interpretable Spatiotemporal TRansformer for Understanding STruc-
tures (ISTRUST) – for RUL prediction from raw sequential image
data based on the attention mechanism and the transformer-encoder
architecture. As the predictions are now wholly contingent upon raw
data inputs, the ISTRUST model possesses the capability to discern

scenarios in which predictions may be suboptimal and when they are
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poised to demonstrate efficacy. Thus, it is reasonable to anticipate that
the model’s performance may not surpass that of DIC or surrogate
modeling. Instead, its principal objective is to offer insights and com-
prehension regarding the quality of predictions, thereby achieving an
unparalleled level of reliability and interpretation within the context
of black-box models. The interpretability is achieved by decomposing
the spatiotemporal continuum into spatial and temporal dimensions.
Therefore, the spatial attention weights show the correlation between
the cracks of each image separately and the predicted RUL, while the
temporal attention weights indicate the contribution of each frame to
the corresponding RUL. To the best of the authors’ knowledge, this
work is the first to provide interpretable RUL predictions directly from
sequences of raw images and the model’s performance is demonstrated
with an experimental dataset acquired by composite samples that are
under fatigue loads with visible cracks that propagate with time [54].
Finally, since RUL is a random variable, the proposed ISTRUST model
considers the uncertainty of the predictions by integrating the Monte
Carlo (MC) dropout technique [55] into the overall process.

In summary, the contribution and novelty of the current study to
the corresponding research areas is highlighted as follows:

• The model, which consists of a combination of CNN and self-
attention layers, performs RUL prediction under uncertainty given
unprocessed raw sequential images as input of composite samples
that is under fatigue loads.

• This approach contradicts typical models by unveiling the black-
box barrier through its integrated interpretation. The model’s in-
terpretability is further improved by the effective decomposition
of the spatiotemporal domain.

• Interpretability has been achieved by utilizing only one
transformer-encoder layer for each domain, deviating from the
conventional approach of employing 5–10 layers in vision trans-
formers.

• While it is acknowledged that the predictive performance of the
model may not be optimal in certain specimens, it is imperative to
note that our method offers a rational and coherent explanation
for the underlying phenomena contributing to this observation,
paving the way for visionary and innovative concepts for further
improving its efficacy.

• We incorporate supervised contrastive learning to compel the
model to filter out irrelevant information, such as the small
variations in the characteristics between each specimen, and the
projected data augmentation technique [56–58] that helps in
the training process. Moreover, we validate the model’s per-
formance to effectively filter out irrelevant information via a
Uniform Manifold Approximation and Projection (UMAP) repre-
sentation [59]. Utilizing contrastive learning we managed to train
a vision transformer-inspired architecture on limited data.

he paper is consequently organized as follows: Section 2 describes the
ethodology from vanilla NN to transformers, self-attention, and MC
ropout for uncertainty quantification, along with the data acquisition
trategy, experimental setup, and damage propagation phenomena in
omposite materials. In Section 4, the architecture of the model is pre-
ented, visualized, and extensively explained, accompanied by several
raining strategies to tackle the limited size of the dataset. Finally, the
esults coming after the model training are shown in Section 5, followed
y the conclusions in Section 6.

. Theory

.1. Transformers & multi-head attention

NN is a common tool used in machine learning to learn patterns
rom data. An NN consists of an input layer, optional hidden layers,
nd an output layer. A Fully Connected (FC) layer consists of several

eurons, which aggregate and process the output of the previous layers 𝑑

3 
inearly via matrix multiplications. An NN with at least one hidden
C layer and a non-linear activation function for that hidden layer is
alled a multilayer perceptron (MLP). Prior to applying a forward prop-
gation, the weights and biases are initialized; typically the weights
re sampled from a normal or uniform distribution and the biases
re zeroed. Using the backward propagation algorithm [60], where
he error is back propagated through the NN layers, the gradients of
he weights and biases w.r.t. the error can be calculated. Using these
radients and an optimizer like Stochastic Gradient Descent (SGD), the
eights and biases can be updated accordingly.

MLPs are a very inefficient way of handling images as they re-
uire flattening the image to a one-dimensional vector, resulting in
n input layer with a large size, and consequently a large amount of
eights. Furthermore, MLPs lack the ability to learn a specific feature

rrespective of its position within an image. Consequently, MLPs must
epetitively learn the same feature for each location individually, thus
acking translational invariance. For an image 𝐱 𝜖 R𝐾×𝐻×𝑊 , where 𝐾
s the number of features (e.g. 3 in the case of an RGB image), 𝐻 is
he height of the image in pixels and 𝑊 is the width of the image in

pixels, CNN solve the problem of a large number of weights and the
translational invariance by utilizing a different aggregation technique,
i.e. a filter or kernel called 2D convolution [61,62].

To further improve the models’ performances, the transformer archi-
tecture was proposed by Vaswani et al. [28]. By processing sequential
data using self-attention [63], they eliminated the need for RNNs or
CNNs. Transformers consist of an encoder, processing the input data,
and a decoder, generating the output data. The encoder and decoder
consist of sequential interchanged self-attention and MLP layers and
are connected through the encoder–decoder attention mechanism. Fol-
lowing the complexity of the original transformer, Devlin et al. [64]
successfully advocated for utilizing only the transformer-encoder, re-
sulting in reduced complexity and enabling improved interpretability.
In this regard, we consider the proposed architecture as a fundamental
stepstone for constructing our ISTRUST model, capable of fulfilling our
requirements.

Self-attention acts as the fundamental component of transformers,
in which queries (𝐐), keys (𝐊), and values (𝐕) are computed based on
the input data. The queries, keys, and values are obtained by means of
a linear projection from a sequence of one-dimensional input vectors
with size 𝑑𝑚𝑜𝑑𝑒𝑙. Subsequently, they all undergo a scaled dot-product
attention (see also Fig. 1(c)):

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐐,𝐊,𝐕) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥

(

𝐐𝐊𝐓
√

𝑑𝑚𝑜𝑑𝑒𝑙

)

𝐕 (1)

where
√

𝑑𝑚𝑜𝑑𝑒𝑙 is a scaling factor. Initially, the queries and keys are
ultiplied by the means of a dot product between each other. After

caling and applying the softmax function, the result is a matrix of
ttention weights. Finally, these attention weights are a matrix multi-
lication with the values, effectively collapsing the number of keys and
he corresponding associated information, represented by the values.

Nevertheless, since the size of the queries and keys is typically
n the order of a hundred, the computation of the attention weights
s computationally expensive. Rather than downscaling 𝑑𝑚𝑜𝑑𝑒𝑙, which
ould sacrifice information, the queries and keys are split by perform-

ng multiple linear projections, resulting in multiple heads, as shown
n Fig. 1(b). The resulting projected queries and keys have a size of
𝑘 = 𝑑𝑚𝑜𝑑𝑒𝑙∕𝑛ℎ𝑒𝑎𝑑𝑠, where 𝑛ℎ𝑒𝑎𝑑𝑠 represents the total number of heads.
ypically, the values are also divided among the heads. However,
his approach would compromise interpretability, as it would intro-
uce an indeterminate level of relative importance among the heads.
or that reason, a variant of multi-head attention called interpretable
ulti-head attention is implemented [65]. In interpretable multi-head

ttention, the values all undergo the same linear projection to achieve
he projected values. Unlike the queries and keys, the values do not
ose a computational bottleneck and can retain their original size of

𝑚𝑜𝑑𝑒𝑙. Following the scaled-dot product attention in each head, the
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Fig. 1. Transformer-encoder. Fig. 1(a) shows the fundamental part of the ISTRUST model, i.e. the interpretable transformer encoder. Fig. 1(b) depicts the interpretable multi-head
attention. Fig. 1(c) shows the scaled-dot product attention.
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resulting attended outputs are averaged. Next, the averaged outputs
are passed through a linear projection to finally obtain the attended
vectors.

As depicted in Fig. 1(a), the interpretable transformer-encoder is
distinguished from the typical architecture due to the interpretable
multi-head attention mechanism. In our proposed architecture, there
are two interpretable multi-head attention blocks. Similarly to the
original transformer-encoder, the embedding vectors produced by com-
puting the inputs (in our case, a sequence of images), are initially
normalized using layer normalization [66] and then are consequently
fed to the first interpretable multi-head attention block. Next, they
are passed through the second multi-head attention block alongside a
learnable token, which will be further described in Section 2.2. This
learnable token has additionally the role of a residual which is added
to the embedding vectors produced by the multi-head attention. The
final constructed embedding vectors are once again normalized using
layer normalization, whereafter they are passed through an MLP. In
the MLP block, there is no interaction or information transfer between
the embedding vectors. Instead, they are transformed within their own
dimension of 𝑑𝑚𝑜𝑑𝑒𝑙. After the MLP, there is another summation through

residual connection.

.2. Vision transformers

Following the revolution in NLP, transformers are also being applied
n computer vision tasks [29]. Vision transformers, as an alternative to
raditional CNNs, have gained popularity due to their improved perfor-
ance. Passing all pixels of an image into a vision transformer – which

s based on the encoder part of the original transformer – to the self-
ttention mechanism would require computational power that is out of
he limits of today’s hardware. Therefore, the input image is divided
nto square patches. Since transformers usually take one-dimensional
ectors as an input, the two-dimensional patches are either flattened
nd linearly projected or are fed into a CNN to obtain one-dimensional
mbedding vectors of size 𝑑𝑚𝑜𝑑𝑒𝑙 [67]. Since the interpretable multi-

head attention as shown in Fig. 1(b) does not change the dimensionality
of its input, the information present in the patches cannot be encoded

into a lower dimensionality. This implies that the contribution of each r

4 
patch to the outputs cannot be detected. One solution is to flatten
each patch and stack those one-dimensional arrays together into one
large vector. However, this can quickly become memory-inefficient,
time-consuming, and the patches will lose the information about their
pixels’ relative positions. To address these issues and to keep the
relative importance of each patch, another solution is to use a learnable
parameter that contains information about their contribution to the
architecture. For that reason, a learnable token is concatenated to the
embeddings, also called a CLS token in classification problems [29].
This learnable token is a one-dimensional vector of size 𝑑𝑚𝑜𝑑𝑒𝑙 with
earnable parameters that, similar to the weights in an NN, are updated
hrough backpropagation. The learnable token is a crucial component
f the vision transformer as it focuses on capturing the essential in-
ormation within the image patches that is relevant to the desired
utput.

Unlike CNN, a transformer is inherently not aware of the location of
patch. In this regard, it was proposed in [28] to use a technique called
ositional encoding. This method involves adding a one-dimensional
ector, dependent on the location, to the embedding vector. Various
ethods exist for calculating these positional encoding vectors, but
common approach involves using sine and cosine functions. Con-

idering the one-dimensional embeddings with their relative position
ncoded, they are fed into the transformer-encoder together with the
earnable token. In the transformer-encoder, they undergo several in-
erchanged self-attention and MLP layers. In the self-attention layer,
he learnable token represented as a query searches for particular
eatures, in our case RUL-related features, in the corresponding patches
epresented by the keys. The values, on the other hand, contain the
nformation present in a patch that is ideally relevant to extract features
ith the queries using a dot-product.

Following the transformer-encoder, only the attended embedding
ector originating from the learnable token is utilized for further pro-
essing, while the embedding vectors from the patches are discarded
ince their relevant information is encoded into the learnable token.
inally, the embedding vector originating from the learnable token is
assed through another MLP with, as output dimension, the number
f classes for classification problems or the number of outputs for

egression problems.
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To sum up, each input image is first divided into patches. Sub-
sequently, patch embedding is applied followed by positional encod-
ing. The transformer-encoder encodes the information pertinent to
the specific problem into the learnable token using the interpretable
multi-head attention. Following the transformer-encoder, the patch
embeddings are discarded and the attended learnable token undergoes
an MLP to achieve the final prediction.

3. Problem formulation and experimental setup

3.1. Problem formulation

Given input data comprising sequential images of a composite struc-
ture subjected to fatigue loads and exhibiting crack growth, the primary
task is to predict the RUL of the structure and estimate the associated
uncertainty by interpreting the model’s focus within the spatial and
temporal domains of the input data. In addition to executing a high-
dimensional stochastic regression task, efforts are directed towards
enhancing the trustworthiness of the model’s predictions by visualizing
the areas of focus. This approach aims to provide deeper insights into
the model’s prediction outcomes and improve reliability.

To achieve these objectives, an advanced deep learning technique
based on vision transformers is proposed. The model is further re-
fined to highlight and analyze critical regions and time frames that
contribute most significantly to the prediction of RUL. The proposed
method provides interpretable insights into the degradation process
of the composite structure. Additionally, uncertainty quantification is
performed using the MC dropout technique [55], which allows for the
assessment of Confidence Intervals (CI) around the predicted RUL. This
comprehensive approach ensures that the predictions are reliable even
when not optimal, facilitating better decision-making in maintenance
and safety protocols for composite structures under fatigue loads.

3.2. Experimental setup

This subsection presents the process of data acquisition, which is
crucial for understanding the experimental data used in this study. It
covers the acquisition of experimental data, including details about
the specimens, materials, and the experimental setup. Furthermore, it
explores the concepts of crack propagation and the definition of RUL in
this context and provides insights into the damage accumulation mech-
anisms observed in composite structures under fatigue loads. Lastly, it
discusses the transformation of the acquired raw images into a dataset
suitable for analysis and modeling.

The experimental data used in this paper is provided by a previous
experimental study [21]. The material at hand is a unidirectional
Prepreg tape Hexply® F6376CHTS(12K)-5-35. The laminate is manu-
actured using a hand lay-up of [0∕45∕90∕ − 45]2𝑠 and is cured in an
utoclave at a temperature of 180 C and pressure of 9 bar for 120 min

as recommended by the manufacturer. The laminate is consequently
cut to obtain specimens of 400 mm × 45 mm with an average thickness
of 2.28 mm. Two examples of specimens can be found in Fig. 2.

Subsequently, the specimens are loaded under fatigue using a 100
kN MTS fatigue controller and a bench fatigue machine, with an aver-
age fatigue load of 16.2 kN, a stress ratio of 𝑅 = 0.1, and a frequency of
0 Hz. The experiments are paused every 500 cycles, during which the
oad is first allowed to go to the minimum load 𝜎𝑚𝑖𝑛, after which the
oad is ramped up to 𝜎𝑚𝑎𝑥 over a duration of 1 s. The load then remains
tationary at 𝜎𝑚𝑎𝑥 for 2 s. In the middle of this interval, the pictures are
aken using two 8-bit ‘‘Point Grey’’ cameras with ‘‘XENOPLAN 1.4/23’’
enses, placed slightly left and slightly right in front of the specimen.
inally, the load is relieved to 𝜎𝑚𝑖𝑛 over a duration of 1 s, after which

the fatigue loading continues. More detailed information about the
used materials and the experimental setup can be found in [68]. In
the previous study, DIC speckles were utilized to investigate certain
characteristics of stiffness, a focus that falls outside the scope of the
5 
current research. Our primary objective is to predict RUL from raw
images, and therefore, DIC speckles do not contribute to this analysis.
Nevertheless, additional noise is introduced on each image, making the
tasks of crack tracking and RUL prediction even more challenging.

3.2.1. Crack propagation mechanism and RUL definition
During the fatigue test, several damage accumulation mechanisms

can be noticed. Reifsnider and Talug [69] proposed a three-stage pro-
cess for damage accumulation, describing it as a multistate degradation
phenomenon. Fig. 3 provides a visual summary of the damage accu-
mulation process in composite structures, and the damage observed
specific to our data is shown in Fig. 2. The process begins with trans-
verse matrix cracking in highly stressed layers, which are shown in
blue, followed by the formation of debonding and delaminations at
layer interfaces shown in orange in the same figure. In the final stage,
fiber failures increase, leading to macroscopic failure, also known as
the end of life (EOL). It is important to note that the exact sequence
depends on factors such as layup configuration, material properties,
manufacturing defects, loading, and environment.

Following the fatigue test, the EOL is marked by the specimen
breaking in two, rendering it incapable of bearing any further forces.
At each timestep, the period left before reaching the EOL is referred to
as the corresponding RUL at this specific timestep. Typically, the RUL
is graphically shown as a line with a negative slope, intersecting the
𝑥-axis at EOL time.

3.2.2. Dataset setup
Once the data is acquired, it undergoes a transformation process

to prepare it for input into the ISTRUST model. Our data consists of
six different specimens, each consisting of two views taken by the two
cameras. Per specimen 50 to 150 images are taken, depending on their
corresponding total useful life. The raw data is processed as follows:

• For hyperparameter tuning, the dataset is split into a training set,
consisting of four specimens, a single validation specimen, and
a single testing specimen. The training set is consequently used
to train the ISTRUST model, whilst the validation specimen is
used to evaluate the performance of the model and adjust the
hyperparameters accordingly.

• To evaluate the model with tuned hyperparameters, the valida-
tion specimen used for the hyperparameter tuning is discarded to
avoid data leakage [71]. All specimens with the exception of the
validation specimen are consequently used in cross-validation: the
model is trained six times with the same hyperparameters, where
each specimen acts as a testing specimen at a certain training
iteration. It is important to note that the testing specimens never
influence the hyperparameters.

• Rather than using the two different camera views as features,
they are split as if they were different specimens. This essen-
tially doubles the length of the dataset, acting naturally as data
augmentation and consequently reducing the risk of overfitting.

• The images are sampled from the raw data by utilizing the
windowing technique (see Section 4.3 for more details).

• The current RUL of a sample 𝐱 𝜖 R𝑇×𝐻×𝑊 is defined as the dis-
tance between the current time step and the EOL of the specimen
which is measured at the moment of the latest picture in a specific
array of images.

Based on the abovementioned processes, the training set consists of
a range of 500–600 samples of 3 sequential images each, corresponding
to an array of images, while the testing set contains a range of 90–130
samples with the same number of sequential images. The corresponding
number of samples depends on the specific specimen chosen as the
testing set under the concepts of the cross-validation technique.
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Fig. 2. Types of cracks; horizontal-only (Fig. 2(a)) and horizontal-diagonal (Fig. 2(b)) in the experimental samples. Two main damage types are observed: transverse matrix cracks
and delamination. Transverse matrix cracks – characterized by their slender and sharp nature – are indicated in blue and delamination – characterized by its less slender and more
blunt nature – is indicated in orange. Note that delamination is much more visible than the transverse matrix cracks. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
Fig. 3. Three stage damage accumulation process in composite structures [69,70].

4. Model architecture and learning process

The general concept from creating the dataset to predicting RUL
with interpretable capabilities is depicted in Fig. 4. Initially, the given
data are augmented (Section 4.1) before they are sliced into patches
(Section 4.2). Then, the patched images are grouped into small win-
dows of size 3 while 2 images are skipped at every window (Sec-
tion 4.3). Next, the training process takes effect where our proposed
ISTRUST model is trained with two losses; one based on contrastive
learning and used for the first part of the learning process, and the
typical Mean Squared Error, applied in the second part of the learn-
ing process. Finally, the interpretability of the model indicating the
correlation between the images and the predictions is illustrated.

In order to provide insights into the connection between input im-
ages and RUL predictions, our ISTRUST model incorporates a variation
of NN components, such as CNN, self-attention, and MLP techniques. A
comprehensive explanation of the model architecture employed for this
purpose, the learning process alongside the application of supervised
contrastive learning, aimed at filtering out irrelevant information, and
its validation using a UMAP representation, can be found in Section 4.4.
Moreover, the interpretability of our novel transformer-encoders and
6 
the information flow in the model architecture is thoroughly explained
using the attention weights in Section 4.5.

4.1. Data augmentation

In order to aid the ISTRUST model in learning useful representations
rather than memorizing the data, an augmented training set is created
by applying several data augmentation techniques. These techniques
are a random resized crop, followed by a random horizontal and
vertical flip, and a random rotation of ±5◦ is applied. These augmen-
tations are applied 𝐷 times on the input images 𝐱, resulting in an
augmented training set that is 𝐷 times larger than the original training
set. Importantly, the exact same augmentations should be applied to
each image in the temporal domain as well. Doing otherwise would
confuse the temporal transformer-encoder since the images would no
longer be spatially aligned in the temporal domain.

4.2. Patching

The input images 𝐱 𝜖 R𝑇×𝐻×𝑊 are split into square patches
𝐱′ 𝜖 R𝑇×𝑃𝐻×𝑃𝑊 ×𝐻𝑃 ×𝑊𝑃 , where the number of vertical patches 𝑃𝐻 is
𝐻∕𝐻𝑃 , the number of horizontal patches 𝑃𝑊 is 𝑊 ∕𝑊𝑃 , and 𝐻𝑃 , 𝑊𝑃
are the horizontal and vertical pixels of each patch, respectively, as
shown in Fig. 7(a). Following the patching, the spatial domain will refer
to 𝑃𝐻 and 𝑃𝑊 rather than 𝐻 and 𝑊 . Note that the spatial domain can
also be referred to as 𝑃 in the case that 𝑃𝐻 and 𝑃𝑊 are flattened into
a single dimension, where 𝑃 is the total number of patches.

4.3. Windowing

The images are sampled from the raw data by shifting a win-
dow with a size of 𝑠𝑤𝑖𝑛𝑑𝑜𝑤 over the sequence of images. For both
performance and overfitting reasons, a skip size 𝑠𝑠𝑘𝑖𝑝 can be used,
reducing the number of images in a window without reducing the
desired window length, as illustrated in Fig. 5. Therefore, a final input
size of R𝑇×𝐻×𝑊 is obtained, representing an array of images, where
𝑇 = 𝑠𝑤𝑖𝑛𝑑𝑜𝑤−1

𝑠𝑠𝑘𝑖𝑝+1
+ 1 is the number of images, 𝐻 the height, and 𝑊 the

width of the image. In this work, a skip size 𝑠𝑠𝑘𝑖𝑝 of 2 and a window
size 𝑠 of 7 are used.
𝑤𝑖𝑛𝑑𝑜𝑤
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Fig. 4. The general concept concerning the task of predicting RUL under uncertainty from raw sequential images by interpreting the relation between RUL and images in the
temporal and spatial domains.
Fig. 5. Sampling images from raw data, for one specimen specifically. Three different samples are shown: the images of the first sample are circled with a red dashed line, the
second with a blue dotted line, and the third with a green solid line. The horizontal axis represents the time domain, and consequently decreasing RUL of the specimen. The RUL
of the sample is represented by the latest image of the corresponding color and is the distance between the current time step and the EOL of the examined specimen. In this work,
a skip size 𝑠𝑠𝑘𝑖𝑝 of 2 and a window size 𝑠𝑤𝑖𝑛𝑑𝑜𝑤 of 7 are used. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
4.4. Training setup

Since the task demands high-dimensional data as input representing
sequences of images, a spatiotemporal domain prevails. In our custom
vision transformer, we introduce a novel approach by decomposing
the spatiotemporal domain into distinct domains, namely the temporal
and spatial domains. This decomposition enables us to capture and
analyze the evolution in both domains separately, leading to improved
understanding and interpretability in predicting the RUL from raw
images.

The temporal domain within our custom vision transformer focuses
on the manipulation and rearrangement of information along the 𝑇
dimension, representing the temporal aspect of the data. This approach
empowers us to identify critical temporal patterns, visualize their im-
portance across multiple time steps, and leverage them for accurate
RUL predictions. By treating the spatial dimensions 𝐻 and 𝑊 as
batch dimensions, i.e. dimensions where the individual samples remain
isolated without exchanging any information, the temporal domain
becomes a dedicated space for uncovering the temporal evolution of
the input data.

In conjunction with the temporal domain, our custom vision trans-
former incorporates the spatial domain, which emphasizes operations
7 
within the spatial dimensions. By exclusively considering spatial rela-
tionships and patterns, we can extract valuable insights into the spatial
distribution of image features and their impact on RUL prediction.
Through this spatial analysis, we gain a deeper understanding of the
material’s health status and the location of the damage.

The resulting model architecture used to predict the RUL from
the raw images is described in Fig. 6. The temporal and spatial do-
mains represent the first and second interpretable transformer-encoder,
respectively. The rationale for prioritizing the decomposition of the
temporal domain as a primary consideration, followed by the subse-
quent analysis of the spatial domain, stems from our inherent emphasis
on identifying the most pertinent image and subsequently directing
our focus towards specific regions within those images. The individual
modules and submodules in the figure will be described in more
detail throughout the following subsections. Unless explicitly stated
otherwise, operations in one domain exclude operations in the other
domain. In other words, when operations are performed in the spatial
domain, the temporal domain acts solely as a batch dimension and vice
versa.

Provided that the dataset is fairly small – only six specimens, with
50 to 150 images each – a model using multi-head attention like ours
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Fig. 6. ISTRUST model’s architecture. Our proposed architecture is based on Vision transformer. The images are first divided into patches, followed by an embedding layer and
temporal positional encoding. The index 𝑖 (see Eq. (2)) used for the temporal positional encoding is represented by the numbers in the purple boxes. The patch embedding is
followed by the temporal interpretable transformer-encoder, which is shown in more detail in Fig. 1. The temporal interpretable transformer-encoder is followed by 2D spatial
positional encoding. The indices 𝑖, 𝑗 (see Eq. (4)) used for the temporal positional encoding is represented by the numbers in the purple boxes. Subsequently, the spatial encoded
embeddings are passed through the spatial interpretable transformer-encoder. Finally, the attended learnable token is sent through an MLP to adjust the dimension for the output,
i.e. the RUL predictions. Visualizing the temporal and spatial attention weights of the corresponding interpretable transformer-encoder offers valuable insights into the relation
between RUL and the speed and size of the structure’s cracks, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
has many difficulties learning useful patterns from the data rather
than overfitting to the training set, compromising the performance on
the testing one. The following techniques are applied to increase the
ISTRUST model’s performance.

4.4.1. Convolutional embedding
Following the patching layer, the convolutional embedding layer,

shown in Fig. 7(b), aims to encode the two-dimensional information of
all patches into a one-dimensional embedding vector. It achieves this by
performing four stepwise convolutional operations, followed by a batch
normalization and GeLU activation function. The convolutional layers
essentially reduce the size of the square patch size from shape 𝐻𝑃×𝑊𝑃×
1, since the images are grayscale, to shape 1 × 1× 𝑑𝑚𝑜𝑑𝑒𝑙. Consequently,
these 1 × 1 dimensions are discarded, with only the features remaining.
Subsequent to the convolutional embedding the embedding vectors
𝐳 𝜖 R𝑇×𝑃𝐻×𝑃𝑊 ×𝑑𝑚𝑜𝑑𝑒𝑙 are obtained, having successfully reduced the 2D
patches to a one-dimensional vector. It is important to note that, so
far, there has been no information exchange or interaction between
the patches in either the temporal or spatial domain. The convolutional
embedding operates on each patch independently without considering
the spatiotemporal relationships.

4.4.2. Temporal positional encoding
To produce the outputs of the temporal position encoding, i.e. the

temporal positional encoded embeddings which should be fed to the
temporal transformer-encoder, we use the original positional encoding
equation using sine and cosine functions proposed in [28]:

𝑇𝑃𝐸(𝑡, 2𝑖) = 𝑠𝑖𝑛
(

𝑡 ⋅ 𝑒
(

2𝑖⋅ −𝑙𝑛(10000)𝑑𝑚𝑜𝑑𝑒𝑙

)
)

(2)

𝑇𝑃𝐸(𝑡, 2𝑖 + 1) = 𝑐𝑜𝑠
(

𝑡 ⋅ 𝑒
(

(2𝑖+1)⋅ −𝑙𝑛(10000)𝑑𝑚𝑜𝑑𝑒𝑙

)
)

(3)

where 𝑡 represents the moment in time and 𝑡 𝜖 [0, 𝑇 ), 2𝑖 represents
an even index and 2𝑖 + 1 represents an odd index in the embedding
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vector where {2𝑖, 2𝑖+1} 𝜖 [0, 𝑑𝑚𝑜𝑑𝑒𝑙). These temporal positional encoding
vectors 𝑇𝑃𝐸 are added to the embeddings 𝐳 to obtain the temporal
positional encoded embeddings 𝐳𝑇𝑃𝐸 R𝑃𝐻×𝑃𝑊 ×𝑇×𝑑𝑚𝑜𝑑𝑒𝑙 .

4.4.3. Temporal interpretable transformer-encoder
Following the temporal positional encoding, the temporal positional

encoding vectors 𝐳𝑇𝑃𝐸 are passed through the temporal transformer-
encoder where the spatial dimensions 𝑃𝐻 and 𝑃𝑊 act as batch di-
mensions. Consequently, information will only be transferred in the
temporal domain and not the spatial domain. Traditional vision trans-
formers have multiple self-attention layers being interchanged with
MLPs, essentially putting multiple transformer-encoder blocks in se-
ries. To achieve interpretability, however, our novel interpretable
transformer-encoder shown in Fig. 1(a) consists of two attention mech-
anisms, namely the multi-head self-attention and the multi-head token-
attention, followed by an MLP. The interpretable transformer-encoder
block is applied only once in each domain.

After normalizing the temporal positional encoding vectors 𝐳𝑇𝑃𝐸
using layer normalization, they undergo the multi-head self-attention
layer. However, unlike the conventional vision transformers, the learn-
able token does not pass through the multi-head self-attention layer.
The purpose of the self-attention layer is to facilitate information
exchange among the patches. The self-attention layer is followed by
the token-attention layer, which is a modified attention layer based on
the self-attention in vision transformers [29]. The multi-head token-
attention employs the interpretable multi-head attention similar to the
self-attention layer (see Section 2.1). Nevertheless, the queries, keys,
and values do not come from the same sequence of embeddings. While
the queries originate from the learnable token, the keys and values
originate from the attended patches that come from the previous self-
attention layer, hence the name. The objective of this layer is to encode
the information from all embedded patches in the temporal domain
into a single vector. As previously mentioned in the description of the
interpretable transformer-encoder (see Fig. 1(a)), the attention layers
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Fig. 7. Illustration of the patching (Fig. 7(a)) and convolutional embedding process (Fig. 7(b)). In Fig. 7(a), the patched input image is shown. The overlapping images represent
the temporal dimension 𝑇 . For clarity, the image is only separated into a few patches whilst, in practice, the image consists of significantly more patches, where this amount is
limited by the hardware on which the model is trained. In Fig. 7(b), the convolutional embedding layer is shown on the left, where the Convblock is illustrated on the right. The
shape of the patches is illustrated with square brackets, where ∗ represents an arbitrary number of leading dimensions acting as batch dimensions, which are being left out for
clarity. This figure specifically illustrates the convolutional embedding for a 16 × 16 patch; a smaller patch size would require fewer Convblocks and vice-versa.
are finally followed by layer normalization and an MLP, which in turn,
come after another residual connection giving the final temporal en-
coded embedding vector 𝐳𝑇𝐸 𝜖 R𝑃𝐻×𝑃𝑊 ×𝑑𝑚𝑜𝑑𝑒𝑙 , representing the output
of the temporal interpretable transformer-encoder.

4.4.4. Spatial positional encoding
Since an image is two-dimensional, utilizing the previous positional

encoding technique responsible for the temporal positional encoding
(Eq. (2)) would require flattening the spatial domain [𝑃𝐻 , 𝑃𝑊 ] to
[𝑃 ] and, thus, not differentiating between the horizontal and vertical
dimensions. Therefore, an alternative positional encoding technique
is performed that incorporates both spatial dimensions, by reserving
half of the embedding vector for the positional encoding in the height
direction, and the other half for the width direction:

𝑆𝑃𝐸(ℎ, 2𝑖) = 𝑠𝑖𝑛
(

ℎ ⋅ 𝑒
(

2𝑖⋅ −𝑙𝑛(10000)𝑑𝑚𝑜𝑑𝑒𝑙

)
)

(4)

𝑆𝑃𝐸(ℎ, 2𝑖 + 1) = 𝑐𝑜𝑠
(

ℎ ⋅ 𝑒
(

(2𝑖+1)⋅ −𝑙𝑛(10000)𝑑𝑚𝑜𝑑𝑒𝑙

)
)

(5)

𝑆𝑃𝐸(𝑤, 2𝑗) = 𝑠𝑖𝑛
(

𝑤 ⋅ 𝑒
(

2𝑗⋅ −𝑙𝑛(10000)𝑑𝑚𝑜𝑑𝑒𝑙

)
)

(6)

𝑆𝑃𝐸(𝑤, 2𝑗 + 1) = 𝑐𝑜𝑠
(

𝑤 ⋅ 𝑒
(

(2𝑗+1)⋅ −𝑙𝑛(10000)𝑑𝑚𝑜𝑑𝑒𝑙

)
)

(7)

where ℎ and 𝑤 represent the position in the height dimension 𝑃ℎ and
width dimension 𝑃𝑤, respectively, with ℎ 𝜖 [0, 𝑃𝐻 ) and 𝑤 𝜖 [0, 𝑃𝑊 ),
2i and 2j represent an even index, and 2i + 1, 2j + 1 represent an
odd index in the embedding vector where {2𝑖, 2𝑖+1} 𝜖 [0, 𝑑𝑚𝑜𝑑𝑒𝑙∕2) and
{2𝑗, 2𝑗+1} 𝜖 [𝑑𝑚𝑜𝑑𝑒𝑙∕2, 𝑑𝑚𝑜𝑑𝑒𝑙). Finally, the temporal positional encoding
𝑇𝑃𝐸 is added to the temporal encoded embeddings 𝐳𝑇𝐸 to obtain the
spatial positional encoded embeddings 𝐳𝑇𝑃𝐸𝑇𝐸 .

4.4.5. Spatial interpretable transformer-encoder
Before the spatial positional encoded embeddings 𝐳𝑇𝑃𝐸𝑇𝐸 𝜖

R𝑃𝐻×𝑃𝑊 ×𝑑𝑚𝑜𝑑𝑒𝑙 can be fed to the spatial interpretable transformer-
encoder, the spatial domain has to be flattened to obtain 𝐳𝑇𝑃𝐸𝑇𝐸,𝑓 𝜖
R𝑃 ,𝑑𝑚𝑜𝑑𝑒𝑙 . Consequently, the spatial interpretable transformer-encoder
works entirely similar to the temporal counterpart, except that 𝑃𝐻 and
𝑃𝑊 – which were previously acting as batch dimensions – are no longer
present, and that the 𝑇 -dimension is replaced by the 𝑃 -dimension. The
corresponding output is consequently the spatial encoded embedding
𝐳 𝜖 R𝑑𝑚𝑜𝑑𝑒𝑙 .
𝑆𝐸
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4.4.6. Linear projection
The spatial interpretable transformer-encoder is finally followed by

a linear projection layer. It encodes the spatial encoded embedding 𝐳𝑆𝐸 ,
from R𝑑𝑚𝑜𝑑𝑒𝑙 to R by means of a single linear projection layer followed
by a ReLU activation function, giving the predicted RUL.

4.4.7. Weight initialization
On each image, although some diagonal delaminations are ob-

served, the majority is horizontal. This is because most cracks initiate in
the 90◦ ply direction as it is orthogonal to the loading direction. Using
the fact that most of these cracks are horizontal, the convolutional
embedding layer can be engineered to capture these cracks. Typically,
the weights of the kernels, also called filters, in any convolutional layer
are sampled from either a uniform or normal distribution, in this case,
a normal distribution, giving no preference to horizontal or vertical
features, as shown in Fig. 8(a). In our case however, although still
sampling from a normal distribution, no variance is allowed in the hor-
izontal direction, thus forcing the kernels to initially filter out vertical
features and capture only horizontal features as shown in Fig. 8(b),
significantly speeding up the training process and consequently increas-
ing the model’s performance. Note that this only happens in the initial
stages of the model’s training and the kernels are not constrained, hence
horizontal variance can still become detectable throughout the learning
process.

4.4.8. Contrastive learning
Contrastive learning is a semi-supervised technique that aims to

learn useful representations by contrasting similar and dissimilar pairs
of data samples [57,58]. In this approach, the model is trained to
distinguish between positive pairs, which are similar in some way,
and negative pairs, which are dissimilar. The key idea is to maximize
the similarity between positive pairs while minimizing the similarity
between negative pairs. This is typically achieved by training the
encoded embedding vector (the output of the transformer-encoder), as
depicted in Fig. 6. By optimizing the encoder to pull similar samples
closer together and push dissimilar samples apart, contrastive learning
enables the ISTRUST model to capture important features and patterns
that are relevant to the task at hand. This process allows the model to
learn generalized representations.
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Fig. 8. Custom kernel weight initialization. Fig. 8(a) demonstrates the weights of CNN kernels which are initialized by sampling from a normal distribution and allowing variance
in all directions, whilst Fig. 8(b) visualizes our CNN weight initialization where no variance is allowed in the horizontal direction but the weights are still being sampled from a
normal distribution.
Fig. 9. UMAP representation of the spatial encoded embeddings 𝐳𝑆𝐸 . In each subfigure, the left-hand image represents the primary and secondary component of the UMAP
representation of 𝐳𝑆𝐸 , supplemented by the normalized ground truth RUL as a continuous colorbar on the right. The right-hand image also represents the primary and secondary
components, supplemented by the sample number of the relevant specimen as a discrete colorbar on the right. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
To visualize the embeddings obtained from the encoder, the UMAP
representation is employed. The UMAP representation provides a low-
dimensional visualization of the encoded embedding vector in terms of
primary and secondary components. When training the whole model,
i.e. both the encoder and the predictor, directly with the Mean Absolute
Error (MAE) loss function 𝑀𝐴𝐸 , it fails to filter out information
related to the specific specimen, as shown in UMAP representation in
Fig. 9(a) and the specific data augmentation, as shown in Fig. 9(c).
In these images, it can be seen that the spatial encoded embeddings
𝐳𝑆𝐸 resulting from the spatial transformer-encoder part still contain
information related to the relevant specimen that is unnecessary for
the RUL prediction. This means that each specimen has its own location
in the UMAP representation. Consequently, the final linear projection
layer can overfit to this location in the UMAP representation, and thus
to the relevant specimen and/or data augmentation. Therefore, it is
desired to force samples with a similar RUL to the same location in
the UMAP representation, which highlights the importance of utilizing
contrastive learning.

Zha et al. [56] were the first to propose contrastive learning in
supervised regression problems based on the work of [57,58] in clas-
sification problems. However, they recommended the application of
data augmentation at every training iteration twice, aiming to ensure
convergence by always having two samples with the same RUL, also
called positive samples. Because of the computational expense related
10 
to performing the data augmentation at every iteration, data augmen-
tation is applied 𝐷 times on the training set before the training process,
creating the augmented training set. Using this technique, no significant
difference was observed in our specific problem compared to sampling
at every training iteration. Moreover, as stated previously, sampling
at every iteration gives a large bottleneck in terms of computational
performance. Thereby, the following loss function is used where we
replaced the term 2𝑁 from the fundamental equation with the term 𝑁 ,
hence:

𝑆𝑢𝑝𝐶𝑅 = − 1
𝑁

𝑁
∑

𝑖=1

1
𝑁 − 1

𝑁
∑

𝑗=1,𝑗≠𝑖
𝑙𝑜𝑔

×
𝑒𝑥𝑝(𝐿2-𝑑𝑖𝑠𝑡(𝐳𝑆𝐸,𝑖, 𝐳𝑆𝐸,𝑗 )∕𝜏)

∑𝑁
𝑘=1 1[𝑘≠𝑖, 𝐿𝑀𝐴𝐸 (𝑦̃𝑖 ,𝑦̃𝑘)≥𝐿𝑀𝐴𝐸 (𝑦̃𝑖 ,𝑦̃𝑘)]𝑒𝑥𝑝(𝐿

2-𝑑𝑖𝑠𝑡(𝐳𝑆𝐸,𝑖, 𝐳𝑆𝐸,𝑘)∕𝜏)
(8)

where 𝑆𝑢𝑝𝐶𝑅 is the supervised contrastive regression loss, 𝑁 is the
batch size, 𝐿2-𝑑𝑖𝑠𝑡 is the 𝐿2 distance between the two input vectors,
is the spatial encoded embedding, 𝑦̃ the corresponding ground truth
RUL, 1 is true when the statement in brackets is satisfied and zero
otherwise, 𝜏 is the temperature hyperparameter of the softmax func-
tion, and 𝐿𝑀𝐴𝐸 is the MAE between the two input targets. Since the
model fails to filter out specimen-related information (Fig. 9(a)) rather
than augmentation-related information (Fig. 9(c)), sampling at every
training iteration should be avoided as claimed in [56]. Note that this
loss function is applied on 𝐳 , and thus remains untrained during
𝑆𝐸
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the contrastive learning stage, resulting in the absence of utilizing the
last layer responsible for the RUL prediction. To subsequently consider
the final linear projection layer, it is trained in a second stage whilst
fixing the weights of all layers obtained in the first stage via contrastive
learning.

4.5. Interpretability: information flow

In the underlying section, the information flow in both the temporal
and the spatial transformer-encoder will be explained by analyzing
the attention weights. For simplicity, a single attention head will be
assumed. At the end of the section, it will be shown that this can easily
be extrapolated to the interpretable multi-head attention. Besides, since
the temporal and spatial transformer-encoder work in the exact same
way, only in a different domain, no distinction will be made between
them during the following explanation of the information flow. The
patches in the relevant domain will merely be referred to as patches,
meaning that either all of them are in the temporal domain 𝑇 where
he spatial domain acts as a batch dimension and does not contribute
o any mathematical operations in any way, or they are in the spatial
omain 𝑃 .

The transfer of information in the self-attention mechanism can
e interpreted by analyzing the attention weights computed in self-
ttention and token-attention. In self-attention, the attention weights
re calculated by the means of a matrix multiplication between the
uery 𝐐𝐬𝐞𝐥𝐟 and key 𝐊𝐬𝐞𝐥𝐟 matrices, followed by a softmax operation.
his computes the correlation between each query and all keys, rep-
esenting the relationship between the patches. The resulting attention
eights, represented by the matrix 𝐀𝐬𝐞𝐥𝐟 , indicate how much informa-

ion is transferred between patches. The actual information transfer
appens when these attention weights are multiplied by the values,
esulting in the intermediate self-attended patches 𝐙′

𝐬𝐞𝐥𝐟 .
Similarly, in the token-attention, there is only one query originating

rom the learnable token. The attention weights are computed by at-
ending the query 𝐐𝐭𝐨𝐤𝐞𝐧 to the attended patches 𝐊𝐭𝐨𝐤𝐞𝐧 originating from
he self-attention. The resulting attention weights 𝐀𝐭𝐨𝐤𝐞𝐧 determine the
mportance of the attended patches for the RUL prediction. Multiplying
hese attention weights with the values 𝐕𝐭𝐨𝐤𝐞𝐧 originating from the
ttended patches yields the encoded embedding.

Likewise, by tracing back the information present in the encoded
mbedding through the attention weights, it can accurately be deter-
ined how much information was taken from each patch to obtain

he encoded embedding. Knowing that 𝐕𝐭𝐨𝐤𝐞𝐧 originates from 𝐙′
𝐬𝐞𝐥𝐟 , the

low of information in the entire interpretable transformer-encoder is
epresented by matrix 𝐀:

= 𝐀𝐭𝐨𝐤𝐞𝐧𝐀𝐬𝐞𝐥𝐟 =
[

𝑎1,1 ⋯ 𝑎1,𝑛𝑘𝑒𝑦𝑠
]

𝑡𝑜𝑘𝑒𝑛

×

⎡

⎢

⎢

⎢

⎣

𝑎1,1 ⋯ 𝑎1,𝑛𝑘𝑒𝑦𝑠
⋮ ⋱ ⋮

𝑎𝑛𝑞𝑢𝑒𝑟𝑖𝑒𝑠 ,1 ⋯ 𝑎𝑛𝑞𝑢𝑒𝑟𝑖𝑒𝑠 ,𝑛𝑘𝑒𝑦𝑠

⎤

⎥

⎥

⎥

⎦𝑠𝑒𝑙𝑓

=
[

𝑎̃1 ⋯ 𝑎̃𝑛
]

(9)
here 𝐀 represents the matrix containing how much information has
een taken from each patch to arrive at the encoded embedding and 𝑎̃𝑖
epresents how much information has been taken from the 𝑖th patch.

As can be seen in Fig. 1(b), the attention weights in the multi-
ead attention are averaged before being multiplied by the values.
he same can thus be done for the attention weights in both the self-
ttention and the token-attention. It is important that these attention
eights are averaged before applying Eq. (9) since the head 𝑖 of the

elf-attention unmistakably has no correlation with the head 𝑖 of the
oken-attention. It can thus be concluded that we are able to interpret
he information flow of both the temporal and spatial domains sepa-
ately. This explanation is achieved by reducing the attention weights
n the multi-head self- and token-attention such that each patch has a
ingle weight in the relevant domain. The resulting attention weights
irectly determine how much information from each patch contributes

o the final prediction.

11 
. Experimental results and discussion

To obtain the experimental results, our ISTRUST model was trained
n PyTorch in a two-stage process on an Nvidia RTX4080 16 GB
PU. Because estimating the time complexity theoretically is chal-

enging, we approximated it by performing forward passes with dif-
erent image heights, widths, frame lengths, layers, number of heads
n multi-head attention, and dimensions of the encoded embeddings.
he elapsed time to perform a forward pass with 1×, 2×, 4×, and
× of the above sizes (all of them were increased simultaneously)
as 0.21, 0.41, 0.96, 2.69 s, respectively. This means that the time is

ncreasing somewhere between linearly and quadratically with these
izes. In particular, the time increases approximately by a factor of 1.2,
ince 2.69

0.96∕
0.96
0.41 = 0.96

0.41∕
0.41
0.21 ≃ 1.2. Consequently, the time complexity is

estimated approximately to be 𝑂(𝑛1.2).
Before evaluating the model’s performance, we fine-tuned the hy-

erparameters by training on the training dataset and adjusted the hy-
erparameters according to the performance on the validation dataset.
he resulting hyperparameters can be found in Table 1. During the first
tage, we trained the encoder, which encompasses the entire model
s outlined in Fig. 6, with the exception of the final linear projection
ayer. The first stage of training was conducted employing contrastive
earning, utilizing 𝑆𝑢𝑝𝐶𝑅, and SGD with a momentum of 0.9 on the

augmented training set. The weights were initialized according to the
guidelines provided in [72]. The first stage training process was approx-
imately 30 to 40 min per fold, depending on the rate of convergence
of the specific fold in the cross-validation process.

5.1. Model performance, optimal and suboptimal RUL predictions

Through experimentation on the validation set, we discovered that
the optimal encoder performance following the contrastive learning
stage was attained by utilizing the encoder’s state at the lowest non-
augmented training loss. The resulting epochs for which the embedder
states were taken can be found in Table 2. The UMAP representation
of the augmented training set using contrastive learning is depicted in
Fig. 9(b), accompanied by the non-augmented training set in Fig. 9(d),
which was not included in the training set during the contrastive learn-
ing stage. These representations reveal that the encoder is no longer
discriminating between the specimens based on the applied augmenta-
tion or the relevant specimen, with the primary variation observed in
the UMAP representation relating to the ground truth RUL. This serves
as the initial validation of the ISTRUST model’s performance, indicating
that the contrastive learning was successful since the model no longer
overfits the specific specimen or augmentation and thus correctly filters
out spurious information.

Following the contrastive learning stage, we froze the state of the
encoder and solely trained the predictor using SGD with a momentum
of 0.9 and 𝑀𝐴𝐸 on the non-augmented training set for six epochs, with
an observed training time of fewer than two minutes. The rationale for
choosing such a small number of epochs is that the second learning
stage is a much simpler process than the first stage of training. Con-
sequently, during the hyperparameter tuning, the regression layer that
exists in the second stage starts to overfit after some epochs, due to the
high dimensionality of the spatial encoded embedding vector. Hence,
the training is stopped after six epochs for optimal performance.

To ensure robustness in our testing, we utilized cross-validation with
a total of six specimens. The RUL predictions under uncertainty utiliz-
ing MC dropout (95% CI) and the associated loss curves for specimens
classified as successful can be found in Fig. 10, while Fig. 11 con-
tains the corresponding results for specimens with suboptimal perfor-
mance. Discrimination between optimal and suboptimal performances
was guided by two heuristics: (i) whether RUL showed a rational de-
crease as it approached the EOL, and (ii) whether the spatial attention
focused on damaged or noisy areas. The resulting losses can be found

in Table 2. Notably, across all specimens, the RUL profile exhibited a
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Fig. 10. Cross-validation of successful results of RUL prediction. Vertically, the table is subdivided such that each specimen has its own column. Subsequently, each row corresponds
to a different fold of the cross-validation. The RUL predictions on the testing specimens can be found in the first column. In the last two columns, the loss curves with all losses
are depicted.

Fig. 11. Cross validation of suboptimal results of RUL prediction alongside the loss curves depicted row-wisely for each specimen.
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Table 1
Values of the parameters resulting from the hyperparameter tuning on the validation set. All values are dimensionless.

Corresponding Parameter Values Parameter Values for 𝑆𝑢𝑝𝐶𝑅 Values for 𝑀𝐴𝐸

Dataset 𝑠𝑠𝑘𝑖𝑝 2 Epochs 30 6
𝑠𝑤𝑖𝑛𝑑𝑜𝑤 7 Batch size 32 32
𝑇 3 Learning rate embedder 2.00 × 10−2 0
𝐻 640 Learning rate predictor – 1.00 × 10−3

𝑊 320 Dropout model 0.3 0.3

ISTRUST model 𝑑𝑚𝑜𝑑𝑒𝑙 96 𝜏 2 –
𝑑𝑘 16
𝐻𝑃 = 𝑊𝑃 16
𝑃𝐻 40
𝑃𝑊 20
𝑃 800
𝑛ℎ𝑒𝑎𝑑𝑠 6
Table 2
Epochs for which the encoder and predictor states were taken. On the first hand, the
epochs concerning the encoder correspond to the contrastive learning stage. On the
other hand, the epochs regarding the predictor represent the second training stage, i.e.
the learning of the final linear projection layer. The total losses, which can be found
in the rightmost column, are calculated using the corresponding specimens in each
fold.

Specimen No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 Total

Epochs (encoder) 27 9 25 8 17 6 –
Epochs (predictor) 5 5 5 5 5 5 –
Training 𝑀𝐴𝐸 0.13 0.15 0.15 0.16 0.14 0.17 0.15
Testing 𝑀𝐴𝐸 0.14 0.41 0.15 0.31 0.29 0.21 0.26

transitional pattern, characterized by an initial phase with an almost
stable, flat slope, followed by a distinct transition to a steeper slope,
signifying a sudden change in the model’s processing of the input. This
observation alongside the optimal and suboptimal performances will
be explained through the interpretation of the ISTRUST model, i.e. via
the attention weights, in the following subsection. Finally, it is worth
noting that the corresponding uncertainties originate from the model
itself rather than the data. This explains their persistence even close to
the EOL condition where they should have been neglected.

5.2. Explaining the results — model interpretation

To explain the successful and suboptimal results, both the tem-
poral and spatial attention weights originating from the multi-head
self-attention and the multi-head token-attention were merged using
Eq. (9), ensuring that each patch in the relevant domain has only one
weight. The temporal attention weights, obtained utilizing the same
equation, were further reduced by averaging over the spatial domain,
with each temporal attention weight being weighted according to the
corresponding spatial attention weight. It is worth noting that all the
displayed attention weights correspond to testing specimens that were
not part of the training sets in their respective folds.

The spatial attention weights at the EOL for three selected spec-
imens are presented in Fig. 12. In Figs. 12(a) and 12(b), the model
successfully focuses on locations with damage near the EOL, which
validates the desired results for specimens 3 and 6. In Fig. 13, the
spatial and temporal focus evolution of the ISTRUST model throughout
the entire life of specimens 4 and 5 are depicted. In Fig. 13(a), it is
evident that initially, the model rationally fails to capture the minor
damage present in the specimens and instead focuses on spurious
parts at random locations as the damage still remains indistinguish-
able. Consequently, the initial RUL values for each specimen exhibit
a relatively consistent range, indicating that the model primarily relies
on the average RUL derived from the entire dataset during its initial
predictions. Nevertheless, as the damage accumulates, delamination
starts being detected by the model successfully, which focuses only on
the important parts of the image, leading to an accurate decrease in
the predicted RUL. Similar observations are present for specimens 1,
13 
3, and 6 shown in Fig. A.1. For these specimens there was significant
delamination present, resulting in a successful RUL prediction. Further-
more, an examination of the temporal attention weights in the same
figure reveals that the ISTRUST model reasonably prioritizes the latter
images over the earlier ones. Nevertheless, the model does not entirely
discard the initial ones. This can be attributed to the model’s need for
the earlier images to estimate the speed of damage accumulation while
relying on the last image to assess the severity of damage in the current
state.

In order to explain the suboptimal results of specimens 2 and 5,
the spatial attention weights of specimen 5 at the EOL are shown in
Fig. 12(c). It can be acknowledged that for this specimen, the model
also captures the cracks, despite the less prevalent damage and the
relatively poorer RUL predictions. This can be attributed to two rea-
sons. Firstly, due to the attention weights that focus on some spurious
parts, circled in red. These are typically black dots, which distract
the spatial attention from the actual damage. In this case, the model
gratuitously focuses on additional parts of the image, which confuses
its RUL estimation. This can be efficiently seen in Fig. 13(b) in the
last image representing a sample close to the EOL, where the model
additionally considers some spurious parts as damage, thus violently
changing its RUL estimation. Secondly, for specimen 5 specifically,
significant cracks are observed at a 45-degree angle, a phenomenon
not present in the other specimens. While the model does detect these
cracks, it does not effectively correlate them with a reduction in the
RUL curve. This is because similar cracks were not encountered during
the training phase, leading to an unexpected shift in the RUL trajectory.
Nevertheless, the RUL predictions in Fig. 11 still exhibit a negative
slope in general (with the only exception being the specimen’s 5 latest
RUL predictions), specifying that the ISTRUST model indeed captured,
but underestimated the extent of the damage. Similar observations
can be noted for specimen 2 in Fig. A.1(b). Consequently, it can be
concluded that there is a noticeable correlation between the accuracy
of the spatial attention weights, the severity of the visible damage, and
the accuracy of the RUL prediction.

It should be acknowledged that even though the model managed to
capture the majority of the damage, it only captures the corresponding
one that is relevant for the RUL prediction. As a result, the proposed
ISTRUST model can currently not be accurately used as an anomaly detec-
tion method. However, the shown results are promising, and it should
be further investigated whether the attention weights can be leveraged
for anomaly detection by modifying the training setup, the size of the
dataset, or the model’s architecture.

Lastly, the proposed model encounters the primary limitations asso-
ciated with the DIC technique and the camera systems. Regarding DIC
analysis, the primary limitation encompasses the extended computa-
tional time required for post-processing DIC data to extract strain fields,
which hinders the application of this technique in real-time scenarios.
Even upon extracting the strain field, post-processing fails to accurately
identify high-damage areas due to the inability to measure substantial
deformations and the corresponding strains [73]. Furthermore, the
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Fig. 12. Spatial attention weights of selected testing specimens at the EOL condition. The displayed colormaps indicate the spatial attention weights, accompanied by the input
image on their left. The color within the colormap, along with the accompanying colorbar on the right, indicates the absolute magnitude of the attention weights. In Figs. 12(a)
and 12(b) the spatial attention weights of specimens 2, 5 for which the results were deemed successful are shown. In Fig. 12(c) the spatial attention weights of specimen 3 which
is classified as suboptimal are depicted. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. Evolution of spatial and the corresponding temporal attention weights of testing specimens four (Fig. 13(a)) and five (Fig. 13(b)). Each figure consists of three parts. The
top graph represents the predicted RUL for each specimen. The colormaps displayed beneath the graph illustrate the changes in spatial attention weights over time. Additionally, for
each attention map, the last input image can be found below each attention map. The color within the colormap, along with the accompanying colorbar on the right, indicates the
relative magnitude of the attention weights. The bottom graph corresponds to the temporal attention weights of each sequence of images (here, only the last and most important
image of each sequence is shown). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Composites Part B 287 (2024) 111863 

14 



P. Komninos et al. Composites Part B 287 (2024) 111863 
Fig. 14. Temporal attention weights when testing specimen 1 with varying hyperparameter values that affect the time domain.
quality of the speckle pattern applied to the surface and how well it
is captured by the camera can limit the feature extraction accuracy.
Applying the model directly on raw images mitigates the risk that an
inappropriate speckle pattern may introduce.

5.3. The role of temporal attention

The role of spatial attention is well understood; however, the inter-
est in temporal attention is less evident. To address this, a parametric
study was conducted focusing on the key hyperparameters associated
with temporal attention, specifically skip size (𝑠𝑠𝑘𝑖𝑝) and window size
(𝑠𝑤𝑖𝑛𝑑𝑜𝑤). Due to extensive memory requirements, the values were
selected to ensure that the number of images (𝑇 ) did not exceed three.
Fig. 14 illustrates examples of temporal attention weights and their
behavior with varying hyperparameter values when testing specimen
1. Notably, when 𝑇 = 3, the final image in the sequence is consis-
tently more significant than the preceding images for predicting RUL.
Conversely, when 𝑇 = 2, both images hold nearly equal importance
for RUL prediction. This observation can be attributed to the fact that
a sequence of at least two images allows the model to capture the
crack propagation speed, which is closely related to RUL. This finding
underscores the importance of temporal attention weights and utilizing
sequential images rather than a single image as input.

Finally, for the sake of comprehensiveness, we present the impact
of these hyperparameters on prognostics in Table 3. It is evident that
the prognostics are significantly influenced by these hyperparameters.
When more images are skipped, the model’s efficiency drops signif-
icantly. Having small or large window sizes negatively affects the
model’s performance as well.

6. Conclusions and recommendations

In this paper, a novel model architecture – namely the ISTRUST
model – based on vision transformers is proposed capable of predicting
15 
the RUL under uncertainty, given sequences of raw images as input,
with a primary focus on interpretability. This model is evaluated on an
experimental dataset acquired from composite samples that are under
fatigue loads and visible cracks as damage propagates. To interpret the
correlation between the input images taken from two cameras and the
RUL predictions an innovative attention mechanism is proposed based
on the decomposition of the spatiotemporal domain. By separating the
temporal and spatial domains and leveraging the attention mechanism,
the black-box commonly associated with deep learning architectures
is circumvented, allowing for an interpretable AI prognostic model.
The spatial and temporal attention weights demonstrated the model’s
ability to correctly prioritize patches with higher levels of damage in
the spatial and temporal domain respectively. Besides, a noticeable
correlation was observed between the accuracy of the spatial attention
weights and the accuracy of the RUL prediction. Based on that, it
was shown that despite the RUL prediction being initially a flat line
for all specimens, as soon as the model focused on the damage, it
started to drop at the anticipated negative slope. As predictions depend
entirely on raw data inputs, the ISTRUST model has the ability to
identify situations where predictions may fall short or perform well.
Consequently, it is reasonable to expect that the model’s performance
depends on the quality of the data provided. Nevertheless, its primary
goal is to provide insights and understanding about the accuracy of
predictions, aiming to achieve an exceptional level of reliability and
interpretation, unfolding the barriers of the black-box models.

Because of the limited data acquired from the experiment, a data
augmentation technique is performed, thus increasing the risk of over-
fitting. In this regard, contrastive learning is utilized to help the
ISTRUST model distinguish the important information responsible for
crack propagation, which in turn affects the RUL, and filters out the
spurious one. The UMAP representation is responsible for visualizing
the results of the contrastive learning. Furthermore, the stochastic-

ity of the RUL is naturally included in our ISTRUST model via the
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Table 3
Parametric study of the hyperparameters 𝑠𝑤𝑖𝑛𝑑𝑜𝑤 and 𝑠𝑠𝑘𝑖𝑝 and their effects on prognostics using the corresponding specimens in each fold.

Examined values Specimen No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 Total

Epochs (encoder) 27 17 17 16 22 28 –
𝑠𝑤𝑖𝑛𝑑𝑜𝑤 = 5, 𝑠𝑠𝑘𝑖𝑝 = 2, 𝑇 = 2 Epochs (predictor) 6 2 4 5 5 5 –

Training 𝑀𝐴𝐸 0.17 0.14 0.17 0.20 0.20 0.21 0.18
Testing 𝑀𝐴𝐸 0.16 0.42 0.19 0.32 0.30 0.31 0.28

Epochs (encoder) 27 9 25 8 17 6 –
𝐬𝐰𝐢𝐧𝐝𝐨𝐰 = 𝟕, 𝐬𝐬𝐤𝐢𝐩 = 𝟐, 𝐓 = 𝟑 Epochs (predictor) 5 5 5 5 5 5 –

Training 𝑀𝐴𝐸 0.13 0.15 0.15 0.16 0.14 0.17 0.15
Testing 𝑀𝐴𝐸 0.14 0.41 0.15 0.31 0.29 0.21 0.26

Epochs (encoder) 27 23 20 12 27 7 –
𝑠𝑤𝑖𝑛𝑑𝑜𝑤 = 9, 𝑠𝑠𝑘𝑖𝑝 = 2, 𝑇 = 3 Epochs (predictor) 3 2 6 1 5 6 –

Training 𝑀𝐴𝐸 0.25 0.18 0.21 0.22 0.20 0.23 0.22
Testing 𝑀𝐴𝐸 0.29 0.42 0.20 0.32 0.29 0.21 0.28

𝑠𝑤𝑖𝑛𝑑𝑜𝑤 = 7, 𝑠𝑠𝑘𝑖𝑝 = 3, 𝑇 = 3 Epochs (predictor) 5 3 5 2 5 6 –
Training 𝑀𝐴𝐸 0.24 0.17 0.19 0.18 0.20 0.21 0.20
Testing 𝑀𝐴𝐸 0.25 0.43 0.17 0.31 0.32 0.31 0.30

𝑠𝑤𝑖𝑛𝑑𝑜𝑤 = 7, 𝑠𝑠𝑘𝑖𝑝 = 6, 𝑇 = 2 Epochs (predictor) 3 2 6 1 5 6 –
Training 𝑀𝐴𝐸 0.28 0.22 0.26 0.27 0.23 0.28 0.26
Testing 𝑀𝐴𝐸 0.26 0.47 0.28 0.34 0.31 0.31 0.33
MC dropout, offering a simple yet meaningful representation of the
introduced uncertainty.

Despite the weight initialization being designed to assist the model
in capturing horizontal cracks, it notably succeeded in identifying
diagonal cracks during the learning process. As a result, the model
demonstrates the potential for generalization to more complex crack
shapes. However, in such scenarios, further testing with various weight
initializations is necessary to determine the optimal configuration. It is
imperative to acknowledge that the naturally occurring cracks within
the internal sections of the structure are detectable by the cameras
only when they are detected on the surface. Consequently, in scenarios
where the specimens are black, such as with carbon fiber composites,
cracks may be difficult to detect visually. In these cases, it would be
advisable to apply a white painted surface to the specimens before us-
ing the model to enhance crack visibility and ensure accurate analysis.
This condition is critical for the application of this model and warrants
further investigation in the future.

The objective of this work is to develop a generalizable model
applicable to any structure from which raw sequential images can
be obtained. While the current task focused on predicting RUL from
these images to demonstrate the model’s capability in transforming
high-dimensional data into straightforward one-dimensional estima-
tions under uncertainty, this approach can be extended to other tasks
such as crack segmentation or classification. This can be achieved by
modifying the final FC layers of the proposed architecture and updating
the loss function accordingly.

Although the model’s training was performed offline, it can be easily
considered for real-time applications by positioning one or more cam-
eras to the examined in-service structure. Nevertheless, switching from
in-lab tests to real-time prognostics involves technical challenges like
ensuring data quality, model accuracy, computational efficiency, and
operational challenges related to system integration, maintenance, and
network constraints. This is a promising direction for further extending
this work towards real-time prognostics.

One key limitation of the present work is the lack of comprehensive
data that captures the full range of failure mechanisms inherent to
composite materials. The fatigue life of composites is highly dependent
on the initiation, interaction, and propagation of cracks, which are
intrinsically stochastic and can lead to significant variability in RUL
predictions. In particular, specimen 5, with its major cracks oriented at
45 degrees, highlights the need for training data that includes diverse
failure modes. Additional future work should address this by incorpo-
rating a wider variety of damage scenarios to improve the robustness
of the model.

While it is recognized that the ISTRUST model’s predictive perfor-

mance may not be ideal for specific cases, it is essential to highlight
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that our approach provides a logical and cohesive explanation for the
underlying factors influencing this observation. This lays the founda-
tion for creative and forward-thinking ideas to enhance its effectiveness
in the future. Additionally, it is recommended to apply our proposed
architecture to larger datasets, hence the resolution of the model could
be increased without the potential of overfitting. This is because higher
resolution could avoid the distraction of the spatial attention weights to
spurious features and allow the model to capture less extensive damage,
thus further increasing the model’s performance. Finally, because of
the accurate spatial attention maps, it should be further investigated
whether the attention weights can be leveraged for anomaly detection
by modifying the training setup, the size of the dataset, or the model
architecture.
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Appendix. Additional illustrations of the attention evolution

See Fig. A.1.

Fig. A.1. Evolution of spatial and the corresponding temporal attention weights of the
remaining testing specimens.
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