
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Toward Occlusion
Capable Human
Trajectory Prediction
Facilitating occlusion capability at the prediction
stage of perception, with a TransFormer based
trajectory prediction model

Paul Féry

Toward Occlusion
Capable Human

Trajectory Prediction
Facilitating occlusion capability at the
prediction stage of perception, with a

TransFormer based trajectory prediction model

by

Paul Féry

student number: 4660625

Supervisors: Dr. Ing. J. Kober
A. Mészáros

Project Duration: May, 2023 - October, 2024
Faculty: Faculty of Mechanical Engineering, Delft

Summary

The following document is a report that discusses the research project which I conducted for my thesis,
as part of my MSc in Robotics.

The majority of existing research within the trajectory prediction field makes the assumption that agents’
past histories are perfectly observed. The focus of the research conducted in the project presented
here is on the development of a trajectory prediction method which does not rely on this assumption,
and actively accounts for the effects of occlusions on the prediction task. In the present research, the
problem of trajectory prediction is reformulated in the following way: agents whose trajectories must
be predicted may or may not be fully observed over the observation time window, and the prediction of
agents whose most recent observations are not current, begins from their last available observation.

A prediction model has been developed in order to directly operate on the problem space considered
(i.e., a prediction problem where complete observation of all present agents is not guaranteed). The
proposed model, named OcclusionFormer, is based on an existing state-of-the-art prediction model,
AgentFormer. This previous model is itself based on a TransFormer architecture, whose means of pro-
cessing data is advantageous for handling occluded trajectories. Contrary to its predecessor, Occlu-
sionFormer can be trained directly on occluded trajectory data. Notably, it predicts currently occluded
agents’ futures by beginning prediction from their last observed positions. An optional method of in-
tegrating knowledge of the spatial configuration of occlusions as an additional source of information
to the prediction process has also been developed. The proposed prediction model can process an
occlusion map as an additional input, extracting information about the visibility of the space, and using
this information in its prediction.

In order to facilitate the study of occlusions and their effects on the prediction task, a simulator of oc-
clusion events has been created. It relies on the placement of a virtual ego-perceiver, and a virtual
occluding object, separating the workspace into two (complementary) regions: one visible to the ego,
the other occluded. Occlusions generated by the simulator are not only defined temporally, but also spa-
tially, thereby enabling the generation of occlusion maps, alongside with their corresponding occluded
trajectory data. The occlusion simulator can be applied onto any trajectory dataset that is commonly
available within the research field.

With the use of a popular trajectory dataset, experiments were conducted to study the performance
of the proposed model under different circumstances. The results obtained from experiments reveal
that OcclusionFormer is fit to operate on the prediction problem specified, with minimal performance
decrease from AgentFormer under idealized, fully observed conditions. A study of the effects of occlu-
sions on the model’s performance is also provided, measuring the degree of degradation that occlu-
sions induce on performance metrics. Experiments surrounding the integration of occlusion maps into
the prediction model show that the approach taken results in performance improvements over some
metrics, and deterioration over others.

Toward Occlusion Capable Human Trajectory
Prediction

Facilitating occlusion capability at the prediction stage of perception, with a TransFormer based trajectory prediction model

Paul Féry
Department of Cognitive Robotics,
Faculty of Mechanical Engineering,

Delft University of Technology
Delft, the Netherlands

Abstract—A widely held assumption within the field of Trajec-
tory Prediction is the perfect and complete observation of agents’
pasts. While this assumption allows for a simpler representation
of the prediction problem, it no longer holds true when pre-
diction models are expected to operate on histories generated
by upstream perception systems, which are susceptible to fail.
Occlusions are a particularly important cause of perception
failures. They fragment tracked agents’ trajectories, and can
often hide their most recent position(s) from the perception
system. While most prediction models that are currently being
researched cannot account for the possible incompleteness of
agents’ past histories, we devise a prediction model that is
designed to directly operate on partially missing histories caused
by occlusions. We present OcclusionFormer, a TransFormer
based prediction model, which predicts agent’s futures from their
last observed position, without requiring imputation of missing
past positions. Experiments show that our design is occlusion
capable, as it can predict from trajectories with partially missing
data, while remaining performant in the ideal, fully observed
scenario. We also conduct research on the integration of an
occlusion map within our model, which could help narrow the
region of plausible prediction for occluded agents. We observe
that, while the addition of such a map does improve the coherence
of predictions with respect to the configuration of the occluded
space, it results in a degradation of prediction performance.

I. INTRODUCTION

In order to improve the safety of autonomous vehicles and
robotic systems designed to operate in environments shared
with other agents, it is important to ensure that the decision
making processes of those systems is based on accurate and
reliable perception of their environment. Trajectory prediction
plays an important role in the overarching task of machine
perception. It is a challenge that requires the consideration of
many factors affecting the motions and behaviours of agents,
such as the configuration of their environment, or the social
interactions they might have with their neighbours.

One particular aspect that has received little attention from
the research community is the possibility that past trajectories,
which are the primary resource that prediction models can
use to predict the future motions of agents, can be partially
fragmented due to the imperfect detection and tracking of

agents. Occlusions are a prominent cause of such incom-
plete histories. The great majority of the existing approaches
within the trajectory prediction field neglect occlusions and
the impact they may have on the prediction problem entirely.
One important factor that participates in the retention of the
assumption that trajectories are perfectly observable can be
found in the datasets which present the prediction problem
(such as the ATC Dataset [4], the ETH/UCY Dataset [17,
10], or the Grand Central Station Dataset [24]). Indeed,
the trajectory datasets used within the field are designed to
provide non-corrupt, fully observed trajectories. Occlusions
are not well represented, and consequently, the responsibility
to handle or mitigate them at the prediction stage of perception
is a problem that remains largely unattended.

Our work is split into two main contributions. First, we
choose to tackle the occlusion problem directly by redefin-
ing the prediction task, accounting for the possibility that
agents’ past histories may be incomplete, and notably, that
the prediction of agents currently being occluded should
start from their last observed state. We devise a prediction
model to address this problem, by building on top of the
AgentFormer model introduced by Yuan et al. [23], a state-
of-the-art TransFormer based model, capable of accounting
for social interactions among observed agents. Our imple-
mentation leverages positional encodings, which are used by
TransFormer networks to inform the temporality of sequence
data, and which facilitate the processing of partially missing
input sequences. We show through our experiments that our
model is capable of operating on partially missing input
histories directly, predicting occluded agents’ trajectories from
their last observed timesteps, without requiring imputation.
Our design also performs on par with its predecessor when
deployed on completely observed trajectories, showing that
occlusion capability can be implemented without necessarily
inducing performance penalties in the idealized, fully observed
case. Additional experiments reveal the impact that occlusions
can have on the performance of prediction models, as well
as highlight some problems that may arise from handling
occlusions by means of imputation.

1

Our second contribution focuses on the potential benefits of
informing our prediction model of the spatial configuration
of occlusions. We recognise that occlusions are the product
of a partially unobserved workspace, rather than an arbitrarily
random source of trajectory corruption. In order to generate
representations of occlusions, we devise an occlusion sim-
ulator, which can operate on any commonly available tra-
jectory dataset. The simulator generates (currently occurring)
occlusion instances by separating the workspace into a visible
and an occluded region. We hypothesize that informing a
prediction model about the visibility of the workspace could
help narrow the field of estimation for the unknown states
of occluded agents, thereby possibly improving prediction
performance. We design an extension of our model, in which
an occlusion map is provided as an additional input, and
is processed alongside trajectory data through a specialized
cross-attention process. This occlusion map is accompanied by
an occlusion loss, which incentivizes the model to maintain
predictions of unobserved past points within the occluded
portion of the workspace. The experiments we conduct on
the integration of the occlusion map show that our method
is effective in improving the ability of the model to main-
tain predictions of occluded agents’ unobserved pasts inside
the occluded region of the workspace. However, our results
show that this modification of the model degrades prediction
performance.

II. RELATED WORK

Trajectory Prediction is the last component of the machine
perception pipeline. The task is most often formulated as a
pattern recognition problem, where the objective is to antici-
pate agents’ short term future motions, using their tracked past
movements [19]. Important aspects of the problem include the
capacity for models to account for social interactions among
agents [1, 7] or environmental constraints and features of the
agents’ workspace [8, 16], or the formulation of prediction as a
multi-modal task, allowing for multiple acceptable predictions
for one given situation [7, 8, 9].

Occlusions are perhaps the greatest challenge within the
machine perception field. They increase the difficulty of the
detection and tracking tasks, resulting in potentially poor
quality input data for the prediction task. Occlusions constitute
a particularly dangerous risk factor for the perception of
Vulnerable Road Users (VRU’s) due to their size. Though
the research fields of object detection and tracking assign a
high priority to the problem of occlusion handling, occlusions
receive minimal attention within the trajectory prediction field.
The majority of existing work in trajectory prediction relies
on the assumption of a perfectly observed environment, in
which agents’ past histories are not subject to occlusions [1,
7, 8, 16, 9]. The lack of extensive research on occlusions
within the field can be partly explained by the datasets that
are used as a basis for prediction [17, 10, 15, 18, 24, 4], as
none of them explicitly present partially missing trajectories or
occlusions, showing instead perfect data that is unlikely to be
representative of tracklets generated online from an imperfect

object detection/tracking system. Expecting perfect tracking
performance is unreasonable. Most importantly, occlusion
handling at the tracking level of perception focuses on re-
identification after agent reappearance, with little capacity to
address currently occurring occlusions. Such occlusions should
therefore be addressed at the prediction level. Some of the
existing research on “occlusion capable” trajectory prediction
aims at enabling RNN architectures to manipulate irregular
histories [3, 5]. Transformers [22] seem a more promising
avenue, as they have the natural advantage of being directly
fit to manipulate such sequences, thanks to their positional
encoding [6, 23]. Mitigating the impact of occlusions can
also be done by reducing the observation period [11, 20, 21],
though this does not allow predictions for currently occluded
agents. End-to-end approaches focus on encompassing all
perception tasks in one system [14, 13, 12], which lowers
the risks of inconsistency in the data being carried from one
task to the next. However, end-to-end approaches tend to be
inherently complex, making them both difficult to optimize
and interpret.

AgentFormer [23] is a state-of-the-art, multi-modal pre-
diction model capable of accounting for social interaction
among agents. Based on a Transformer architecture, it is
a promising candidate for an occlusion capable prediction
model. The authors process input histories of all agents as
one single sequence, specialising the attention mechanism of
the network to let the model differentiate agent identities.
This allows for modelling of social and temporal aspects
of an input sequence simultaneously. In their supplementary
material, the authors make note of the potential for their
model to handle a time-varying number of agents, by omitting
missing sequence elements from the input sequence. However,
the authors’ proposed approach does not account for the
eventuality of generating predictions for currently occluded
agents. Indeed, their model autoregressively decodes agents’
future trajectories, starting from their current state, observed
at timestep t = 0. Consequently, is is not fit to perform
predictions on agents whose last observation was made before
the current instant, as their current state is unavailable.

Our work focuses on the development of a method that
directly accounts for occlusions as a part of the trajectory
prediction problem. The design we propose is an expansion
from AgentFormer, in which we enable the model’s direct
operation on trajectories which have been partially occluded.
Notably, our design can perform prediction on occluded
agents, whose current position is unknown by the perceiver
system, by beginning predictions from agents’ last observed
state.

III. METHODOLOGY

This section will begin with a definition of the prediction
task in Subsection III-A. We will then present the model we
devise in order to address this problem in Subsection III-B.

2

A. Trajectory Prediction

Our goal is to perform multi-agent trajectory prediction
with incomplete information caused by the partial occlusion
of agents’ trajectories. In a scene containing N individual
agents, the state xt

a ∈ R4 describes the position and velocity
on the ground plane for agent a, observed at timestep t. Ob-
servations of agents’ pasts are made over a temporal window
t ∈ [−Tobs + 1, 0]. We assume the workspace W ⊆ R2 to be
divided into two complementary regions: a visible region WV

and an occluded region WO. When an agent lies within WO,
the state of that agent for that timestep is unobserved, making
it unavailable as part of the input set X . The input set is then
the set of all non-occluded states over the past time window:

X = {xt
a | Pos

(
xt
a

)
∈ WV },

∀t ∈ {−Tobs + 1,−Tobs + 2, ..., 0} ,
∀a ∈ {1, 2, ..., N}

(1)

where Pos (•) returns the position. A “fully observed” envi-
ronment would yield a complete set of input states for all
N agents, as WV ≡ W . Occlusion phenomena result in
varying observation patterns among agents’ histories. Notably,
for each agent, we denote the last observed (i.e., non-occluded)
timestep as tLO, a.

The objective of the task is to predict Y , the sequences
of unobserved positions of agents yt

a ∈ R2, from their last
observed timestep tLO, a up to an amount of future timesteps
Tpred:

Y =
{
yt
a

}
,

∀t ∈ {tLO, a + 1, ..., Tpred} ,
∀a ∈ {1, 2, ..., N}

(2)

Note that, as agents may be undergoing occlusions with
different durations and different last observed timesteps tLO, a,
it is possible for X and Y to partly overlap temporally with
each other (when some of the prediction sequence elements
yt
a exist within the past window, [−Tobs, 0]). The input states

X , target states Y and arrangement of the workspace into WV

and WO constitute an “instance” which we can use to train
our prediction model.

B. OcclusionFormer

The model we devise for our prediction scheme is based
on AgentFormer by Yuan et al. [23]. As described in Sec-
tion II, this model possesses promising characteristics for the
prediction of occluded trajectories. However, their implemen-
tation of the model cannot operate on occluded trajectories,
as their design relies on a strictly defined structure of the
input/output data, which prevents processing of incomplete
sequences. Adapting AgentFormer such that our research can
be conducted imposes a significant overhaul of the model’s
implementation. We perform this adaptation of the architec-
ture’s internal operations, in order to enable the deployment
of this model onto a problem space with partially missing input
trajectories (more detailed explanations of our modification of
the AgentFormer source code can be found in Appendix A).

With our model capable of accepting irregular trajectories,
further alterations of the model were conducted, which will
now be discussed.

Fig. 1: OcclusionFormer’s autoregressive decoding framework.
Colours are used to highlight sequence elements belonging
to different agents. Black upward arrows represent a pass
through the decoder, generating from an input sequence the
corresponding predicted sequence. Gray arrows indicate how
individual input sequence elements are retrieved: each agent’s
first element in the sequence is their last observed state
x
tLO, a
a . Subsequent elements are retrieved from the predicted

sequence.

1) Asynchronous Predictions from Irregular Histories:
We modify the decoder module of the architecture by be-
ginning the prediction for each individual agent from their
last observed timestep tLO, a. Prediction begins at the earliest
tLO, a among agents; the decoder autoregressively completes
the unobserved portion of the past sequence, inserting to its
input sequence the last observed states of agents as it predicts
subsequent timesteps (as shown in Figure 1). The prediction
progresses over the future until reaching Tpred. Finally, this
modification of the decoder module, and this new framework
for performing predictions asynchronously imposes another
modification on the reference frame used for the temporal
encoding. The positional encodings of AgentFormer’s differ-
ent modules follow inconsistent temporal reference frames,
encoding past and future sequence elements with disagreeing
time codes. The temporal overlap between observations and
predictions in our case, imposes that we adopt a consistent
temporal reference frame throughout the entirety of the model.
We do this by performing a shift in the assignment of time
codes, such that elements at t = −Tobs + 1 are encoded with

Fig. 2: How AgentFormer and OcclusionFormer respectively
apply temporal encodings to a fully observed trajectory (the
numbers above the displayed encoding range are the corre-
sponding positional arguments pos).

3

Fig. 3: An overview of the OcclusionFormer prediction model. The (optional) contribution of the occlusion map to the attention
process of OcclusionFormer is highlighted by the orange arrows.

positional argument pos = 0 (see Figure 2). This shift prevents
the generation of positional codes with a negative positional
index (which, due to the usage of sine and cosine functions,
are identical to their positive counterpart over exactly half of
their dimensions, potentially increasing the difficulty of the
learning process).

2) Learning with an Occlusion Map: The previously de-
scribed changes will make our model “occlusion capable”
(i.e., fit to operate on trajectory data as we define it in
Subsection III-A). We would like to further investigate how the
model’s capacity to process occluded agents can be improved
by leveraging additional information. More specifically, we
assume that while an autonomous system might not have
access to perfect information of surrounding agents due to
limited visibility in its workspace, such a system could access
(or generate a representation of) the visible space in its
immediate vicinity. We hypothesise that a prediction model
making use of such information could obtain better predictions
for currently occluded agents, as knowledge of the occluded
region WO could be used to constrain the predictions over the
unobserved past [tLO, a, 0].

We devise our model to receive a representation of the
workspace W in the form of an occlusion map, M , as an
optional additional input. Similar to how Park et al. [16]
encode their scene input, we define this occlusion map as the
distance transform of a binary raster map, whose binary state
assigns 0 to pixels within WO, and 1 to those within WV . As
the goal of this addition is to help restrict the field of possible
movement for currently occluded agents, the model must be
capable of relating trajectory data to this new map data, as
well as be encouraged to use such information efficiently.

The occlusion map M is first compressed by a CNN
into a set of features hM . We project hM to a key/value
pair {KM ,V M}, and project the trajectory features to a
set of map-focused queries QM , in addition to their already
existing agent-aware attention related keys, queries and values
{Qself,Kself,Qother,Kother,V }, as they are defined in [23].
Concatenating the map-agent attention scores with the agent-

aware attention scores, as well as the map value V M with
the trajectory values V allows us to compute output features
for every input trajectory element. The combined map-agent
and inter-agent attention process is illustrated in Figure 4.
The interaction between occlusion map and trajectory features
throughout this attention process allows for the model to ac-
count for the global occlusion configuration of the workspace.

Fig. 4: The attention process we devise for OcclusionFormer
allows for trajectory features to extract information about the
occluded space from map features.

The resulting Map-Agent-Aware attention mechanism can
simply replace Yuan et al.’s Agent-Aware attention when
desired, by providing the set of occlusion map features hM to
all three attention modules of our OcclusionFormer model, as
can be seen in Figure 3.

We also define an occlusion loss to incentivise the model to
make productive use of the map. The occlusion loss is derived
from the occlusion map M , and encourages the predictions’
past segments to remain inside WO, such that predictions
remain coherent with the field of possible states constrained by
the occluded space. Points predicted over the past are assigned
a loss, equal to the square of the distance to the nearest point

4

inside WO:

Loccl. =
αoccl.∣∣∣Ŷ t≤0

∣∣∣
N∑

a=1

0∑
t=tLO, a+1

distance
(
ŷt
a,WO

)2
(3)

where αoccl. is a weighing factor applied to the loss, and∣∣∣Ŷ t≤0

∣∣∣ is the amount of points predicted over the past. The

way the distance between prediction ŷt
a and the occluded

region WO is obtained is by computing the squared distance
occlusion map Md2 from M , and to retrieve the corresponding
value at the location of the predicted point using bi-linear
interpolation. When training our model to learn with the
occlusion map, we apply the occlusion loss alongside the other
loss components responsible for minimizing the difference
between prediction sequences and ground truth. Those are the
MSE loss, and the best-of-K samples loss:

LMSE =
αMSE

|Y |

N∑
a=1

Tpred∑
t=tLO, a+1

γ(t) ·
∥∥ŷt

a − yt
a

∥∥2 (4)

Lsample =
αsample

|Y |

N∑
a=1

min
k

Tpred∑
t=tLO, a+1

γ(t) ·
∥∥ŷt

k,a − yt
a

∥∥2 (5)

with:

γ(t) =

{
γ1 if t ≤ 0
γ2 if t > 1

We modify the MSE and sample losses such that individual
points’ errors can be weighed by a factor γ depending on
whether the corresponding timestep is in the past, or in the
future. This allows for control of the severity of ground truth
penalties attributed to past points, as they are also being
penalised by the occlusion loss. Following the procedure
defined by Yuan et al. [23], our training process is performed
in two subsequent phases; the first for training of the model
itself, and the second for training of a latent code sampler,
to improve prediction diversity. The total losses the model is
subjected to during each phase are:

Lphase I = LMSE + Loccl., MSE+

Lsample + Loccl., sample + LKL
(6)

Lphase II = Lsample + Loccl., sample + LKL + Ldiverse (7)

where LKL denotes the Kullback-Leibler loss between prior
and posterior latent codes distributions, and Ldiverse denotes
the diversity loss which penalizes small pairwise distances
between the K predictions made, as they are defined by Yuan
et al. [23].

IV. EXPERIMENTAL SETUP

A. Occlusion Simulator

Commonly available datasets for trajectory prediction tasks
only present fully observed trajectories. In order to enable the
study of our specific formulation of the problem, we must
be capable of representing trajectories subject to occlusions,
which are defined both temporally and spatially.

Fig. 5: An example of a scene generated from our occlusion
simulator. The red area constitutes WO, and is obtained from
computing the visibility polygon of the virtual ego, obstructed
by a virtual occluder (respectively shown as a red dot located
below WO, and a dark blue segment at its lower boundary).
Trajectories are shown as sequences of points: full lines
connect trajectory points which are in the past, and dashed
lines indicate the future part of the trajectory.

We build a simulator of occlusion events (see Figure 5),
which can be applied on any available trajectory prediction
dataset. The core principle of this simulator is the placement
of two objects in the scene: a “virtual ego” (modelled as
a point), whose visibility of the scene is partially hindered
by a “virtual occluder” (modelled as a segment delimited by
two points). Focus is placed on generating currently occurring
occlusions among the present agents (see Appendix D for a
detailed description of the simulation process).

B. Dataset

We evaluate our method on the Stanford Drone Dataset
(SDD) [18], as it is a large trajectory dataset, focusing primar-
ily on VRU’s (which are most susceptible to be subjects of
occlusions). SDD contains around 20000 trajectories, obtained
from 60 aerial videos captured at 30 Hz over 8 different places
on the campus of Stanford.

C. Stanford Drone Occlusion Dataset

We remove non-VRU trajectories from the dataset (keeping
only pedestrians, cyclists and skateboards). Following the
procedure indicated by Andle et al. [2], we also remove
“lost” annotations and keep the first portion of fragmented
trajectories. We convert trajectory coordinates from pixels
to metres (see Appendix C). We define train/validation/test
sets by randomly splitting the 60 videos with assignment
proportions 42/9/9. We sample trajectories at a frequency of
2.5 Hz. We execute the occlusion simulator over the dataset 3
separate times, increasing the effective size of our dataset, and
allowing for different occlusion scenarios for each sampled
time window [−Tobs;Tpred]. Some summary statistics about
the resulting “Occlusion Simulation” dataset can be seen in
Table I (under the “Complete” column).

5

TABLE I: Summary statistics of our different dataset splits.

Complete Difficult
Training Split split size 85776 2926

Validation Split split size 19653 510
effective size* 1250 510

Test Split

split size 11751 340
trajectories 103191 3813 (353 difficult.)
tLO, a = −0 91220 N/A
tLO, a = −1 2336 172
tLO, a = −2 2296 25
tLO, a = −3 2458 18
tLO, a = −4 2158 32
tLO, a = −5 2228 83
tLO, a = −6 495 23

The subset of currently occluded trajectories in the test split
amounts to a total of 11971 (11.6% of all 103191 trajectories).
To facilitate comparison between different modalities of tra-
jectory visibility, we generate a copy of the test split, with the
occluded trajectories remaining fully observed (which we call
the “Fully Observed” dataset). Part of the evaluation will be
focused on investigating the effects of imputation on prediction
performance. For our purposes, we also generate a copy
of the test set with occluded trajectories imputed according
to the following strategy: linear interpolation of incomplete
trajectory fragments bounded by two observed positions, and
extrapolation of trajectories unobserved until t = 0, assuming
constant velocity from their last observed position.

D. Difficult Occlusions

Initial experiment results led us to the conclusion that the
vast majority of occlusion cases provided by our simulator
might be restricting the visibility of agents’ past trajectories in
such a way that they might not sufficiently restrict the space of
possible movement (Those results will be discussed in Subsec-
tion V-B). Occlusion cases with exceedingly large occlusion
zones, where the possible movement space of occluded agents
remains wide, present a poor amount of additional information
that a prediction model could make use of when infering
agent’s motions up to their current state. The occlusion dataset
containing a majority of such cases could be problematic for
training our model, as a majority of uninformative occlusion
zones might add difficulty to the model’s capacity to learn
from the occlusion map. We adapt to this reality by identifying
a subset of occlusion cases, which are susceptible to contain
meaningful information to provide to our prediction model.
Such a subset is obtained by running a Constant Velocity
predictor over our occlusion dataset, and finding the occlusion
cases for which the predictor fails to place the current state of
the occluded agent ŷ0

a inside WO. Those cases are susceptible
to present an informative configuration of the occlusion space,
as predictions making use of an occlusion map are expected to
produce coherent predictions for occluded agents, maintaining
their positions inside the occlusion zone. We describe those
occlusion cases as “difficult occlusions”, and the subset of our
dataset containing all of those cases as the “Difficult Subset”.
Statistics about the difficult subsets obtained from our dataset

splits are available in Table I. The difficult subset of our test
split contains a total of 600 occluded trajectories, of which
353 are difficult occlusion cases.

With all variants of our dataset presented, the following
abbreviations will be used in the following sections to facilitate
the identification of experiments’ train/test environments:

• FO : Fully Observed dataset
• OS : Occlusion Simulation dataset
• OS, I : Occlusion Simulation dataset, Imputed
• DS : Difficult Subset

E. Experiments

We establish different versions of our model in order to
evaluate how individual components and alterations affect its
behaviour and performance. Each row in Table II describes
an individual instance of a model, run using the indicated
training data. To facilitate referencing, every model instance
is identified by a unique roman numeral.

TABLE II: The list of experiments conducted. The “Train
Data” column indicates which dataset variant was used for
training.

Model Train
Data

Description

I AgentFormer FO The original implementation by
Yuan et al. [23].

II OcclusionFormer FO Our implementation of Occlu-
sionFormer.

III OcclusionFormer OS The same model as #II.
IV OcclusionFormer DS The same model as #II.
V O.Former w/ occlu-

sion map A
DS The occlusion loss is applied as

an additional penalty to points
predicted in the past (see Ap-
pendix B).

VI O.Former w/ occlu-
sion map B

DS The loss over the past is equally
split between the occlusion
losses and the ground truth
losses (see Appendix B).

The Fully Observed / Occlusion Simulation datasets are
significantly larger than the ETH/UCY dataset originally used
by Yuan et al. Consequently, we choose to adapt the training
process: when training on the “FO” or “OS” datasets, we
perform 3 epochs (of 85776 batches, see Table I), performing
validation and model checkpoint saving every 5000 batches,
with a validation split of size 1250 (defined by sampling a
fixed subset of the total validation split), in order to ensure a
training/validation ratio of 80/20. When training with the “DS”
dataset, our number of epochs is 90 (with 2926 batches, see
Table I), and our validation split size is 510. After completion
of the training procedure, we keep the model checkpoint with
the best validation loss for evaluation. We keep hyperparameter
values constant across all experiments. We set the observation
and prediction time windows to Tobs = 8 and Tpred = 12. The
experiments ran for the investigation of the potential benefits
of our occlusion map processing scheme are models #V and
#VI (both described as “O.Former w/ occlusion map”). Every
other model we prepare for our experiments is not making
use of the occlusion map + occlusion loss combination. When

6

making use of the occlusion map, we require a constant
resolution. We fix the scene side length to 80 m, and an
occlusion map resolution of 800 px, with the center of the
scene located at the mean of all present agents’ last observed
position. During training, we perform random rotation on the
scene. We follow Yuan et al’s [23] maximum number of agents
per scene of 32, pruning away surplus agent trajectories by
prioritising those lying furthest from the mean of all agents’
last observed position.

F. Performance Metrics

ADE and FDE are the most commonly used metrics when
it comes to evaluating the performance of coordinate-based
prediction models. For a given prediction Ŷ made over a
future time window [1, Tpred], the scores are obtained by
comparison against the ground-truth Y in the following way:

ADE =
1

Tpred

Tpred∑
t=1

∥∥ŷt − yt
∥∥
2

(8)

FDE =
∥∥∥ŷTpred − yTpred

∥∥∥
2

(9)

As we generate multiple prediction modes per agent, we
denote the average ADE and FDE value over those K modes
by MEANADE and MEANFDE, respectively, while denoting the
scores for the best mode by MINADE and MINFDE.

Our particular framework generates prediction sequences
which are partly defined in the unobserved past of occluded
agents. Those past sections of the prediction are not tracked by
the traditional ADE/FDE scores. Consequently, we also define
new versions of those metrics, focusing on the past portion of
the prediction:

ADEpast =
1

|tLO, a|

0∑
t=tLO, a+1

∥∥ŷt
a − yt

a

∥∥
2

(10)

FDEpast =
∥∥ŷ0 − y0

∥∥
2

(11)

Additionally, when it comes to studying the extent to which
the past portion of predictions are coherent with respect to the
disposition of the occluded region WO, we devise the fol-
lowing metrics. First, the “Occluded Area Count” (OACt=0),
measures the number of prediction modes which (correctly)
place an occluded agent’s position at t = 0 inside WO.
Second, the “Occluded Area Occupancy” (OAO), measures
the proportion of predicted past points lying within WO.
The metrics proposed here are an adaptation of Park et al.’s
DAO/DAC metrics [16], which aim at measuring the extent
to which predictions for vehicles remain inside the driveable
space.

OACt=0 =
K −mt=0

K
(12)

with mt=0 equal to the number of modes with predicted
position at t = 0 outside of WO.

OAO =

∣∣∣trajpx

∣∣∣
K · |tLO, a|

(13)

∀ k ∈ [1, 2, ...,K] ,

∀ t ∈ {tLO, a + 1, tLO, a + 2, ..., 0}
with:

trajpx =
{
ŷt
k | ŷt

k ∈ WO

}
Higher OACt=0 and OAO scores indicate a better compli-

ance with the occlusion map.

V. RESULTS

The evaluation of our model, and of the aspects affecting
its “occlusion capability”, will focus on 4 questions:

• Are there costs associated to enabling our model to
predict under occluded conditions?

• How impactful are occlusions on the prediction perfor-
mance of our model?

• How does imputation affect the prediction task?
• Can prediction performance be improved by learning with

an occlusion map?

A. Are there costs associated to enabling our model to predict
under occluded conditions?

The design modifications brought to the AgentFormer
model allow for its deployment in environments containing
partially observed trajectories, without having to rely on any
imputation preprocessing step. Naturally, expanding the oper-
ational design domain of any system is likely to incur some
penalties to that system’s performance, or to impose certain
restrictions or limitations on its operation.

TABLE III: Models ran on fully observed trajectories, ranked
by lowest MINFDE. Values are expressed in meters.

MIN (K=20) MEAN (K=20)
Model ADE FDE ADE FDE
I AgentFormer 0.405 0.712 2.171 4.735
I AgentFormer 0.409 0.720 2.184 4.704
II OcclusionFormer 0.407 0.720 2.262 4.849
I AgentFormer 0.407 0.725 2.142 4.674
I AgentFormer 0.411 0.726 2.212 4.755
I AgentFormer 0.413 0.727 2.245 4.872
II OcclusionFormer 0.412 0.732 2.231 4.815
II OcclusionFormer 0.415 0.733 2.207 4.744
II OcclusionFormer 0.420 0.748 2.234 4.788
II OcclusionFormer 0.418 0.749 2.281 4.949
I Avg. AgentFormer 0.409 0.722 2.191 4.748
II Avg. OcclusionFormer 0.414 0.736 2.243 4.829

Relative increase (%) +1.33 +1.99 +2.40 +1.71

As will be observed throughout the following subsections,
OcclusionFormer is an occlusion capable prediction model. In
order to study the effects of the design differences between
AgentFormer and OcclusionFormer which are responsible for
the expansion of the problem space, we compare models #I
and #II (see Table II), running 5 copies of each with different
RNG seeds to obtain a baseline of their performance. The
results are reported in Table III.

7

TABLE IV: The performance summary table of our different experiments. Results shown are obtained by aggregating scores
on the subset of agents which were subject to currently occurring occlusion events within our Occlusion Simulation dataset
(11971 trajectories). ADE/FDE scores are expressed in meters.

Train
Data

Test
Data

MIN MEAN MINpast MEANpast
Model ADE FDE ADE FDE ADE FDE ADE FDE OAO OACt=0

a. I AgentFormer FO FO 0.495 0.868 2.384 5.160 N/A N/A N/A N/A N/A N/A
b. II OcclusionFormer FO FO 0.503 0.885 2.465 5.312 N/A N/A N/A N/A N/A N/A
c. II OcclusionFormer FO OS 1.482 1.503 4.487 7.671 0.797 0.993 1.396 1.532 0.826 0.849
d. III OcclusionFormer OS OS 0.830 1.285 4.096 7.315 0.147 0.183 0.497 0.827 0.900 0.924
e. IV OcclusionFormer DS OS 0.943 1.434 4.540 7.756 0.210 0.241 0.721 1.143 0.874 0.879
f. V O.Former w/ map A DS OS 1.030 1.529 4.853 8.302 0.356 0.368 0.833 1.248 0.910 0.904
g. VI O.Former w/ map B DS OS 0.985 1.499 4.017 7.049 0.415 0.471 0.642 0.911 0.979 0.981
h. II OcclusionFormer FO OS, I 0.866 1.182 2.870 5.650 0.297 0.476 0.297 0.476 0.950 0.966

When it comes to the differences between AgentFormer
and OcclusionFormer, we notice a slight performance loss
from our implementation with respect to the original. The
increase in the average of ADE/FDE scores from AgentFormer
to OcclusionFormer is in the order of a few percents. Multiple
factors could play a role in this difference in performance. The
implementation of AgentFormer and OcclusionFormer differ
in the following way:

• Certain internal operations within the architecture have
been changed to adapt to a new input/output data
paradigm (see Appendix A).

• OcclusionFormer’s autoregressive decoder performs pre-
dictions asynchronously, by appending agents’ last ob-
served states x

tLO, a
a appropriately to the prediction se-

quence (see Subsubsection III-B1).
• The temporal encodings used to embed input trajectory

features are different (see Subsubsection III-B1).
• Some of the loss components’ normalization has been al-

tered (i.e., due to a varying number of predicted timesteps
per agent, ground truth losses are no longer normalized
by number of agents), which has been mitigated by a
proper adaptation of loss weights (see Appendix B).

All of those aspects could participate in a minimal change
in the models’ behaviour while training. Aside from those
differences at the architecture level, the possibility of chance
playing a role in the performance difference cannot be
eliminated completely: performing an unequal variances t-
test on the MINADE/MINFDE/MEANADE/MEANFDE scores
of the AgentFormer results versus the OcclusionFormer re-
sults only yields a statistically significant difference for
the MEANADE scores (the p-values of those t-tests being:
0.09097/0.054518/0.045035/0.132679). Running additional in-
stances of the models would help in improving the statistical
power of those tests. The apparent performance penalty caused
by the adaptation of the model architecture remains minimal.

B. How impactful are occlusions on the prediction perfor-
mance of our model?

In our evaluation of OcclusionFormer’s performance, we
would like to dedicate some of our attention specifically to
the model’s occlusion capability. Namely, we would like to
investigate in detail the effects that occlusions can have on
our model’s prediction performance. To this end, we focus

our attention on the subset of agents who are subject to
currently occurring occlusion events within our Occlusion
Simulation dataset. We evaluate our OcclusionFormer model,
with different training and testing conditions, and report the
results under Table IV.

Effects of occlusions on ADE/FDE scores. We observe
an average increase of MINADE/MINFDE by +65%/+45% for
OcclusionFormer when moving from a train/test environment
with trajectories fully observed, to a train/test environment
where trajectories are occluded (i.e., comparing models #II
and #III, rows b. and d. in Table IV). Similar score in-
creases are observed for MEANADE/MEANFDE: +66%/+38%.
The performance degradation naturally comes from the lower
quantity of available information for the model to leverage
for its prediction, and from the extension of the prediction
duration. Notably, with our simplest version of the model
operating on occluded data (i.e. model #III, row d.), the best
prediction mode on average will misplace occluded agents by
18.3 cm when estimating their current position (the error in
the estimation of the current state is directly measured by
MINFDEpast/MEANFDEpast).

Prediction coherence with respect to occlusions. When
it comes to compliance with the occlusion map, we remark
that OcclusionFormer naturally performs quite well, showing
OAO/OACt=0 scores of 90.0%/92.4%, without relying upon
an occlusion map (see row d.). This indicates that our sim-
ulator has a tendency to produce occlusions that are “poorly
informative” for prediction; without the help of the occlusion
map to enforce good map compliance, the model already per-
forms very well in keeping agents within the occlusion zone.
A majority of poorly informative occlusion cases is a problem
for training models intending to leverage information from an
occlusion map. Indeed, the learning process of such models is
susceptible to being hindered by a training environment where
the usefulness of the occlusion map is not made sufficiently
salient. Consequently, the decision has been made to facilitate
the learning process of our occlusion map processing model(s)
(i.e., models #V and #VI), by training them on a set of
more informative occlusion cases, prompting the specification
of the Difficult Subset (as explained in Subsection IV-D).
Discussions on how to better address this issue of poorly
informative occlusion cases in future work can be found in
Subsection VI-B.

8

Fully observed and occluded trajectories: a distribu-
tional shift. In our evaluation, we also consider the case
of transferring OcclusionFormer from a training environment
containing no occlusions to a deployment environment with
occluded trajectories (i.e., observing model #II, tested on
the “OS” dataset, Table IV, row c.). This particular case
shows very poor performance over every metric, caused by
the significant change in the distribution of trajectory data
when transitioning from the fully-observed domain to the
occluded one. Indeed, the decoder module(s) of a Transformer
model trained exclusively on fully observed trajectories will be
subject to never-before-seen input positional embeddings when
generating predictions for occluded agents, naturally resulting
in an ill-fitted model for this data. Training Transformer
models to predict from agents’ last observed states requires a
sufficient proportion of unobserved past states in the training
data, in order to properly facilitate the training of the decoders.
Generating occlusions by random dropout of elements within
X is a way of generating occlusions which could provide
better control over this proportion than our simulator approach.

Fig. 6: Boxplots showing the evolution of the MINFDE score
for OcclusionFormer (model #III).

Occlusion durations and prediction performance. Of
course, the extent to which occlusions impact the performance
of OcclusionFormer is directly dependent on the value of
tLO, a. In order to further examine how occlusion duration
impacts prediction performance, we observe the behaviour
of performance scores along prediction groups defined by
tLO, a, as can be seen in Figure 6 (additional boxplot figures
can be found in Appendix F). We can observe the distri-
bution of MINFDE scores progressively increase as the last
observed timestep tLO, a recedes further into the past. two
particular phenomena seem to make themselves apparent on
this figure: an unusually large “performance shift” between
tLO, a = {0,−1}, and another between tLO, a = {−5,−6}.
In order to properly assess the effects of occlusion duration
on prediction performance, we must isolate any eventual
extraneous factor that might play a role in these shifts. An

investigation of such factors revealed that a partial cause
for the shift between tLO, a = {0,−1} is the fact that, by
design of our occlusion simulator, all still-standing agents
are inherently fully observed, and therefore fall within the
tLO, a = 0 category. No clear cause could be identified for
the tLO, a = {−5,−6} shift, but we suspect that the occlusion
simulator might be implicitly selecting only certain trajectories
to fall within the tLO, a = −6 category (the investigations
undertaken surrounding these performance shifts are discussed
in more detail in Appendix F). We acknowledge the implicit
partiality with which the occlusion simulator might assign
occlusion patterns to trajectories, and choose to narrow our
analysis on the effects of occlusion duration on prediction to
the range tLO, a ∈ [−5,−1]. We perform linear regressions
of the average ADE/FDE scores obtained over trajectory sets
categorized by tLO, a within this range for OcclusionFormer
(model #III), and show the results in Table V. From this,
we observe that performance scores degrade fairly linearly
with respect to the duration of the occlusion event, with every
additional unobserved timestep increasing MINADE/MINFDE
scores by 9 cm, and MEANADE/MEANFDE scores by 41cm.
We also remark that an increase in occlusion duration by 1
timestep increases MINADEpast/MINFDEpast by 4cm/6cm, and
MEANADEpast/MEANFDEpast by 13cm/29cm, respectively.

TABLE V: linear fit of the average performance scores of
OcclusionFormer (model #III), aggregated over identities cat-
egorized by tLO, a within the range [−1,−5].

tLO, a Linear Fit: tLO, a ∈ [−5,−1]
Score -1 -5 m b R2

MINADE 0.6496 0.9992 0.0868 0.5483 0.9866
MINFDE 1.1178 1.4786 0.0880 0.9944 0.9316
MEANADE 3.2425 4.8900 0.4085 2.7707 0.9870
MEANFDE 6.4624 8.1313 0.4091 5.9465 0.9598
MINADEpast 0.0588 0.2122 0.0374 0.0241 0.9970
MINFDEpast 0.0588 0.2948 0.0592 −0.0060 0.9969
MEANADEpast 0.2332 0.7420 0.1272 0.0910 0.9945
MEANFDEpast 0.2332 1.4016 0.2933 −0.1007 0.9935

Occlusions play an undeniably important role in the degra-
dation of prediction models’ performance. We argue that
the trajectory prediction research field would benefit from
focusing more on occlusions within the prediction task, and
dedicate a greater amount of the research effort towards finding
means to address occlusions directly at the prediction stage of
the autonomous perception process.

C. How does imputation affect the prediction task?

Partially missing trajectories caused by occlusions do not
necessarily impose on prediction models the responsibility of
being compatible with fragmented data, in order to ensure
the proper handling of occlusions within the prediction stage.
Another typical approach to any problem involving missing
data is imputation: rather than making the model capable of
directly processing missing data, the incompatibility between
model and data can be solved by reconstructing the missing
parts of the input data before feeding it to the model. The
imputation process then carries the responsibility of making

9

the solution occlusion capable, allowing the problem defi-
nition of the prediction task to remain in its simpler form
(i.e., maintaining the assumption of complete past histories).
We recognise that accounting for occlusions directly within
the prediction problem’s definition (Subsection III-A) will
increase the complexity of possible solutions, and will reduce
the amount of suitable approaches (e.g., preventing the use of
regular RNNs, which cannot directly handle missing data).

(a) #III: Occluded trajectory. (b) #II: Imputed trajectory.

Fig. 7: Qualitative comparison of predictions made by our
model, using differently preprocessed input trajectory data.
Predictions are shown for the purple agent only, as small stars
connected by colored lines. All trajectory sequences which
are part of the input set X are shown as crosses connected by
colored lines. The hollow crosses connected by a black line
correspond to the ground truth sequence of the purple agent.

Consequently, we are interested in evaluating how a simple
imputation process might impact our model’s performance.
We test OcclusionFormer’s performance against imputed tra-
jectories, using the imputation scheme we described in Sub-
section IV-C. The results we obtain from this experiment
(i.e. model #II, tested on “OS, I”, Table IV, row h.) reveal
that, while OcclusionFormer performs similarly between im-
puted and occluded conditions in terms of MINADE/MINFDE
scores (comparing rows d., h.), MEANADE/MEANFDE show
significantly lower values than those obtained from the model
operating on occluded trajectories. It is important not to
interpret those results as evidence that imputation here is an
objectively better approach, and that reframing the prediction
task as an operation that begins from agents’ last observed
state should be dismissed: indeed, lower MEAN scores for the
imputation case are at least partly explained by the effective
reduction of the prediction horizon (i.e., every prediction starts
from t = 0, instead of t = tLO, a). Consequently, imputation
effectively induces a bias on the prediction: the model is
denied the permission to explore the field of possible unknown
states of occluded agents. This can be observed clearly in
Figure 7: the imputation misplaces the current state of the
agent far away from its last observed timestep, while also
reducing the space the model can explore for its predictions.

D. Can prediction performance be improved by learning with
an occlusion map?

We will now focus on the performance of our model when
provided with the additional information of an occlusion map.
We devised two different configurations of OcclusionFormer
making use of the occlusion map. Version A (model #V)
applies the occlusion loss in addition to AgentFormer’s tra-
ditional losses, while version B (model #VI) effectively splits
the “loss budget” for points predicted over the past equally
between occlusion losses and ground-truth losses (the loss
configuration of both versions is provided in more detail
in Appendix B). As those two models were trained with
the “Difficult Subset” (as explained under Subsection IV-D
and Subsection V-B), we also produce model #IV, a run
of OcclusionFormer, without any occlusion map processing,
trained under the same conditions (i.e., an exact copy of #III,
trained on the “DS” dataset). With this model, we can measure
eventual performance changes induced by training on the “DS”
dataset, as well as provide a baseline for a fair comparison
against the two “occlusion map aware” models (i.e., #V and
#VI).

Performance effects of the Difficult Subset, and of the
parameterization of the occlusion loss. Comparing the scores
of models #III and #IV (Table IV, rows d. and e.), it can
be remarked that training on the Difficult Subset implies a
significant performance drop across all scores, likely caused
by an impoverishment of diversity in the training data, due
to the reduction in dataset size. This significant difference in
performance shows the importance of using model #IV as the
baseline for studying the effects of introducing the occlusion
map as an additional input within our model. When it comes to
comparing both occlusion map aware model versions against
one another, we can see from Table IV that model #VI is
superior to #V, across all measured performance scores (see
rows f. and g.). Qualitatively, model #VI also seems to have
better internalised the objective of maintaining past predictions
inside WO, as can be observed from Figure 8. This could be
explained by the occlusion loss being proportionately more
important in #VI than in #V. The difference in performance
between both versions is significant; perhaps even better re-
sults could be obtained from further fine-tuning of the model’s
hyperparameters. However, for reasons that will be discussed
over the course of this subsection, we choose not to conduct
an extensive hyperparameter search. The continuation of our
discussion will focus on the performance of model #VI, the
better of the two occlusion map aware experiments.

Learning with an occlusion map: improvements and
degradations. Comparing model #VI against its “occlusion
map unaware” homologue #IV (see Table IV, rows e. and
g.), we observe that the processing of the occlusion map does
not result in an overall improvement of OcclusionFormer’s
performance. The introduction of the occlusion map did result
in an improvement of OAO/OACt=0 scores by ≈ 10%, and
a positive reduction of MEANADE/MEANFDE scores by 0.52
m, and 0.71 m, respectively. Those positive changes in the

10

(a) #IV: OcclusionFormer (b) #V: O.Former w/map A (c) #VI: O.Former w/ map B

Fig. 8: Comparisons of predictions from models #IV, #V and #VI, generated for an occluded agent. The past portions of
predicted sequences (where t ≤ 0) are highlighted in opaque.

model’s performance seem to indicate that the model is suc-
cessfully relating the information from map and trajectory data
sources in order to produce predictions for occluded agents
that are respectful of the configuration of the occluded region.
A model that integrates the information of the occlusion map
perfectly should, in theory, be capable of producing prediction
sets of higher accuracy, by narrowing the field of occluded
agents’ likely motions. In terms of performance, improved
MEAN scores can be an indicator of improved accuracy. In-
terestingly, MEAN performance only improved over the set of
occluded agents: when making the same comparison using
the subset of agents who have been fully observed, both MIN
and MEAN scores of the model making use of the map are
worse than those of the model not using it (see Table IX, in
Appendix E). As intended, the occlusion map is specifically
affecting the prediction of occluded agents.

In contrast to the improved MEAN scores and occlusion map
compliance scores, the effects of the occlusion map processing
on the MINADE/MINFDE scores is negative, increasing by
0.04 m, and 0.07 m, respectively. Our application of the
occlusion map and occlusion loss to the prediction framework
is not without drawbacks. The occlusion map processing
strategy was designed with the underlying intuition that, as
the movements of occluded agents must have remained within
the unobserved portion of the workspace WO, it would be
beneficial to design a prediction model that “prefers” those
possible scenarios over the (less likely) set of trajectories
that should have resulted in the occluded agent becoming
visible again. However, in effect, it would seem that our
implementation did not result in the model developing a
preference for a subset of fitter trajectory candidates from
the distribution of all possible predictions. Instead, the effects
on the model’s predictive behaviour are better interpreted as
a significant change in the prediction distribution, in order
to conform to the added objective of occlusion compliance
imposed by the occlusion loss. Figure 9 illustrates clearly

the change in prediction behaviour induced by our occlusion
map processing framework. The occlusion loss incentivises
predictions to remain within the occlusion area. Consequently,
a portion of the workspace W that should remain worthy
of consideration for the model’s prediction is penalized, and
remains unexplored.

Fig. 9: A set of predictions made using model #VI. The
application of the occlusion loss “pushes” the model away
from WV when predicting the past portion of the prediction
(displayed as opaque colored lines).

Two different prediction strategies. Our implementation
led to improvements over certain performance metrics, and
degradation over others, posing difficulty to the definite as-
sessment of our approach as being beneficial or detrimental
to the prediction task. The main issue concerning our manner
of applying the occlusion loss is that it essentially teaches
two separate and different prediction behaviours, depending

11

on whether the points to be predicted are in the past, or in
the future. Indeed, as we can see from Figure 9, the model
initiates its prediction by a sudden turn into the occlusion
zone, in order to comply with the occlusion loss. This initial
“jump” ends up misdirecting the prediction away from the
ground truth. It would seem that there is a misalignment
between the objective of complying with the arrangement of
WO as it has been specified by the occlusion loss, and the
objective of remaining close to the ground truth when gen-
erating prediction sequences. When considering the occlusion
capability of prediction strategies, constraints can be applied
to the prediction of past portions of occluded trajectories.
However, the implementation of such constraints should be
performed in such a way that it does not come at the expense
of the consistency of the overall prediction. In that respect, it
would seem that designs that encourage significantly different
model behaviours between predictions made over the past
and the future are undesirable, and should be avoided. With
further research into the inclusion of information about the
occluded space WO within the prediction task, a prediction
method that does not suffer from the negative performance
effects we observed with OcclusionFormer might be attainable.
Subsection VI-B covers some potential investigation avenues.

Our attempt at learning to predict with an occlusion map
showed that, while it is possible for a model to relate map
data with trajectory data, the incentive to maintain occluded
trajectories within the bounds of the occluded region resulted
in a degradation of the model’s behaviour and performance.
We acknowledge the limitations and inadequacies that our ap-
proach produced, and recommend for future research focusing
on enabling occlusion capability within the prediction task, to
remain cautious when designing systems accounting for the
arrangement of the occluded space.

VI. CONCLUSION

The conclusion of our research will be first presented in
Subsection VI-A. Recommendations for the continuation of
work will then be provided in Subsection VI-B.

A. Toward Occlusion Capable Human Trajectory Prediction

This project investigated the effects of occlusions on the
trajectory prediction task. In order to facilitate our research
on the potential benefits of integrating spatial information
of occlusions into the prediction framework, we created an
occlusion simulator, which can be deployed to provide rep-
resentations of occlusion scenarios on any widely available
trajectory dataset. We reformulated the trajectory prediction
task as the continuation of agents’ past histories, starting
from their last observed state. Our approach to addressing
this prediction problem is based on the existing work of
Yuan et al.’s AgentFormer model [23], a TransFormer based
architecture, with promising characteristics for our specific
definition of the prediction problem. We adapted the model
into OcclusionFormer, a model that is specifically designed
to operate under occluded circumstances, and investigated
the effects of occlusions on its performance, as well as the

possibility for the model to improve by receiving information
about the spatial arrangement of the occluded space from an
occlusion map.

Our evaluations of OcclusionFormer revealed that our model
is fit to operate under occluded conditions, and that our
adaptation of the original AgentFormer architecture incurs
very minimal penalties on the performance of the model
(when operating on fully observed trajectories). Transformer
based prediction networks are very suitable when it comes
to handling partially missing trajectory data. Deploying our
model on occluded trajectories, we discovered that missing
trajectory fragments increase the difficulty of the prediction
task, resulting in an average degradation of MINADE/MINFDE
scores by +65%/+45%, increasing linearly with respect to the
predicted trajectory’s last observed timestep. When investigat-
ing the option of endowing the model with the ability to use
an occlusion map in order to leverage additional information
about the space constraining occluded agents, we find that
our model is capable of extracting information from the map.
However, doing so does not result in a meaningful improve-
ment of performance, as the model fails to harmoniously
combine our occlusion loss with ground truth reconstruction
losses. There are limitations to our analysis, as we observed
that, when generating sets of occluded trajectories using our
simulator, trajectory sets grouped by last observation timestep
are not identically distributed. We also discovered that the
majority of occlusion cases produced by the generator were
susceptible to not contribute meaningfully to the prediction
process, as they provided very loose constrains on the possible
motions of occluded agents. Our findings nonetheless high-
lights that occlusions have a significant impact at the prediction
stage of machine perception, and that this impact must not
be neglected when developing the design of autonomous
perception systems.

We believe that the trajectory prediction field would greatly
benefit from dedicating more effort towards handling occlu-
sions. We hope that the work we presented here provides
a meaningful contribution to the problem of handling of
occlusions at the prediction stage, and that it will encourage
more people to pursue this exciting challenge.

B. Future Work

We recommend that future research into the exploration
of occlusion handling within the trajectory prediction field
focuses on two primary aspects.

Rendering Occlusions. The first recommended direction
for future work is the development of fair and accurate repre-
sentations of occlusions for a proper render of the problem of
occlusions in the prediction problem. When it comes to this
aspect, further improvements of our occlusion simulator could
be sought. Notably, the improvement in the level of control
over the degree of “informativity” that occlusions can provide
for prediction. Indeed, currently, as our simulator seems to
generate a great majority of occlusion cases which do not
severely restrict the motions of occluded agents, it remains
somewhat impractical to conduct highly detailed analyses

12

of the benefits of approaching the occlusion problem by
accounting for the spatial configuration of occlusions. A larger
pool of informative occlusions could allow us to extract further
insights into how much performance can be gained from our
approach. This could be achieved by altering the constraints
on the creation of occlusion cases (e.g., by reducing the set of
last non-occluded point candidates to a temporal window that
terminates a few timesteps after t = 0, or by accounting for
turns, stops and other changes in the motion of agents, in a
way that guarantees “difficult” occlusion cases). Additionally,
further research into the informativity of occlusions as they
manifest themselves in reality would also be helpful, as such
research could serve towards providing better design recom-
mendations for the improvement of the simulator. Along with
this potential research avenue, other efforts into closing the
gap between simulation and reality could also be made, such
as developing the simulator to account for multiple occluded
areas within the workspace, and/or generating occlusion cases
that are dynamically changing over time. Alongside this
striving towards rendering as accurate a representation of the
prediction problem as possible, future research might benefit
from a more in depth investigation of the interface between
prediction frameworks and upstream perception processes of
detection and tracking, particularly in the description of the
corruption that trajectories are subject to due to occlusions.
Indeed, the current standard approach to trajectory prediction
remains highly focused on perfectly observed, clean trajectory
datasets. While they provide a simplified representation of
the prediction problem (and thereby facilitate research without
immediately pushing complexity to a paralysing extent), they
implicitly hide all forms of incompatibilities that a perception
system may have between the tracking stage and the prediction
stage. The improvement of the interface between those stages
is consequently under-researched, and will continue to be if
no effort is dedicated to closing the gap between the idealized
representation of trajectory data that is currently being used
within the prediction field, and the imperfect trajectory data
that is actually produced by tracking systems.

Improving Occlusion Capability. The second aspect which
should attain a high priority in the research towards better
occlusion capable trajectory prediction is in the development
of models directly designed and intended for deployment
under occluded conditions. The capacity of our model, Oc-
clusionFormer, to operate under such conditions, makes it
a promising starting point for future research. Continuing
our research on the integration of an occlusion map into
the prediction framework should focus on finding a more
suitable specification and application of the occlusion loss, in
order to prevent the inadequacies in prediction behaviour we
were confronted with. Perhaps one of the ways this could be
achieved is by applying the occlusion loss only in the second
phase of training (which is responsible for the training of a
diverse trajectory sampler), so as to only modify the creation
of latent codes z used by the model to generate its multi-
modal predictions. However, we recognise that investigations
into the redefinition of the occlusion loss can only increase the

complexity of our design. Alternatively, the integration of an
occlusion map within the prediction task could be considered
without the implementation of an additional occlusion loss.
The occlusion map could instead be used only in a retro-
spective way, contributing to the assessment of the likelihood
of prediction modes after they have been generated. Once
the problem of the misalignment of the occlusion loss with
respect to the main objective of capturing the ground truth has
been properly addressed, a more extensive hyper-parameter
search could be conducted. Aside from the integration of
the occlusion map, other promising characteristics of Occlu-
sionFormer could be worth investigating. One particularity of
our model (and of its precursor AgentFormer) is the ability
for trajectory elements to communicate social information
across agents and across timesteps (by means of agent-aware
attention), possibly letting trajectory elements of agents access
information about their neighbours in their relative future.
In a context where occluded agents must be accounted for,
this particular way of letting social information flow across
timesteps could perhaps be beneficial to the prediction task (for
example, it could help refine the prediction of occluded agents
who are following the movements of a group of neighbour
agents). The insights that would be gained from investigations
on this aspect of the propagation of social information could
lead to recommendations for the design of socially aware
prediction methods.

REFERENCES

[1] Alexandre Alahi et al. “Social LSTM: Human Trajec-
tory Prediction in Crowded Spaces”. In: 2016 IEEE
Conference on Computer Vision and Pattern Recog-
nition (CVPR). 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). ISSN: 1063-
6919. June 2016, pp. 961–971. DOI: 10.1109/CVPR.
2016.110.

[2] Joshua Andle et al. The Stanford Drone Dataset is
More Complex than We Think: An Analysis of Key
Characteristics. Mar. 22, 2022. DOI: 10.48550/arXiv.
2203.11743. arXiv: 2203.11743[cs]. URL: http://arxiv.
org/abs/2203.11743 (visited on 05/03/2023).

[3] Stefan Becker et al. “Handling Missing Observations
with an RNN-based Prediction-Update Cycle”. In: Com-
puter Analysis of Images and Patterns. Ed. by Nicolas
Tsapatsoulis et al. Lecture Notes in Computer Sci-
ence. Cham: Springer International Publishing, 2021,
pp. 311–321. ISBN: 978-3-030-89128-2. DOI: 10.1007/
978-3-030-89128-2 30.

[4] Dražen Brščić et al. “Person Tracking in Large Public
Spaces Using 3-D Range Sensors”. In: IEEE Transac-
tions on Human-Machine Systems 43.6 (Nov. 2013).
Conference Name: IEEE Transactions on Human-
Machine Systems, pp. 522–534. ISSN: 2168-2305. DOI:
10.1109/THMS.2013.2283945.

13

https://doi.org/10.1109/CVPR.2016.110
https://doi.org/10.1109/CVPR.2016.110
https://doi.org/10.48550/arXiv.2203.11743
https://doi.org/10.48550/arXiv.2203.11743
https://arxiv.org/abs/2203.11743 [cs]
http://arxiv.org/abs/2203.11743
http://arxiv.org/abs/2203.11743
https://doi.org/10.1007/978-3-030-89128-2_30
https://doi.org/10.1007/978-3-030-89128-2_30
https://doi.org/10.1109/THMS.2013.2283945

[5] Ryo Fujii et al. A Two-Block RNN-based Trajectory
Prediction from Incomplete Trajectory. Mar. 16, 2022.
DOI: 10 . 48550 / arXiv . 2203 . 07098. arXiv: 2203 .
07098[cs]. URL: http://arxiv.org/abs/2203.07098 (visited
on 12/07/2022).

[6] Francesco Giuliari et al. Transformer Networks for
Trajectory Forecasting. Oct. 21, 2020. DOI: 10.48550/
arXiv.2003.08111. arXiv: 2003.08111[cs]. URL: http:
//arxiv.org/abs/2003.08111 (visited on 12/07/2022).

[7] Agrim Gupta et al. Social GAN: Socially Acceptable
Trajectories with Generative Adversarial Networks.
Mar. 28, 2018. DOI: 10.48550/arXiv.1803.10892. arXiv:
1803.10892[cs]. URL: http://arxiv.org/abs/1803.10892
(visited on 02/17/2023).

[8] Vineet Kosaraju et al. Social-BiGAT: Multimodal Tra-
jectory Forecasting using Bicycle-GAN and Graph At-
tention Networks. July 16, 2019. DOI: 10.48550/arXiv.
1907.03395. arXiv: 1907.03395[cs]. URL: http://arxiv.
org/abs/1907.03395 (visited on 02/17/2023).

[9] Namhoon Lee et al. DESIRE: Distant Future Prediction
in Dynamic Scenes with Interacting Agents. Apr. 14,
2017. DOI: 10.48550/arXiv.1704.04394. arXiv: 1704.
04394[cs]. URL: http://arxiv.org/abs/1704.04394 (visited
on 02/17/2023).

[10] Alon Lerner, Yiorgos Chrysanthou, and
Dani Lischinski. “Crowds by Example”. In:
Computer Graphics Forum 26.3 (2007). eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-
8659.2007.01089.x, pp. 655–664. ISSN: 1467-8659.
DOI: 10 . 1111 / j . 1467 - 8659 . 2007 . 01089 . x. URL:
http://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-
8659.2007.01089.x (visited on 02/16/2023).

[11] Kunming Li et al. “Attentional-GCNN: Adaptive
Pedestrian Trajectory Prediction towards Generic Au-
tonomous Vehicle Use Cases”. In: 2021 IEEE Interna-
tional Conference on Robotics and Automation (ICRA).
2021 IEEE International Conference on Robotics and
Automation (ICRA). ISSN: 2577-087X. May 2021,
pp. 14241–14247. DOI: 10 . 1109 / ICRA48506 . 2021 .
9561480.

[12] Ming Liang et al. PnPNet: End-to-End Perception and
Prediction with Tracking in the Loop. June 27, 2020.
DOI: 10 . 48550 / arXiv . 2005 . 14711. arXiv: 2005 .
14711[cs]. URL: http://arxiv.org/abs/2005.14711 (visited
on 12/08/2022).

[13] Katie Luo et al. “Safety-Oriented Pedestrian Occu-
pancy Forecasting”. In: 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS).
2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). ISSN: 2153-0866. Sept.
2021, pp. 1015–1022. DOI: 10.1109/IROS51168.2021.
9636691.

[14] Wenjie Luo, Bin Yang, and Raquel Urtasun. Fast and
Furious: Real Time End-to-End 3D Detection, Tracking
and Motion Forecasting with a Single Convolutional
Net. Dec. 22, 2020. DOI: 10.48550/arXiv.2012.12395.

arXiv: 2012.12395[cs]. URL: http://arxiv.org/abs/2012.
12395 (visited on 12/08/2022).

[15] Barbara Majecka. “Statistical models of pedestrian
behaviour in the Forum”. In: 2009. URL: http :
/ / www . semanticscholar . org / paper / Statistical -
models - of - pedestrian - behaviour - in - the - Majecka /
6505d259758fc2fd4e60da018c35d687a2ddc250
(visited on 02/16/2023).

[16] Seong Hyeon Park et al. Diverse and Admissible Tra-
jectory Forecasting through Multimodal Context Under-
standing. Aug. 31, 2020. DOI: 10.48550/arXiv.2003.
03212. arXiv: 2003.03212[cs]. URL: http:/ /arxiv.org/
abs/2003.03212 (visited on 08/08/2023).

[17] S. Pellegrini et al. “You’ll never walk alone: Mod-
eling social behavior for multi-target tracking”. In:
2009 IEEE 12th International Conference on Com-
puter Vision. 2009 IEEE 12th International Conference
on Computer Vision. ISSN: 2380-7504. Sept. 2009,
pp. 261–268. DOI: 10.1109/ICCV.2009.5459260.

[18] Alexandre Robicquet et al. “Learning Social Etiquette:
Human Trajectory Understanding In Crowded Scenes”.
In: ed. by Bastian Leibe et al. Vol. 9912. Book Title:
Computer Vision – ECCV 2016 Series Title: Lecture
Notes in Computer Science. Cham: Springer Interna-
tional Publishing, 2016, pp. 549–565. ISBN: 978-3-319-
46483-1 978-3-319-46484-8. DOI: 10.1007/978-3-319-
46484- 8 33. URL: http:// link.springer.com/10.1007/
978-3-319-46484-8 33 (visited on 02/16/2023).

[19] Andrey Rudenko et al. “Human Motion Trajectory
Prediction: A Survey”. In: The International Jour-
nal of Robotics Research 39.8 (July 2020), pp. 895–
935. ISSN: 0278-3649, 1741-3176. DOI: 10 . 1177 /
0278364920917446. arXiv: 1905.06113[cs]. URL: http:
//arxiv.org/abs/1905.06113 (visited on 12/08/2022).

[20] Christoph Schöller et al. What the Constant Velocity
Model Can Teach Us About Pedestrian Motion Predic-
tion. Jan. 22, 2020. DOI: 10.48550/arXiv.1903.07933.
arXiv: 1903.07933[cs]. URL: http://arxiv.org/abs/1903.
07933 (visited on 02/02/2023).

[21] Jianhua Sun et al. “Human Trajectory Prediction with
Momentary Observation”. In: 2022 IEEE/CVF Con-
ference on Computer Vision and Pattern Recogni-
tion (CVPR). IEEE Computer Society, June 1, 2022,
pp. 6457–6466. ISBN: 978-1-66546-946-3. DOI: 10 .
1109 / CVPR52688 . 2022 . 00636. URL: https : / / www.
computer . org / csdl / proceedings - article / cvpr / 2022 /
694600g457/1H1n1HKcpvW (visited on 12/19/2022).

[22] Ashish Vaswani et al. Attention Is All You Need. Dec. 5,
2017. DOI: 10.48550/arXiv.1706.03762. arXiv: 1706.
03762[cs]. URL: http://arxiv.org/abs/1706.03762 (visited
on 01/05/2023).

[23] Ye Yuan et al. AgentFormer: Agent-Aware Transformers
for Socio-Temporal Multi-Agent Forecasting. Oct. 7,
2021. DOI: 10.48550/arXiv.2103.14023. arXiv: 2103.
14023[cs]. URL: http://arxiv.org/abs/2103.14023 (visited
on 12/19/2022).

14

https://doi.org/10.48550/arXiv.2203.07098
https://arxiv.org/abs/2203.07098 [cs]
https://arxiv.org/abs/2203.07098 [cs]
http://arxiv.org/abs/2203.07098
https://doi.org/10.48550/arXiv.2003.08111
https://doi.org/10.48550/arXiv.2003.08111
https://arxiv.org/abs/2003.08111 [cs]
http://arxiv.org/abs/2003.08111
http://arxiv.org/abs/2003.08111
https://doi.org/10.48550/arXiv.1803.10892
https://arxiv.org/abs/1803.10892 [cs]
http://arxiv.org/abs/1803.10892
https://doi.org/10.48550/arXiv.1907.03395
https://doi.org/10.48550/arXiv.1907.03395
https://arxiv.org/abs/1907.03395 [cs]
http://arxiv.org/abs/1907.03395
http://arxiv.org/abs/1907.03395
https://doi.org/10.48550/arXiv.1704.04394
https://arxiv.org/abs/1704.04394 [cs]
https://arxiv.org/abs/1704.04394 [cs]
http://arxiv.org/abs/1704.04394
https://doi.org/10.1111/j.1467-8659.2007.01089.x
http://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2007.01089.x
http://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2007.01089.x
https://doi.org/10.1109/ICRA48506.2021.9561480
https://doi.org/10.1109/ICRA48506.2021.9561480
https://doi.org/10.48550/arXiv.2005.14711
https://arxiv.org/abs/2005.14711 [cs]
https://arxiv.org/abs/2005.14711 [cs]
http://arxiv.org/abs/2005.14711
https://doi.org/10.1109/IROS51168.2021.9636691
https://doi.org/10.1109/IROS51168.2021.9636691
https://doi.org/10.48550/arXiv.2012.12395
https://arxiv.org/abs/2012.12395 [cs]
http://arxiv.org/abs/2012.12395
http://arxiv.org/abs/2012.12395
http://www.semanticscholar.org/paper/Statistical-models-of-pedestrian-behaviour-in-the-Majecka/6505d259758fc2fd4e60da018c35d687a2ddc250
http://www.semanticscholar.org/paper/Statistical-models-of-pedestrian-behaviour-in-the-Majecka/6505d259758fc2fd4e60da018c35d687a2ddc250
http://www.semanticscholar.org/paper/Statistical-models-of-pedestrian-behaviour-in-the-Majecka/6505d259758fc2fd4e60da018c35d687a2ddc250
http://www.semanticscholar.org/paper/Statistical-models-of-pedestrian-behaviour-in-the-Majecka/6505d259758fc2fd4e60da018c35d687a2ddc250
https://doi.org/10.48550/arXiv.2003.03212
https://doi.org/10.48550/arXiv.2003.03212
https://arxiv.org/abs/2003.03212 [cs]
http://arxiv.org/abs/2003.03212
http://arxiv.org/abs/2003.03212
https://doi.org/10.1109/ICCV.2009.5459260
https://doi.org/10.1007/978-3-319-46484-8_33
https://doi.org/10.1007/978-3-319-46484-8_33
http://link.springer.com/10.1007/978-3-319-46484-8_33
http://link.springer.com/10.1007/978-3-319-46484-8_33
https://doi.org/10.1177/0278364920917446
https://doi.org/10.1177/0278364920917446
https://arxiv.org/abs/1905.06113 [cs]
http://arxiv.org/abs/1905.06113
http://arxiv.org/abs/1905.06113
https://doi.org/10.48550/arXiv.1903.07933
https://arxiv.org/abs/1903.07933 [cs]
http://arxiv.org/abs/1903.07933
http://arxiv.org/abs/1903.07933
https://doi.org/10.1109/CVPR52688.2022.00636
https://doi.org/10.1109/CVPR52688.2022.00636
https://www.computer.org/csdl/proceedings-article/cvpr/2022/694600g457/1H1n1HKcpvW
https://www.computer.org/csdl/proceedings-article/cvpr/2022/694600g457/1H1n1HKcpvW
https://www.computer.org/csdl/proceedings-article/cvpr/2022/694600g457/1H1n1HKcpvW
https://doi.org/10.48550/arXiv.1706.03762
https://arxiv.org/abs/1706.03762 [cs]
https://arxiv.org/abs/1706.03762 [cs]
http://arxiv.org/abs/1706.03762
https://doi.org/10.48550/arXiv.2103.14023
https://arxiv.org/abs/2103.14023 [cs]
https://arxiv.org/abs/2103.14023 [cs]
http://arxiv.org/abs/2103.14023

[24] Bolei Zhou, Xiaogang Wang, and Xiaoou Tang. “Under-
standing collective crowd behaviors: Learning a Mixture
model of Dynamic pedestrian-Agents”. In: 2012 IEEE
Conference on Computer Vision and Pattern Recog-
nition. 2012 IEEE Conference on Computer Vision
and Pattern Recognition. ISSN: 1063-6919. June 2012,
pp. 2871–2878. DOI: 10.1109/CVPR.2012.6248013.

15

https://doi.org/10.1109/CVPR.2012.6248013

APPENDIX A
CODE MODIFICATION: UNLOCKING OPERATIONS ON PARTIALLY MISSING TRAJECTORIES

In their supplementary material, Yuan et al. [23] theorised a method for AgentFormer to operate on partially missing
sequences. As the temporality of input elements is informed by positional encoding, and the social aspects are managed by
the agent-aware attention mechanism, unobserved input elements could simply be omitted from the input sequence.

However, the implementation of their model does not allow for such processing of the input sequences. Although the model
effectively reasons about temporality through positional encoding, it implicitly relies on the structure of the input data to assign
elements their corresponding time code: input sequences are built from a list of agent sequences, which are stacked prior to being
processed by the model. For example, an instance containing 3 agents will provide the model with the past/observed data as a
list containing 3 sequences of 8 positions [x, y]. These sequences are then stacked into a tensor of shape [3, 8, 2], then reshaped
to [24, 2], before being further processed by the model. This structuring of the data allows the internal components of the
model to implicitly infer temporality and agent identity from the order of the input sequence. Consequently, the implementation
effectively cannot process partially missing or fragmented trajectories, as such irregularities would disturb the order of the
processed sequence data. As an example, the implementation of the function which generates the positional encodings for
embedding of input sequences utilizes PyTorch’s repeat_interleave() function, implicitly requiring a specific structure
of the input data, which may not be satisfied when encountering partially missing trajectories:

def get_pos_enc(self, num_t, num_a, t_offset):
pe = self.pe[t_offset: num_t + t_offset, :]
pe = pe.repeat_interleave(num_a, dim=0)
return pe

We remedy this problem by reworking the internal implementation of AgentFormer, reformulating its processes as operations
making use of 3 separate sequences: a features sequence (e.g., the input states sequence {xt

a}), accompanied by a corresponding
identity sequence {a} and timestep sequence {t}. The identity and timestep sequences are used to inform the behaviour of
operations on the features sequence. For example, our reworked implementation generates positional encodings by referring to
the timestep sequence in order to allow for irregular time code sequences:

x: features sequence [B, T, model_dim]
time_tensor: corresponding timestep sequence [B, T]
pos_enc = self.pe[time_tensor + self.t_index_shift] # [B, T, model_dim]

16

APPENDIX B
ADDITIONAL IMPLEMENTATION DETAILS

Attention Layers: we follow the same configuration as the original implementation of AgentFormer: layers have 8 attention
heads, each one with dimension 32 (i.e., a layer dimensionality of 256). The inner layer of the fully-connected feed-forward
network within the attention layer is 512. The dropout ratio is 0.1.

Occlusion Map CNN: the CNN processing our occlusion map is made up of alternating 2D-convolutional layers and 2D-
maxpool layers. The input feature set of the occlusion map is of shape (1, 800, 800). The final layer of the CNN maps the
convolved feature set into hM , with dimension 256.

TABLE VI: The configuration of layers for our occlusion map CNN.

layers output feature dimension (C, H, W)
Conv2D(out_channels=4, kernel_size=11, stride=4) 156816 (4, 198, 198)
MaxPool2D(kernel_size=2, stride=2) 39204 (4, 99, 99)
Conv2D(out_channels=8, kernel_size=9, stride=3) 7688 (8, 31, 31)
MaxPool2D(kernel_size=2, stride=2) 1800 (8, 15, 15)
Conv2D(out_channels=8, kernel_size=3, stride=1) 1352 (8, 13, 13)
MaxPool2D(kernel_size=2, stride=2) 288 (8, 6, 6)

Encoder and Decoder modules: The Context Encoder, the Prediction Sequence Encoder and the Prediction Sequence
Decoder all have 2 Attention Layers. The Multi-Layer Perceptrons present in the Prediction Sequence Encoder and Decoder
are identical, containing each 2 layers, with dimensions (512, 256).

Temporal Encoding: The temporal encoding of trajectory features is done by concatenating those features with positional
encodings generated from the timestep sequence {t}. Those concatenated features are then passed through a fully connected
layer, to preserve the features’ original dimensionality. This is an unusual way of performing encoding: usually, it is done by
simply adding features and positional codes together. Our decision to follow this temporal encoding framework is motivated
by the desire to remain as close as possible to the original implementation of AgentFormer.

Prior and Trajectory Sampler modules: The prior module and trajectory sampler module produce the latent codes z,
which are used as part of the input for our prediction sequence decoder. The chosen dimensionality of those latent codes is
dz = 32. The number of multi-modal predictions generated for each agent is K = 20.

TABLE VII: The configuration of loss components for our different models. Each column provides loss component weight
values for the indicated model versions.

Agent-
Former

Occlusion-
Former

O.Former
w/ map A

O.Former
w/ map B

#I #II, #III,
#IV

#V #VI

Lphase I

LMSE

αMSE 1 12 12 12
γ1 N/A N/A 1 0.5
γ2 N/A N/A 1 1

Lsample

αsample 1 12 12 12
γ1 N/A N/A 1 0.5
γ2 N/A N/A 1 1

Loccl., MSE αoccl., MSE N/A N/A 12 6
Loccl., sample αoccl., sample N/A N/A 12 6
LKL αKL 1 1 1 1

Lphase II

Lsample

αsample 5 60 60 60
γ1 N/A N/A 1 0.5
γ2 N/A N/A 1 1

Loccl., sample αoccl., sample N/A N/A 60 30
LKL αKL 0.1 0.1 0.1 0.1
Ldiverse αdiverse 20 20 20 20

Loss configuration: AgentFormer (and consequently OcclusionFormer) are both trained in two separate phases, each with
a different loss configuration. The first phase is aimed towards training the prediction model itself (i.e., the context encoder,
prediction sequence encoder and decoder, as well as the prior modules). The second phase trains a trajectory sampler module,
which is used as a substitute to a pretrained model’s prior module. Loss functions for phase 1 and 2 are defined according to
Equation 6 and Equation 7, respectively. The loss weights for our different models were configured according to Table VII.
We clip the maximum value of LKL to 2 in the first phase of training, 10 in the second phase, and set the value of the scaling
factor σd (used in Ldiverse in the second phase) to 10, following the original training policy of AgentFormer.
We would like to clarify one important difference in the configuration of loss components between AgentFormer and
OcclusionFormer: as we can see from Table VII, the values of αMSE and αsample for AgentFormer and OcclusionFormer

17

are 1 and 12, respectively. This is because those loss components are normalized by the number of agents being predicted, in
the original AgentFormer implementation. As our method deals in varying prediction sequence lengths per agent, we instead
normalize the loss components by the total length of the prediction sequence (which is equivalent to Tpred · N when not a
single agent is being occluded). The changes in the weight values reflect this adaptation in the normalization of the losses.

Training Regime: For both phase I and phase II, we train using the Adam optimizer, with a starting learning rate of 10−4.
In the first phase, we halve the learning rate every 50000 batches. In the second phase, we halve the learning rate every 12500
batches.

APPENDIX C
STANFORD DRONE DATASET: COORDINATES CONVERSION

The annotations of the trajectories within the Stanford Drone Dataset are expressed in pixel coordinates. Unfortunately, the
creators of the dataset [18] do not provide tools to convert trajectories into metric coordinates.

We express the trajectories in our work in meters, making use of the coordinate conversions available in Table VIII. The
coordinate conversions were manually obtained, by measuring distances between geographic landmarks in each scene to
establish estimates of px/m ratios. Metric distances were obtained using Google Maps.

TABLE VIII: Pixel to meter coordinate conversions for each video in the Stanford Drone Dataset.

scene video px m px/m
bookstore video0 663.40 24.85 26.70
bookstore video1 624.20 24.85 25.12
bookstore video2 569.20 23.17 24.57
bookstore video3 601.20 24.59 24.45
bookstore video4 778.00 27.66 28.13
bookstore video5 514.20 15.70 32.75
bookstore video6 690.40 21.48 32.14
coupa video0 1318.60 41.11 32.07
coupa video1 1553.20 41.96 37.02
coupa video2 1013.00 27.17 37.28
coupa video3 966.10 26.95 35.85
deathCircle video0 421.90 17.54 24.05
deathCircle video1 435.20 17.54 24.81
deathCircle video2 426.30 17.54 24.30
deathCircle video3 601.80 17.54 34.31
deathCircle video4 442.70 17.54 25.24
gates video0 1033.80 42.07 24.57
gates video1 936.80 36.32 25.79
gates video2 690.00 25.26 27.32
gates video3 952.80 33.38 28.54
gates video4 752.70 33.38 22.55
gates video5 952.20 33.38 28.53
gates video6 685.10 22.89 29.93
gates video7 1537.30 65.90 23.33
gates video8 916.20 42.18 21.72
hyang video0 812.30 28.17 28.84
hyang video1 618.00 28.17 21.94
hyang video2 1038.70 57.69 18.00
hyang video3 712.60 43.38 16.43
hyang video4 811.50 28.17 28.81

scene video px m px/m
hyang video5 926.90 28.17 32.90
hyang video6 515.10 28.17 18.29
hyang video7 796.10 28.17 28.26
hyang video8 853.00 29.77 28.65
hyang video9 914.00 31.67 28.86
hyang video10 1069.40 58.38 18.32
hyang video11 668.10 37.16 17.98
hyang video12 498.10 28.97 17.19
hyang video13 372.20 20.20 18.43
hyang video14 648.80 27.99 23.18
little video0 681.20 19.94 34.16
little video1 812.00 23.04 35.24
little video2 521.30 15.53 33.57
little video3 684.40 19.94 34.32
nexus video0 660.00 29.58 22.31
nexus video1 936.40 41.85 22.38
nexus video2 893.00 38.43 23.24
nexus video3 573.60 26.96 21.28
nexus video4 602.80 28.00 21.53
nexus video5 930.20 43.53 21.37
nexus video6 779.10 29.58 26.34
nexus video7 1365.90 51.52 26.51
nexus video8 723.30 38.43 18.82
nexus video9 858.80 38.43 22.35
nexus video10 603.20 26.96 22.37
nexus video11 1087.80 48.73 22.32
quad video0 1591.40 68.58 23.21
quad video1 1609.40 68.91 23.36
quad video2 1581.50 68.60 23.05
quad video3 1560.50 68.64 22.73

18

APPENDIX D
THE OCCLUSION SIMULATOR

A. Occlusion Simulator Design

As our research intends to study the capacity for a prediction model to reason about the spatial configuration of occlusions,
we must be able to provide spatio-temporal representations of occlusions.

The underlying principle behind the occlusion simulation process is to separate the workspace into WV and WO by placing
two objects in the scene: a “virtual ego” point pego, and a “virtual occluder” segment Woccl ≡

(
poccl, 1,poccl, 2

)
. Visibility of

the ego stops at the boundary of the scene, and is also limited by the virtual occluder. The visible region WV is then defined
as the visibility polygon for pego, with obstacles being the scene boundary, and the occluder Woccl. WO can be obtained by
subtracting WV from the entire scene.

In order to ensure that the generated occlusion regions correctly limit the observation of agents, the placement of pego and
Woccl is partially informed by agents’ trajectories. Particularly, we focus the simulation process towards generating currently
occurring occlusions (i.e., , occlusions where the most recent portion of an agent’s past trajectory is entirely unobserved).
Although neither the ego, nor the occluder are physical objects with which agents can interact and account for in their motion,
we deem appropriate to reduce the potential interference between them, in order to prevent unrealistic occlusion arrangements.
Consequently, the ego and occluder should not lie too close to and/or intersect with agent trajectories. Finally, it is also
important for the simulation to not be deterministically defined by agent trajectories, as a prediction model could potentially
implicitly learn deterministic rules defining occlusions, and infer some information about positions of occluded agents. To
this end, randomness plays an important role in the simulation process. An example of the step-by-step occlusion simulation
process is shown in Figure 10.

B. Occlusion Simulator: Limitations and Potential Improvements

The presented occlusion simulator can sometimes fail to generate occlusions in certain cases. For example, this can happen
when all agents present in the scene are standing still, as their trajectories cannot be separated into an occluded and a visible
part based on their disposition within the workspace. It can also happen due to an impossibility to satisfy multiple geometric
constraints imposed on the placement of pego and Woccl. Reducing the failure rate of the occlusion simulator can be done by
imposing more lenient geometric constraints: for example, by reducing the minimum distance factors dR and dO by which
trajectories are “inflated” in order to produce limiting regions. The combination of geometric constraints imposed on the
placement of the virtual ego could be considered as too restrictive. For example, the wedge shaped regions which are added to
the restriction area for the placement of the ego, Rego (in Figure 10b), or the restriction enforcing that no agent lies between
the virtual ego and the target agent (i.e. the blue region, Bego, also in Figure 10b), might perhaps be altered for a more lenient
placement of the ego without affecting the realism of the occlusions being generated.

The definition of {WV ,WO} does not inherently have to be done by means of placing a virtual ego and occluder. The process
we devise for the coherent placement of these objects within the workspace necessitates numerous computations involving
visibility polygon calculations and polygon triangulations. More simple approaches could be investigated. For example, it could
be possible to instead model occluder objects as unique points or as predefined polygons and to use such definitions to divide
the space into WV and WO, accounting for a desired occlusion window over the target agent.

Due to the focus of each run of the simulation onto one single agent, the occlusions generated make up a small percentage
of the entirety of the available trajectory data (as we can see from the number of occlusion cases present in our test split, which
amounts to 11.6% of the trajectories present). Generating spatio-temporal representations of currently occurring occlusion cases
makes the percentage of occlusion cases over the entire dataset a difficult property of the resulting dataset to control. Generating
multiple virtual occluders Woccl per run would further complexify the operations of the simulator, especially in the case where
potential interferences between multiple occluders must be accounted for and prevented.

Another important limitation of the occlusion process lies in the inherent characteristic of being a simulation: as such, it
is difficult to know whether the level of detail to which occlusions are rendered is sufficiently realistic for prediction models
to be able to generalise to trajectory cases extracted in the real world when they are deployed. The simulator itself generates
rather simplistic occlusion cases: always only one occluder is present in the scene, generating only one single occluded region
(i.e., MO is always equivalent to a single concave polygon). Additionally, the configuration of the occlusion space itself
remains static over the entire time period [−Tobs + 1, Tpred]. More advanced forms of rendering the occlusion space could
perhaps generate dynamic occlusions, which change over time. Another important remark to make with this simulation scheme
is that, while it generates mutually coherent occlusion regions and occlusion patterns among the trajectories of agents, this
may very well not be the case in a real life scenario, where the inference of the occluded region MO and the tracking of
agents’ trajectories relies on upstream perception functions, which might generate “disagreeing” data. Further investigations to
narrow the gap between simulation data and “real” data collected from an autonomous system deployed in the world could be
worthwhile.

19

(a) The red regions, Rego, restrict the placement of the virtual ego pego within the workspace. They correspond to the regions of points within
a distance dR from agent’s complete trajectories over t ∈ {−Tobs;Tpred}, or a distance dB from the boundaries of the scene. Similarly,
orange regions circumvent agents’ trajectories, with delimiting distance factor dO , in order to limit the positioning of the points defining
Woccl. We set dR > dO , in order to ensure that some free space exists between ego and trajectories, facilitating the placement of Woccl.

(b) An agent is randomly selected as the “target” for occlusion simulation. Eligible “target” candidates must be moving, the probability of
an agent being selected as target is proportional to their distance travelled over t ∈ {−Tobs;Tpred}. The blue region, Bego, is defined as the
intersection of the visibility polygons for the first and last trajectory points of the target agent, with the past trajectories of other agents acting
as visibility constraints, to prevent cases where an agent might lie between the target and pego. Two yellow points in the target’s trajectory
are randomly sampled as the first and last non-occluded points (one in [−Tobs; 0], one in [1;Tpred]). Mutually opposite wedge shaped red
regions are defined from those first and last non-occluded points, and are added to Rego, in order to minimize risk of aligning the ego directly
with the trajectory of the target.

Fig. 10: An illustration of the occlusion simulation process.

20

(c) The candidate region for placement of pego (in green) is defined as Bego −Rego. A random point is sampled from this region. This point
will be the virtual ego, pego (the red circle). A small region around pego is added to Ooccl, ensuring a minimal distance dego, occl between the
occluder and the ego. The triangular candidate region for placement of poccl, 1 is obtained using pego, the last observed point (in yellow), and
the first unobserved point.

(d) Ooccl is subtracted from the candidate yellow region. A point is sampled from this resulting region. This point will be the first boundary
of the virtual occluder, poccl, 1. The triangular candidate region for placement of poccl, 2 is obtained from pego, the first reobserved point (in
yellow), and the last unobserved point. The visibility polygon of poccl, 1 with the previously defined orange regions is computed (in blue).

Fig. 10: An illustration of the occlusion simulation process (cont.).

21

(e) The intersection of the second triangular yellow region with the blue region is computed, so as to guarantee that the placement of poccl, 2
will result in a virtual occluder that does not intersect with any agent’s trajectory. A point is sampled from this region. It will be the second
boundary of the virtual occluder, poccl, 2.

(f) Woccl is defined as the segment bounded by poccl, 1 and poccl, 2 (in blue). The visibility polygon of pego is computed, with the boundary of
the scene and Woccl as obstacles. This visibility polygon is equivalent to WV . The complementary of this region (in red), which is equivalent
to WO , occludes the trajectory of the target agent between their first and last observable trajectory points (in yellow).

Fig. 10: An illustration of the occlusion simulation process (cont.).

22

APPENDIX E
PERFORMANCE SUMMARY TABLES

We provide the following performance summary tables, aggregating average scores over different subsets of our dataset.

TABLE IX: Performance summaries for models evaluated exclusively on the subset of fully observed agents of the test set
(score averages aggregated over a set of 91220 trajectories). ADE/FDE scores are expressed in m.

Train
Data

Test
Data

MIN MEAN
Model ADE FDE ADE FDE

a. I AgentFormer FO

FO

0.4012 0.7073 2.2193 4.8175
b. I AgentFormer FO 0.3936 0.6934 2.1470 4.6852
c. I AgentFormer FO 0.3958 0.7049 2.1149 4.6158
d. I AgentFormer FO 0.3983 0.7016 2.1599 4.6517
e. I AgentFormer FO 0.3996 0.7068 2.1864 4.7002
f. I Avg. AgentFormer FO 0.3977 0.7028 2.1655 4.6941
g. II OcclusionFormer FO 0.4085 0.7285 2.2030 4.7196
h. II OcclusionFormer FO 0.4009 0.7127 2.2050 4.7574
i. II OcclusionFormer FO 0.4033 0.7130 2.1786 4.6817
j. II OcclusionFormer FO 0.3950 0.7011 2.2366 4.7932
k. II OcclusionFormer FO 0.4065 0.7284 2.2482 4.8775
l. II Avg. OcclusionFormer FO 0.4028 0.7168 2.2143 4.7659
m. II OcclusionFormer FO

OS

0.4227 0.7325 2.2271 4.7287
n. II OcclusionFormer FO 0.4106 0.7140 2.2125 4.7429
o. II OcclusionFormer FO 0.4161 0.7142 2.1920 4.6763
p. II OcclusionFormer FO 0.4071 0.7024 2.2533 4.7902
q. II OcclusionFormer FO 0.4182 0.7314 2.2751 4.8914
r. II Avg. OcclusionFormer FO 0.4150 0.7189 2.2320 4.7659
s. III OcclusionFormer OS 0.4345 0.7761 2.4211 5.1676
t. IV OcclusionFormer DS 0.4256 0.7416 2.1797 4.6190
u. V O.Former w/ map A DS 0.5175 0.8830 2.7205 5.7172
v. VI O.Former w/ map B DS 0.4495 0.7975 2.2082 4.7138
w. II OcclusionFormer FO

OS, I

0.4079 0.7273 2.1930 4.7013
x. II OcclusionFormer FO 0.4007 0.7115 2.1941 4.7360
y. II OcclusionFormer FO 0.4031 0.7119 2.1689 4.6644
z. II OcclusionFormer FO 0.3947 0.6998 2.2280 4.7773
aa. II OcclusionFormer FO 0.4058 0.7266 2.2389 4.8600
ab. II Avg. OcclusionFormer FO 0.4024 0.7154 2.2046 4.7478

23

TABLE X: Performance summaries for models evaluated exclusively on the subset of occluded agents of the test set (score
averages aggregated over a set of 11971 trajectories). ADE/FDE scores are expressed in m.

Train
Data

Test
Data

MIN MEAN MINpast MEANpast
Model ADE FDE ADE FDE ADE FDE ADE FDE OAO OACt=0

a. I AgentFormer FO

FO

0.5005 0.8773 2.4392 5.2881 N/A N/A N/A N/A N/A N/A
b. I AgentFormer FO 0.4905 0.8518 2.3556 5.1132 N/A N/A N/A N/A N/A N/A
c. I AgentFormer FO 0.4965 0.8780 2.3497 5.1211 N/A N/A N/A N/A N/A N/A
d. I AgentFormer FO 0.4931 0.8593 2.3690 5.1028 N/A N/A N/A N/A N/A N/A
e. I AgentFormer FO 0.4942 0.8717 2.4048 5.1764 N/A N/A N/A N/A N/A N/A
f. I Avg. AgentFormer FO 0.4950 0.8676 2.3837 5.1603 N/A N/A N/A N/A N/A N/A
g. II OcclusionFormer FO 0.5075 0.8938 2.4728 5.3130 N/A N/A N/A N/A N/A N/A
h. II OcclusionFormer FO 0.4993 0.8769 2.4318 5.2525 N/A N/A N/A N/A N/A N/A
i. II OcclusionFormer FO 0.5032 0.8862 2.4276 5.2220 N/A N/A N/A N/A N/A N/A
j. II OcclusionFormer FO 0.4945 0.8661 2.4563 5.2746 N/A N/A N/A N/A N/A N/A
k. II OcclusionFormer FO 0.5082 0.9030 2.5347 5.4964 N/A N/A N/A N/A N/A N/A
l. II Avg. OcclusionFormer FO 0.5025 0.8852 2.4647 5.3117 N/A N/A N/A N/A N/A N/A
m. II OcclusionFormer FO

OS

1.4921 1.5451 4.6715 8.0710 0.7832 0.9392 1.4100 1.5388 0.7974 0.8216
n. II OcclusionFormer FO 1.4616 1.4054 4.1984 7.1918 0.7990 1.0551 1.2384 1.5032 0.8701 0.8858
o. II OcclusionFormer FO 1.4944 1.5164 4.4310 7.4925 0.7987 1.0700 1.3362 1.5299 0.8422 0.8591
p. II OcclusionFormer FO 1.3902 1.4136 4.3769 7.5507 0.8206 0.9411 1.4628 1.4807 0.8379 0.8732
q. II OcclusionFormer FO 1.5735 1.6359 4.7560 8.0479 0.7813 0.9579 1.5339 1.6080 0.7835 0.8069
r. II Avg. OcclusionFormer FO 1.4824 1.5033 4.4868 7.6708 0.7966 0.9926 1.3963 1.5321 0.8262 0.8493
s. III OcclusionFormer OS 0.8299 1.2851 4.0959 7.3148 0.1473 0.1828 0.4971 0.8267 0.9002 0.9243
t. IV OcclusionFormer DS 0.9432 1.4342 4.5396 7.7556 0.2097 0.2405 0.7207 1.1428 0.8738 0.8791
u. V O.Former w/ map A DS 1.0300 1.5287 4.8526 8.3020 0.3558 0.3680 0.8332 1.2476 0.9095 0.9042
v. VI O.Former w/ map B DS 0.9850 1.4990 4.0173 7.0485 0.4146 0.4712 0.6422 0.9111 0.9787 0.9813
w. II OcclusionFormer FO

OS, I

0.8728 1.2000 2.8609 5.6261 0.2974 0.4759 0.2974 0.4759 0.9504 0.9662
x. II OcclusionFormer FO 0.8651 1.1839 2.8421 5.5949 0.2974 0.4759 0.2974 0.4759 0.9504 0.9662
y. II OcclusionFormer FO 0.8642 1.1731 2.8345 5.5562 0.2974 0.4759 0.2974 0.4759 0.9504 0.9662
z. II OcclusionFormer FO 0.8527 1.1537 2.8818 5.6575 0.2974 0.4759 0.2974 0.4759 0.9504 0.9662
aa. II OcclusionFormer FO 0.8744 1.2011 2.9329 5.8146 0.2974 0.4759 0.2974 0.4759 0.9504 0.9662
ab. II Avg. OcclusionFormer FO 0.8658 1.1824 2.8704 5.6498 0.2974 0.4759 0.2974 0.4759 0.9504 0.9662

TABLE XI: Performance summaries for models evaluated exclusively on the subset of agents undergoing a difficult occlusion
event within the test set (score averages aggregated over a set of 353 trajectories). ADE/FDE scores are expressed in m.

Train
Data

Test
Data

MIN MEAN MINpast MEANpast
Model ADE FDE ADE FDE ADE FDE ADE FDE OAO OACt=0

a. I AgentFormer FO

FO

0.6010 1.0635 2.8917 6.2164 N/A N/A N/A N/A N/A N/A
b. I AgentFormer FO 0.6037 1.0361 2.8138 6.0499 N/A N/A N/A N/A N/A N/A
c. I AgentFormer FO 0.6010 1.0590 2.7848 5.9878 N/A N/A N/A N/A N/A N/A
d. I AgentFormer FO 0.5791 0.9982 2.8260 6.0209 N/A N/A N/A N/A N/A N/A
e. I AgentFormer FO 0.5785 1.0093 2.8619 6.1001 N/A N/A N/A N/A N/A N/A
f. I Avg. AgentFormer FO 0.5926 1.0332 2.8356 6.0750 N/A N/A N/A N/A N/A N/A
g. II OcclusionFormer FO 0.6030 1.0589 2.9315 6.2132 N/A N/A N/A N/A N/A N/A
h. II OcclusionFormer FO 0.5802 0.9925 2.8659 6.1130 N/A N/A N/A N/A N/A N/A
i. II OcclusionFormer FO 0.6090 1.0811 2.8842 6.1442 N/A N/A N/A N/A N/A N/A
j. II OcclusionFormer FO 0.5867 1.0297 2.8831 6.1128 N/A N/A N/A N/A N/A N/A
k. II OcclusionFormer FO 0.6049 1.0386 2.9299 6.2930 N/A N/A N/A N/A N/A N/A
l. II Avg. OcclusionFormer FO 0.5968 1.0401 2.8989 6.1752 N/A N/A N/A N/A N/A N/A
m. II OcclusionFormer FO

OS

1.6273 1.9714 5.1820 9.1094 0.7084 0.8298 1.5173 1.4706 0.4178 0.4790
n. II OcclusionFormer FO 1.6200 1.8756 4.8168 8.4635 0.7105 0.9052 1.3364 1.3937 0.4746 0.5368
o. II OcclusionFormer FO 1.6754 1.9238 4.9395 8.5633 0.7138 0.9426 1.4332 1.4462 0.4406 0.4933
p. II OcclusionFormer FO 1.5789 1.8312 5.0514 8.8182 0.7317 0.8273 1.6173 1.4143 0.4216 0.5072
q. II OcclusionFormer FO 1.7693 2.0952 5.2547 9.0442 0.7195 0.8468 1.6796 1.5584 0.3859 0.4353
r. II Avg. OcclusionFormer FO 1.6542 1.9394 5.0489 8.7998 0.7167 0.8704 1.5168 1.4567 0.4281 0.4903
s. III OcclusionFormer OS 1.1390 1.6833 5.0621 8.9096 0.2634 0.3382 0.6722 1.0749 0.4241 0.3313
t. IV OcclusionFormer DS 1.1715 1.6788 5.0205 8.6122 0.2332 0.2981 0.7837 1.2188 0.5274 0.4691
u. V O.Former w/ map A DS 1.2900 1.9070 5.2874 9.1627 0.3618 0.4355 0.8959 1.2920 0.7231 0.7030
v. VI O.Former w/ map B DS 1.1937 1.7937 4.4753 7.8381 0.4112 0.5525 0.6591 0.9723 0.8221 0.8115
w. II OcclusionFormer FO

OS, I

1.6689 1.9397 4.2979 7.6262 0.6337 1.0504 0.6337 1.0504 0.2527 0.0000
x. II OcclusionFormer FO 1.6889 2.0385 4.2924 7.6352 0.6337 1.0504 0.6337 1.0504 0.2527 0.0000
y. II OcclusionFormer FO 1.6497 1.9489 4.2875 7.6236 0.6337 1.0504 0.6337 1.0504 0.2527 0.0000
z. II OcclusionFormer FO 1.6352 1.8839 4.3020 7.6507 0.6337 1.0504 0.6337 1.0504 0.2527 0.0000
aa. II OcclusionFormer FO 1.6607 1.9449 4.3411 7.7593 0.6337 1.0504 0.6337 1.0504 0.2527 0.0000
ab. II Avg. OcclusionFormer FO 1.6607 1.9512 4.3042 7.6590 0.6337 1.0504 0.6337 1.0504 0.2527 0.0000

24

APPENDIX F
BOXPLOTS VERSUS LAST OBSERVED TIMESTEP

(a) MINADE (b) MINFDE

(c) MEANADE (d) MEANFDE

Fig. 11: Boxplot figures of OcclusionFormer’s (model #III) performance scores versus tLO, a.

Observing the boxplots in Figure 11, we remark the “performance shifts” between tLO, a = {0,−1} and tLO, a = {−5,−6}
across every score. The appearance of these shifts is noticeably different than the more subtle, progressive degradation of
performance scores between tLO, a = {−1,−5}.

We conducted investigations in order to identify the potential causes for those particular shifts in the performance of our
model. The first potential explanation for the {0,−1} shift stems from the fact that our occlusion simulator generates static
occlusion cases (i.e., occlusion cases where the configuration/arrangement of the occluded space does not change throughout
the entire course of an instance [−Tobs, Tpred]). Consequently, every agent that remains immobile throughout the entirety of
their past history will always be fully observed (stillstanding agents cannot move between WO/WV). We theorize that, by
the design of our occlusion simulator, we implicitly assign different trajectory types to different occlusion configurations, and
different categories of last observed timesteps tLO, a.

We investigate the effect of removing stillstanding agents from our test set on the distribution of performance scores within
our boxplots. We define stillstanding agents as those who have travelled less than 0.5 m over the entirety of their past history.
That is, the cumulative distance between subsequent points in the time interval t = [−Tobs, 0] is less than 0.5 m. Filtering
those identities away from the test set, we remark that the {0,−1} performance shift is greatly reduced (but not entirely), as
can be seen in Figure 12. Stillstanding agents are a type of trajectory that is essentially exclusive to the tLO, a = 0 category.
In fact, the exclusion of stillstanding agents as we previously described removes 32640 trajectories from the 103191 present
in our test set, of which only 8 do not belong to the tLO, a = 0 category. From this investigation, we observe that stillstanding

25

agents contribute significantly to a difference in performance scores between tLO, a = {0,−1} by reducing performance scores
at t = 0, and thereby confirm our suspicion that the occlusion simulator does perform an implicit discrimination of certain
trajectory profiles to be assigned to certain tLO, a categories.

(a) entire test set. (b) test set with stillstanding agents removed.

Fig. 12: Comparison of the boxplot figures of OcclusionFormer’s MINFDE score (model #III), when keeping/removing
stillstanding agents from the test set.

When it comes to the tLO, a = {−5,−6} shift, a clear difference in the distribution of trajectory types is more difficult
to identify than for {0,−1}. It remains however clear that some underlying cause, extraneous to the occlusion duration, is
contributing to the sudden degradation of scores in the tLO, a = −6 category. The main hypothesis we made for this underlying
cause was the fact that trajectories within this category provide the prediction model with an input history of only 2 elements,
depriving the model from the possibility of making inferences on the acceleration and turn rate. This hypothesis has been
rejected: when generating the same boxplot figures again, using the fully observed trajectory homologues of our occlusion
simulation trajectory set (i.e., using the performance scores of model #II, categorizing trajectories by their corresponding tLO, a
assignment in the OS set), the performance scores maintain very similar distributions within the tLO, a = [−1,−5] range, but
the sudden degradation at tLO, a = −6 remains (see Figure 13).

Fig. 13: Boxplot figure of OcclusionFormer’s MINFDE score (first iteration of model #II, evaluated on “FO”). All performance
scores shown here were obtained from the model operating on fully observed trajectories; their assignment to a specific tLO, a
category is done by using the corresponding occlusion configuration of the trajectory in the “OS” dataset.

This indicates that the underlying cause in this performance degradation is not due to a difficulty of the model with handling
tLO, a = −6 cases, but rather, an implicit selection of certain trajectories by the occlusion simulator to be assigned to this
category of occlusion configuration.

26

	Summary
	Introduction
	Related Work
	Methodology
	Trajectory Prediction
	OcclusionFormer
	Asynchronous Predictions from Irregular Histories
	Learning with an Occlusion Map

	Experimental Setup
	Occlusion Simulator
	Dataset
	Stanford Drone Occlusion Dataset
	Difficult Occlusions
	Experiments
	Performance Metrics

	Results
	Are there costs associated to enabling our model to predict under occluded conditions?
	How impactful are occlusions on the prediction performance of our model?
	How does imputation affect the prediction task?
	Can prediction performance be improved by learning with an occlusion map?

	Conclusion
	Toward Occlusion Capable Human Trajectory Prediction
	Future Work

	References
	Appendix A: Code Modification: unlocking operations on partially missing trajectories
	Appendix B: Additional Implementation Details
	Appendix C: Stanford Drone Dataset: Coordinates conversion
	Appendix D: The Occlusion Simulator
	Occlusion Simulator Design
	Occlusion Simulator: Limitations and Potential Improvements

	Appendix E: Performance Summary Tables
	Appendix F: Boxplots versus last observed timestep

