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Abstract
Video Object Detectors (VID) are used in various applications such as surveillance, inspection, etc.
Often in these applications there exists a spatial area of interest and a static background. The static
backgrounds remain constant throughout the video sequence in the training data establishing an un-
desirable correlation with the moving object during training. To hide static backgrounds in the video,
masking is an option. We create multiple synthetic datasets and reveal that (i) VIDs detect moving
objects better if the static background in the train and test set are similar or from the same distribution.
(ii) VIDs drop in performance if the static background in the train and test are different. (iii) Adding
more static backgrounds during training does not make VID robust to static background changes at
test time. (iv) Masking or removing static backgrounds cannot prevent VIDs from learning correlations
with static backgrounds. The experiments shed light on the usage of static backgrounds for detecting
dynamic objects.
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Abstract

Video Object Detectors (VID) are used in various ap-
plications such as surveillance, inspection, etc. Often in
these applications, a spatial area of interest and a static
background exist. The static backgrounds remain constant
throughout the video sequence in the training data, estab-
lishing an undesirable correlation with the moving object
during training. To hide static backgrounds in the video,
masking is an option. We create multiple synthetic datasets
and reveal that (i) VIDs detect moving objects better if the
static background in the train and test set are similar or
from the same distribution. (ii) VIDs drop in performance
if the static background in the train and test are different.
(iii) Adding more static backgrounds during training does
not make VID robust to static background changes at test
time. (iv) Masking or removing static backgrounds cannot
prevent VIDs from learning correlations with static back-
grounds. The experiments shed light on the usage of static
backgrounds for detecting dynamic objects.

1. Introduction
Generally, a video from a static camera comprises a re-

gion of interest accompanied by a static background. In
the static background, a moving object does not appear.
Object Detection (VID) models are trained on numerous
videos with different static backgrounds. During training,
VID models develop correlations between moving objects
and static backgrounds. Consequently, the results of detect-
ing moving objects differ when static backgrounds change
at test time.

Assuming the VID model is to be implemented in dif-
ferent environments to detect moving objects, the model
can encounter any static background. The previous works
on image recognition relate the object with a background
[4, 34, 42, 44]. For instance, a boat is more likely to appear
on a blue background (water). Interchanging backgrounds
between classes [44] or adding more backgrounds [36, 38]
can be a solution for increased robustness. The problem

Figure 1. Proposed concept for the datasets. (a) Unmasked
dataset with different static backgrounds, a white moving-object-
background, and an MNIST digit [20] as a moving object. (b)
Masked dataset with constant masked-static background, a white
moving-object-background, and an MNIST digit as moving ob-
ject. In both (a) and (b) the test set is unmasked for comparison
purposes.

arises when there exists no relation between an object and
its static background. For instance, if we wish to detect
boats in a warehouse, the blue background correlations are
undesirable.
A common way to hide static background information in

the dataset is masking [33]. A mask can be generated au-
tomatically [23, 25, 37] or manually designed based on the
application’s spatial area of interest. The mask is applied
over each frame of the video to hide the static background.
On the other hand, the static background information can be
removed by cropping or camouflaging the static background
with the moving-object-background. Here, moving-object-
background refers to the region where the moving object
appears or is probable to appear. It is unknown whether
masking, cropping or camouflaging the static background
during training or testing can make VIDs robust to static
background changes.

In this paper, the aim is to expose the influence of static
backgrounds on detecting moving objects. Since the cur-
rent datasets [6, 8, 28] for VIDs are complex and non-



controllable for our setting (static camera video with differ-
ent static backgrounds), we create fully-controlled synthetic
datasets as shown in Fig.1. Each frame in the video dataset
comprises three parts namely a moving object, a moving-
object-background, and a static background. By altering the
three parts individually, we gain insights into the extent of
undesirable correlations in detecting moving objects under
changing static backgrounds.

We make the following contributions. First, we design
multiple datasets collectively named Static Background
MNIST (SB-MNIST) to aid in understanding moving ob-
jects and static background relations better in VIDs. Sec-
ond, We show that VID models detect moving objects better
if the static background during training and test are similar
or from the same distribution. Third, we reveal the unde-
sirable correlation problem and its negative effect on the
results when static backgrounds change at test time. Fourth,
we demonstrate that masking or removing the static back-
grounds does not make VIDs robust to static background
changes at test time.

2. Related Work
We explore works related to the effects of backgrounds

in VIDs. To the best of the author’s knowledge, the ef-
fects of backgrounds in VIDs have not been investigated.
Therefore, we focus on works related to the influence of
backgrounds in image classification and image object de-
tection. In literature, background refers to the combina-
tion of static background and moving-object-background
(refer Figure.1). The term ”static background” is also used
in moving object detection [7] meaning a constant back-
ground.

2.1. Usage of backgrounds in object recognition

In the past decade, object detection algorithms [9,17,21]
that exploit background information has demonstrated ro-
bust detection performances. The state-of-art object detec-
tion models utilize the background information efficiently,
thereby surpassing each other on the benchmark datasets.
The problem arises when the background differs from the
training distribution. The set of correlations learnt during
training is not beneficial anymore.

An interesting work on the most commonly used Im-
ageNet [44], reveals backgrounds alone are sufficient to
classify an object. Additionally, it provides an insight that
changing background deteriorates the classification perfor-
mances of state-of-the-art deep learning models. We follow
similar assumptions in our experiment hypotheses changing
backgrounds affect VID model performance.

2.2. Object Detection

Image Object Detection. Object detection with deep
learning kick-started by splitting a video into images [13].

If an image is sent in its entirety for object detection it
is called ”one-shot” [2, 29–31, 35, 39–41] object detection
method. On the other hand, if object proposals are extracted
and fed to the network for object detection, it is called ”two-
shot” object detection method [12, 13, 32]. A drawback of
image object detection is that it does not identify consisten-
cies in objects between frames. As a result, they perform
redundant computations and do not make use of temporal
information.

Video Object Detection. VIDs were introduced to im-
prove the accuracy of image object detectors by utilizing
temporal information. VIDs use a group of frames for de-
tecting objects. Unlike image object detectors categoris-
ing VIDs as one-shot and two-shot is not feasible as the
approaches possess fewer similarities. Licheng et al [18]
proposed a four-category classification based on the ap-
proach to capture temporal information. The four categories
are based on Image Detection [14, 19], Motion informa-
tion [16, 27, 45, 46], Effective Neural Networks [3, 24] and
Features Filtering [43].

Firstly, Image Detection methods [14, 19] were intro-
duced by adding a module to Image Object Detectors to
capture temporal information. However, the ability to cap-
ture temporal information was limited as it is implemented
only during test time. Secondly, the Motion information
methods use additional models to capture motion informa-
tion. Flow networks [11] possessed the ability to capture in-
formation. Inspired by flow network as an additional model,
major works in VID Deep Feature Flow (DFF) [46] and
Flow-Guided Feature Aggregation (FGFA) [45] were in-
troduced. The main drawback of the flow-based methods
was the increase in parameter size resulting in more training
time. Thirdly, Efficient Neural Networks are methods that
do not follow mainstream ideas and yet manage to lower re-
dundant calculations and improve weaker features. Despite
innovative approaches and complex architectures [24], the
performance of Efficient Neural Networks is quite low com-
pared to other methods.

Lastly, feature filtering methods temporally identify con-
sistent features across video frames followed by aggrega-
tion of features to refine detection. One interesting bench-
mark using features filtering is Sequence Level Seman-
tics Aggregation (SELSA) [43]. The working is similar to
Faster-RCNN [32] but performs detection at the sequence
level. SELSA utilizes region proposals from neighbouring
frames termed reference frames. The semantic similarities
are identified by generalized cosine similarity. After identi-
fying the similarities, features are aggregated to obtain ro-
bust features. Since the method is based on the commonly
used Convolutional Neural Networks, we employ it for our
experiments. Additionally, the architecture of SELSA is
simple and involves less training time.



Figure 2. Overview of Static Background MNIST(SB-MNIST) (a) Four variants of Min-SB-MNIST in pairs namely Brick-Grass, Metal-
Carpet, Abstract-Art and Marble-Mosaic. (b) Two variants of Max-SB-MNIST namely BG-20K and DTD. (c)Masked-SB-MNIST dataset
with constant masked-static background and two variants are created with a black and blue moving object. (d) Two variants of No-SB-
MNIST, Camouflage and Crop with no static background (Borders are added here for visualization purposes).

3. Methodology

To identify the influence of static backgrounds in VIDs,
the first step is to choose a suitable dataset for our ex-
periments. A majority of video sequences in large-scale
datasets like ImageNet VID [8], EPIC KITCHENS [6] and
YouTube BoundingBoxes [28] are recorded with moving
cameras. This makes the datasets unsuitable for our setting.
Initially, we identify a dataset introduced for moving ob-
ject recognition [26]. The videos are recorded using static
cameras in real-life scenarios. However, the dataset has a
few disadvantages. First, the moving object classes are im-
balanced (13,442 cars and 25,385 person). Second, the oc-
currences of moving objects and static backgrounds are not
balanced. So we decide to build synthetic datasets for the
experiments.

We carefully build different balanced datasets for the ex-
periments. Each dataset has B static backgrounds, K mov-
ing object classes, N moving object instances and a constant
moving-object-background. For the moving objects, we
employ the MNIST [20] digits dataset. The MNIST dataset
has handwritten digits from 0 to 9 (Therefore, K=10). The
datasets are collectively named Static Background-MNIST
(SB-MNIST).

The moving object’s initial location is randomized in-
side the moving-object-background. Each moving object
class (Ki) is associated with a distinct motion pattern as
shown in Figure.3. By random initialization and distinct
motion assignment, we aim to prevent bias in start location
and motion. The object moves at a rate of one pixel per

frame in the video. If the object exceeds the boundaries of
the moving-object background, the digit is reset randomly
inside the moving-object-background.

The SB-MNIST dataset has a total of 1000 videos,
where 600 videos belong to the training set, 200 videos to
the validation set, and 200 videos to the test set. All the
videos are of equal length of 50 frames. The dimension of
each frame is 64x64. A 40x40 white moving-object-region
is located at the centre of the frame and surrounded by
static background. To note, in this dataset we assume
that the static background remains constant for the entire
sequence of a video.

Min-SB-MNIST. As the name indicates Minimum-
SB-MNIST datasets possess the least number of unmasked
static backgrounds. The datasets are composed of 2 static
backgrounds for the train, validation and test sets. We
create four variants in the Min-SB-MNIST format namely
Brick-Grass, Metal-Carpet, Abstract-Art and Marble-
Mosaic.

Max-SB-MNIST. To simulate a realistic scenario where
the unmasked static backgrounds are different for each
video, we introduce Maximum-SB-MNIST. In Max-SB-
MNIST, the number of static backgrounds B is equal to
the number of videos in the train, validation and test set.
We create two variants based on the dataset used for the
static backgrounds. In the first variant, We pick 600 static
backgrounds for training and 200 static backgrounds for
testing from the BG-20K [22] test set. The validation set



Figure 3. Motion associated with each MNIST digit class(0 to 9) in SB-MNIST dataset. The arrow marks indicate the direction of
movement. If the moving object (MNIST digit) exceeds the moving-object-background (white region), it is reset randomly inside the
moving-object-background.

static backgrounds are a subset of the training background
i.e 200 backgrounds from training are used. For the
second variant, 600 static backgrounds for training and 200
static backgrounds for testing are chosen from 10 texture
categories of the Describable Texture Dataset(DTD) [5].

Masked-SB-MNIST. To hide the static backgrounds,
we mask the dataset i.e convert the pixel values of the
static regions to 0. By masking, we attain a constant static
background for train, validation, and test set. We create two
variants of Masked-SB-MNIST. One with a black moving
object and the other a blue moving object.

No-SB-MNIST. We replace the static background
with the colour of the moving-object-background. After
replacement, there is no static background in the dataset.
We name this variant of No-SB-MNIST as camouflage.
Similarly, we create another variant called crop, where we
remove the static background by cropping. Therefore, the
dimensions of the crop variant are equal to the dimension
of moving-object-background i.e 40x40.

The statistics of each dataset are listed in Table.1 and
example frames from each dataset are shown in Figure.2.

Dataset Type B N
Min-SB-MNIST Train

Validation
Test

2
2
2

60
20
20

Max-SB-MNIST Train
Validation
Test

600
200
200

60
20
20

Masked-SB-MNIST Train
Validation
Test

1
1
1

60
20
20

No-SB-MNIST Test 0 20

Table 1. Statistics of SB-MNIST. The type refers to the purpose of
the dataset by the VID model i.e train, validation or test. B is the
number of static backgrounds. N is the number of instances. N/K
gives the number of instances per class.

4. Experiments

Implementation details for VID model. For exper-
iments, we use one of the state-of-the-art VID methods,
SELSA [43]. The SELSA model is composed of a Fea-
ture Network, Detection Network, and a SELSA module.
First, in the Feature Network, we use ResNet-50 [15] pre-
trained on the ImageNet [8] dataset. For training, the first
layer is frozen to reduce over-fitting. Second, in the De-
tection Network, the anchor scales and aspect ratios of the
Region Proposal Network [32] are modified to accommo-
date the small MNIST digits. Stochastic Gradient Descent
training is implemented with a batch size of 1 on TeslaV100
GPU. For evaluation metrics, we use mean Average Preci-
sion(mAP) [10].

4.1. Performance on same static backgrounds

Same pair of static backgrounds. The motivation be-
hind the experiment is to record the performance of VID
with no static background variations. During model de-
ployment, the static backgrounds that were present during
training are expected to be present. We simulate the sce-
nario using the same pairs of static backgrounds at train and
test time. The same pair scenario is considered the most
favourable situation and peak detection results are expected.

We employ four datasets of Min-SB-MNIST. The VID
is individually trained on each dataset namely Brick-Grass,
Metal-Carpet, Abstract-Art and Marble-Mosaic. The VID
model is optimized with a validation set with the same pairs
of static backgrounds. Finally, the four trained VID mod-
els are tested with their corresponding test sets. The results
are shown in Table.2 along the principal diagonal in the first
four rows (highlighted in yellow). We obtain an mAP value
greater than 60 in all the cases. We do not achieve an mAP
close to 100 due to the lower number of instances and ran-
dom initialization of moving objects.

Same distribution of static backgrounds. Video
datasets are often representative of the real world [6, 8, 28].
Each video is recorded with static backgrounds belonging
to different indoor and outdoor environments. The aim of
the experiment is to record the performance when the VID
model is expected to have static backgrounds at test time
that are similar to the training distribution. We establish the
same distribution scenario by using static backgrounds be-



Trained on
Tested on

mAP% (IoU=0.50:0.95)
Metal-
Carpet

Brick-
Grass

Abstract-
Art

Marble-
Mosaic BG-20K DTD

Masked-
SB

Camou-
flage Crop

Mean
drop%

Metal-Carpet 61.4 58.9 52.2 56.3 46.2 44.3 50.0 47.6 15.4 24.5
Brick-Grass 31.3 61.6 19.0 40.7 49.2 27.4 26.5 51.2 18.7 46.4
Abstract-Art 39.2 57.1 63.6 53.6 43.7 41.5 50.9 43.6 16.1 32.0
Marble-Mosaic 30.3 60.9 50.2 64.6 47.8 45.2 56.5 46.7 16.3 31.5
BG-20K 38.8 58.1 50.5 56.8 57.1 44.1 40.1 27.2 19.8 26.6
Masked-SB 27.2 56.5 33.2 49.3 27.0 20.0 64.6 36.0 29.3 46.1

Table 2. VID performance(mAP) for detecting moving object classes 0 to 9 when training on one dataset variant (rows) and testing
on another (columns). Metal-Carpet, Brick-Grass, Abstract-Art and Marble-Mosaic are variants of Min-SB-MNIST. BG-20K and DTD
are variants of Max-SB-MNIST. Camouflage and Crop are variants of No-SB-MNIST. Mean drop% is calculated with results other than
training and testing with the same variant.

longing to similar indoor and outdoor environments. The
same distribution is the favourable situation for per video
static background scenarios.

To execute this experiment, We train and test with the
BG-20K variant of Max-SB-MNIST datasets. We obtain
an mAP of 57.1 (highlighted in green in Table.2) which is
lower when compared to training and testing on the same
pair of backgrounds. The lower mAP is due to changing
static backgrounds at test time which are similar but not the
same.

4.2. Effects of different static backgrounds

Different pairs of static backgrounds. Can VID mod-
els perform well when exposed to a static background pair
that is not in the training set? In datasets with a limited va-
riety of static backgrounds, the VID models are more likely
to over-fit the static background. The main aim of the ex-
periment is to identify if static backgrounds are exploited
during train time and how severe VID models over-fit the
static background. We observe the effects by testing the
pre-trained models from Experiment.4.1 on different pairs
of static backgrounds.

To begin with, we utilize the VID models trained indi-
vidually on four dataset variants of Min-SB-MNIST. We
test the VID on every other variant that possesses differ-
ent static backgrounds. For instance, if the VID model is
trained on the brick-grass variant then the model is tested
on other variants Metal-Carpet, Abstract-Art and Marble-
Mosaic. We compare the results with the same static back-
ground results obtained from Experiment.4.1. The results
(highlighted in red in Table.2) reveal that changing static
backgrounds during testing reduces the performance in all
cases. The performance drop affirms that undesirable corre-
lations are established between static background and mov-
ing objects during training. The performance drop occurs
to an extent of 69%. The performance decrease explains
the extent of exploitation of static backgrounds detecting

moving objects. Among the trained VID models, the model
trained on Metal-Carpet works best when compared to oth-
ers. The reason could be that the Metal-Carpet variant pos-
sesses static background features similar to other variants.
Sample detection results are shown in Figure.4.

Different distribution of static backgrounds. Consider
a scenario where a VID model is trained on a dataset pos-
sessing different static backgrounds in each video. If the
trained VID model is implemented in different applications,
VID models will encounter different environments for each
application at test time. So the question is: Can VID models
perform well when exposed to a different static background
distribution?

Initially, we employ the VID model trained on the BG-
20K variant of Max-SB-MNIST. We test BG-20K trained
VID model with the DTD variant of Max-SB-MNIST. BG-
20K comprises indoor and outdoor scenes whereas DTD
has texture static backgrounds. When comparing with the
same distribution results, the performance decreases (high-
lighted in blue in Table.2) if the static backgrounds are from
a different distribution. Thus, VIDs cannot perform well
when the static backgrounds are different or from a differ-
ent distribution.

4.3. More static backgrounds Vs Less static back-
grounds

The motivation for this experiment is to identify if using
more static backgrounds is an advantage for VID models.
To describe in another context, we check if data augmenta-
tion is a solution to the static background exploitation prob-
lem.

Train with more, test with less. The Max-SB-MNIST
with 600 static backgrounds during training offers a form
of data augmentation accompanied by regularization. Ulti-
mately, the VID model trained on Max-SB-MNIST is less
likely to over-fit the static backgrounds. Considering the
advantage of augmentation, we record the results (high-



Figure 4. Bounding box detection results of VID model. (a) Re-
sults of VID model trained on Abstract-Art variant and tested on
brick-grass and metal-carpet (b) Results of VID model trained on
Marble-Mosaic variant and tested on Brick-grass and metal-carpet.
In both (a) and (b) the detections are False Positives.

lighted in purple) of training with more static backgrounds
(BG-20K) and testing with less static backgrounds (Min-
SB-MNIST). We compare the mAP with results of Exper-
iment.4.2 (highlighted in red) in Table.2. It is observed
that Min-SB-MNIST trained models surpass the Max-SB-
MNIST trained model in the majority of the cases except for
the Marble-Mosaic variant. Therefore, adding more static
backgrounds during training does not necessarily improve a
VID model’s robustness to static backgrounds at test time.

Train with less, test with more. Consider a situation
where we train a VID model with 2 static backgrounds.
Will the trained VID model perform well when there are
200 different static backgrounds at test time? To answer this
question, we employ the Min-SB-MNIST trained VID mod-
els. At test time, we expose the VID models to 200 static
backgrounds from the DTD variant of Max-SB-MNIST.
The results are in Table.2 (highlighted in pink) demonstrate
that in two variants, Metal-Carpet and Marble-Mosaic work
better than Max-SB-MNIST (highlighted in blue) trained
with 600 backgrounds. From this comparison, we conclude
that using less static backgrounds can perform better occa-
sionally. We mention occasionally since Min-SB-MNIST
trained (Brick-grass and Abstract-Art) performs worse than
Max-SB-MNIST.

4.4. Can masking reduce the influence of static
backgrounds?

In section.4.1, 4.2 and 4.3, we investigated the effects of
unmasked static backgrounds. In this experiment, we mask
the static backgrounds. By masking, the static backgrounds
in all videos are converted to one constant zero-valued black
static background. The assumption for masking is that ho-
mogeneous background reduces the complexity of the static
background. We define a masked static background as less
complex as there is no change in pixel values in the static
background.

First, we train with the VID model with the Masked-
SB-MNIST dataset. The Masked-SB-MNIST trained VID

model is tested on four unmasked variants of Min-SB-
MNIST. The results show that masking the static back-
grounds during training does not make VID models ro-
bust to background changes. The mAP scores are reduced
to an extent of more than 50% compared to testing on
the same static backgrounds. Similar poor results were
observed when testing Masked-SB-MNIST with Max-SB-
MNIST variants BG-20K and DTD with static backgrounds
per video. Masking during training does not improve the de-
tection of the moving object since VIDs overfit the masked
static background relatively more than Max-SB-MNIST.
Additionally, the masked static background being a simple
homogeneous static background does not equip VID mod-
els to face complex heterogeneous static backgrounds at test
time.

Second, we implement masking at test time. The VID
models trained on unmasked Min-SB-MNIST are tested
on Masked-SB-MNIST. The results drop to an extent of
more than 50%. Although VID models are trained on com-
plex backgrounds their performance decreases even if a
less complex constant static background is encountered at
test time. Therefore, masking static backgrounds during
training or testing does not reduce background influence in
VIDs.

4.5. Do VIDs perform better if the static back-
grounds are removed?

Camouflage static background with moving-object-
background. Since VIDs cannot generalize well to dif-
ferent static backgrounds at test time, can removing static
backgrounds improve detection results? In other words,
does harmonizing the static background with the moving-
object-region improve the performance of VIDs? The
assumption is that camouflaging static backgrounds with
moving-object-background will reduce the visual distrac-
tion in the scene [1].

The models trained on four Min-SB-MNIST variants,
Max-SB-MNIST(BG-20K) and Masked-SB-MNIST are
tested on Camouflage variant No-SB-MNIST. Results drop
to a maximum of 31% for Min-SB-MNIST, 54% for Max-
SB-MNIST and 44% for Masked-SB-MNIST. From the re-
sults, we observe that the absence of static background
affects performance similar to the presence of a different
background at test time. Therefore, reducing distractions
from static backgrounds during test time cannot improve the
detection of moving objects.

Crop static background. In this experiment, we re-
move the static background by cropping at test time. We
utilize the models trained on Min-SB-MNIST, Max-SB-
MNIST and Masked-SB-MNIST. We test the models on
the Crop variant of No-SB-MNIST. When compared to the
other variants, the test mAP scores of the Crop variant are
the lowest. The test results drop on average by 69.1%.



A possible reason for poor results could be due to the ex-
ploitation of the absolute spatial location of the static back-
ground. Cropping during testing disrupts the location in-
formation learnt in training i.e a static background always
occurs around a moving-object-background.

5. Limitations and Conclusion

In this paper, we reveal the static background influence
in VID using the SB-MNIST dataset. The SB-MNIST is
modular and extendable. Our dataset has no limitations in
terms of simulating different settings. However, it is un-
known how well the synthetic datasets translate to real-life
datasets.

To simplify the experiments, we considered fixed
boundaries for static backgrounds and moving-object-
background. Additionally, we apply constant colour for
the moving-object-background. Future experiments using
SB-MNIST would be to identify the behaviour of VID
models to static backgrounds under different dataset sizes,
static-background boundaries, moving-object-background
and moving object colours. We consider only the minimum
of 2 and the maximum number of 600 static backgrounds.
Analyzing the effects of the number of static backgrounds
for VIDs is left for future work.

VID models are rapidly evolving and registering their
competence on large-scale datasets. However, they are not
equipped to face undesirable correlation problems in real-
life applications. To solve the problem, it is not feasible to
add all possible static backgrounds to the training dataset to
make robust VIDs. Therefore, an opportunity to solve the
undesirable correlation problem would be along the VID
model itself. Integrating VIDs with methods related to im-
age inpainting or efficient video processing that treat static
backgrounds as invalid or redundant information could be a
possible direction for solving the problem. If consistent re-
sults are achieved on SB-MNIST, the VID model is robust.

To conclude, the intention of SB-MNIST and the experi-
ments was to disclose the problems associated with static
backgrounds. First, we demonstrate that VID performs
better if deployed with static backgrounds same or simi-
lar to the training datasets. Second, we show that if there
is a change in the static background at test time, the re-
sults drop drastically. A shortcut to solve the performance
drop is to replace the static backgrounds at test time with
static backgrounds from the training set. Third, we iden-
tify that training with lesser static backgrounds can pro-
duce results occasionally better than a model trained with
more static backgrounds. Finally, we mask and remove
the static backgrounds in an attempt to reduce the influ-
ence of static backgrounds in VIDs. Yet, we face a drop in
performance, concluding masking or removing static back-
grounds cannot prevent VIDs from exploiting static back-
grounds.
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2
Introduction

The fundamental tasks of a robot is to sense the environment, process sensory information, and act
accordingly. This process of sensing and processing is anonymous with visual recognition in computer vi-
sion. Visual recognition has several categories among which classification, object detection and semantic
segmentation using Convolutional Neural Networks(CNNs) are gaining traction in various applications.
Object detection involves identifying what(classification) and where(localization) is the object in a given
image or video. For years, object detection is carried out frame by frame. The video is split into images
and object detection is performed on each image. Image object detectors have proven to work quite well
through the years. More recently Video Object Detectors(VIDs) have evolved with detection performed
utilizing a stack of images.

For instance, consider an industrial inspection system where a static camera captures an image or
video in a moving conveyor belt as shown in 2.1. The camera data is fed as an input to the object
detection model that transforms the data in a way to extract prominent features. The objects in the
scene are displayed in the form of bounding boxes and confidence scores. Ultimately, the inspection
system is aware of the environment and can perform necessary communication.

Figure 2.1: Illustration of an industrial inspection system. A static camera captures the boxes on the conveyor and feeds
the input as an image/video to the model. The model extracts relevant features and outputs results in the form of a

bounding box with a confidence score.

2.1. Problem
In many systems with a static monocular camera, the spatial area of interest depends on the moving
object. As the video is larger than the spatial area of interest there exists static background throughout
its sequence. In the static background, the moving object does not appear. Object detection models
are trained on numerous videos with different static backgrounds. During training, correlations are

10



2.2. Research Questions 11

developed between the moving object and its static background. Consequently, the detection results on
objects deviate when tested with static backgrounds out of the training distribution. The correlation is
desirable in certain situations when the moving object class is associated with a static background. For
instance, a fish is more likely to appear on a blue static background. The problem arises when there
is no relation between the moving object and the static background. For instance, consider training a
model to detect fish in an industry conveyor. The blue background correlation is undesirable as the
industry static background is different.

The above-mentioned problem can be solved by collecting video data of moving objects with diverse
static backgrounds. But in reality, it is not possible to obtain all possible static backgrounds. One
of the common methods to hide static background information is masking. Masking is a process of
converting image pixel values to zero. These masks can be manually drawn or automatically generated
over irrelevant regions. Yet, it is not known how video object detectors use static backgrounds for
moving object detection and will masking it benefit detection performance.

For this thesis, we get observations from problems in borescope inspection at AIIR Innovations. The
borescope inspection system has a static camera to inspect damages in a rotating blade. We break down
a video frame into three parts namely a static background, moving-object-background and moving ob-
ject(refer Fig.2.2). From Fig.2.2, we observe that the static background at time t, t+1 and t+2 remains
constant whereas the moving object and moving-object-background keep changing in every frame.

Consider a situation where there are borescope inspection videos with different static backgrounds
at train time(shown in yellow and red in Fig.2.3). During training, the VID model develops a cor-
relation with the static backgrounds. The results deviate when the model is exposed to a different
static background at test time(shown in purple in Fig.2.3. Therefore, the correlations with the static
backgrounds are undesirable.

Figure 2.2: Video frames from borescope inspection at different time intervals. We split the video into three parts
namely a static background, moving-object-background and moving object.

[1]

Figure 2.3: Illustration of different backgrounds at train and test time(for visual purposes only). The static backgrounds
at train time are shown in yellow and red. The static background at test time is shown in purple.

[1]

2.2. Research Questions
From the observations in the previous section, we formulate the research questions for the thesis. We
aim to achieve a deeper understanding of static backgrounds in detecting moving objects.
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• Do static backgrounds of the training set influence the detection results of a moving object at
test time?

• If yes, to what extent are static backgrounds exploited for detecting moving objects?
• Does masking or removing static background during training make video object detectors robust

to static background changes at test time?

2.3. Outline
The thesis is organized as follows, Chapter.1 is the primary documentation that explains the thesis
including the methodology and experiment results. Chapter.3 provides insights into deep learning
and object detection. Chapter.4 explains the VID model used, training settings and plots. Chapter.5
presents additional information about the proposed dataset, experiment plots, training, and test settings.
Finally, in Chapter.6, we present the additional experiment on masking static objects.



3
Object Detection with Deep Learning

In this chapter, we explore the fundamentals of deep learning and its usage for Object Detection.

3.1. Deep Learning
Deep Learning is a sub-field of machine learning that employs neural networks to imitate the way
humans think. Neural networks extract vital information or patterns from data ultimately forming
a relationship between input and output. A deep neural network is built by multiple neural network
layers. Each neural network layer is composed of neurons. Each neuron has trainable parameters which
are learnt by back-propagation. By back-propagation, the parameters are trained and further optimized
based on an objective function. A mathematical model of a neuron is shown in Figure.3.1. A neuron
receives input, transforms the input and applies an activation function. The commonly used activation
functions are hyperbolic tangent, the Sigmoid and the Rectified Linear Unit (ReLU).

Figure 3.1: Mathematical model of Neuron. The neuron has three inputs x0, x1, x2 with learnable weights w0, w1, w2, b.
An affine transformation is applied to the inputs in the cell body. After the affine transformation, an activation function

f is applied. The learnt weights represent the strength of connection between neurons.[2]

Figure 3.2: A 3-layer Neural Net with an input layer, two hidden layers and output layer.[2]

A general deep neural network is composed of multiple layers connected with each other. They
are also known as artificial neural network. Generally, the neural network possesses an input layer,

13
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hidden layer and the output. Neurons of the same layer are not connected. The neural network in
Fig.3.2 shows a neural network where each neuron in one layer is connected to every other neuron in
the succeeding layer. During training, the neurons establish stronger or weaker connections based on
activation in their previous layers. For optimizing the weights between layers algorithms like Stochastic
Gradient Descent(SGD) are used. After training, they develop different response to input combinations
and provide output in the final layer.

3.1.1. Convolutional Neural Networks(CNNs)
CNNs have been widely used for backbones and detection heads since the introduction of object detec-
tion. Similar to neural networks, CNNs comprise four key components namely data, model, objective
function and algorithm[3]. For image recognition systems, it is quite straightforward we utilize image
data for training. The image data (height x width x number of channels) is fed to the model which
extracts relevant features by convolving over every pixel and its neighbours using kernels. Here, the
kernel matrix’s value determines the image’s transformation to feature maps. For example, we show in
Fig.3.3 how each convolution kernel can interpret the input image differently. Further, a pooling oper-

Figure 3.3: An example of image convolution. We use a black and white image for illustration. In (a) We apply a
sharpen kernel and visualize a sharper version of the input image as an output. (b) We apply a sobel kernel and

visualize differences in adjacent pixels along right direction.

ation is performed at successive convolution layers to reduce the dimension and refines the prominent
features in an image or video. Finally, a fully connected layer During training, these kernels are learnt
over time with the use of an objective function(commonly referred to as Loss functions) optimized with
the help of algorithms like SGD, Adam etc. CNNs have made immense progress and have been quite
the mainstream for image recognition with the introduction of VGG[4] and ResNet[5] backbones. For
more detailed information about convolutions and how they work refer [6].

3.2. Object Detection
As mentioned earlier in Chapter.2, Object detection involves identifying what(classification) and where
(localization) is the object in a given image or video. Object detection lays the foundation for various
applications such as industrial inspection, face detection, automated driving and so on. There exists
different type of architectures for object detection. An example of one-shot image object detector[7]
is shown in Fig.3.4. Given an input image, the features are extracted with a convolutional network
termed as the backbone. Further, the fully connected layers output a classification score accompanied
by bounding box coordinates. Based on the type of input, object detection is divided into two parts
namely Image and Video Object Detectors.

The goal of object detection is to detect all instances of classes encountered during test time. Addi-
tionally, the trained detector should be able to draw a bounding box around the object boundary. In
this thesis, we follow supervised learning, where the image/video along with its ground-truth label is
fed to the network for training.
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Figure 3.4: An image is given as input to the CNN in which features are extracted. These features are further used to
classify and predict bounding box coordinates with the help of an additional fully connected layer. To understand how
convolution works, we take a closer look at the block of the Convolutional network (highlighted in red). The image is
converted as a tensor and multiplied with a 3x3 kernel with weights w0, w1...w9 to obtain feature maps. We obtain
feature map results in the above figure by implementing a VGG-16[4] pre-trained network on Image-Net dataset[8]

3.2.1. Performance metrics
To evaluate the performance of object detectors, mean Average Precision(mAP)[9] is used. Precision is
obtained from Intersection over Union(IoU). IoU is used to identify how much the predicted boundary
overlaps with the ground truth. Based on the threshold of IoU, a detection is declared as correct. In
our experiments, we use a threshold of 0.5. If IoU overlap is greater than the threshold, we term it as
True Positive. On the other hand, if the IoU is less than 0.5 it is declared as False Positive. If an object
present in ground truth is not detected then it is classified a False Negative.

Precision = True Positive
True Positive + False Positive

= True Positive
All Observations

(3.1)

Recall = False Positive
True Positive + False Positive

= False Positive
All Ground Truth

(3.2)

Based on the above equation, the average precision is computed per class. For the final result, the
mean of average precision over all classes is used as the final evaluation. In our results, we report
mAP with average over multiple IoU thresholds between 0.5:0.95 with step size of 0.05. This results in
computations of AP threshold at ten different IoUs.



4
Video Object Detection

Previously image object detection methods extract features frame by frame. In VIDs, feature extraction
occurs in a group of frames. Given the set of features, consistencies are identified using different methods
and prominent features are propagated across frames. The main aim of a VID method is to capture
temporal information in videos. The VID approach used in this thesis is Sequence Level Semantics
Aggregation (SELSA)[10].

4.1. SELSA
The architecture of SELSA is similar to the working of Faster-RCNN[11]. The SELSA modules are
added to the existing architecture of Faster-RCNN. The SELSA architecture can be split into three
parts namely a Feature Network, Detection Network and the SELSA module. The input set of images
is first passed through the feature network which is ResNet-50[12] in our case. The input is also fed
to the backbone of the Region Proposal Network(RPN) which is a part of the detection network. The
RPN network generates proposals for different scales and aspect ratios. The RPN consists of a softmax
layer as a classifier to identify if the proposal boxes are foreground or background. By ranking the boxes
according to the classification scores, the final proposals are obtained. Additionally, the RPN consists
of the regressor to output the proposal coordinates. Using the proposals from RPN, ROI pooling is
applied to feature maps.

After ROI pooling, proposals are passed through two Fully Connected(FC) layers and SELSA modules.
The SELSA module first identifies the semantic similarity between the proposals. Further, the features
are aggregated to obtain robust features as shown in Figure.4.1. Finally, the proposals are passed to

Figure 4.1: Semantic guidance and Feature aggregation in SELSA[10]. Region proposals are extracted from different
frames followed by identification of semantic similarities. Finally, the features are aggregated from neighbouring

proposals.

two FC layers for object classification and regression. SELSA is jointly trained with four losses namely
a binary cross-entropy classification loss for RPN, smooth L1 loss for regression in RPN[11], cross-
entropy classification loss and smooth L1 loss for regression[13]. The overall architecture is illustrated
in Figure.4.2

16
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Figure 4.2: Overall architecture of the VID model. The feature network is a ResNet-50 followed by a detection network
with RPN. The SELSA modules are inserted between the final fully connected layers.The bounding boxes are output in

form of x coordinate, y coordinate, height and width(x1,y1,W,H).
.

4.2. Training details for experiments
Mostly, we adopt the same configuration for all our experiments. We do not employ data augmentation
for our experiments. The video frames are normalized with the ImageNet mean and standard deviation
values. For training, two random reference images are chosen from a frame range of 9. During, test time,
we sample 14 reference frames along with the testing frame. For the optimizer, we use SGD with a initial
learning rate of 0.01, momentum of 0.09 and weight decay of 0.0001. The learning rate is divided by
10 at 90k and 270k iterations. We fix the hyper-parameters and train with all variants of the SB-MNIST.

Due to the small size of the dataset, we apply transfer learning by using ImageNet pre-trained
weights. We freeze the first layer of the feature extraction network. However, the VID models manage
to overfit the datasets as early as 150k iterations. For the Masked-SB-MNIST variant, we increase the
extent of transfer learning by freezing two layers. Yet, the results are worse when tested with different
static backgrounds. However, setting the weight decay values to 0 improved mAP on an average of
3.2%. training plots for all variants are shown in Figure.4.4.
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Figure 4.3: Training curves on validation set and combined loss. From top (a) Training curves of VID models with
Brick-Grass, Metal-Carpet, Marble-Mosaic and Abstract-Art datasets. As the datasets are small, the models overfit as

early as 180k iterations. (b) Combined classification and regression training loss with Brick-Grass, Metal-Carpet,
Marble-Mosaic and Abstract-Art datasets. (c) Training curve of VID model with BG-20K dataset. The mAP is values
are less than values in (a) as the changing static backgrounds provides regularization. (d) Combined classification and
regression training loss with BG-20K dataset. (e) Training curves with Masked-SB-MNIST (f) Combined classification

and regression training loss with Masked-SB-MNIST.
.



4.2. Training details for experiments 19

Figure 4.4: Bounding box detection results of VID model trained on Metal-Carpet variant of Min-SB-MNIST. (a),(b),(c)
and (d) are results on Min-SB-MNIST. (e) and (f) are results on Max-SB-MNIST. (h) and (i) are results on

No-SB-MNIST.
.



5
SB-MNIST

In Chapter.1, we shortly introduced the datasets for experiments and provide test results. In this
chapter, additional information on the SB-MNIST dataset can be found.

5.1. SB-MNIST Dataset
The SB-MNIST is of dimensions 64x64. The moving-object-background is 40x40 and is centred at the
frame. The original MNIST[14] digit is 28x28 which is resized to 10x10. The dimensions of an example
frame are shown in Figure.5.1. We use the openCV[15] library for image manipulation and dataset
creation.

Figure 5.1: Dimensions of a frame in SB-MNIST.

5.1.1. Motion association per class
The Static Background MNIST dataset comprises MNIST digits[14] as moving objects. The moving
object’s initial location is randomized inside the moving-object-background. Each moving object is
associated with a distinct motion pattern as shown in Figure.5.2. When the moving object reaches the
ends of moving-object-background, the object bounces back to a random position in the moving-object-
background. The digit moves at the speed of one pixel per frame.

20
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Figure 5.2: Associated motion pattern to each digit from 0 to 9.

5.1.2. Maximum-SB-MNIST
We use several static backgrounds from BG-20K[16] and DTD[17]. For BG-20K, we use static back-
grounds from its test set. BG-20K primarily consists of outdoor and indoor scenes. For DTD, we
use static backgrounds from 10 texture categories namely stained, stratified, striped, studded, swirly,
veined, waffled, woven, wrinkled, and zigzagged. Examples of the static backgrounds used are shown
in Figure.5.3 and Figure.5.4.

Figure 5.3: Examples of static backgrounds in BG-20K variant of Max-SB-MNIST

Figure 5.4: Examples of static backgrounds DTD variant of Max-SB-MNIST



6
Additional experiments

To identify the influence of static objects in detecting dynamic objects in a scene, we create two datasets
called Mask-Moving and Unmask-Moving based on MNIST digits[14] as shown in Figure.6.1 and Fig-
ure.6.2. The dataset comprises 80 videos for train, 20 videos for validation and 20 videos for the test
set. The total number of frames for training is 6680. The validation and test sets contain 1840 frames.
The length of the videos is 46 and 120 frames in training, while at validation and test time the video
length is 46. The dimension of the video frame is 150x150 with the moving object of size 30x30. At
each frame, the moving object instance is changed and moves either horizontal, vertical or diagonal.
We hypothesize the following for our experiments:

• By masking the static objects during training, the video object detector learns to focus on moving
objects and ignore static objects while testing.

• If all static objects in a video are masked during training, the mAP of dynamic objects will improve
compared to training with unmasked static objects.

Figure 6.1: Overview of Mask-Moving dataset. (a) Train dataset with masks on left, right, top and bottom. The arrows
indicate the direction of movement for the moving objects. (b) Unmasked validation dataset with object moving

diagonally. (c) Test set with unmasked static objects. The moving objects move either horizontally or vertically.(b) and
(c) are common for both Mask-Moving and Unmask-Moving.

.

6.1. Mask-Moving Vs Unmask-Moving
We trained the SELSA VID model[10] on two datasets. First, we mask the static objects in the scene as
shown in Figure.6.1. The model is trained on Mask-Moving. For validation, we do not mask the static
objects. During training, the VID model achieves an mAP of 67.6% on the validation set. Similarly, we
train the VID model on Unmask-Moving dataset as shown in Figure.6.2. The position of static digits
are shuffled for each video. The VID model achieves an mAP of 30.8%. The training curve is shown in
Figure.6.3.

After training, we test the VID models on test set which is unmasked. The VID model trained on Mask-
Moving achieves a better mAP of 67.5% whereas the VID model trained on Unmask-Moving performs
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Figure 6.2: Overview of Unmask-Moving dataset.(a) Train dataset with static digits on left, right, top and bottom. The
arrows indicate the direction of movement for the moving objects. (b) Unmasked validation dataset with object moving
diagonally. (c) Test set with unmasked static objects. The moving objects move either horizontally or vertically.(b) and

(c) are common for both Mask-Moving and Unmask-Moving.
.

Figure 6.3: The training curves of VID models trained on Mask-Moving and Unmask-Moving. The VID models achieve a
greater mAP on Mask-Moving compared to Unmask-Moving.

.

worse by attaining an mAP of 42.3%. Looking at the bounding box detections, it is noticed that the
VID model trained on Mask-Moving detects more False positives in static objects. The results help
us conclude that masking static objects during training does not help VIDs ignore the static objects.
However, Masking is beneficial as it improves the mAP of the moving object. Sample detection results
are shown in Figure.6.4.

Figure 6.4: Detection results of two VID models tested on Unmasked test set. (a) Results of VID model trained on
Mask-Moving and tested on Unmask-Moving test set. False positives occur on the static objects. (b) Results of VID

model trained on Unmask-Moving and tested on Unmask-Moving.
.
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