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Abstract

Robot manipulators are significantly more accurate than their human counterparts and en-
hance the repeatability of various tasks. However, manufactures still provide reduced in-
formation regarding the robot controller functions, typically affecting robots’ predictability.
Additionally, industrial examples show that system transparency could be improved, helping
users to understand the process and apply corrective actions. One step in the direction of
improved predictability is the identification of the Limiter block associated with the KUKA
robot controllers that limit the acceleration and jerk obtained during motions. This work
aims to provide dynamically feasible trajectories with reduced performance deterioration.
Specifically, the Limiter’s behaviour was analyzed and later predicted in a iterative manner,
aiming for the maximum velocity, acceleration and jerk that can be achieved, starting from
the current robot state and given specific robot information. Using the predicted bounds, the
trajectory generator will determine the maximum achievable point that fulfills all the con-
straints, running an optimization problem in an iterative fashion. Nonetheless, the practical
experiments represent a significant component allowing data collection and results validation.
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Chapter 1

Introduction

1-1 Background

Over the span of years, the manufacturing process benefited from the technology progress
in the form of automated manufacturing. At its core, the automated manufacturing relies
on control systems governed by computers to conduct and supervise the production pro-
cesses, meaning that in an automatic facility, the tools and technologies are interconnected
[6]. Although the humans are still required for the programming and management tasks,
fewer humans are involved in the actual production processes. This permits an increase in
productivity, less defects and safer manufacturing facilities.
On a high level, the automation contributed to the society’s development by providing im-
proved control and consistency as a result of higher production rates, efficient use of materials
and increased quality of products. From an individual perspective, the automation brought
a higher standard of living by improving the work safety in factories, reducing the workweek
and decreasing the manufacturer’s lead time [7]. However, the automation might imply sev-
eral disadvantages such as workers displacement, decrease in the flexibility of the production
strategy or a high capital required for the initial investment and further maintenance.
According to [7], the automated manufacturing processes can be split into three groups: fixed,
programmable and flexible automation. Fixed automation demonstrates the smallest flexi-
bility using machines that are specifically designed for a given task. An example of fixed
automation is represented by automated assembly machines. Programmable automation im-
plies the usage of machines that can be programmed to execute tasks and presents higher
adjustment capabilities. As a result, the industrial robots might easily serve the require-
ments in this category, while the most well-know example of programmable automation is
represented by the Computer Numerical Control (CNC) tool. Lastly, in the flexible automa-
tion setup, the manufacturing process can be easily adjusted to a slightly different product.
Subsequently, multiple industries recently adapted their manufacturing processes to produce
smaller batches of customized products. For example, according to [8], the car manufacturing
industry started to produce customized cars, using a flexible automation approach that covers
painting, welding or assembly.
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2 Introduction

Industrial robots are widely used in the manufacturing processes for two reasons. First,
they are repetitive and accurate, decreasing the production defects. Second, they can replace
humans in dangerous tasks or hazardous environments such as handling heavy tools or dealing
with harmful fumes produced by different types of paint.

According to [9], the applications industrial robots are mostly involved in can be split into
three categories: material handling, processing operations and assembly and inspection. In
material handling, robots typically move materials or work parts from one location to another.
This mostly implies the execution of pick and place operations and the usage of specifically
designed grippers. Processing operations involve processes effectuated on a specific work part,
using a designed tool, to execute a very specific task. Some examples of processing operations
might be welding or painting. Assembly and inspection is sometimes accomplished by robots
to guarantee product requirements being fulfilled.

Out of all industrial robots used in manufacturing, robot manipulators gained popularity over
the years. According to [10] a robot manipulator consists of a sequence of rigid bodies, called
links, interconnected by means of articulations, called joints. They are characterized by an
arm ensuring mobility, a wrist conferring dexterity and an end-effector performing the task.
The number of axes in a robot manipulator typically varies between 2 and 10, but commonly,
6-axes robot manipulators are used as a result of their similarity to the human arm that
enhances intuitiveness. Moreover, based on the different joint types, robot manipulators can
also be further differentiated.

Being relatively flexible systems that can be programmed to deal with various tasks by moving
the end-effector on specific trajectories, robot manipulators are involved in multiple manu-
facturing industries. As a result, one of the growing fields, the aerospace industry, adopted
robot manipulators in the manufacturing processes to replace more manual tasks. In the case
of airplanes, robot manipulators can cover various functions regarding the airplane structure
itself such as drilling and fastening, sealing, inspection (both during production and periodic
inspections), welding, painting, sanding or washing.

On the other hand, thanks to their accuracy, robot manipulators are also involved in the
composite manufacturing process helping in various automatic deposition operations such as
Automated Tape Layering (ATL) or Automated Fiber Placement (AFP). This is directly
related to the production of airplanes since composite materials are highly used in various
parts of the aircraft such as in their fuselage structure. Composites represent rather recently
researched materials, aggregating two or more distinctive elements, resulting into improved
material properties such as lower mass, high-stiffness and enhanced durability. As an example,
two long-range airplanes, Boeing 787 and Airbus A350XWB, already contain more than half
of their mass in composites.

1-2 Motivation

Although robot manipulators present a higher degree of predictability and accuracy compared
to their human counterparts, there is still room for improvement. One example in this sense,
comes precisely from the aerospace industry and is represented by FAUB (Fuselage Automated
Upright Build), a project of Boeing. This process aimed to avoid the rather complex and
tedious task of rotating the airplanes fuselage when attaching the exterior metal panels by
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using robots and keeping the fuselage in an upright position. In this case, two pairs of robots
had to synchronously work from both the outside and inside of the fuselage to drill holes and
insert fasteners for fixing the metal panels. Unfortunately, the entire project failed since the
pair of inside-outside robots could not properly synchronize. A picture depicting a pair of
robots working in the FAUB project is presented in Figure 1-1. This loss could have been
avoided if the robots’ behaviour was more transparent to the user.

Figure 1-1: A pair of robots working on an airplane’s fuselage in the Boeing FAUB project. [1]

Additionally, time represents a crucial aspect in the airplanes production processes. Consid-
ering the high level of safety required by the aerospace domain, the extensive tests necessary
for a new airplane to reach serial production phase typically last for prolonged times. Every
additional modification demands tedious testing and while the relevance of the tests is un-
deniable, considerable efforts were recently undergone to reduce the analysis duration. This
could also benefit from improved predictability to ensure that a slight change in the process
will not cause a major effect in the final product.
In this sense, the limited knowledge and prediction capabilities of the user upon the manipula-
tor’s trajectory generation and internal states does not contribute to improving the production
process. The current status indicates that the robot users might achieve increased predictabil-
ity in the robot manipulator processes by understanding the functions of the robot controller.
More specifically, by determining a set of attainable operations or feasible trajectories, cor-
rective actions could be identified and applied.

1-3 Problem statement

In the context of rather reduced available information on the robot inner processes, some
important mentions should be stated before defining the research problem tackled in the
current work. Although this might apply to multiple robot manufactures, the current work
will cover only KUKA robots and their provided documentation.
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In the case of KUKA robot systems, the manufacturer does not provide any information about
the robot controller and its functionality. Additionally, KUKA only permits position correc-
tions to be provided to the robot, but with the lack of information about the robot controller,
one cannot predict the effect of its actions. According to the literature and robot forums,
various trials to provide improved commands to KUKA robots were performed. However, the
typical procedure implied bypassing the robot controller but this is highly discouraged since
it might result into various safety issues.

In a typical usage of the robot, the robot controller will compute and execute a trajectory
given the start and target positions and tool information. For protecting the robot from
overtime deterioration, KUKA imposed several damage reduction mechanisms. Empirically,
when some of the limits enforced in order to reduce potential damage are exceeded, the robot
will reach a controlled stop meant to halt the trajectory execution.

One of the damage reduction mechanisms imposed by KUKA is represented by a Limiter
block characterized by velocity, acceleration and jerk limitations depending on various motion
parameters. According to their documentation, KUKA supports its existence but provides
no details about its implementation. According to to robots experiments, the Limiter block
will permit the achievement of the rated maximum velocity during all motions, but might
increase the acceleration and deceleration time as a result of limits imposed on acceleration
and jerk.

As a result, the current work does not aim to provide an improved control method for the
KUKA robots, but to use the given robot information in a data-driven approach to provide
input commands to the robot, without affecting the robot system. Thus, the main research
question can be formulated as follows:

How to improve the predictability of robot manipulators
without significant performance deterioration,

by only providing more educated positional commands?

To facilitate the generation of more educated commands, the main question can be split into
three main challenges: the motion parameters causing the most noticeable Limiter’s effect,
the relation between the input parameters and the velocity, acceleration and jerk limits and
the generation of position samples that the robot can follow. As a result, these aspects can
be formulated as three research topics:

1. "Which motion parameters play the most significant role in the robot con-
troller limits?"

2. "How can the function defining the relation between the motion parameters
and the limits be described?"

3. "Given the function defining the relation between the motion parameters
and the limits, how to generate dynamically feasible trajectories?"

By answering to all the research questions, this work aims to create dynamically feasible,
minimum-time trajectories between the start and target positions, given specific tool infor-
mation. The proposed solution will aid robot manipulators users to improve the predictability
in their work by providing more transparent motions.
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1-4 Thesis outline

In Chapter 2, a short description of the robot system is provided. This includes information
about robot communication approaches, time-derivation methods that allow the computa-
tion of velocity, acceleration and jerk profiles using previously collected position data and an
initial analysis regarding the Limiter’s effect. Chapter 3 includes the procedure proposed for
identifying the Limiter’s effect as velocity, acceleration and jerk bounds. Chapter 4 covers
the trajectory generation approach aiming to determine dynamically feasible position com-
mands to be closely followed by the robot. Moreover, Chapter 5 describes the final solution
aggregating the trajectory generation and bounds prediction. Finally, Chapter 6 concludes
the work and presents future research ideas.
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Chapter 2

Environment setup

Since the solution to the problem tackled in this work is mostly designated for KUKA robots,
all the experiments were performed on a KUKA KR 210 R2700 robot. As a result, the robot
environment will be described and the KUKA communication interfaces will be introduced,
also covering the position recording and playback procedures. Furthermore, the custom ex-
perimental setup used for adjusting tool parameters will be characterized.

Moreover, since KUKA only permits the recording of position measurements, several time-
derivation methods will be introduced. These are used for retrieving the velocity, acceleration
and jerk profiles required for observing the Limiter’s effect. After the position derivatives are
computed, an initial analysis is provided to check its effect on the robot’s behaviour and to
determine the robot parameters that significantly influence the Limiter’s effect. The results
of the analysis are particularly important for deciding the requirements for an extended and
representative dataset.

2-1 Robot setup

2-1-1 KUKA KR 210 R2700 extra

The KUKA KR 210 R2700 extra is a 6-axis robot manipulator. The robot axes and their
direction of rotation are presented in Figure 2-1 and its principal components are presented in
Figure 2-2. In parallel to the latter, a short description of these main assemblies is provided in
Table 2-1. Furthermore, the robot design parameters that describe the maximum capabilities
are provided in the robot model name itself. In this sense, one can deduce the rated payload
of 210 kg and the working radius of 2700 mm. Additionally, to extend the number of DoF of
the system to seven, the robot manipulator is mounted on a linear track.

According to the KUKA documentation [3, 5], the software-limited range of motion and the
maximum speed in the presence of payload for each axis are presented in Table 2-2. On the
other hand, no further limits on the higher time-derivatives of position such as acceleration
or jerk are mentioned in the provided manuals.
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Figure 2-1: Robot axes of KUKA KR 210
R2700 extra. [2]

Figure 2-2: Main components of the
KUKA KR 210 R2700
1-In-line wrist, 2-Arm,

3-Counterbalancing system, 4-Electrical
instalations, 5-Base frame, 6-Rotating

column, 7-Link arm. [3]

Figure
marker

Component
name Description

1 In-line wrist

It is composed by axes 4, 5 and 6. It is driven directly
by the motor of axis 6 which is placed in the
wrist itself and via connecting shafts from
the arm’s rear by motors of axes 4 and 5.

2 Arm It is composed by the link between the in-line wrist
and the link arm. It is driven by the motor of axis 3.

3 Counterbalancing system It is placed between the rotating column and the link
arm. It minimizes the moments generated about axis 2

4 Electrical installations It contains the motor and data cables of the motors
for axes 1 to 6.

5 Base frame
It is the actual robot base that can be screwed to the
mounting base. It also holds the motor interface, data
cable and energy supply system.

6 Rotating column It holds the motors of axes 1 and 2.
It performs the rotational motion of axis 1

7 Link arm
It is placed between the arm and the rotating column.
It consists of the link arm body together with the
buffers for axis 2.

Table 2-1: Main components description of KUKA KR 210 R2700 extra. [3]
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Axis Motion range,
software-limited

Speed with
rated payload

1 +/-185◦ 123◦/s
2 -5◦ to -140◦ 115◦/s
3 +155◦ to -120◦ 112◦/s
4 +/-350◦ 179◦/s
5 +/-125◦ 172◦/s
6 +/-350◦ 219◦/s
7 (Linear unit) 0 to 4 m 1.96 m/s

Table 2-2: Axes data for KUKA KR 210 R2700. [3] and [5]

Moreover, to coordinate the manipulator movements, an external controller (relative to the
robot, but with no user access) - KUKA KR C4 is used. The main goal of the robot controller
is to receive the desired position goal as an external command and to compute the optimal
trajectory that will achieve the target position. According to the KUKA documentation, the
robot controller is also responsible for applying various safety mechanisms when generating
the trajectory. One example of a safety mechanism is represented by the dynamical limitations
imposed on acceleration and jerk when generating a trajectory. In addition, when the robot
receives external intermediary points but the trajectory fails to respect the limits, the robot
controller will enforce a controlled stop, meaning that the robot will abort the execution of a
trajectory and will stop in the shortest time possible.

An illustration of the entire robot system (excluding the linear unit), required for actuating
the robot is presented in Figure 2-3. This consists of the robot manipulator itself, the robot
controller, the cables connecting all the components and a teach pendant. The latter is a
valuable tool used for specifying various robot settings and for jogging it. Furthermore, the
robot cell used during this work, including the manipulator and the linear unit, made available
by SAM|XL with the help of Airborne, is displayed in Figure 2-4.

2-1-2 KUKA communication interfaces

The robot controller was equipped with the KUKA System Software (KSS) which is respon-
sible for the basic control functions of the robot such as path planning, I/O management,
data and file management etc. Using KSS, there exist multiple possibilities for robot jog-
ging including manual or automated processes. Using the teach pendant, the robot user can
quickly jog the robot given the existing buttons. To increase the repeatability of the jogging
procedure, KUKA provides the KUKA Robot Language (KRL) which allows the definition
of short scripts that can be run either manually or automatically through the teach pendant.

When writing a simple KRL motion script, the user can provide the position end goal and the
motion type. It is important to mention that a script can also contain multiple commands.
As a result, the robot will execute every one of them reaching all intermediary points. The
motion types that can be programmed are Point-to-point motions (PTP) (fastest path to the
end point), Linear motions (LIN) (a straight path to the end point), Circular motions (CIRC)
(a circular path to the end point) and Spline motions (complex, curved paths).
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Figure 2-3: Robot system components.
1 - Manipulator, 2 - Robot controller,

3 - Teach pendant, 4 - Connecting cables. [4] Figure 2-4: Robot cell used for
experiments

To allow the communication between the robot controller and external systems or the monitor-
ing of various signals of interest, the KUKA Robot Sensor Interface (RSI) tool was provided.
Its main functionality in the current context is the communication between the robot con-
troller and an external computer, defined as a sensor system. In this project, RSI is used
both for its data exchange and sensor correction possibilities. In this sense, the data exchange
via Ethernet permitted the robot user to collect data regarding the current robot position
in real time, with a sampling frequency up to 250 Hz. Furthermore, the correction capa-
bilities provided by RSI allowed an external computer to provide position commands in the
form of sensor corrections. This was achieved by using the RSI_MOVECORR command that
achieves a purely sensor-guided correction of the robot. Moreover, by specifying the argument
of the command RSI_ON to be #ABSOLUTE, a correction mode relative to the initial robot
position was chosen.

Robot position recording

As mentioned above, KUKA only permits the collection of position data (and not its deriva-
tives) and this is facilitated by RSI. The procedure for actuating the robot using the robot
controller and collecting the position points it reaches during the trajectory is detailed below.

1. The desired motion was defined using a KRL script. The script typically contained two
PTP motions to actuate the robot from a start position to an end goal and back.

2. Various tool related parameters were specified in the corresponding teach pendant menu.
Moreover, a speed level was chosen.

3. The KRL script was ran using the automated functionality of the teach pendant.
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4. Since the KRL script contains the required commands, RSI facilitated the position data
collection through an Ethernet connection via the User Datagram Protocol/Internet
Protocol (UDP/IP).

5. Data is captured using the Wireshark software, being first saved in the Extensible
Markup Language (XML) format that RSI provides and later converted to Comma-
Separated values (CSV) for easier data manipulation.

Robot position playback

Additional to the position recording procedure, an important part of the KUKA experiments
is represented by the ability to provide position commands to the robot. This should be the
last step of the solution in which the generated trajectory is provided to the robot to be
executed. In order to implement this functionality, a specific procedure was developed and
its steps will be further described.

1. The position commands for all the joints should be stored in a .csv file. Since the used
sampling time is 4ms, the change between two consecutive position points should be
feasible in 4ms, in order to avoid a controlled stop.

2. A script using Python will convert the information in the CSV file into a format that
the robot can interpret as position commands.

3. A solution implemented in Robot Operating System (ROS) will make sure that the
position commands can be sent using RSI through UDP to the robot.

4. In order for the robot to receive the position commands sent through UDP, a KRL
program will be executed using the Teach Pendant. The main goal of this program is to
make the robot wait in the MOVE_CORR() command that permits pure sensor-guided
corrections.

5. Lastly, when the Python script is ran, the position commands will be fed to the robot
and it will start its movement.

After the procedure above is used to provide data to the robot, the same approach presented
for position recording can be used to check the exact motion executed by the robot given the
specific position inputs.

It is important to mention that when using both communication directions, the Wireshark
file obtained will include information about the position commands the robot receives and
the motion executed by the robot. This way, the latency between receiving and executing a
position command was identified to 7 samples (28 milliseconds) in most of the cases.

Nevertheless, slight differences were observed between the position commands received and
the trajectory executed by the robot. Some samples serving as an example in this sense can
be observed in the first two columns of Table 2-3. It is important to mention that when the
input and output samples were aligned, the minimum error between input and recording was
favored.
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In addition to the error between input and output, experiments revealed slight differences
between the samples of different runs using the same input trajectory. The differences between
multiple recordings reveal the non-deterministic behavior of the playback procedure and an
example is provided in Table 2-3.

Input
trajectory

Recording
no.1

Recording
no.2

Recording
no.3

Recording
no.4

-134.506429 -134.502402 -134.503756 -134.502893 -134.501994
-134.456447 -134.454325 -134.455626 -134.454733 -134.453957
-134.403076 -134.402624 -134.403879 -134.402980 -134.402315
-134.346193 -134.347528 -134.348759 -134.347872 -134.347207
-134.285679 -134.289496 -134.290727 -134.289806 -134.289222
-134.221417 -134.227993 -134.229254 -134.228297 -134.227760
-134.153292 -134.163007 -134.164244 -134.163217 -134.162715
-134.081198 -134.094724 -134.095938 -134.094952 -134.094479
-134.005029 -134.022521 -134.023722 -134.022812 -134.022392
-133.924683 -133.946273 -133.947411 -133.946577 -133.946215

Table 2-3: Comparison between input and recordings samples

Moreover, during experiments, the non-determinism was also displayed in the form of failed
executions. More specifically, several consecutive experiments were required to obtain a suc-
cessful execution. Although the robot received the same input trajectory, multiple exper-
iments led to a controlled stop while some obtained a successfully executed motion. This
behavior is depicted in Figure 2-5 that shows the robot input trajectory and multiple record-
ings of the motion executed by the robot. One can observe that seven out of the eight
recordings triggered a control stop. Moreover, the controlled stop occurs at different points
on the trajectory. The moment a trajectory is interrupted is marked by both a dot along the
trajectory and an x symbol, in the corresponding color, at the bottom of the Y-axis. It is
important to mention that the Recording no.1 reached the target position specified by the
input trajectory and stands for the successful example. Moreover, the order in which the
trajectories are provided in the figure, does not match the real experiments order.

It is important to mention that the recordings mentioned in Table 2-3 do not correspond to
the recordings displayed in Figure 2-5, so the numbers should not be matched.

Empirically, no conclusion could be drawn in order to determine which experiments fail. Fur-
ther research on the playback method might reveal reasonable explanation on the controlled
stops obtained by some trajectories, but this did not represent the scope of the current work.
However, the non-determinism observed in the playback method is worth mentioning because
multiple failures of an experiment might indicate an unfeasible trajectory used as position
commands, while the experiments provided in Figure 2-5 prove that this was not the case for
the given experiment. As a result, one might conclude that multiple experiments are needed
to ensure that the controlled stop triggered is not the result of an unfeasible trajectory but
of the non-determinism of the playback method. Of course, a reasonable number of trials
should be executed to prevent robot damage.
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Figure 2-5: Robot joint: A2, Experiment: 70kg, robot pose: ’conf1’
Multiple recordings from the same input trajectory

2-1-3 Experiments design

In order to facilitate the variation of tool parameters that might play a significant role in the
generation of the dynamical bounds, a custom tool was attached to the robot. The tool is
similar to the barbell systems used in weightlifting competitions, permitting the attachment of
metal plates to the main bar. This system allows tool weight adjustment and the modification
of the payload Centre of Mass (CoM) relative to the robot flange. The custom tool attached
to the KUKA robot is presented in Figure 2-6.

Figure 2-6: Custom barbell tool
mounted on the KUKA robot

Figure 2-7: Barbell components. 1 - Plate,
2 - Cylinder, 3 - Bar

For a safe actuation of the robot, KUKA requires the robot user to provide information of
the tool attached to the robot wrist in a specific menu of the teach pendant. In this sense,
information about the payload weight, the position of the payload CoM and the inertia terms
of the payload relative to the robot flange are necessary. While the payload weight and its
CoM only require measurement, the inertia terms were computed according to (2-1), using
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the barbell inertia terms defined in (2-2). The barbell parameters related to the plate, the
cylinder and the bar depicted in Figure 2-7 by 1, 2 and respectively, 3 are defined in Table 2-4.
Since all composing parameters are constant, the barbell inertia parameters, computed using
(2-2), can be considered constant as Ixbb = 0.092, Iybb = 0.03, Izbb = 0.073.

Considering symmetrical placing of the metal plates on each side of the barbell, mw depicts
the plates mass on each side and tw denotes the total width of the disks on each side. Further,
r = 0.08 + 1

2 tw represents the distance along the barbell on each side, from its center to the
center of the weight block. The 0.08m offset in the r parameter is caused by construction
related aspects of the barbell. More specifically, the bar requires a gap between its center
and the first metal disk. Moreover, the distance r includes 1

2 tw since the weight center is
considered the center of the weights block, leading to half of the total width of the disks on
each side.

Ix = Ixbb + mw(0.034 + 1
6 tw

2 + 2r2) (2-1a)

Iy = Iybb + 0.0438mw (2-1b)

Iz = Izbb + mw(0.0098 + 1
6 tw

2 + 2r2) (2-1c)

Ixbb = 1
2mb(3a2

b + L2
b) + mbh

2 + 1
3mcL

2
c + 1

12mp(c2
p + l2p) (2-2a)

Iybb = 1
2mba

2
b + mbh

2 + 1
3mcL

2
c + 1

12mp(c2
p + l2p) (2-2b)

Izbb = 1
2mb(3a2

b + L2
b) + 1

2mca
2
c + 1

12mp(2l2p) (2-2c)

Parameter Meaning Value
mp Plate mass 3 kg
mb Bar mass 1.5 kg
mc Cylinder mass 1.5 kg
h Distance from robot flange CoM to the bar 0.11 m
ab Bar radius 0.0 1m
Lb Bar length 0.7 m
ac Cylinder radius 0.02 5m
Lc Cylinder length 0.12 m

lp
Plate edge (of the base of the
parallelepiped) 0.15m

cp Plate height 0.015 m

Table 2-4: Barbell parameters for the components depicted in Figure 2-7 as Plate, Cylinder, Bar

When varying the payload CoM relative to the robot flange, a constant payload of 20 kg was
considered, being composed by two disks of 10 kg on each side. This set the parameters mw

= 10 kg and tw = 0.05 m. On the other hand, the r parameter was varied up to 30 cm by
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adding an additional offset (r = 0.08 + do + 1
2 tw = 0.105 + do, where do depicts the distance

offset). The variation of the r parameter was limited by the length of the main bar of the
custom barbell setup.

In order to isolate the behavior of each joint, only one joint was actuated during each exper-
iment, while all the others were kept still. This decision was mostly encouraged by the robot
property that limits the speed of all the other actuated joints to the slowest one. As a result,
when multiple joints are actuated, all joints reach their final destination at the same time.

Since a different configuration of the non-actuated joints will lead to different mechanical prop-
erties that could influence the dynamical bounds, several combinations of the non-actuated
joints were defined, being called robot poses. Some examples of such poses will be provided
further to illustrate the differences between them. In this sense, Table 2-5 and Table 2-6 show
different positions of the non-actuated joints composing the robot poses for joints A1 and A2.
Moreover, for all other joint from A3 to E1, the robot poses definitions can be found in A-1.

Robot pose
A1

position
[deg]

A2
position

[deg]

A3
position

[deg]

A4
position

[deg]

A5
position

[deg]

A6
position

[deg]

E1
position

[mm]
A1 "transp" -184 to 184 -139 125 -180 -120 30 -4000
A1 "shorter" -90 to 90 -139 125 -180 -120 30 -4000
A1 "conf1" -180 to 180 -70 110 -180 -50 30 -4000
A1 "conf2" -90 to 90 75 40 -180 -25 30 -4000

Table 2-5: Robot joint: A1, Position of all joints for multiple robot poses.

Robot pose
A1

position
[deg]

A2
position

[deg]

A3
position

[deg]

A4
position

[deg]

A5
position

[deg]

A6
position

[deg]

E1
position

[mm]
A2 "transp" 0 -135 to -20 130 -180 -120 30 -4000
A2 "shorter" 0 -80 to -20 130 -180 -120 30 -4000
A2 "conf1" 0 -135 to -20 48 -180 -35 30 -4000
A2 "conf2" 20 -90 to -10 30 -180 -110 30 -4000

Table 2-6: Robot joint: A2, Position of all joints for multiple robot poses.

The name "transp" was given to one robot pose that is similar to the robot transport config-
uration. This is the pose which robots are typically transported in and has the main benefit
of reducing the influence of mechanical properties over the joints by keeping the robot in
a configuration close to its center of mass. Moreover, Figure 2-8 and Figure 2-9 show the
KUKA robot in two of the robot poses described in Table 2-5, where the red arrows indicate
the movement direction.
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Figure 2-8: KUKA robot in robot pose
A1 "transp"

Figure 2-9: KUKA robot in robot pose
A1 "conf1"

2-2 Time-derivation

As the KUKA robots provide only position data and of the KUKA Limiter block impacting
higher-order derivatives, the solution required time-derivation of position. This aided in re-
trieving the velocity, acceleration and jerk profiles resulting from the position measurements.
In the search for a suitable time-derivation method that will provide realistic velocity, accel-
eration and jerk profiles, three approaches were tested. These approaches include Backward
Finite Differences (BFD) or Forward Finite Differences (FFD) with a Butterworth filter and
Kalman filtering. While the Finite Differences (FD) approaches imply a rather simple imple-
mentation, a Kalman filter is more elaborate method and requires the definition of a model.

Backward Finite Differences with Butterworth filter

The velocity, acceleration and jerk profiles are retrieved using the BFD formulas depicted in
(2-3). In order to smooth the approximations, a Butterworth filter (2-4) is applied after each
derivation operation.

vk = θk − θk−1
∆t

(2-3a)

ak = vk − vk−1
∆t

(2-3b)

jk = ak − ak−1
∆t

(2-3c)
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B(f, f0) = 1
1 + ( f

f0
)2m

(2-4)

In the formulas above, θ denotes the position, v the velocity, a the acceleration and j the jerk.
Moreover, k − 1 and k denote two consecutive time samples and ∆t the sampling time. For
the Butterworth filter in (2-4), f denotes the frequency, f0 represents the cut-off frequency
while m is the filter’s order.

Forward Finite Differences with Butterworth filter

As anticipated, the FFD formulation is very similar to the BFD formulation. In this sense,
the velocity, acceleration and jerk profiles are computed using (2-5) and the Butterworth filter
in (2-4) is applied after each derivation to smoothen the approximations.

vk = θk+1 − θk

∆t
(2-5a)

ak = vk+1 − vk

∆t
(2-5b)

jk = ak+1 − ak

∆t
(2-5c)

Kalman filter

A Kalman filter addresses the problem of state estimation of a system defined by its difference
equations. In the current work, an autonomous system dynamics is assumed and the process
and measurements noises are ignored. Thus, the system dynamics is defined according to
(2-6), where x denotes the state and y is the system output. For the time-derivative relation
between position, velocity, acceleration and jerk, a fourth order integrator was chosen as the
system dynamics. Since KUKA allows only the measurement of position information, the C
matrix will be the unit vector defined below which ensures that yk = θk. In this sense, A and
C represent the system matrices.

xk+1 = Axk (2-6a)
yk = Cxk (2-6b)

where

xk =


θk

vk

ak

jk

 , A =


1 ∆t ∆t2

2
∆t3

6
0 1 ∆t ∆t2

2
0 0 1 ∆t
0 0 0 1

 , C =
[
1 0 0 0

]

Using the system defined in (2-6), the state estimation will be determined using (2-7) where
K denotes the Kalman gain and x̂h represents the state estimation. This procedure ensures
the estimation of the position’s time-derivatives.

x̂k+1 = (A − KC)x̂k + Kyk (2-7)
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Comparison of time-derivation methods

When comparing these approaches, no functional differences can be identified between FFD
and BFD formulations. On the other hand, it is expected for the Kalman filter to produce
distinctive results from the Finite Differences methods. For analyzing the benefits and draw-
backs of each method, a simulation test was prepared. More specifically, the three methods
were applied on position measurements retrieved from the KUKA robot and the computed
velocity, acceleration and jerk profiles were compared.

Figure 2-10 provides a comparison between the three time-derivation methods. In this plot,
the position measurements collected while actuating only the joint A1 of the robot was used.
One can observe no significant differences between the velocity and acceleration profiles re-
trieved by the Finite Differences methods. On the other hand, the first samples of the jerk
profiles computed using FFD and BFD differ significantly. While FFD provides a higher
start, the BFD starts in 0 ◦/s3.

Further, the profiles estimated using the Kalman filter are significantly different from the
Finite Differences method. Apart from the maximum values, the Kalman filter provides a
noticeable phase-lag especially in the acceleration and jerk profile. In order for the profiles
to be aligned, when the position reaches its maximum value all derivatives should be 0 since
this position corresponds to an intermediary stop in the motion. As it can be observed in
Figure 2-10, the Kalman filter profiles present a misalignment, while the Finite Differences
profiles do not.

Figure 2-10: Robot joint: A1, Comparative analysis on the three time-derivation methods using
position measurements

Time-derivation methods validated on the robot

In order to determine the method yielding the best results, a robot test was undergone. This
experiment had two main goals:
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• to determine if the high amplitude in the beginning of the jerk profile generated by the
FFD will cause a controlled stop

• to identify if the phase-lag of the Kalman filter observed in the jerk profile generated is
affecting the position generation.

It is important to mention that the test was developed using the trajectory generation algo-
rithm which will be introduced in Chapter 4. Since this algorithm requires velocity, accelera-
tion and jerk bounds to generate position, the velocity acceleration and jerk profiles provided
by the time-derivation methods were used as bounds for the trajectory generation. Moreover,
the robot playback method, in which position commands are provided to the robot, will be
described in Section 2-1-2.

Effect of high jerk

The experimental test revealed that the high jerk in the beginning of the jerk profile provided
by the FFD does not cause any controlled stop. A comparative plot, showing the original
position measurement, the trajectory generated using the profiles computed by FFD and
the recorded position after the generated trajectory was provided to the robot as position
commands is depicted in Figure 2-11. Moreover, the errors are computed using the differences
between the three position timeseries. One can observe that although the robot closely follows
the generated position, it will not trigger a controlled stop.

Figure 2-11: Robot joint: A1, Comparison between the position information of a robot
experiment using the Forward Finite Differences as time-derivation method

Additionally, during the experiments, the trajectory generator obtained a faster acceleration
phase in the case of FFD profiles as a result of the higher jerk in the beginning of the profile.
Although the BFD profile was similar, the resulting acceleration phase was slower, leading to
the robot to reach its maximum velocity later. Consequently, the faster acceleration phase
provided by FFD will favor the minimum execution time requirement.

Master of Science Thesis Liliana Barbulescu



20 Environment setup

Figure 2-12: Robot joint: A1, Comparison between the position information of a robot
experiment using the Kalman filter as time-derivation method

Figure 2-13: Robot joint: A1, Trajectory generation using as bounds the profiles computed
using the Kalman filter

Liliana Barbulescu Master of Science Thesis



2-3 Experimental validation of the Limiter effect 21

Effect of phase-lag

Furthermore, the phase-lag caused by the Kalman filter did not cause any controlled stop
either. Providing similar information to Figure 2-11, Figure 2-12 displays the robot trajectory
generated using the Kalman filter bounds and the results are very similar to the ones obtained
using FFD in terms of accumulated error (θm − θr) and trajectory feasibility. On the other
hand, Figure 2-13 provides the trajectory generation results which emphasize the original
time-derivatives provided by the Kalman filter (from the recorded position) in comparison to
the generated velocity, acceleration and jerk profiles, using the trajectory generator introduced
in Chapter 4. One can observe that, when following the jerk profile computed using the
Kalman method, the trajectory generation will introduce a phase-lag in the resulting velocity
and acceleration profiles (compared to the original profiles).

To conclude, considering that the higher amplitude in the beginning of jerk profile computed
using FFD seems to favor a reduced execution time and it did not cause any controlled stop
on the robot, the Forward Finite Differences method will be used for time-derivation in the
following experiments. Moreover, this decision is encouraged by the phase-lag of the Kalman
filter that seems to be affecting the trajectory generation.

2-3 Experimental validation of the Limiter effect

2-3-1 Initial analysis

In order to first determine the existence and later the effect of the Limiter on the velocity,
acceleration and jerk profiles, an initial analysis has been undergone. In this sense, using po-
sition measurements provided by the KUKA robot, the velocity, acceleration and jerk profiles
were retrieved and multiple experiments were compared. As mentioned before, during each
experiment only one robot joint was actuated to isolate their individual maximum capabilities.

Since multiple motion parameters could accentuate the effect of the Limiter, the influence of
five parameters was investigated by varying only one parameter at a time. The methodology
and the results of each individual analysis will be presented with the final scope of building
a more extensive dataset.

Payload weight

For highlighting the influence of the payload weight on the Limiter’s effect, the same motion,
defined by the same start and target positions, was executed with different payload weights.
Additionally, one specific motion is also defined by a chosen robot pose in which the non-
actuated joints were also in the same position, to avoid further effects.

In this sense, Figure 2-14 shows the different profiles obtained when actuating joint A1 in
the "transp" robot pose, with the robot carrying no payload and 176kg, respectively. It is
important to mention that 176kg is the maximum payload that could be attached to the robot
using the barbell setup due to bar length limitations, being the closest value to the robot’s
rated payload of 210kg.
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Figure 2-14: Robot joint: A1, Profiles comparison between the same motion executed with the
same robot pose ’transp’ but different payloads

Moreover, Figure 2-15 provides the same results for the joint A2 carrying the same payloads
(0kg and 176kg), but using ’conf1’ robot pose. In this case, the effect of the Limiter is even
more pronounced and it is highlighted in the figure by the length of the second motion. When
the maximum acceleration and jerk are lower, the motion will be slower and the robot will
reach its target later in time.

Considering the results highlighted by Figure 2-14 and Figure 2-15, the importance of the
payload weight in the limitations imposed on acceleration and jerk profiles is validated.

Positions of the non-actuated joints

Considering that the mechanical properties imposed by the position of the joints could in-
fluence the Limiter’s effect, an analysis was performed to observe the influence of the robot
pose on the limitations enforced by the robot controller on the velocity, acceleration and jerk
profiles. The definition of a robot pose, together with the description of all the robot poses
used in the experiments are provided in Subsection 2-1-3.

In this sense, Figure 2-16 depicts the comparison between similar motions, executed with the
robot in two different robot poses "transp" and "conf1", by keeping the payload weight constant
(0kg). Apart from the different profiles, one can observe the difference in the maximum
acceleration and jerk values. Moreover, the rated velocity guaranteed by the manufacturer is
achieved independent of the acceleration and jerk profiles. Similar results were observed for
other joints, but for brevity their associated plots will be detailed in A-2.
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Figure 2-15: Robot joint: A2, Profiles comparison between the same motion executed with the
same robot pose ’conf1’ but different payloads

Considering the results shown in Figure 2-16, the conclusion is that the positions of the
non-actuated joints has a significant impact on the Limiter’s effect.

Payload’s Centre of Mass relative to the robot flange

Another parameter that could influence the Limiter’s effect on the velocity, acceleration and
jerk profiles is the position of the payload’s CoM relative to the robot flange. This could affect
the mechanical properties and cause the robot controller to limit the maximum acceleration
and jerk that could be achieved.

During several experiments, the payload’s CoM was varied by placing the weights on the bar
of the barbell setup further from its center. Unfortunately, due to limitations regarding the
bar length, the maximum distance that could be obtained was approximately 30cm.

A comparative plot, showing the profiles obtained by actuating A1 multiple times between the
same start and target positions, with a constant payload and different r distances is provided
in Figure 2-17. In this figure, one can observe no significant difference between the profiles
obtained. As a result, the conclusion of this analysis is that although the payload’s CoM
might influence the Limiter’s effect, the barbell setup could not help in highlighting this. As
a result, this parameters will not be varied further in the final dataset.
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Figure 2-16: Robot joint: A1, Profiles comparison between similar motions executed with no
payload but different robot poses

Figure 2-17: Robot joint: A1, Profiles comparison between the same motions executed with
the same payload weight, same robot pose, but different payload CoM
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Speed level

To investigate the effect of different speed levels, several experiments with constant payload
weight and CoM, the same robot pose and the same start and target positions were recorded.
As a result, the sole difference between motions was the speed level.

The experiment exemplified in Figure 2-18 showed that the obtained profiles are not connected
by any relationship such as proportionality depending on the different speed levels. Moreover,
since the maximum speed level corresponds to the minimum execution time of a trajectory,
it will emphasize the effects of the Limiter block. As a result, only the 100% speed level will
be used in further experiments.

Figure 2-18: Robot joint: A1, Profiles comparison between the same motions executed with
the same payload weight and CoM, same robot pose, but different speed levels

Start and target position

Finally, in order to observe if the start and target position play a significant role in the
velocity, acceleration and jerk profiles obtained, the payload and the robot pose were kept
constant but the trajectory length was reduced. The reduction was achieved by moving the
target position closer to the start.

The main conclusion of the experiment was that the robot will reach maximum velocity
all the time if the motion is long enough. In the case of joint A1, the lower limit for the
trajectory length is set to about 60 degrees. Moreover, Figure 2-19 proves that the motions

Master of Science Thesis Liliana Barbulescu



26 Environment setup

that reached maximum velocity present similar acceleration and deceleration times, since the
velocity profiles perfectly overlap.

Figure 2-19: Robot joint: A1, Velocity comparison between motions executed with the same
payload weight and CoM, same robot pose, varying the motion length.

Left: Acceleration phase, Right: Deceleration phase

2-3-2 Extending the dataset

As the initial analysis proved, out of the motion parameters that could be varied in the current
setup, the main parameters that could accentuate the effects of the Limiter block are payload
weight and the robot pose. Moreover, if the aim is to obtain trajectories that reach the rated
velocity of each joint, the motions should be long enough to allow this performance. As a
result, the initial analysis was followed by more experiments that allowed building a more
extensive dataset. Its aim is to be used further for identifying the Limiter’s behavior.

The four robot poses defined in Table 2-5 and Table 2-6, were extended for all joints. The main
reason behind using these robot poses was that "transp" and "shorter" were expected to excite
less the Limiter by being similar to the transport configuration defined by KUKA (which
should reduce the effect of the mechanical forces). Conversely, "conf1" and "conf2" should
accentuate the effect of the Limiter by exercising more extended robot poses. Compared to
the transport configuration, in which the robot joints are arranged such that the robot looks
closed around its CoM, when exercising more extended configurations, the robot joints are
arranged such that the robot’s end-effector is placed far from the robot’s CoM.

In terms of the payload weight, this was varied between 0kg and 176kg. As mentioned before,
176kg was the maximum payload that could be attached to the robot using the barbell tool.
As a result, Table 2-7 provides the dataset grid composed of 34 experiments for each joint.
The checkmarks present in the table illustrate the existence of an experiment characterized
by the payload weight and robot pose combination.
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Payload weight [kg]
0 6 16 36 56 76 106 126 146 166 176

R
ob

ot
po

se
"transp" ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
"shorter" ✓ ✓ ✓ ✓ ✓ ✓
"conf1" ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
"conf2" ✓ ✓ ✓ ✓ ✓ ✓

Table 2-7: Dataset definition depending on payload weight and robot pose

It is important to note that the four robot poses are defined differently for each of the robot
joints. For the joints that were mostly used in this work, the definition of the robot poses
are presented in Table 2-5 and Table 2-6. Representing important information such that the
robot experiments could be replicated, the definition of the four robot poses for the other five
robot joints are defined in A-1.

The performed experiments revealed different degrees of impact generated by the varied pa-
rameters at each joint level. More specifically, joints A1, A2 and A3 showed considerable
differences in the profiles obtained by varying the motion parameters. On the other hand,
joints A5 and A6 proved reduced impact, while joints A4 and E1 proved almost no impact at
all. For brevity, only joint A1 and A2 will be covered in this section, while figures depicting
the other joints’ experiments can be found in A-2.

Furthermore, Figure 2-20 and Figure 2-21 show the maximum acceleration and jerk values
for both A1 and A2 depending on the payload weight. Each robot pose is represented by an
individual color. One can notice the impact of the varied parameters on the maximum values
of the acceleration and jerk profiles. As expected, the plots prove reduced differences between
either "transp" and "shorter" robot poses or "conf1" and "conf2". However, the difference
between the two groups is noticeable.

Figure 2-20: Robot joint: A1, Maximum acceleration and jerk values of the motion defined by
payload weight and robot pose.
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Figure 2-21: Robot joint: A2, Maximum acceleration and jerk values of the motion defined by
payload weight and robot pose.

Another empirical observation is that the maximum velocity obtained by time-derivation on
the position recordings might slightly differ from the rated velocity specified by the manu-
facturer. Different values for the maximum velocity can be the result of the time-derivation
procedure, as there is no conclusion that can be made on the manufacturer’s decision to
specify the rated values (the provided rated velocity could be given rounded).

This maximum velocity is particularly important for the trajectory generation procedure
that will typically use computed velocity profiles. When specifying a lower rated velocity
in the trajectory generator (compared to the computed maximum velocity), the trajectory
generator will always violate the velocity constraint and fail to determine a trajectory. When
the specified rated velocity is higher than the computed maximum velocity, the trajectory
generator might determine trajectories that prove unfeasible when sent to the robot. As
this will be further detailed in Chapter 4, the trajectory generation will make use of the
maximum velocities empirically determined. Table 2-8 depicts the rated velocity provided by
the manufacturer and the maximum velocity obtained through time-derivation for each joint.

Robot joint Rated velocity Maximum velocity
computed

A1 123 ◦/s 123.30 ◦/s
A2 115 ◦/s 114.74 ◦/s
A3 112 ◦/s 112.05 ◦/s
A4 179 ◦/s 178.78 ◦/s
A5 172 ◦/s 172.50 ◦/s
A6 219 ◦/s 219.90 ◦/s
E1 1.96m/s 1.955m/s

Table 2-8: Joints rated velocity compared to maximum velocity obtained from time-derivation

2-4 Conclusion

In the current chapter the robot setup was introduced, including a short description of the
robot system and its communication interfaces. A method aiding the user to retrieve position
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data from the robot was presented. Additionally, the procedure used for providing trajectories
as position commands to the robot and record the executed motions was defined. In this sense,
the playback method revealed errors that occur between the trajectory provided as input and
the recorded motion that symbolizes the system’s output. Moreover, the non-determinism
of this method was demonstrated, proving that multiple experiments should be executed to
ensure that a controlled stop is indeed caused by an unfeasible input trajectory.

Further, the experimental setup including a custom tool was presented. The tool is simi-
lar to the barbell systems used in weightlifting competitions and permits weight and CoM
adjustment.

Since the robot system only provides position data, three time-derivation methods were pro-
posed for retrieving velocity, acceleration and jerk information. Out of these, Forward Finite
Differences showed the most promising results. The main benefits of FFD, compared to a
Kalman filter and the Backward Finite Differences method, are the lack of a visible lag in
the derived profiles and the higher amplitude in the beginning of the jerk profile which might
lead to faster trajectories.

Using the velocity, acceleration and jerk profiles obtained from multiple robot motions, an
initial analysis was executed to experimentally validate the existence of the Limiter effect.
After multiple motion or tool parameters were examined, the analysis showed that the pay-
load’s weight and the robot pose have a significant impact on the bounds imposed by the
Limiter on velocity, acceleration and jerk. Using these two parameters, an extended dataset
was built to reveal the behavior of the Limiter block.
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Chapter 3

Bounds prediction

Considering the absence of knowledge about the construction of the Limiter block, its be-
haviour will be identified in a data-driven approach that does not affect the robot’s operation.
Moreover, as a result of the initial analysis presented in Chapter 2, the imposed bounds seem
to be dependent on various robot and tool parameters. In this sense, in order to determine
the Limiter’s behaviour, the velocity, acceleration and jerk bounds should be predicted using
only previously recorded data, given robot and tool information.

For introducing the proposed solution for bounds prediction, the overall approach will be
presented covering the bounds definition, the statement of the modeling problem and several
modeling decisions. Further, three modeling approaches for solving the problem will be
addressed, presenting their benefits and drawbacks. Finally, the modeling conclusion will be
stated and the chosen method will be motivated.

3-1 Strategy

Bounds interpretation

As mentioned in Chapter 2, the manufacturer guarantees that the maximum speed level
(speed level 100%) will generate the fastest possible trajectory between the given start and
target without triggering a controlled stop. The latter is covered by the Limiter block being a
significant part of the robot controller. In this sense, one can infer that the velocity, accelera-
tion and jerk profiles achieved when running the robot in the 100% speed level represent the
maximum performances that the robot could achieve during that specific motion, since the
robot controller aims for both dynamically-feasible and minimum-time trajectories. As a re-
sult, for representing the velocity, acceleration and jerk bounds imposed by the Limiter block,
the velocity, acceleration and jerk profiles obtained when executing a motion with maximum
speed level will be used.
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Modeling idea

Following the reasoning above, the modeling problem aims to determine the velocity, acceler-
ation and jerk bounds that the Limiter block will impose, based on various motion parameters
previously known. Since defining an entire motion profile (composed of hundreds of samples)
based on several integer motion parameters proves a rather complex task, especially due to
the variable duration of the motion, the modeling approach included a more iterative method.
Precisely, the solution aims to determine the next maximum velocity, acceleration and jerk
value, given the current robot state (defined by position, velocity, acceleration and jerk) and
the motion characteristic parameters. In a mathematical formulation, the desired mapping f̂
is provided in (3-1).

B(k + 1) = f̂(x(k); pm) (3-1)

where B(k + 1) = [v̄(k + 1) ā(k + 1) j̄(k + 1)]T contains the bounds to be determined for the
next step, x(k) = [θ(k) v(k) a(k) j(k)]T denotes the current robot state defined by position,
velocity, acceleration and jerk, and pm designates all the motion parameters that are constant
throughout the motion. This list of motion parameters includes payload weight, start and
target positions, robot pose information, inertia terms, tool’s CoM relative to the robot flange
etc.

It is important to mention that during the modeling phase the current robot state and the
bounds will coincide since the profiles obtained when running a motion with the maximum
speed level provides also the bounds. On the other hand, in the final solution that combines
bounds prediction and trajectory generation, the robot state and the bounds values might
differ. More specifically, the trajectory generator will receive the next bounds and will generate
the next position sample that fulfills all the bounds. Since the prediction of all three bounds
is independent, the most conservative one should always be respected during the trajectory
generation, guaranteeing that all others are fulfilled. For example, the fulfillment of a reduced
jerk bound might imply achieving a lower velocity than the predicted velocity bound might
require.

Nevertheless, the dataset used for modeling the mapping f̂ was composed by the extended
dataset presented in Chapter 2. For each joint, the set contained the information of 34
motions. In order to also be able to verify the performance of the model, the dataset was
split into training and test subsets. The distribution of these are shown in Table 3-1 where
the triangles mark train data and the red circles mark test data. Moreover, for the validation
set, Cross-validation (CV) was used. According to [11], Cross-validation is a data resampling
method used to estimate the true prediction error and to tune model parameters. In this work
CV was used to increase the credibility of the validation step without reducing the training
set even further.
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Payload weight [kg]
0 6 16 36 56 76 106 126 146 166 176

R
ob

ot
po

se
"transp" △ ⃝ △ △ △ ⃝ △ △ △ △ △
"shorter" △ ⃝ △ ⃝ △ △
"conf1" △ ⃝ △ △ △ ⃝ △ △ △ △ △
"conf2" △ ⃝ △ ⃝ △ △

Table 3-1: Train and test split of the dataset used for modeling.
△ marks train data and ⃝ marks test data.

Feature engineering

Since the mapping f̂ will be identified using machine learning algorithms from previously
collected data, the selection of features, representative for both the problem and the dataset
was an essential step. Using the motion parameters, that are kept constant throughout one
robot motion, and the current robot state, the features were defined according to Table 3-2.
Further, the motivation behind the selection of each feature is also covered in the table. For
causality purposes, all features specified in the table are known before the sample k + 1 and
they will be used to determine the next expected bounds for velocity, acceleration and jerk.

Feature Motivation
Payload weight Initial analysis showed its influences on the Limiter’s effects.
Start position Characterizes the traveled distance.

Traveled distance
(difference between
start and target)

Initial analysis showed that a long enough traveled distance
will guarantee the maximum velocity being achieved.

Progress (normalized
current position)

Part of the current robot state. The progress regarding its
target might be relevant for deciding when the deceleration
phase should happen.

Current velocity Part of the current robot state.
Current acceleration Part of the current robot state.

Current jerk Part of the current robot state.
Positions of joints Ai

where i ̸= to the
actuated joint

Represent the robot pose which was proved to influence the
Limiter’s effect.

Inertia terms x, y, z They might influence the mechanical properties of the
robot tool, from a resistive perspective.

Tool CoM position They might influence the mechanical properties of the
robot tool, from a resistive perspective.

Table 3-2: Modeling features and the motivation behind their usage

In order to emphasize the expert knowledge gained during the initial analysis phase, multiple
feature engineering ideas were applied. Although not all improved the outcome, several will
be presented further. For brevity, the examples provided regard velocity information, but in
the final solution they are also extended to acceleration and jerk:
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• Usage of ∆v instead of vk+1, where ∆v = vk+1 − vk

During the modeling phase it was observed that when predicting the next bound for
velocity, based on the current robot state and the motion parameters, the learning algo-
rithm will use mostly the current velocity vk to predict the next bound for velocity v̄k+1.
Moreover, since the next velocity value cannot vary much from the current velocity, only
the change in velocity might be relevant.

After implementing the final solution that combines this prediction approach with the
trajectory generation, the conclusion was not to continue with this approach. The main
reason was that the repeated additions of ∆v to vk were increasing the offset between
real data and prediction.

• Usage of v · npw instead of v, where npw denotes normalized payload weight defined
by (3-2), where pw is the actual payload weight and pmax is the robot rated payload
weight of 210kg.

npw = −0.9pw

pmax
+ 1 (3-2)

According to the initial analysis, the payload weight is one of the dominant factors in
the Limiter’s effect. As a result, for applying this knowledge to the data, the velocity
was multiplied with the normalized payload weight. The payload weight values were
normalized to avoid the multiplication with 0 in the case of no payload experiments.
This approach adjusted the payload weight range from [0, 176] to [1, 0.25].

The difference between the prediction using the v and v · npw is presented in Figure 3-1.
The figure shows in the first plot the predicted velocity multiplied with the normalized
payload. In the second plot the velocity values obtained using both the straightforward
method (predicting v̄) and the proposed approach (predicting v̄ · npw) are compared
with the velocity computed using the position measurement (denoted as measured).
In order to actually notice the improvement, the third plot shows the prediction error
for both methods. One can observe that adopting the v · npw significantly reduced the
Linear Regression error on the test set. The noisy pattern that can be observed in
the prediction errors obtained by the straightforward approach might show that the
method obtains higher prediction errors during acceleration and deceleration regions
and reduced errors during maximum velocity regions.
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Figure 3-1: Robot joint: A1, Comparison between straightforward approach (predicting v̄) and
the proposed approach (predicting v̄ · npw

). As base line - velocity computed from measured
position (denoted as measured)

Conservative predictions

Since the direction of the errors could not be controlled when using typical prediction algo-
rithms, errors could cause the predicted bounds to exceed the real bounds imposed by the
robot controller. If the final trajectory executed by the robot was the result of a higher bound
caused by prediction errors, the robot would reach a controlled stop.

In order to avoid dynamic bounds violation leading to a controlled stop, a method to en-
force the prediction of bounds below the measured bounds was designed. Unfortunately,
this method reduced the minimum-time performances, but favored a dynamically feasible
trajectory.

For enforcing conservative predictions that do not exceed the measured bounds, a custom
objective function for the regressor was introduced in (3-3), where z denotes the real value
to be predicted, ẑ is the prediction and α and γ are tuning parameters. Moreover, Φ(ẑ, z)
depicts the custom objective function.

Φ(ẑ, z) = (z − ẑ)2 + αeγ(ẑ2−z2) (3-3)

The first term of the objective function minimizes the prediction error, while the second term
aims for predictions that are lower than the real value. The parameters α and γ weight the two
terms by either reducing the prediction error or introducing more conservative predictions.

In a broader sense, for guaranteeing that no prediction exceeds the actual values, the error
ẑ2 − z2 should always stay below 0. The squared terms are motivated by the existence of
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negative values in the acceleration and jerk profiles, for which the prediction should be above
the real value.

Further plots showing the benefits of the custom objective function will be provided in the
modeling approaches section.

3-2 Modeling approaches

For predicting the bounds using previously collected data samples, multiple modeling ap-
proaches were tested. To provide a simplistic benchmark for the proposed approaches, Linear
Regression was applied thanks to its simplicity. Further a Random Forest Regressor was
introduced to adapt to the model nonlinearities and to accommodate the reduced training
dataset. Finally, to enforce the custom objective function that favors conservative predictions,
a boosting algorithm called XGBoost was used.

3-2-1 Linear Regressor

The linear regression approach is used to explain a variable y using known variables X =
[x1 ... xp] [12]. This method can be exemplified using (3-4) where the parameters β1, ... βp

represent model coefficients and e is the model intercept. This expression can be exploited to
predict y from input variables x1, ... xp. Given a set of observations for y and X, the model
coefficient and the intercept can be retrieved by minimizing a cost function. In the current
work, the cost function to be minimized in the linear regression is the sum of squared errors,
presented in (3-5), leading to a least squares approach.

y = β1x1 + β2x2 + ... + βpxp + e = Xβ + e (3-4)

min
β

1
N

N∑
i=1

(yi − ŷi)2 (3-5)

, where y stands for the expected model output, ŷ for its prediction and N for the number of
observations in the set.

The linear regression approach was used for the bounds prediction mostly for its simplicity.
Moreover, the parameters are easy to interpret and it provides satisfactory approximations
when dealing with a reduced dataset [13]. When training the model on the train dataset,
the model coefficients identified for predicting the augmented velocity, acceleration and jerk
values are presented in Figure 3-2.

Furthermore, Figure 3-3 provides the comparison between the expected output and the model
predictions on a single motion belonging to the test set. The prediction error for the respective
comparisons is presented as well, where yr depicts the real value and yp depicts the predicted
value. For clarity, Table 3-3 shows the mean absolute error and the maximum error for both
the train and test dataset. As the test set contains more motions than the one depicted in
Figure 3-3 depicts, the results presented in Table 3-3 might not coincide to the ones depicted
in Figure 3-3.
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Figure 3-2: Robot joint: A1, Linear Regression model coefficients

Figure 3-3: Robot joint: A1, Experiment: 6 kg, robot pose: ’conf1’.
Comparison between the expected output and the predicted output using Linear Regression
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Train Test
Max
error

Max
error % MAE MAE

%
Max
error

Max
error % MAE MAE

%
Velocity 0.18 0.15% 0.01 0.01% 0.18 0.15% 0.01 0.01%

Acceleration 9.82 1.80% 0.20 0.04% 9.77 1.79% 0.20 0.04%
Jerk 172.74 4.74% 18.37 0.50% 173.20 4.76% 20.63 0.57%

Table 3-3: Robot joint: A1, Prediction error for Linear Regression model on train and test
dataset

Overall, the performance obtained when using the Linear Regression is noticeable and inter-
pretable. On the other hand, the model complexity is reduced and does not map the nonlinear
relations between the model features and the output. As a result, the Linear Regression was
kept as benchmark, standing for the minimum performance that could be obtained for the
bounds prediction. Further, more complex approaches were introduced.

3-2-2 Random Forest Regressor

In order to adapt to the nonlinear relations between the model features and the output, a
Random Forest (RF) Regressor was introduced. Being an ensemble method, RF provides
satisfactory results when dealing with rather small training datasets [14]. Random Forest
fits a number of decision trees (ensemble methods principle) on various sub-samples of the
dataset (the bagging principle) and uses averaging to improve the predictive accuracy and
control overfitting [15].

For creating the decision trees, RF chooses from a given number of features, the one that will
minimize the given loss function. When using the Sklearn Python library for implementing a
Random Forest Regressor, the default loss function to be minimized is the sum of squared er-
rors, just like for the Linear Regression. Moreover, in the current approach, a forest composed
of 70 trees was used and the maximum tree depth was set to 25.

For analyzing the prediction results for the Random Forest regressor the bound prediction
on a motion belonging to the test data is presented in Figure 3-4. Further, prediction error
information for both the train and test datasets are presented in Table 3-4. Similar to the
LR results, the results in Table 3-4 might not match the errors depicted in Table 3-4 since
the figure contains only one motion and the test set contains multiple motions. Compared to
the LR model, the RF regressor seems to predict better the jerk but worse the velocity and
acceleration.

Train Test
Max
error

Max
error % MAE MAE

%
Max
error

Max
error % MAE MAE

%
Velocity 1.87 1.52% 0.11 0.09% 2.33 1.89% 0.46 0.37%

Acceleration 16.51 3.02% 0.49 0.09% 15.91 2.92% 0.78 0.14%
Jerk 159.94 4.39% 8.97 0.25% 156.70 4.31% 14.26 0.39%

Table 3-4: Robot joint: A1, Prediction error for Random Forest Regressoron train and test
dataset
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Figure 3-4: Robot joint: A1, Experiment: 6 kg, robot pose: ’conf1’.
Comparison between the expected output and the predicted output using Random Forest

Regressor

3-2-3 XGBoost Regressor

The Extreme Gradient Boosting (XGBoost) regressor permits the model to correct prediction
errors made by previous models. This characteristic is typical for the boosting algorithms. In
this sense, XGBoost uses any differentiable loss function and the gradient descent optimization
algorithm to determine the model that fits the given data. Its main benefits lay in the
execution speed and the model performance as introduced in [16].

In the library used for implementing the method, by default, the XGBoost minimizes the
sum of squared errors presented in (3-5). Moreover, since the XGBoost is a rather complex
approach that permits the identification of nonlinear dynamics, its performance was compared
with the models introduced before.

The prediction results on only one motion included in the test set is presented in Figure 3-5.
Furthermore, the prediction error information is presented in Table 3-5 for both the training
and test data. One can observe a reduced prediction error on jerk, but a higher prediction
error on velocity and acceleration.
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Figure 3-5: Robot joint: A1, Experiment: 6 kg, robot pose: ’conf1’.
Comparison between the expected output and the predicted output using Extreme Gradient

Boosting Regressor

Train Test
Max
error

Max
error % MAE MAE

%
Max
error

Max
error % MAE MAE

%
Velocity 3.11 2.52% 0.15 0.12% 2.94 2.39% 0.68 0.55%

Acceleration 12.2 2.31% 0.65 0.12% 14.25 2.61% 0.66 0.12%
Jerk 111.45 3.06% 6.82 0.19% 156.60 4.31% 9.013 0.25%

Table 3-5: Robot joint: A1, Prediction error for Extreme Gradient Boosting Regressor on train
and test dataset

Since the XGBoost implementation in Python allows the definition of a custom objective
function, this approach was combined with the objective function defined in (3-3) which aims
for more conservative predicted values. In this sense, Figure 3-6 provides the comparison
between the expected output values for a motion in the test set and the predicted profiles
using two different sets of (α, γ) parameters of the objective function in (3-3). More precisely,
the first set is defined by α = 0.8 and γ = 0.22, while the second set is defined for α = 0.75
and γ = 0.9. These values were empirically chosen to provide conservative predicted profiles
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that look different and highlight the effects of the custom objective function. Moreover, the
plots on the right show the prediction error between the expected output and the outputs
obtained with the two sets of parameters.

Figure 3-6: Robot joint: A1, Experiment: 6 kg, robot pose: ’conf1’.
Comparison between the expected output and the predicted output using Extreme Gradient

Boosting Regressor for two parameter sets of the conservative objective function.
Set 1: (α = 0.8, γ = 0.22), Set 2: (α = 0.75, γ = 0.9)

Additionally, in Figure 3-7 one of the set of parameters used in Figure 3-6 is again utilized.
In this case, instead of the plain prediction error yp − yr, the error y2

p − y2
r is computed. This

figure aims to show that suitably chosen parameters for the conservative objective function
can lead to the squared error requirement ŷ2 − y2 ≤ 0 to be fulfilled. This ensures that the
predicted value is always lower than the positive expected value and higher than the negative
expected value.

Although the XGBoost did not improve the results of the Random Forest, the capability of
using a custom objective function that can influence the direction of the prediction serves as
a major benefit.
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Figure 3-7: Robot joint: A1, Experiment: 6 kg, robot pose: ’conf1’.
Comparison between the expected output and the predicted output using Extreme Gradient

Boosting Regressor using the conservative objective function and
squared prediction error ŷ2 − y2. Set 1: (α = 0.8, γ = 0.22).

3-3 Conclusion

The current chapter introduced the approach for predicting the bounds imposed by the Robot
Controller’s Limiter block. In this sense, the bounds depicting the maximum performances
that the robot can achieve were considered to be represented by the velocity, acceleration
and jerk profiles obtained when actuating the robot with the maximum speed level. This
supported the identification of a model defining the bounds using previously collected robot
data which built the train and test datasets.
Consequently, a mapping between the next bounds and the current robot state and motion
parameters had to be identified. For modeling the mapping, multiple approaches were pre-
sented. The first method used is the straightforward Linear Regression which benefits of
easily interpretable decisions. On the other hand, for obtaining a more complex approach,
Random Forest and XGBoost Regressors were introduced.
Lastly, since the approaches typically minimize simplistic objective functions such as squared
errors, prediction errors could cause the predicted bounds to exceed the real ones. This aspect
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might lead to the robot triggering a controlled stop. In this sense, a custom objective function
was defined to ensure more conservative predictions that are more likely to be dynamically
feasible.

As a result, since XGBoost proved satisfactory results with both the default and custom
objective function, this will be used for further bounds prediction used in the trajectory
generation.
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Chapter 4

Trajectory generation

The next state velocity, acceleration and jerk bounds, predicted using the approach presented
in Chapter 3, are essential for the generation of a dynamically feasible trajectory. As a results,
the trajectory generator considers the current robot state and the predicted bounds of the
next state and computes the achievable position samples that respects all the bounds, while
aiming for minimum execution time. More specifically, the trajectories generated should avoid
controlled stops and reach the target position in minimum time. Nonetheless, the resulting
trajectories need to be viable positional references for the robot.

To obtain suitable positional references for the robot, several methods were assessed in the
context of the current problem. First, an open-source trajectory generator was tested, failing
to satisfy the requirements. Further, a trajectory generation approach in the form of an
optimization problem was defined. An extensive analysis on the optimization problem results
is presented in the current chapter and a longer-horizon optimization problem, meant to solve
the shortsightedness of the original solution is evaluated.

4-1 Ruckig

An existing jerk-limited trajectory generation tool, called Ruckig, that provides an open-
source library is presented in [17]. This methodology implements an online trajectory gen-
eration solution for which the user is allowed to specify the velocity, acceleration and jerk
bounds. Based on this, Ruckig will provide a time-optimal profile.

For generating a trajectory between the specified start and target positions, Ruckig had to
be adapted. Instead of providing only the maximum and minimum velocity, acceleration
and jerk once per experiment, which was limiting the purpose of this work, the bounds were
provided for each sample.

Another limitation is that Ruckig requires only strictly positive velocity, acceleration and
jerk bounds. Using the given bounds, Ruckig will generate a trajectory assuming symmet-
rical bounds such as vmin = − vmax, amin = − amax, jmin = - jmax. Considering that the
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velocity, acceleration and jerk bounds presented in this work include also negative values,
in an attempt to combat this limitation, the absolute values of the computed bounds were
provided, although negative bounds were clearly needed for some regions. During these exper-
iments, the assumption was that the combination of the three bounds will enforce the desired
behavior. For example, in the deceleration region, characterized by negative acceleration, the
prospect was that the decreasing velocity will guarantee the fulfillment of the real acceleration
bound.

Unfortunately, the need for negative acceleration and jerk bounds, especially in the deceler-
ation part of the motion, is not enforced by the provided bounds. As a result, the velocity
profile starts increasing in the deceleration phase of the motion. This behavior is presented
in Figure 4-1 after the 750th sample (provided on the X-axis). This figure provides the com-
parison between the real position trajectory provided by the robot and the one generated by
Ruckig. It is important to mention that in the experiment the bounds were provided accord-
ing to the robot recording and the number of samples was limited as a result. This motivates
the high positional offset at the end of the simulation and the reason for which Ruckig did
not aim to continue the simulation until reaching the target position.

For the velocity, acceleration and jerk profiles, Figure 4-1 provides also the bounds that Ruckig
had to consider when generating the trajectory. As a result of the constant maximum velocity
region, depicted in the plot between samples 150 and 700, the acceleration and jerk bounds
provided are almost zero.

Figure 4-1: Robot joint A1. Experiment: 126kg, robot pose: ’transp’.
Trajectory generation using Ruckig

Moreover, the requirements to fulfill all the constraints in the same time, especially the steep
velocity increase, lead to an undesired behavior in the acceleration phase of the motion. This
is presented in the plot in the first 100 samples of the motion. One can observe that neither
the velocity, acceleration or jerk lines computed by Ruckig (blue) overlaps the real robot
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recording (green). The limitation on the velocity profile required a low acceleration and jerk.
Although the velocity bound increases over time and this change is indicated to Ruckig at
every sample, during one iteration Ruckig assumes the velocity bound constant for the entire
motion. This will limit the acceleration and jerk causing a lower maximum velocity than in
the real scenario.

Considering that Ruckig cannot receive only negative bounds for velocity, acceleration and
jerk, adapting Ruckig to the present problem failed to obtain a position profile that could be
fed to the robot. As a result, a specialized solution was required.

4-2 Optimization problem with one step horizon

In order to include the velocity, acceleration and jerk bounds in the robot’s trajectory, an
optimization problem for trajectory generation was proposed. First, the relationship between
position and its derivatives is formulated as system dynamics in Subsection 4-2-1. The tra-
jectory generator will use the system dynamics and will consider the velocity, acceleration
and jerk bounds as state constraints. These constraints will ensure that none of the bounds
are violated, which would lead to a controlled stop otherwise. As presented in Chapter 3,
the bounds are predicted independently and satisfying one bound does not guarantee the
fulfillment of the other two.

4-2-1 System dynamics

In order to describe the relation between position, velocity, acceleration and jerk as system
dynamics, a fourth order integrator system was used. The system input is represented by
the fourth derivative of position, called snap (u = s) and the state will contain the position,
velocity, acceleration and jerk as x = [θ v a j]T , assuming the typical notation for input as u
and state as x. The continuous-time system dynamics in the state-space form is depicted in
(4-1). Moreover, the discrete-time system in the state-space form using an arbitrary sampling
time ∆t is presented in (4-2).


θ̇
v̇
ȧ
j̇


︸︷︷︸

ẋ

=


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


︸ ︷︷ ︸

Ac


θ
v
a
j


︸︷︷︸

x

+


0
0
0
1


︸︷︷︸
Bc

s︸︷︷︸
u

(4-1a)

θ︸︷︷︸
y

=
[
1 0 0 0

]
︸ ︷︷ ︸

Cc


θ
v
a
j


︸︷︷︸

x

(4-1b)
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θk+1
vk+1
ak+1
jk+1


︸ ︷︷ ︸

xk+1

=


1 ∆t ∆t2

2
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6
0 1 ∆t ∆t2

2
0 0 1 ∆t
0 0 0 1
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A
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jk
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+


∆t4

24
∆t3

6
∆t2

2
∆t


︸ ︷︷ ︸

B

∆jk

∆t︸ ︷︷ ︸
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(4-2a)

θk︸︷︷︸
yk

=
[
1 0 0 0

]
︸ ︷︷ ︸

C


θk

vk

ak

jk


︸ ︷︷ ︸

xk

(4-2b)

According to the documentation, KUKA RSI provides data with a sampling time of either
4ms or 12ms. Considering that all experiments are executed with a sampling time of 4ms, the
trajectory generation will use the same sampling time ∆t = 4ms. In order to avoid confusion
in further notation, the system matrices of the continuous dynamics will be denoted as Ac,
Bc and Cc, while the matrices for the discrete system will be denoted with A, B and C. As
a result, A, Ac denote state matrices and C, Cc depict output matrices. Since the generated
trajectories should be provided as input to a physical robot, the discrete system dynamics,
(4-2) will be used for trajectory generation.

4-2-2 Optimization problem definition

The optimization problem used in the trajectory generation approach is formulated in (4-3).
Here, xk and uk depict the state and output at time k.

minimize
uk, ϵ

Q1[θk+1 − θref]2 + Q2[vk+1 − vref]2 + Sϵ + Su[uk − uk−1] (4-3a)

subject to xk+1 = Axk + Buk, (4-3b)
x − ϵ ≤ xk+1 ≤ x̄ + ϵ, (4-3c)
u ≤ uk ≤ ū, (4-3d)
ϵ ≥ 0, (4-3e)
0 ≤ vk+1 ≤ vadmmax , (4-3f)

0 ≤ A
(i−1)
2 vk+1 ≤ vadmmax , for i = 2 : Nsteps (4-3g)

First, since one of the objectives is to reach the target position in the minimum amount
of time, the first term of the cost function (Q1[θk+1 − θref]2) aims to minimize the distance
between the next position and the target position.

The second term of the cost function (Q2[vk+1 − vref]2) aims to stimulate the acceleration
and deceleration phase. More specifically, for the acceleration phase, the vref parameter will
be equal to the rated velocity that depicts the maximum admissible velocity vadmmax of the
actuated joint. According to the KUKA documentation, the objective of the robot controller
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is to achieve the rated velocity as well. For the deceleration phase, vref will become 0 since
the focus is for the robot to decelerate as fast as possible.
This switch between the two reference velocities is made after the sample kchange, described
as the first sample k for which the equations in (4-4) hold. According to these rules, when the
velocity and acceleration bounds are decreasing (with 0.5 m

s over the last 5 samples of velocity,
and 10 m

s2 over the last 5 samples of acceleration), symbolizing the deceleration region, the
reference should not be the rated velocity anymore, but 0, implying that the robot aims to
decelerate until stopped. These rules where arbitrarily chosen after extensive experiments
and v̄ and ā depict the velocity and acceleration bounds. It is important to mention that this
simplification of the velocity change will bot reduce the generality of the solution as kchange
can be computed online based on the predicted velocity and acceleration bounds.

v̄k−5 − v̄k > 0.5 (4-4a)
āk−5 − āk > 10 (4-4b)

The parameter vadmmax will be defined according to its joint dependency presented in Table
2-8. According to the KUKA documentation, the manufacturer provides the maximum ad-
missible velocity for each joint. These values are imposed as hard limits for each joint since
exceeding the maximum admissible velocity might lead to a controlled stop. However, slight
deviations from the provided values were obtained. As a result, this work will use the com-
puted maximum velocity obtained during the time-derivation phase. This will accommodate
the profiles computed using Forward Finite Differences.
In addition, the constraint (4-3b) requires the system dynamics to be followed, while (4-3c)
depicts the state constraints. The state bounds are provided according to (4-5), where v̄k+1,
āk+1, j̄k+1 are the predicted next state velocity, acceleration and jerk upper bounds. To
guarantee no sudden change in the profiles behaviour, the lower bounds for the next state
were set, based on empirical knowledge, as vk+1 = 0 , ak+1 = 0.8āk+1, jk+1 = 0.9j̄k+1.
Since hard state constraints lead to infeasibility in most of the situations, these were set as soft
constraint with the help of the slack variable ϵ. To permit the velocity, acceleration and jerk
bounds to slightly exceed the predicted bounds, the positiveness requirement in (4-3e) was
applied and high ϵ values were penalized by the third term in the cost function. Additionally,
θstart and θref, in (4-5), depict the starting and reference position, respectively. In order to
aim for reaching the motion’s goal, the reference position will be set to the target position of
the motion.

x = [θstart, vk+1, ak+1, jk+1]T (4-5a)
x̄ = [θref, v̄k+1, āk+1, j̄k+1]T (4-5b)

Further, (4-3d) provides the input constraints. Using the jerk information, the bounds for
the input are set as in (4-6) since the goal is not only to limit the jerk, but also the change
in jerk. As for the state bounds presented above, u and ū depict the lower and upper input
bound, respectively.

u = − j̄k+1 − j̄k

∆t
(4-6a)
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ū = j̄k+1 − j̄k

∆t
(4-6b)

Finally, the last two constraints depicted by (4-3f) and (4-3g) aim to limit the velocity between
0 and the maximum admissible velocity. While (4-3f) provides the constraint for the next
velocity only, the constraint in (4-3g) aims to limit the velocity values in each of the following
Nsteps −1. The lower bound to 0 is imposed since the robot should keep the motion direction.
Nonetheless, the velocity for the next Nsteps steps is replaced by an approximation of velocity
in the absence of inputs. This explains the multiplication with A

(i−1)
2 , the second row of the

matrix A to the power of (i − 1).

4-2-3 Simulation results

For the initial tests of the optimization problem, the time-derivatives computed for the po-
sition measurements collected during several experiments were used as velocity, acceleration
and jerk bounds. In a further step, predicted bounds for velocity, acceleration and jerk should
be used in the constraints instead. The decision to use the computed position derivatives in-
stead of the predictions in the beginning aims to limit the possible error sources. Although
this approach was briefly presented in Section 2-2 for analyzing the time-derivation methods,
the results presented in this chapter aim to asses the quality of the trajectory generation
approach.

Successful simulations

A successful simulation of the trajectory generation, displaying joint A1 aiming to determine
the motion between the start θstart = −180◦ and target θref = 180◦, is depicted in Figure 4-2.
The figure presents a comparison between the real position recorded using KUKA RSI and
the position generated using the optimization problem defined in (4-3a) - (4-3g). Moreover,
the plot shows the relation between the time-derivatives of the recorded position and the
velocity, acceleration and jerk determined by the optimization problem. In addition, the
figure presents the evolution of the system input.

To facilitate the comparative analysis, the figure also provides the errors depicting the dif-
ference between the recorded position and its time-derivatives (denoted as "Real" in the plot
and marked with green) and the evolution of the state xg used in the optimization problem
(denoted as "Generated" and marked with dark blue). The input rate is also provided and
marked with orange.

Lastly, the figure provides the state and input constraints denoted as "Bounds" and marked
in red. An important note is that the state constraints (presented in the position, velocity,
acceleration and jerk plots) are provided as soft constraints. In this sense, state constraints
violation is permitted but greatly penalized. On the other hand, the input constraints are
formulated as hard constraints and no violation is allowed.
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Figure 4-2: Robot joint: A1, Robot configuration: conf1, Payload: 126kg
Trajectory generation using the one-step optimization problem

For consistency, the plot structure used for Figure 4-2 will be used to depict all simulations
presented in the current section.

In Figure 4-2, it can be seen from the plot that the position error accumulates throughout
the motion, but the final offset is minor. This offset will define the final point reached by the
robot to be θfinal = θref− θoffset. Moreover, in the region where the robot achieves maximum
velocity, zero acceleration and zero jerk, the velocity, acceleration and jerk errors will gravitate
around zero.

Another successful simulation displaying joint A2 is presented in Figure 4-3. The figure shows
the results for the one-step optimization algorithm that generates a trajectory for joint A2
between θstart = −135◦ and θref = −10 ◦. In this case, the motion is shorter than the one
depicted above for A1, leading to a shorter period of constant velocity. The shorter simulation
time might be the reason for a smaller positional offset at the end of the simulation compared
to the A1 simulation presented in Figure 4-2.

To demonstrate the functionality of the trajectory generation approach for less typical motion
profiles, another experiment depicting joint A2 is presented in Figure 4-4. For this motion,
the robot does not even reach the maximum admissible velocity anymore and the profiles
are composed only by acceleration and deceleration phases, lacking the constant velocity
region presented in both simulations above in Figure 4-2 and Figure 4-3. The positional
offset in case of this simulation is reduced, being also explained by the short simulation time
and by the similarity between the generated velocity, acceleration and jerk profiles and their
correspondents computed using the time-derivation approach.
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Figure 4-3: Robot joint: A2, Robot configuration: conf1, Payload: 0kg
Trajectory generation using the one-step optimization problem

Figure 4-4: Robot joint: A2, Robot configuration: conf2, Payload: 176kg
Trajectory generation using the one-step optimization problem
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Identified problems

Although the simulations presented above depict satisfactory results, several simulations prove
the contrary, suggesting the lack of algorithm robustness. Motivated by this, the current
subsection will present the issues of the optimization problem along with illustrative scenarios.
The first issue exemplified in Figure 4-5 arises from the non-negativity constraint on velocity,
depicted by the left side of (4-3f) and (4-3g). These constraints impose positive velocities for
the next Nsteps steps. However, notice that the latter is based on a velocity approximation in
the absence of inputs. In order to ensure that the hard constraint is not violated, the built-in
planner might need to apply a sudden change in snap.
In the simulation presented in Figure 4-5, the corrective action, meant to respect all the
imposed constrains, takes place in the last samples of the simulation. The sudden jump
introduced in the input will lead to an unusual behavior in jerk and acceleration. This is
exemplified by a high deviation between the generated (dark blue) and the real (green line)
jerk. Additionally, the deviation is highlighted by the abrupt drops in the acceleration and
jerk error plots that reach significant negative values. Although this did not lead to an
unsuccessful simulation, the sudden change in input might lead to a controlled stop when
applied to the robot.

Figure 4-5: Robot joint: A1, Robot configuration: conf1, Payload: 0kg
Trajectory generation using the one-step optimization problem

In some less fortunate cases than the simulation above, the non-negativity constraint led
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to numerical problems. Such example is provided in Figure 4-6. Experiments showed that
when the non-negativity constraint is removed, the simulation presented in Figure 4-6 will
become feasible, with the velocity line going below zero. This is not desired for the real robot
experiments since it might lead to controlled stop or unexpected behaviour.

Figure 4-6: Robot joint: A2, Robot configuration: transp, Payload: 36kg
Trajectory generation using the one-step optimization problem

The next two scenarios illustrated in Figure 4-7 and Figure 4-8 occur due to the imposed ve-
locity upper bound, depicted in right side of (4-3f) and (4-3g). The main characteristic leading
to a difference between the two scenarios is represented by the input bounds. Depending on
the motion region in which the velocity threatens to violate the upper velocity bound in a
Nsteps horizon, the input bounds might permit a corrective action or not. More specifically,
if the input constraints allow an absolute snap different than 0, an input can be applied to
reach a position that ensures velocity, acceleration and jerk values that do not violate the
bounds. In the case in which the hard velocity constraint threatens to be violated, the input
constraints would ideally permit a negative snap that will move the velocity away from the
maximum admissible bound. In this sense, while Figure 4-7 presents a simulation in which a
corrective action is possible, in Figure 4-8 the input bounds do not permit a correction.

In Figure 4-7 the upper velocity bounds is violated in the constant velocity region which
implies tight input bounds. In this motion region, the input bounds are too tight, aiming
for negligible snap meaning no change in jerk. This requirement is understandable since
negligible snap will imply almost no change in jerk. When the jerk is also negligible (as in
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this case) this will imply almost no change in acceleration. Subsequently, no change in the
negligible acceleration will also imply almost no change in the velocity, leading to a constant
maximum velocity (since this region is marked by maximum velocity). When the velocity
constraint tends to be violated in the negligible snap region, any corrective action that the
trajectory generator can apply will be too small to avoid bound violation. This results in
problem infeasibility.

Figure 4-7: Robot joint: A1, Robot configuration: conf2, Payload: 120kg
Trajectory generation using the one-step optimization problem

On the other hand, Figure 4-8 presents a scenario in which the input bounds permit a sudden
change in the input in order to avoid violating the velocity bound. Although it is desired to
fulfill all the imposed constraints, the corrective action will lead to a decrease in jerk and accel-
eration that will lead to a decreasing negative acceleration. Considering the system dynamics,
the negative acceleration will maintain a decreasing velocity that will hit the lower velocity
bound after several time samples. Since the profiles presented in Figure 4-8 characterize a
deceleration behavior, the position offset will grow. This could be considered an unsuccessful
simulation in which the built-in controller is never able to compensate for the corrective ac-
tion applied around the 200th sample. It is important to mention that, although in multiple
simulations the built-in trajectory generator avoids upper velocity bound violation, not all of
them present the behavior showed in Figure 4-8, but lead to a successful simulation.
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Figure 4-8: Robot joint: A2, Robot configuration: transp, Payload: 0kg, Q2 = 103

Trajectory generation using the one-step optimization problem

Results overview

In order to examine the capabilities of the optimization problem with a one-step horizon, a
thorough analysis was made. This included all the experiments for which position data was
collected from the robot. Using the Forward Finite Differences time-derivation method, the
velocity, acceleration and jerk profiles were retrieved. Further, these profiles were used as
the velocity, acceleration and jerk bounds in the optimization problem. For both A1 and
A2, simulation overviews will be presented in Tables 4-1 and 4-2, respectively. Each table
considers multiple simulations for each motion, varying one parameter of the cost function.
Since Q2 enforces the rate for following the velocity reference, various values lead to different
performances of the built-in trajectory generator. As a result, for each motion, five simulations
were executed for Q2 in [1, 10, 102, 103, 104].

As described before, multiple motion parameters were varied during the robot experiments,
but the most relevant ones are still the payload and configuration. As a result, the data
presented in the tables below will be described by these two motion parameters. Moreover,
each configuration is defined by the ∆θ parameter representing the difference between the
start and target position, ∆θ = θref − θstart.

From a qualitative perspective, the tables show the feasibility of the simulations. The red
x symbols mark the set of experiments in which all simulations were unsuccessful, reaching

Liliana Barbulescu Master of Science Thesis



4-2 Optimization problem with one step horizon 57

problem infeasibility in one of the scenarios described above. The numbers mark successful
simulations, while the blue dashes mark missing experiments from the payload and configu-
ration grid.

From the quantitative perspective, the values included in the tables describe the average
positional offset at the end of the simulation. Out of the five simulations considered for each
experiment, using different values of the parameter Q2, only the successful simulations were
considered in the computation of the average offset of each motion. In the table, the ratio
of successful simulations for each experiment is included between parentheses. The position
offset at the end of the simulation represents a relevant metric since any difference between the
real and the simulated profiles lead to discrepancies in the position evolution. Consequently,
the ideal value of this parameter should be 0, showing that the target position was exactly
reached and, eventually, the velocity, acceleration and jerk profiles were perfectly followed.

Table 4-1 depicts the average position offsets at the end of each simulation for joint A1. One
can observe that all simulations corresponding to configuration "conf2" reached infeasibility.
Moreover, the position offset for configuration "shorter" seem to be lower than configurations
"transp" and "conf1". The main cause for this difference could be the shorter trajectories
executed using the robot pose "conf1". The rather reduced motion distance did not allow the
position offset to accumulate throughout an extended period of time. Furthermore, the data
presented in the table does not suggest any influence of the payload weight parameter on the
position offset.

Configuration
transp shorter conf1 conf2

∆θ = 368◦ ∆θ = 180◦ ∆θ = 360◦ ∆θ = 180◦

0 11.73 (3/5) 3.83 (4/5) 10.57 (3/5) x
6 11.84 (4/5) 3.80 (4/5) 7.11 (3/5) x
16 11.38 (3/5) - x -
36 8.42 (4/5) 3.55 (4/5) x x
56 10.53 (3/5) - x -
76 10.20 (3/5) 3.66 (4/5) x x

P
ay

lo
ad

[k
g]

106 x - x -
126 11.47 (3/5) 3.88 (3/5) 4.50 (3/5) x
146 9.90 (3/5) - 5.23 (3/5) -
166 11.70 (3/5) - 5.23 (3/5) -
176 10.03 (3/5) 4.05 (3/5) 6.95 (3/5) x

Table 4-1: Robot joint: A1, Mean absolute position offset at the end of the simulation
and number of succesful simulations. Simulations for Q2 in [1, 10, 102, 103, 104]

Table 4-2 depicts similar experiments overview for joint A2. Compared to the results for joint
A1, it is harder to determine a relation between the motion distance ∆θ and the average
positional offset since the motion range of this joint is rather limited.
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Configuration
transp shorter conf1 conf2

∆θ = 125◦ ∆θ = 60◦ ∆θ = 125◦ ∆θ = 80◦

0 0.48 (3/5) x 0.53 (3/5) 2.21 (4/5)
6 0.67 (3/5) x 0.49 (3/5) 2.07 (4/5)
16 0.98 (3/5) - 0.32 (4/5) -
36 x x 0.46 (1/5) 0.81 (3/5)
56 x - x -
76 x x 1.61 (2/5) 0.25 (3/5)

P
ay

lo
ad

[k
g]

106 x - 1.72 (4/5) -
126 x x 2.74 (3/5) 1.29 (4/5)
146 x - 1.91 (4/5) -
166 x - 1.62 (4/5) -
176 x x 1.93 (4/5) 2.53 (5/5)

Table 4-2: Robot joint: A2, Mean absolute position offset at the end of the simulation
and number of succesful simulations. Simulations for Q2 in [1, 10, 102, 103, 104]

4-3 Optimization problem with a longer receding horizon

Considering that the one-step optimization problem presented above will suffer from short-
sightedness, a receding horizon optimization problem was developed. The option to choose
the length of the receding horizon might allow the generator to better avoid violating the ve-
locity bound. Specifically, using a sufficiently long horizon, the optimization problem might
provide improved input actions by covering multiple samples in advance. In the proposed
approach, only the first input will be applied each sample in the simulation, in a receding
horizon manner.

The receding horizon approach is presented in (4-7a) - (4-7f). Being similar to the optimization
problem defined for a one step horizon, the same system dynamics introduced in (4-2) will
be used. In terms of cost function, the only change brought by the longer horizon is the sum
over N steps introduced in (4-7a).

minimize
u(k), ϵ

N∑
k=1

Q1[θk+1 − θref]2 + Q2[vk+1 − vref]2 + Sϵ(k) + Su[u(k) − uk−1] (4-7a)

subject to xk+1 = Ax(k) + Bu(k), k = 1..N, (4-7b)
xk+1 − ϵ(k) ≤ xk+1 ≤ x̄k+1 + ϵ(k), k = 1..N, (4-7c)
ϵ(k) ≥ 0, k = 1..N, (4-7d)
u(k) ≤ u(k) ≤ ū(k), k = 1..N, (4-7e)
0 ≤ vk+1 ≤ vadmmax , k = 1..N (4-7f)

Furthermore, (4-7c) presents the state constraints imposed. In this case, the constraints are
defined for all N steps and the state bounds defined above as x̄k+1 and xk+1 will be considered
constant for the entire horizon. As before, the ϵ terms added both in the constraint and the
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cost function (in the term Sϵ(k)) support the definition of this requirement as a soft constraint.
As a result, the violation of the state bounds will be heavily penalized by the S cost but will
not lead to infeasibility.

The last two constraints are defined as before. Specifically, both the input and the velocity
limitations will be considered constant for the N-steps horizon. Since a longer horizon is used,
the N steps velocity constraint will not be applied in the absence of input anymore.

Results overview

The optimization problem using a longer receding horizon fails to obtain a solution in most of
the cases. Specifically, the optimization problem becomes unfeasible due to various limitations
similar to the ones presented for the one step solution. For brevity, plots exemplifying the
simulation results of the longer receding horizon approach were avoided.

On the other hand, one of the main limitations of the receding horizon approach is represented
by the constant bounds for velocity, acceleration and jerk in the acceleration and deceleration
regions. When the problem has to compute N inputs and also ensure that none of the
constraints are violated for the entire horizon of N steps, the built-in controller was able to
compute rather conservative input values that did not favor minimum-time trajectories.

4-4 Trajectory generation validated on the robot

To validate the trajectory generation approach developed in the current section, some tests
on the KUKA robot were required. In this sense, several trajectories generated using the
one step horizon approach were provided as input to the KUKA robot. More specifically,
the generated position information was sent to the robot using the approach introduced in
Section 2-1-2 and the actual position values reached by the robot were collected using KUKA
RSI as in the procedure mentioned in the same section.

The dynamic bounds were defined using velocity, acceleration and jerk profiles computed
from position measurements collected from the KUKA robot. The definition of bounds in
this manner, allowed the validation of the trajectory generation itself, without introducing
additional error sources.

The general validation experiments executed on the KUKA robot aimed to answer to the
following questions:

• Are all velocity, acceleration and jerk bounds imposed by the robot controller fulfilled?

• Can the trajectory generation provide position samples achievable by the robot in the
4ms sampling time?

• Do the observed spikes in the input rate cause a controlled stop?

During the experiments, no controlled stop was reached while executing an entire trajectory.
The lack of controlled stop actions indicated that all robot controller limits were satisfied and
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that the position samples could be tracked by the robot. Moreover, no issue was caused by
the rather varying snap symbolizing the system’s input in the trajectory generation problem.

A successful robot test for joint A1 is presented in Figure 4-9. The upper plot provides
information regarding the original recorded position (blue), the position obtained using the
trajectory generation approach (red) and the recording of the trajectory executed by the robot
when it receive the generated trajectory as input (yellow).

For a clearer comparison, the errors between the three trajectories are provided. Relative to
the original trajectory measurement, the blue line in the lower plot depicts the difference in
the generated trajectory, while the red line depicts the error obtained by the robot recording
following the generated trajectory as input. Finally, the yellow line depicts the difference
between the input (generated trajectory) and output (robot position recording) of the robot
during the experiment. As described in Chapter 2, the input and output are not aligned in
the recording file due to a lag of typically 28 ms. As a result, for presenting the errors in
Figure 4-9, the trajectories were aligned in the plot to minimize the recording error (θg − θr).

Figure 4-9: Robot joint: A1, Robot configuration: shorter, Payload: 0kg
Recording of generated trajectory executed on the KUKA robot.

Figure 4-10 provides another similar robot test, but actuating joint A2 with the robot carrying
no payload. Moreover, Figure 4-11 depicts a similar motion with a payload of 70kg. One can
observe that the robot obtains similar performances independent of the robot payload.

However, as observed from simulations as well, the generation error at the end of the simu-
lation in case of joint A2 is smaller than for joint A1 due to the shorter motions leading to a
lower accumulated error. Moreover, the yellow line in the lower plot depicting the recording
error shows the the robot closely followed the input trajectory.
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Figure 4-10: Robot joint: A2, Robot configuration: transp, Payload: 0kg
Recording of generated trajectory executed on the KUKA robot.

Figure 4-11: Robot joint: A2, Robot configuration: conf2, Payload: 76kg
Recording of generated trajectory executed on the KUKA robot.

Using the robot experiments provided above, one can conclude that the robot is able to
follow the trajectory generated using the one step horizon approach. Although the generated
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trajectories present differences from the original ones, when the trajectory is provided as robot
input, the KUKA robot closely follows the generated trajectory. Moreover, the generated
trajectories do not violate any of the limitations imposed by the robot controller and do not
lead to a controlled stop.

4-5 Conclusion

The current chapter covered several methods for trajectory generation given a set of velocity,
acceleration and jerk bounds. The first approach considered for trajectory generation is
Ruckig, an open source tool for generating jerk-limited trajectories. Unfortunately, Ruckig is
not a viable option for the current work since it does not allow negative acceleration or jerk
bounds.

For tackling the specific trajectory generation problem of this work, a tailored trajectory
generation approach was proposed. This uses given velocity, acceleration and jerk bounds
and a forth-order integrator system dynamics that simulate the relationships between the
position and its time-derivatives, to compute the next trajectory point (with a sampling time
of 4ms). Although the trajectory generation approach lacks robustness and several scenarios
proved unfeasible, the proposed method was able to generate trajectories for specific motions.

To avoid short-shortsightedness problems caused by the one step horizon approach, a longer
receding horizon method was tested. However, this method did not improve the trajectory
generation suffering from the lack of velocity, acceleration and jerk information for an N -step
horizon.

Finally, the trajectory generation with one step horizon was tested on the real robot and
the recorded positions were compared to the original motions. The robot tests avoiding
controlled stops aided to conclude that the trajectory generation was able to provide feasible
robot trajectories. The main significant drawback of the trajectory generation approach is
still represented by the positional offset at the end of the experiment. This might imply that
the trajectory generation is slightly more conservative than the robot controller and it will
require more time to reach the final point in the trajectory.

Liliana Barbulescu Master of Science Thesis



Chapter 5

Trajectory generation with predicted
bounds

In Chapter 3, the framework for predicting the velocity, acceleration and jerk was described.
Further, the optimization algorithm for generating minimum-time, dynamically feasible tra-
jectories given the velocity, acceleration and jerk bounds was introduced in Chapter 4. Merg-
ing these two topics, the goal is to generate minimum-time dynamically feasible robot tra-
jectories using the predicted bounds for the next state’s velocity, acceleration and jerk. This
matches the final goal of the current work, enclosing a method to provide dynamically feasible
trajectories that encompass the robot controller behaviour that limits the acceleration and
jerk based on multiple motion and tool parameters.
In terms of trajectory generation, the chapter covers two main strategies for the state update.
This split was made to facilitate the identification of error sources. Initially, the bounds are
predicted based on real robot measurements for each sample in the artificial state update
approach. This way, possible prediction or trajectory generation errors could be identified
and error drift minimized. Further, a real state update is introduced and the bounds are
predicted based on the states computed by the trajectory generator. This represents the final
solution that only receives motion related information and the initial robot state and aims to
reach the target position in minimum time, without reaching a controlled stop.

5-1 Artificial state update

As mentioned above, before introducing the end-to-end solution, one intermediary step was
taken. Its purpose was to isolate the possible error sources. For this scenario, the bounds
are predicted based on robot’s position measurements and its time-derivatives, defining the
current robot state xk. This method is graphically represented by the diagram in Figure 5-1
and will be named artificial state update.
Based on Figure 5-1, one can notice the distinction between the measured states, the state
bounds and the generated trajectory. More specifically, θr denotes the recorded robot position,
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Figure 5-1: Diagram of Trajectory Generation with predicted bounds using artificial state
update

while vr, ar and jr designate its time derivatives. Further, the output of the built-in trajectory
generator is denoted as xg = [θg vg ag jg ]T and the velocity, acceleration and jerk bounds
are represented by v̄, ā and j̄.

It it important to mention that in Figure 5-1, the green blocks provide data that is updated
every sample, while the purple blocks define information that is constant and motion specific.
In this sense, one can observe that the prediction block receives as input the current robot
state that is updated every time sample and motion specific data such as the starting position
or payload weight, that is provided as constant input to the predictor. The output of the
prediction block is represented by the forecasted velocity, acceleration and jerk bounds of the
next time sample.

As stated above, the main difference between this approach and the final solution is rep-
resented by the update of the current robot state. As shown in the diagram, the current
robot state in the artificial state update approach is actually read from previous robot mea-
surements. More specifically, the state xr is composed of position measurements θr collected
during previous robot experiments and its time-derivatives vr, ar and jr.

Using the predicted bounds and the starting and target positions (also constant motion spe-
cific information and marked by a purple block), the built-in trajectory generator will com-
pute the next point of the trajectory. In the diagram, the generated state is marked as
xgk+1 = [θgk+1 vgk+1 agk+1 jgk+1]T . The trajectory generator will aim for both maximum
performances and dynamical feasibility.

Simulation results

Using the approach presented in Figure 5-1, several simulations are displayed. It is important
to remind that for each simulation, the reference motion was not included in the training set
of the regressors, and only used as test set.

Figure 5-2 presents the trajectory generation result using the recorded position and its time
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derivatives as input to the bounds predictor. In this case, the α and γ parameters used for
the prediction cost function (defined in Chapter 3) were set to 0 and 1.5, respectively. This
means that the conservativeness was omitted and the most accurate prediction was preferred.

Figure 5-2: Robot joint: A1, Robot configuration: transp, Payload: 76kg - α = 0 and γ = 1.5
Position generation with artificial state update

Figure 5-3: Robot joint: A1, Robot configuration: transp, Payload: 76kg - α = 0 and γ = 1.5
Bounds prediction, using measured position and its time derivatives as input
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Figure 5-2 and Figure 5-3 belong to the same experiment and aim to distinguish between
the prediction and generation errors. The prediction results are more visible in Figure 5-
3, where one can observe the low prediction errors obtained. Moreover, Figure 5-2 shows
the generation results and the generation errors that prove satisfactory performance with a
position offset at the end of the simulation of 15 degrees. A positional offset at the end of the
simulation was expected since the generated velocity, acceleration and jerk profiles are more
conservative than the real ones. This aspect is highlighted by the generation errors plots.
When the generated profiles are more conservative and the simulation duration is constant,
this will result in a positional offset at the end of the simulation.

In order to prove the effects of the parameters involved in the prediction cost function, α
and γ, two comparative plots are presented in Figure 5-4 and Figure 5-5, for each of the two
joints. The plots demonstrate the conservativeness of the predictions by setting α ̸= 0. In
this sense, using three different parameter pairs, three sets of bounds were predicted. Using
these as bounds in the trajectory optimization problem, three sets of profiles were obtained
for each motion. The simulation using α = 0 and γ = 1.5 does not enforce conservativeness
and aims to predict the bounds similar to the real ones. On the other hand, the last two
sets of parameters will determine conservative predictions. When comparing the simulation
using α = 0.1 and γ = 0.4 and the one using α = 0.2 and γ = 1.5, the latter will prove
more conservative. This is the result of the α parameter that will give a higher weight to the
exponential function in the conservativeness cost function.

Figure 5-4 shows that, when keeping the number of samples constant in the simulation, a
more conservative prediction will increase the positional error at the end of the simulation.
Also, since the built-in trajectory generator aims to satisfy the bounds provided, the velocity,
acceleration and jerk errors will also increase with the conservativeness. Similarly, Figure 5-5
displays the generation of a trajectory with less typical velocity, acceleration and jerk profiles,
actuating joint A2.

Figure 5-4: Robot joint: A1, Robot configuration: transp, Payload: 76kg. Trajectory
generation with artificial state update - comparison of multiple prediction cost function

parameters (α, γ)

Liliana Barbulescu Master of Science Thesis



5-1 Artificial state update 67

Figure 5-5: Robot joint: A2, Robot configuration: conf1, Payload: 0kg. Trajectory generation
with artificial state update - comparison of multiple prediction cost function parameters (α, γ)

Furthermore, Figure 5-6 proves one of the advantages of the conservative bounds. Here, one
can observe that the simulation aiming for accurate predictions (defined by α = 0 and γ = 1.5)
fails to retrieve a solution, by reaching problem infeasibilty. This is marked by the blue
lines that stop around the 200th sample. On the other hand, when choosing a conservative
scenario for the bound prediction, the problem becomes feasible. More specifically, one of the
conservative approaches (having α = 0.1 and γ = 0.4) yields satisfactory results and proves
the benefits of the conservative predictions that favor dynamic feasibility. This favorable case
is marked by the yellow lines and yields a position offset of about 20 degrees.

Figure 5-6: Robot joint: A1, Robot configuration: conf1, Payload: 120kg. Trajectory
generation with predicted bounds - comparison between multiple prediction cost function

parameters (α, γ)
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On the other hand, in Figure 5-6 a more conservative scenario (e.g. the one marked by red
lines) solves the infeasbility problem but leads to higher velocity offset at the end of the
simulation (which also means that the final velocity is far from 0) and higher position offset
during the simulation. This strengthens the idea that the cost function parameters enforcing
conservative predictions need to be tuned for yielding the best results, depending on each
motion’s characteristics.

5-2 Real state update

For the final solution to be complete, the proposed approach should be able to generate
minimum-time dynamically feasible trajectories between the given start and target positions
with knowledge of only robot parameters provided by the user.

In this sense, the bounds prediction and the trajectory generation should work in a recursive
fashion and the output of the trajectory generation block will be the input of the bounds
prediction block and vice-versa. More specifically, the bounds predictor will consider as the
current robot state the latest point computed by the trajectory generator. Further, the
trajectory generation block will use the latest bounds predicted to generate a new position
point in the trajectory. A graphical representation of this approach is presented in Figure
5-7.

Bounds
prediction

   
   
  

Trajectory
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Payload, 

Inertia,
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etc. 

Predicted bounds Generated state

Motion informationMotion information

Figure 5-7: Diagram of Trajectory Generation with predicted bounds using real state update

Simulation results

Several simulation trials are introduced further. Unfortunately, none of the simulations ex-
ecuted using the current approach resulted in a successful experiment. When the predicted
bounds deviate too much from the original ones, the trajectory generation classifies the prob-
lem as unfeasible. An example of this situation is represented by the jerk predictions around
the 70th sample of the simulation presented in Figure 5-8. In this case, the jerk predictions
do not resemble the original jerk values and, since the problem fails from retrieving further
solutions, it will cause the simulation to stop.
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Figure 5-8: Robot joint: A1, Robot configuration: transp, Payload: 76kg - α = 0 and γ = 1.5.
Trajectory Generation with predicted bounds using real state update

One motivation behind this might be the lack of feedback either from the robot system or
the original trajectory. In the absence of feedback, the prediction and trajectory generation
errors will accumulate leading to a deterioration in the prediction quality.

Another possible reason for the unsatisfactory outcome of the final solution might be rep-
resented by the rather reduced dataset used for regressors’ training. This might limit the
generalization capabilities of the prediction algorithm since the robot behavior might not be
entirely represented by the reduced dataset.

One last aspect that might lead to an unsuccessful outcome is the reduced ability of the pre-
diction algorithm to distinguish well-enough between the steady regions and the deceleration
regions. This might be improved by an extensive dataset as well.

To check whether more conservative predictions of the velocity, acceleration or jerk bounds
will improve the outcome, two comparative plots are provided further. For both plots, three
sets of parameters defining the prediction cost function were applied. In Figure 5-9 one can
observe that a more conservative prediction did not improve the outcome. On the contrary, the
higher errors presented by the red line show that the most conservative prediction presented
actually lead to increased deviations from the expected behavior.
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Figure 5-9: Robot joint: A1, Robot configuration: transp, Payload: 76kg.
Trajectory Generation with predicted bounds using real state update - comparison between

multiple prediction cost function parameters (α, γ)

On the other hand, Figure 5-10 shows that one of the conservative set of profiles, marked
by the yellow lines, did not result in an unfeasible problem. Although the simulation was
considered successful, the velocity, acceleration and jerk profiles significantly deviate from the
real profiles. This will still lead to reaching the target position, but the obtained trajectory
does not resemble the motion regions observed in the recorded profiles (acceleration, constant
velocity and deceleration).

Figure 5-10: Robot joint: A2, Robot configuration: conf1, Payload: 0kg.
Trajectory Generation with predicted bounds using real state update - comparison between

multiple prediction cost function parameters (α, γ)
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When conservative bounds are involved in the trajectory generation, one more explanation
could be found for the unsatisfactory behavior. In the development phase, the regressors
are trained on the real robot profiles, that are not lowered by any conservative approach.
On the other hand, when conservative bounds are used for trajectory generation, the entire
profile will be reduced and the prediction block might receive as input different data from its
training set. In this sense, an improved training method or an increased dataset including
more reduced profiles might enhance the performance of the solution.

5-3 Trajectory generation with bounds prediction validated on the
robot

To validate the trajectory generation including bounds prediction, several robot tests were
conducted. Since the real state update approach did not yield successful simulations, only
the artificial state update method was tested on the real robot and the results are presented
in the figures below. These were considered useful to conclude the feasibility of the solution
aggregating the bounds prediction and trajectory generation.

The execution of the KUKA experiments in these scenarios was motivated by the following
questions:

• Will the prediction integrated in the trajectory generation cause a controlled stop?

• Will the bouncing input rate affect the trajectory execution on the robot?

• Will the conservative prediction introduce any drawback in the robot’s experiments?

Figure 5-11: Robot joint: A1, Robot configuration: shorter, Payload: 76kg.
Recording of generated trajectory with artificial state update executed on the KUKA robot
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The experiments on the KUKA robots proved that the prediction integrated in the trajectory
generation will not lead to a controlled stop. Precisely, the robot could closely follow the
generated trajectory. This robot behavior also indicate no problem induced by the bouncing
input rate (such as the one presented in Figure 5-8).

Figure 5-11 and Figure 5-12 are similar to the ones provided in Chapter 4 for testing the
trajectory generation approach alone. In this sense, the two figures show the real position
recorded from the KUKA robot using the robot controller, the generated trajectory using the
artificial state update approach and the robot position collected with the generated trajectory
used as input.

Figure 5-12: Robot joint: A2, Robot configuration: conf1, Payload: 76kg.
Recording of generated trajectory with artificial state update executed on the KUKA robot

In both plots one can observe a rather increased generation error (marked by the blue line in
the lower plot), but a reduced error between the input and the output of the robot experiment
(marked by the yellow line in the lower plot). As expected, this behavior led to the blue
and red lines in the lower plot to coincide since the recorded trajectory followed closely the
generated trajectory.

5-4 Trajectory generation with conservative bounds validated on
the robot

In order to test the effect of the conservative bounds, trajectories generated using the artificial
state update approach were provided to the KUKA robot. In this sense, Figure 5-14 and
Figure 5-16 show the robot recordings of the trajectories generated with three different sets
of parameters for the prediction objective function. The trajectory generation is presented in
Figure 5-13 and respectively, Figure 5-15.
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Figure 5-13: Robot joint: A1, Robot configuration: shorter, Payload: 76kg.
Trajectory generation with artificial state update - comparison with multiple prediction cost

function parameters (α, γ)

Figure 5-14: Robot joint: A1, Robot configuration: shorter, Payload: 76kg.
Recording of generated trajectory with artificial state update and conservative bounds executed

on the KUKA robot
Set 1: α = 0, γ = 1.5, Set 2: α = 0.1, γ = 0.4, Set 3: α = 0.2, γ = 1.5

As the results in Subsection 5-1 proved, in the artificial state update approach which uses
original robot measurements, the number of samples will be preserved. Moreover, this also
implies that the conservative bounds still follow the original profiles form but lower the pre-
dicted values. As a result of the conservativeness, when predicting lower bounds, the position
offset at the end of the simulation is expected to increase. In an ideal situation, the opti-
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mization problem should run until the target position is achieved, allowing the trajectory
generation to follow slightly different velocity, acceleration and jerk profiles. This might be
obtained in an improved version of the real stated update approach.

On a good note, Figure 5-14 and Figure 5-16 show that the robot was indeed able to follow
the generated trajectory independent of the parameters used in the objective function for
bounds prediction. As expected, the position offset at the end of the simulation increased.
Additionally, the bottom plot of both figures shows the error between the original recording
and the robot recordings following the generated trajectories. In Figure 5-14, the position
error accumulates throughout the experiment samples and stabilizes at the end of motion.
This led to increased position offset at the end of the simulation when the conservativeness
is more pronounced.

In comparison to Figure 5-14 in which the positional offset accumulates throughout the ex-
periment samples and stabilizes at the end of motion, in Figure 5-16 the positional offset at
the end of the two conservative experiments (marked by red and yellow lines) seem to start
decreasing. This behavior might be caused by a rather improper trajectory generation that
presents an increased velocity at the end of the simulation. This behavior can be observed
in Figure 5-15 after the 350th sample. As a result, the robot will get closer to the target
position but the velocity profile will slightly differ in shape from the original one.

It is also interesting to mention that during the actual experiments, the robot was moving
significantly slower. This was observed not only visually, but also by the sound the robot
made when executing the trajectory. The sound also suggested that the motions executed are
rather smooth.

Figure 5-15: Robot joint: A2, Robot configuration: conf1, Payload: 76kg.
Trajectory generation with artificial state update - comparison with multiple prediction cost

function parameters (α, γ)
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Figure 5-16: Robot joint: A2, Robot configuration: conf1, Payload: 76kg.
Recording of generated trajectory with artificial state update and conservative bounds executed

on the KUKA robot.
Set 1: α = 0, γ = 1.5, Set 2: α = 0.1, γ = 0.4, Set 3: α = 0.2, γ = 1.5

5-5 Conclusion

The current chapter introduces the complete approach combining bounds prediction and
trajectory generation. To isolate the possible errors sources, two approaches were proposed
using either an artificial or a real state update. In this sense, the main distinction arises from
the update of the current robot state used as input for the bounds prediction block.

In the artificial state update approach, the current robot state is obtained from the robot
position measurements collected during KUKA experiments. This method achieved success-
ful simulation results and proved the capability of the trajectory generation with bounds
prediction. Furthermore, simulations including conservative bounds were included. The con-
servativeness proved effective to transform an unfeasible simulation into a feasible one.

Further, the end-to-end solution was presented including a recursive approach in which the
current state, used as input of the bounds prediction block, is represented by the next state
computed by the trajectory generator. The results unfortunately showed no successful simu-
lation and several possible causes were presented. One potential reason is the lack of feedback
which led to accumulated errors affecting the predicted bounds. In terms of bounds predic-
tion, another possible motivation for the unsuccessful solution is the rather reduced dataset
used for regressors’ training. The quality of the dataset might also affect the capability of the
regressors to distinguish between the motions regions.

Finally, robot experiments results were provided for the artificial state update method to
prove the approach’s effectiveness on the KUKA robot. The generated trajectories were
closely followed by the robot and no controlled stop was triggered during the experiments.
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Chapter 6

Conclusion

6-1 Summary

This work is focused on generating dynamically feasible trajectories using a data-driven ap-
proach in order to achieve high performance control of robot manipulators. Since robot sys-
tems are typically concealed, with no information provided about their operation, this thesis
aimed to discover a part of the robot controller and generate more transparent trajectories
that include the robot’s limitations.

First, the robot setup was described as the basis of the testing environment. This is composed
of a KUKA KR 210 R2700 robot mounted on a linear unit, the required robot controller
KUKA KR C4, the teach pendant and connecting cables. Further, to set the context for the
experiments using the KUKA robot, the procedure for data collection was introduced. This
requires the usage of the Teach Pendant to specify robot parameters such as tool information,
a KRL script to specify the motion to be executed and KUKA RSI to transmit the position
information to an external computer with a sampling time of 4ms.

Since KUKA RSI only permits position data to be recorded, three time-derivation methods
were introduced and compared. Out of the methods presented, Forward Finite Differences
proved the most promising results and was used further to determine the velocity, acceleration
and jerk profiles. FFD provided smooth approximations of the position’s time-derivatives
that could be used in the trajectory generator. When compared to the Kalman filter, FFD
presented no lag in between the profiles, which facilitated the trajectory generation. Moreover,
since jerk profiles computed using the FFD benefit of a higher amplitude in the first samples,
this will favor a reduced execution time by reaching the maximum velocity faster.

After establishing the procedure to retrieve the velocity, acceleration and jerk profiles from
position measurements, an initial analysis on several robot motions was performed to investi-
gate valuable features in predicting dynamic limitations. The evaluation on multiple motion
parameters confirmed the existence of the Limiter block and and its effect. As far as the col-
lected evidence suggests, the payload’s weight and the robot pose show the biggest influence
on the velocity, acceleration and jerk profiles. As a result, by varying these two parameters,
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an extended dataset was created to describe the limits imposed by the robot controller as a
function of the robot parameters. This initial analysis and the resulting dataset is particularly
important for determining the behavior of the Limiter block.

Since the current work aims not only to identify the Limiter block, but also to provide the
robot with dynamically feasible trajectories, a method to supply position commands to the
robot was presented. This involves a Python script and KUKA RSI to define the position
samples and communicate through UDP with a sampling time of 4ms. During experiments,
this method proved rather nondeterministic since multiple identical input trajectories led to
different robot behavior. The worst case encountered during experiments was when providing
the same input trajectory to the robot, nine out of ten experiments caused a controlled stop in
different regions of the robot motion and only one finished the motion execution successfully.

Considering that the manufacturer does not provide any information on how the robot con-
troller produces the limits imposed on velocity, acceleration and jerk, the profiles enforced
during motions running with maximum speed level were considered to demonstrate the Lim-
iter’s effect. This assumption is motivated by manufacturer’s guarantee that maximum speed
level motions will reach the target position in minimum-time, suggesting maximum robot
performances that do not violate any of the imposed bounds. Further, this information was
used to determine the function defining the Limiter block, using multiple motion relevant pa-
rameters, in order to predict the velocity, acceleration and jerk bounds for a specific motion.

The bounds prediction method is iterative and aims to determine the next state’s bounds
from the current robot state. In simple words, the bounds prediction aims to determine
which is the most distant point that the robot can achieve in a sample of 4 ms starting from
the current position, without causing a controlled stop.

Multiple methods were investigated for predicting the bounds such as Linear Regression,
for its simplicity, Random Forest, to increase the model complexity and therefore prediction
accuracy and Extreme Gradient Boosting, for its complexity and the capability to use a
custom objective function. The objective function was changed in the XGBoost formulation
to favor more conservative predictions, ensuring that the predicted bounds never exceed the
real bounds. As a result, although both Linear Regression and RF provided promising results,
XGBoost was used in the final solution. Its accuracy, together with the custom objective
function provided adequate predictions to the current problem.

Since the bounds are determined independently for velocity, acceleration and jerk, a method
for trajectory generation that obtains attainable position values was required. First, an open-
source approach was tested. However, because it was determined to be unsuitable for the
current problem, a custom trajectory generation method was proposed.

Knowing the current robot position, the trajectory generator computes, in an iterative fashion,
the most distant viable position sample that can be reached in 4 ms without violating any
of the bounds imposed by the Limiter block. This is obtained by solving an optimization
problem in which the velocity, acceleration and jerk bounds are used as state constraints.
Input constraints are also included in the form of snap constraints and are computed using
the predicted jerk bound.

Although multiple successful simulations resulted from the trajectory generator, some exper-
iments still fail to obtain a feasible solution. The main reasons behind the unfeasible problem
result are the non-negativity and the maximum admissible velocity constraints. On the other
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hand, an analysis showing both the feasibility of the experiments and the average positional
offset at the end of the simulation (computed only for the successful ones) was provided. The
capabilities of the trajectory generation method were also validated in robot experiments, the
generated trajectory being followed with negligible error.

Finally, to include the bounds prediction in the trajectory generation solution, a definitive
solution was proposed. In the final approach, the bounds prediction and trajectory generation
work in a recursive approach using real state update. This method provides the current robot
state, required for bounds prediction, from the latest generated state. To isolate the possible
error sources, an artificial state update was proposed. In comparison to the real state update,
the main distinction of this approach is that the current robot state is obtained from position
measurements.

Using predicted bounds for the trajectory generation in the artificial state update manner, the
solution yielded satisfactory results both in simulation and robot experiments. This method
proved that the prediction error does not affect the robot’s behavior and did not trigger a
controlled stop. Moreover, several simulations proved that the conservative bounds prediction
could solve the unfeasibility problem. Furthermore, the final solution represented by the real
state update method did not yield any successful simulation so no robot experiments could
be executed.

6-2 Closing remarks

This section will provide details on the important findings in this work.

The initial analysis empirically proved that the payload weight and the robot pose consid-
erably influence the velocity, acceleration and jerk bounds imposed by the KUKA robot
controller. Although this analysis was limited by the tool used in the robot experiments, the
variation of several parameters was sufficient to prove the existence of the Limiter block and
to explain its effects by the variation of motion or tool parameters. This serves as valuable
groundwork for future experiments to include other relevant motion parameters.

Regarding the trajectory generation, although intermediary solutions obtained successful sim-
ulations, the final solution still presents two bottlenecks. First, the trajectory generation
approach is not robust on its own and fails to retrieve a solution in several cases. Secondly,
the trajectory generation using predicted bounds in the real state update fashion fails to
generated attainable robot trajectories. These two bottlenecks will be further detailed.

When using velocity, acceleration and jerk bounds computed by time-derivation from previ-
ously collected position measurements, the trajectory generation obtained a positional offset
at the end of the simulation relative to the motion distance smaller than 3.2% for both ana-
lyzed joints. This metric shows a limited performance deterioration caused by the trajectory
generation. In real scenarios, the offset at the end of the simulation could be acknowledged
by the user who should provide a higher target position. Since this is not possible for target
positions close to the end of a joint motion range, further improvements on the solution per-
formance might be desired. Altogether, the robot experiments showed that when the provided
bounds are similar to the real bounds imposed by the Limiter block, the trajectory generator
will compute feasible trajectories that can be exploited in real robot scenarios.
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On the other hand, the trajectory generation method still fails to retrieve a feasible solution in
several scenarios. The main cause for this is the violation of maximum or minimum admissible
velocity, which led to an unfeasible optimization problem. This demonstrated the need for an
improved robustness of the trajectory generator method. During experiments several aspects
affecting the robustness were identified and suggestions on how to improve will be further
indicated.

The velocity bounds violation could be caused by the short horizon considered in the optimiza-
tion problem. This causes shortsightedness in the optimization approach by not considering
further decisions. To solve the shortsightedness problem, a longer horizon approach was
proposed. Unfortunately, this could not resolve the problem because, considering only the
knowledge of next step bounds, constant limits for velocity, acceleration and jerk were im-
posed for the next N samples. This only limited the performance of the trajectory generator
by not accounting for varying velocity, acceleration or jerk bounds. This suggests the require-
ment for a method to recursively predict future N bounds to combat this limitation. This
will likely increase the robustness and the performance in the acceleration and deceleration
regions of the trajectory.

In comparison to the trajectory generation method using the originally computed bounds
(using previously recorded position measurements), the artificial state update, with predicted
bounds, obtained insignificant growth in the positional offset at the end of the simulation
relative to the motion distance. This result showed that a more accurate prediction will not
greatly impact the trajectory generation. Moreover, the robot experiments showed that a
less smooth input, caused by the prediction error, would not lead to a controlled stop. This
already proves that in a real scenario, with sufficiently accurate predictions, the generated
trajectory could be applied to robots. Furthermore, as far as the collected evidence suggests,
the higher order derivatives (relative to acceleration) will not play a major role in causing a
controlled stop.

Additionally, simulations showed that several scenarios originally classified as infeasible could
be solved by the usage of the conservative bounds predictions. This proves that, at the cost
of increased execution time or positional offset at the end of the simulation, transparent tra-
jectories can still be obtained. This observation matches the initial intuition that less violent
trajectories, in terms of acceleration and jerk profiles, are less likely to cause a controlled stop.

The real state update approach did not yield any successful simulations. This is caused by
three potential reasons. First, the relatively reduced dataset that does not represent a suf-
ficiently broad region of the robot’s behavior, might affect the prediction capabilities. More
specifically, due to consecutive prediction and generation errors, the generated trajectory sam-
ples might reach uncovered regions of the robot’s behavior leading to erroneous predictions.

Second, the model seems to not distinguish well enough between profiles’ regions, e.g., between
acceleration and constant velocity regions. Similarly, accumulated errors cause the generated
trajectory samples to be part of a constant acceleration region sooner than the experiment
would indicate in reality. This will lead to constant predicted bounds since the regressor
expects no change in the current state, leading to increasing errors between the predicted and
real profiles. Empirically, this led to an unfeasible simulation.

Third, the high discrepancy between the predictions and the real profile values might also be
the result of accumulated errors due to the lack of feedback, such as from an ideal path. A
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correction should be made in this sense because long trajectories will always be prone to error
drift. As manufacturing processes typically require longer trajectories for efficiency purposes,
this would represent a major cause of concern and should be tackled further.

Moreover, it was also proved in simulation that in the real state update scenario, the con-
servative bounds prediction did not significantly improve the simulation results. The main
reason behind this is that having conservativeness involved, the bounds prediction block will
receive the adjusted current state values (lowered as a result of more conservative bounds)
which might not be covered by the training set. This is aligned with previous observations
as conservative prediction might lead to uncovered regions of the robot dynamics, requiring a
more comprehensive dataset in order to be effective. This will be further detailed in the next
section.

All in all, the successful simulation results showed the suitability of transparent trajectory
generation that uses knowledge about the KUKA Limiter block. Although not entirely suc-
cessful, the proposed solution represents a step in the direction of improved predictability of
robot manipulators. Conversely, there are two fundamental drawbacks that might be valu-
able for further work. First, the need for an improved prediction model that can distinguish
between trajectory regions and that can better represent a broader area of the dynamics
space. Second, a more robust trajectory generation method that is less sensitive to velocity
constraints.

Further, several prospects on solving the current solution’s shortcomings will be presented.

6-3 Future work

Considering the major drawbacks of the proposed solution, various potential directions to
improve the current work were identified. Further, the possible next steps are described and
motivated.

• Since the current solution seems to lack knowledge about the Limiter block, a broader,
more comprehensive dataset that more broadly and accurately represents the robot’s
behavior needs to be built. This can be easily achieved by first, including more robot
poses in the datatset by varying the position of the non-actuated joints and second, by
varying more tool parameters.

• Given the functional limitation of the current solution, different motion related parame-
ters might be varied and considered in the bound prediction approach. One example of
possibly relevant motion information is represented by joint torques that can be easily
measured using KUKA RSI.

• Assuming the availability of a more generous dataset, a more complex prediction method
can be applied to better recognize the steady regions. Eventually, a stateful method
might be desired.

• Considering the lack of feedback in the current method that permits the accumulation
of errors during the motion simulation, a form of feedback from a suitably-designed
reference path could be introduced in the Trajectory Generation.
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• As one long term goal of this work was to be easily applicable to all robots, the proposed
solution could be extended to cover also other robots’ manufacturers. For time related
reasoning, this work had to be limited to KUKA robots.
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Appendix A

Joints A3 to E1

A-1 Robot poses definition

Robot pose
A1

position
[deg]

A2
position

[deg]

A3
position

[deg]

A4
position

[deg]

A5
position

[deg]

A6
position

[deg]

E1
position

[mm]
A3 "transp" 0 -130 -110 to 145 -180 -120 30 -4000
A3 "shorter" 0 -90 -50 to 60 -180 -65 30 -4000
A3 "conf1" 0 -32 120 to -115 -180 -60 30 -4000
A3 "conf2" 20 -10 115 to -60 -180 110 30 -4000

Table A-1: Robot joint: A3, Position of all joints for multiple robot poses.

Robot pose
A1

position
[deg]

A2
position

[deg]

A3
position

[deg]

A4
position

[deg]

A5
position

[deg]

A6
position

[deg]

E1
position

[mm]
A4 "transp" 0 -90 90 -340 to 340 -90 30 -4000
A4 "shorter" 0 -90 90 -100 to 100 -90 30 -4000
A4 "conf1" 0 -25 65 -345 to 345 -65 30 -4000
A4 "conf2" 20 -50 110 -180 to 180 -55 30 -4000

Table A-2: Robot joint: A4, Position of all joints for multiple robot poses.
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Robot pose
A1

position
[deg]

A2
position

[deg]

A3
position

[deg]

A4
position

[deg]

A5
position

[deg]

A6
position

[deg]

E1
position

[mm]
A5 "transp" 0 -90 110 0 -120 to 120 30 -4000
A5 "shorter" 0 -90 110 0 -60 to 60 30 -4000
A5 "conf1" 0 -15 25 -180 110 to -120 30 -4000
A5 "conf2" 20 -50 60 -5 -90 to 90 30 -4000

Table A-3: Robot joint: A5, Position of all joints for multiple robot poses.

Robot pose
A1

position
[deg]

A2
position

[deg]

A3
position

[deg]

A4
position

[deg]

A5
position

[deg]

A6
position

[deg]

E1
position

[mm]
A6 "transp" 0 -90 90 -180 -90 -340 to 340 -4000
A6 "shorter" 0 -90 90 -180 -90 -100 to 100 -4000
A6 "conf1" 0 -25 63 -180 -66 -340 to 340 -4000
A6 "conf2" 20 -20 40 -180 70 -180 to 180 -4000

Table A-4: Robot joint: A6, Position of all joints for multiple robot poses.

Robot pose
A1

position
[deg]

A2
position

[deg]

A3
position

[deg]

A4
position

[deg]

A5
position

[deg]

A6
position

[deg]

E1
position

[mm]
E1 "transp" 0 -139 125 -180 -120 30 -4000 to 0
E1 "shorter" 0 -139 125 -180 -120 30 -4000 to -3200
E1 "conf1" 0 -45 38 -180 -42 30 -4000 to 0
E1 "conf2" 45 -50 100 -180 60 30 -4000 to -2000

Table A-5: Robot joint: E1, Position of all joints for multiple robot poses.
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A-2 Payload weight and robot pose effects on limits

A-2-1 Joint A3

Figure A-1: Robot joint: A3, Profiles comparison between the same motion executed with the
same robot pose ’transp’ but different payloads.

Figure A-2: Robot joint: A3, Maximum acceleration and jerk values spread depending on the
payload weight and robot pose.
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Figure A-3: Robot joint: A3, Profiles comparison between similar motions executed with no
payload but different robot poses.
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A-2-2 Joint A4

Figure A-4: Robot joint: A4, Profiles comparison between the same motion executed with the
same robot pose ’transp’ but different payloads.

Figure A-5: Robot joint: A4, Maximum acceleration and jerk values spread depending on the
payload weight and robot pose.
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Figure A-6: Robot joint: A4, Profiles comparison between similar motions executed with no
payload but different robot poses.
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A-2-3 Joint A5

Figure A-7: Robot joint: A5, Profiles comparison between the same motion executed with the
same robot pose ’transp’ but different payloads.

Figure A-8: Robot joint: A5, Maximum acceleration and jerk values spread depending on the
payload weight and robot pose.
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Figure A-9: Robot joint: A5, Profiles comparison between similar motions executed with no
payload but different robot poses.

Liliana Barbulescu Master of Science Thesis



A-2 Payload weight and robot pose effects on limits 91

A-2-4 Joint A6

Figure A-10: Robot joint: A6, Profiles comparison between the same motion executed with the
same robot pose ’transp’ but different payloads.

Figure A-11: Robot joint: A6, Maximum acceleration and jerk values spread depending on the
payload weight and robot pose.
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Figure A-12: Robot joint: A6, Profiles comparison between similar motions executed with no
payload but different robot poses.

Liliana Barbulescu Master of Science Thesis



A-2 Payload weight and robot pose effects on limits 93

A-2-5 Joint E1

Figure A-13: Robot joint: E1, Profiles comparison between the same motion executed with the
same robot pose ’transp’ but different payloads

Figure A-14: Robot joint: E1, Maximum acceleration and jerk values spread depending on the
payload weight and robot pose.
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Figure A-15: Robot joint: E1, Profiles comparison between similar motions executed with no
payload but different robot poses
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Glossary

List of Acronyms

CNC Computer Numerical Control
KSS KUKA System Software
KRL KUKA Robot Language
RSI Robot Sensor Interface
UDP User Datagram Protocol
PTP Point-to-point motions
LIN Linear motions
CIRC Circular motions
CoM Centre of Mass
DoF Degrees of Freedom
BFD Backward Finite Differences
FFD Forward Finite Differences
FD Finite Differences
ROS Robot Operating System
CV Cross-validation
LR Linear Regression
RF Random Forest
XGBoost Extreme Gradient Boosting
ATL Automated Tape Layering
AFP Automated Fiber Placement
UDP/IP User Datagram Protocol/Internet Protocol
CSV Comma-Separated values
XML Extensible Markup Language
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List of Symbols

α Prediction objective function conservativeness parameter
β1, ... βp Linear regression coefficients
∆θ Motion distance
∆t Sampling time
ϵ Soft constraint slack variable
γ Prediction objective function tunning parameter
Φ(ẑ, z) Prediction objective function
θfinal Final motion position
θoffset Positional offset at the end of simulation
θref Reference position
θstart Starting position
◦, [deg] Degrees

ā Acceleration upper bound
j̄ Jerk upper bound
v̄ Velocity upper bound
f̂ Bounds mapping
x̂h State estimation
ẑ Predicted value
B(k + 1) Next step bounds
θ Position
θg Generated position
θr Recorded position
a Acceleration lower bound
j Jerk lower bound
v Velocity lower bound
a Acceleration
A, Ac Systems state matrix
ag Generated acceleration
ar Acceleration of recorded position
amax Maximum acceleration
amin Minimum acceleration
B Linear system input matrix
C, Cc Systems output matrix
do Distance offset
e Linear regression intercept
f Butterworth filter frequency
f0 Butterworth filter cut-off frequency
j Jerk
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jg Generated jerk
jr Jerk of recorded position
jmax Maximum jerk
jmin Minimum jerk
K Kalman gain
kchange Time sample of reference change
m Butterworth filter order
mw Weight mass on each side
Nsteps Number of steps
npw Normalized payload weight
pm Constant motion parameters
pw Payload weight
pmax Rated payload
Q2 Velocity reference parameter - optimization problem
r Distance between barbell center to the first weight, along the bar
tw Total disks’ width on each side
v Velocity
vg Generated velocity
vr Velocity of recorded position
vadmmax Maximum admissible velocity
vmax Maximum velocity
vmin Minimum velocity
vref Reference velocity
x Linear system state
xg Generated state
y Linear system output
yp Predicted value
yr Real value
z Value to predict
Ixbb Barbell inertia term on the x-Axis
Iybb Barbell inertia term on the y-Axis
Izbb Barbell inertia term on the z-Axis
X, x1 ... xp Linear regression features
Y Linear regession output
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