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Abstract

In the Netherlands there are many bridges that crosses waterways, which are key nodes in the transporta-
tion system. The safety and integrity of these bridges is nowadays assessed by (visual) inspections at regular
intervals. This approach cannot provide information about damage development in between inspections,
leading to potential failure or high intervention costs. A maintenance strategy for bridges based on contin-
uous vibration-based monitoring provides a possible cost-effective solution that may replace the periodic
(visual) inspections. Vibration-based structural health monitoring of civil engineering structures is receiv-
ing increasing attention in recent years. This is due to new developments in related areas such as sensing
technology, system identification, data mining and condition assessment.

A particular damage scenario that frequently occurs in steel orthotropic deck structures is the develop-
ment of fatigue cracks in the welds between the longitudinal U-shaped stiffeners and the transverse beams
or the steel deck plate. This damage scenario was also observed in the steel deck structure of the Zwarte-
waterbrug, located in Hasselt in the Netherlands. Vibration tests were performed on the bridge to develop a
damage detection algorithm for early detection of the fatigue cracks in the bridge deck. In order to simulate
the effect of damage, small masses were attached to the bottom of the bridge deck. The measurements were
performed over a relatively short time period to exclude — in as far as possible — the effects of environmen-
tal variability. However, the bridge was kept open to traffic during the testing and structural response was
primarily triggered by traffic load. The vibration data (accelerations) obtained during these tests was used for
validation of the proposed methodology in this thesis.

The aim of the thesis is to detect the added masses from the vibration data. To achieve this, a data-based
approach for damage detection was proposed, which, besides the data acquisition, consists of four main
stages: data preprocessing, feature extraction, pattern recognition and decision making. The analysis is fo-
cused on the high-frequency acceleration response, because the associated higher-frequency local modes
are more sensitive to the small changes induces by the added mass. The similarity filtering preprocessing
procedure was applied to filter out the variability related to the operational loading, and the Frequency Do-
main Decomposition system identification technique was used to extract damage indicators. Subsequently, a
support vector machine algorithm was applied to “learn” patterns in the extracted damage indicators, which
enables the algorithm to assign a damage state to a given measurement vector. Alternatively, a novelty de-
tection technique was used to distinguish data from the “healthy” structure from data corresponding to a
“damage” state.

It was not possible to reliable detect the added masses from the high-frequency acceleration data due to
the large variations in the damage indicators of a mass class. These variations are attributed to the changing
environmental conditions over the measurement period. The principal component analysis was used in an
attempt to remove these variations from the damage indicators, but the results were still not satisfactory.

In conclusion, it was not possible to properly test the proposed methodology for damage detection us-
ing the data of the Zwartewarterbrug, mainly because the data was not suitable for the machine learning
algorithms employed. Recommendations are given related to the methodology for the similarity filtering,
determination of the high-frequency range, and machine learning algorithm to be used. Additionally, recom-
mendations are given for future measurement campaigns to obtain data that is more suitable for successful
application of the methodologies employed in the present project.
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1
Introduction

The state of civil structures such as bridges deteriorates over time. For example, fatigue crack development in
steel bridges may suddenly lead to brittle failure. Maintenance programs are supposed to mitigate safety risks
associated with deterioration. Nowadays, the safety and integrity of bridges is assessed by visual inspections
performed at regular time intervals, and in some cases supplemented by Non-Destructive Evaluation (NDE)
such as acoustic or ultrasonic measurement techniques, magnetic field, and radiography. All these methods
require that the location of the damage is known a priori and is easily accessible for inspection. Subject
to these limitations, the NDE methods can detect damage on or near the surface of a structural element.
However, detection of damage too far beneath the surface is not guaranteed and the methods cannot provide
information about the health of internal members out of reach. A major drawback of periodic inspections is
that damage or failure could happen in between inspections. Also, costs can be high. Continuous vibration-
based monitoring of bridges provides a possible alternative solution to these challenges and has been studied
extensively in the last decades aiming to develop cost-effective Structural Health Monitoring (SHM) systems
[17, 18].

The topic of this thesis is vibration-based monitoring, which is a subset of SHM. The main idea behind
vibration-based damage detection methods is that damage will alter the physical properties of a structure,
which will cause detectable changes in the dynamic response properties of the structure [17]. Originally,
changes in modal parameters (natural frequencies, mode shapes and modal damping) were used as damage
indicators. However, as damage is typically a local phenomenon it will not significantly influence the low-
frequency global response of the structure that is normally measured during vibration tests with ambient
excitation. The local response that is captured by high-frequency modes instead shows higher sensitivity to
local damage. This response is typically more difficult to excite in vibration tests as more energy is required
to produce measurable responses at these higher frequencies, particularly when a structure is excited by
ambient loading. In addition, the modal properties appear to be sensitive to Environmental and Operational
Variability (EOV) as well. For bridge decks specifically, the most important sources of variability in modal
responses were found to be temperature and traffic loading. These problems have led to the need of other
damage indicators, or methods that are capable of amplifying the effect of damage and removing the effects
of EOV. Although many attempts were made to obtain better damage indicators, this is still an active research
topic being partially unresolved.

Over the years, the damage detection algorithms that have been developed for data-driven approaches
are mainly drawn from the discipline of pattern recognition, or more broadly, machine learning [52]. The
data-driven approach avoids the need of a high-fidelity physical model of the structure and offers the possi-
bility of automating the SHM process. The idea of machine learning in the context of SHM is to “learn” the
relationship between some features derived from the measured data and the damaged state of the structure.
The learning problem then is to estimate the function that describes this relationship using data acquired
from the structure—the training data. The training data consist of feature vectors extracted from the data,
possibly supplemented with the corresponding class label/output. The feature vectors must be sensitive to
the damage and insensitive to EOV. This is one of the main challenges when a machine learning approach is
adopted and forms a major issue dealt with in this thesis.

1



2 1. Introduction

1.1 Problem Definition

The current research continues the research performed in the thesis of Milosevic [32], and contributes to the
development of a vibration-based structural health monitoring system for early detection of small structural
faults in steel bridge decks. In particular, to further automate the damage detection procedure proposed in
[32], a machine learning approach is adopted here.

The methodology proposed in this thesis is tested using measurement data from the Zwartewaterbrug, an
arch bridge in the Province of Overijssel in the Netherlands. As many other orthotropic bridge decks, the deck
structure of the Zwartewaterbrug is prone to fatigue cracks in the welds between the U-shaped longitudinal
stiffeners and the transverse beams, and in the welds between the stiffeners and the steel deck plate. In
March 2017 a SHM system was installed on the Zwartewaterbrug to measure the acceleration response of the
orthotropic bridge deck. One of the purposes of this short measurement campaign was to demonstrate the
possibility to detect the frequently occurring fatigue cracks in the deck. In order to simulate the effects of
these fatigue cracks, small masses were attached to the bottom of the bridge deck. The use of such pseudo
faults allows for the generation of data from a modified or “damaged” structure without actually damaging
the structure.

The detection of the small added masses from the vibration data of the Zwartewaterbrug through a ma-
chine learning approach is the main goal of this thesis, leading to the following main question:

“Is it possible to detect small added masses from the vibration data of the Zwartewaterbrug using
machine learning algorithms.”

The following challenges to answer the research question will be faced:

• The small dataset due to the short measurement campaign and the possibly varying environmental
conditions.

• The low sensitivity of the dynamic response to the small structural changes. The effect of damage is
simulated by very small masses attached to the bottom of the bridge deck; e.g. the smallest mass of 25
kg amounts to only 0.0625% of the weight of an instrumented bridge segment.

• The non-stationary acceleration time-histories caused by the unknown traffic load with vehicle weight
ranging from 200 kg to 50000 kg.

1.2 Objectives

The objectives of this thesis are as follows:

• To remove non-stationarities in the acceleration time histories caused by varying traffic load.

• To extract features from the vibration data that are sensitive to small structural changes and insensitive
to environmental and operational variabilities.

• To detect the small added masses that were attached to the bridge deck from the vibration measure-
ments of the Zwartewaterbrug using machine learning algorithms.

• To assess whether small local defects in bridge decks can be detected based on high-frequency accel-
eration measurements only.

• To investigate possibilities of machine learning applications using data from a short measurement cam-
paign.

1.3 Thesis Outline

The outline of the thesis is schematically presented in Figure 1.1.

In Chapter 2 the Zwartewaterbrug project is briefly described. The vibration data from this project forms the
basis of the analyses performed in the next chapters. The followed methodology for damage detection is also
described in this chapter.



1.3. Thesis Outline 3

Chapter 3 presents the theoretical background of two important techniques that are applied in the first
part of the thesis: similarity filtering and Frequency Domain Decomposition (FDD). The method of similarity
filtering is a preprocessing technique, which aims to filter out the variability related to the operational loading
(e.g. traffic loading) from the data. The FDD technique is an output-only system identification technique that
is used to extract the damage-sensitive features from the vibration data.

In Chapter 4 the preprocessing (i.e. the process from raw data to initial features) of the Zwartewaterbrug
data is described. The preprocessing consist of three steps: band-pass filtering, similarity filtering and FDD.
In the first step a reliable high frequency range is determined being sensitive to small changes in the bridge
deck, and the acceleration time histories are band-pass filtered based on this frequency range. Secondly, the
similarity filtering preprocessing procedure is applied to filter out the variability related to the operational
loading. In the third step, the FDD is applied to the processed signals in order to obtain the initial features.
These features are further processed in the next chapters before they are used as inputs for the machine
learning algorithms. At last, The natural frequencies and mode shapes of the bridge resulting from the FDD
are analysed to confirm their local character.

In Chapter 5 the concept of feature engineering is briefly described. Feature engineering is the general
process of generating proper inputs for the machine learning algorithms. In SHM context, these inputs are
referred to as damage-sensitive features. The initial features that are extracted in previous chapter are visually
inspected, and preliminary conclusions regarding the mass class separability are drawn. Finally, the proposed
feature selection procedure is presented.

Chapters 6 and 7 are concerned with the detection of the small added masses that were attached to the
bridge deck using the damage-sensitive features extracted from the vibration data. Two types of machine
learning algorithms are employed that “learn” the relationship between the features and the damaged state
of the structure.

In Chapter 6 the Support Vector Machine (SVM) classification is applied to learn this relation. The SVM is
a supervised learning algorithm meaning that the diagnostic is trained by showing the true labels of the data
samples. The chapter starts with the introduction of some important concepts for classification through the
Bayesian decision theory. Next, the theoretical background of SVM classification is briefly described. The last
part of the chapter concerns the application of the SVM algorithm to the Zwartewaterbrug data, with the goal
to train a SVM model that correctly classify the data samples according to the corresponding weight of the
added mass.

In contrast to the previous chapter, in Chapter 7 the diagnostic is trained using training data from the
normal operating condition (i.e. healthy condition) of the structure only. The applied algorithm belongs to
the class of outlier or novelty detection methods. In these methods a model of normal condition is created,
and the test data are compared with this model to detect abnormalities. A threshold level is used to determine
if a certain observation significantly deviates from the normal condition and should be flagged as abnormal.
The theory of novelty detection and different approaches for setting the threshold level are discussed first,
followed by an application on the data of the Zwartewaterbrug.

In Chapter 8 the importance of data normalization for the design of a reliable damage detection algo-
rithm is discussed. It starts with an overview of studies on Environmental and Operational Variability (EOV),
the main focus being the effect of temperature variations on the natural frequency of a structure. There-
after, the correlation between the ambient temperature and natural frequencies of the Zwartewaterbrug is
analysed. In the second part of the chapter different methods for data normalization are discussed. The
discussion is restricted to two classes of methods: regression methods and decomposition methods. In the
end, a data normalization approach based on the Principal Component Analysis (PCA) is applied to the data
of the Zwartewaterbrug and it is illustrated that the algorithm applied in Chapter 7 is able to filter out the
environmental variability in much the same way as the method based on linear PCA.

Finally, Chapter 9 provides the overall conclusions of the work based on the obtained results, and recom-
mendations are given for future research and successful future measurement campaigns.
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2
The Zwartewaterbrug Project

2.1 Bridge Description
The Zwartewaterbrug, depicted in Figure 2.1, crosses the Zwartewater river near the city of Hasselt in the
Dutch province Overijssel. It is a steel arch bridge with a span of 104 meters, built in 1969.

Figure 2.1: The Zwartewaterbrug.

The orthotropic deck consists of an asphalt-covered steel deck plate, I-shaped longitudinal main girders,
I-shaped transverse beams, and a total of 66 smaller U-shaped longitudinal stiffeners. Figure 2.2 shows a part
of one of the spans between two transverse beams. Also seen on this figure are the U-shaped longitudinal stiff-
eners. The detection of frequently occurring fatigue cracks in the welds between these U-shaped stiffeners
and the transverse beams was targeted with the proposed Structural Health Monitoring (SHM) installation.

5



6 2. The Zwartewaterbrug Project

Figure 2.2: A part of the orthotropic deck as seen from the bottom.

2.2 Measurement Campaign

The main idea behind the Zwartewaterburg project was to acquire acceleration data from the structure in
normal condition, and the structure with the presence of small damage. It is assumed that the damage reflects
itself in terms of reduced stiffness. The reduction of stiffness has an influence on the dynamic properties of
the bridge. In particular, natural frequencies are expected to decrease, and it is assumed that this reduction
could equally well be due to an increase in mass. This latter is motivated by the expression for the natural
frequency of a simple mass-spring system (ωn =p

k/m). With this idea in mind, the measurement campaign
of the Zwartewaterbrug project was designed. It must be noted that the campaign was initially not intended
for machine learning applications, but will be the main focus of this thesis.

2.2.1 Sensor Network

The orthotropic deck of the bridge is instrumented with 32 accelerometers. The sensors are divided over
three adjacent spans between transverse beams, and are placed over half the width of the bridge. The spatial
positioning of the sensors is illustrated in Figure 2.3. In this thesis, the span with sensor 1 to 10 is referred to
as segment 1, the span with sensor 11 to 22 is referred to as segment 2, and the span with sensor 23 to 32 is
referred to as segment 3. The location of the ten sensors in segment 1 and 3 deviates from the twelve sensors
in segment 2. The added mass is located in the middle of segment 2, between sensor 16 and 17 (blue square
in Figure 2.3). The instrumented section is located at north side of the bridge near the concrete pillar.

2.2.2 Added Mass

Small masses were used to simulate the presence of damage. The added mass system, depicted in Figure 2.4,
was attached to the bridge deck using a magnet, as shown in Figure 2.5. Sand was used to regulate the weight
of the added mass. Measurements with added mass were performed in steps of 25 kg, with a maximum
total mass of 100 kg including the magnet’s own weight of 25 kg. It must be mentioned that the masses are
extremely small in relation to the weight of the deck itself: the mass of 25 kg amounts to only ±0.0625% of the
weight of the instrumented section. In terms of damage sensitivity, it is important to note that these masses
will have absolutely no influence on the lower modes of the bridge, hence the focus on higher resonances for
early damage detection.

In Figure 2.4 it can be observed that the added mass is hanging below the bridge deck with flexible hang-
ers. This could cause non-linear effects, for example, induced by wind of different direction and intensity.
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Figure 2.3: Spatial position of sensors.

Figure 2.4: The mass system attached to the bottom of the deck to act as pseudo-faults.

2.2.3 Data Acquisition

The vertical acceleration response of the bridge deck due to ambient loading is simultaneously measured by
32 accelerometers with a sample rate of 1000 Hz. The measurements are performed on three different days
(not continuously measured, and not during the whole day), and five different added masses are considered.
In total 764 different recordings of varying length are received, each one consisting of 32 signals. The received
data is summarized in Table 2.1. In general, seven data sets can be distinguished, each one corresponding to a
different time moment and/or added mass. The temperature listed in the last column of the table represents
the ambient temperature that is measured at the data acquisition system. More detailed temperature data is
not available.
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(a) (b)

Figure 2.5: Attachment of added mass to bridge deck using a magnet.

Figure 2.6a illustrates the vertical acceleration time histories of the bridge deck at the 32 sensor locations.
It can be observed that the measured dynamic responses present the non-stationary characteristic due to the
ambient loading (e.g. varying traffic load). The large variations in traffic load is considered as an important
factor that complicates the detection of small changes in the structure. This issue will be addressed in the
following chapters on the preprocessing of the data. Figure 2.6b shows the power spectral density functions
corresponding to previous time histories. From this it can be observed that most energy is contained in the
frequency components below 100 Hz; in particular, frequencies around 20 Hz and 60 Hz.

Table 2.1: Summary received data from Zwartewaterbrug.

Ref. no. Date From To Added mass Available data Number of records Temperature
(kg) (minutes) (◦C)

1

23-03-2017

08:29:07 09:47:50 0 18.9 52 7.64±0.51
2 10:40:04 12:23:35 100 56.12 151 11.31±0.47
3 12:40:42 13:40:40 50 34.43 85 12.42±0.20
4 14:12:23 15:36:38 0 51.13 112 13.01±0.12

5
28-03-2017

09:32:27 10:51:50 25 38.89 111 13.07±0.96
6 11:34:02 12:53:36 50 48.46 126 16.59±0.61

7 31-03-2017 07:47:30 09:12:22 75 53.34 127 15.22±0.34
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Figure 2.6: An example of (a) the time histories of 32 sensors, and (b) the corresponding power spectral density functions.

2.3 Environmental Variability
Information about the environmental conditions during the measurement campaign is obtained from Nether-
lands Historical Weather Almanac, and the temperature data recorded during the experiments. Figures 2.7–
2.9 show the 3-hours average weather forecast for the 23rd, 28th and 31st of March 2017, respectively. The
ambient temperature recorded at the start of each measurement is shown in Figures 2.10–2.12. It must be
noted that the ambient temperature is recorded at a single location only, and might not be representative for
the temperature distribution across the bridge deck.

The temperature is slightly different on the three measurement days. On 23rd March the temperature
during the measurements ranges from 7◦C in the morning to 13◦C in the afternoon, on 28th of March the
temperature ranges from 12◦C in the morning to 17◦C in the early afternoon, and on 31st of March the tem-
perature ranges from 15◦C to 16◦C. The latter were measured early in the morning (from 7:47 to 9:12) and
were completed before the rain started later that day.

The main goal of this thesis is to develop a damage detection algorithm sensitive to small changes, the
environmental conditions (e.g. temperature) are considered as possible factor for deviations in the results.
For the Zwartewaterbrug only limited temperature data is available complemented with some weather charts,
which is not enough to include the impact of environmental conditions in the development of the damage
detection algorithm.
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Figure 2.7: Hasselt, Overijssel, Netherlands Historical Weather Almanac, March 23, 2017.

Figure 2.8: Hasselt, Overijssel, Netherlands Historical Weather Almanac, March 28, 2017.
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Figure 2.9: Hasselt, Overijssel, Netherlands Historical Weather Almanac, March 31, 2017.
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Figure 2.10: Ambient temperature recorded at the start of each measurement on March 23, 2017.
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Figure 2.11: Ambient temperature recorded at the start of each measurement on March 28, 2017.
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Figure 2.12: Ambient temperature recorded at the start of each measurement on March 31, 2017.

2.4 Methodology
The followed methodology is schematically illustrated in Figure 2.13. The main steps are: data acquisition,
preprocessing, feature extraction, pattern recognition, and decision making. At the end of the analysis it should
be possible to make a decision as to the state of the structure.

The first stage is data acquisition which is concerned with the generation of vibration data. The data
acquisition is not part of this thesis, but the raw data of the Zwartewaterbrug as described above is used to
test the methodology.

The second stage is preprocessing and consist of two steps: band-pass filtering and similarity filtering.
The first step aims to increase the sensitivity of the algorithm to small structural changes while the second
step aims to remove the operational variability from the measurements.

The third stage is feature extraction. The purpose of this stage is to generate proper inputs for the ma-
chine learning algorithms, called features. A damage-sensitive feature is some quantity extracted from the
preprocessed data that indicates the presence (or not) of damage in a structure. This stage involves data
compression and data fusion (i.e. combining information from multiple sensors) in an effort to obtain low
dimensional feature vectors that are sensitive to small structural faults (e.g. added mass).

The next stage is the application of a machine learning algorithm that can decide the state of the struc-
ture based on the given feature vectors. Two types of algorithms are distinguished: a Support Vector Machine
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(SVM) classifier and a novelty detection method. The algorithm differ in the type of data that is used for train-
ing the diagnostic. The SVM classifier uses labelled training data from every class (supervised learning), while
the novelty detection uses only the data from the undamaged structure for training (unsupervised learning).
The diagnostic of the latter algorithm is restricted to the lowest levels of damage identification—that of dam-
age detection and possibly damage localization—while the former algorithm may progress to higher levels
such as damage quantification.

The final stage is the decision, which is a matter of considering the outputs of the algorithms and deciding
whether an alarm should be issued. In this case, the detection of the small added masses is the main goal.

Data acquisition
(Ch. 2)

Band pass filtering

Similarity filtering

Feature Extraction
(Sec. 4.3 and Ch. 5)

Feature selection

SVM classification

Decision making

Feature selection

Novelty detection

Decision making

Preprocessing
(Ch. 4)

Supervised learning
(Ch. 6)

Unsupervised learning
(Ch. 7)

Figure 2.13: Overview methodology





3
Theory: Similarity Filtering and Frequency

Domain Decomposition

3.1 Similarity Filtering
The aim of the thesis is to classify the different added masses based on acceleration data only. The features
used for classification are extracted from the response spectra. In order to get clear spectra from the acceler-
ation data, the data is preprocessed using a method called similarity filtering. The idea of similarity filtering
is, roughly speaking, to amplify the similarities in the measurements and to damp the differences between
the measurements. It is assumed that the dynamic properties of the structure do not change from one mea-
surement to another (i.e. the system is assumed time-invariant) so that the characteristics of the system are
amplified. On the other hand, the structure is excited by varying (unknown) traffic loads. The source of such
a load might be a motorcycle or a heavy truck, each of them producing a considerably different signal. These
differences are damped by the application of similarity filtering. The resulting signal is ideally a signal that
clearly shows the characteristic response of the system.

The method of similarity filtering was developed by Milosevic in his thesis [32] (there it was called prob-
abilistic filtering). The theory about similarity filtering presented in the next sections is largely based on the
work of Milosevic. Some additional aspects are considered, and new notations are introduced that are more
convenient to describe the method in its general sense.

3.1.1 Single-Input/Single-Output System

The methodology of similarity filtering is first explained for a Single-Input/Single-Output (SISO) system, also
known as as a Single-Degree-of-Freedom (SDOF) system. First, the considered system is introduced, followed
by an explanation of the method in both the time and frequency domain.

The considered system in this section is a linear time-invariant SDOF system with Impulse Response
Function (IRF) h(t ) and Frequency Response Function (FRF) H(ω). The meaning of these functions is dis-
cussed in Appendix A.3, but it is repeated here that both functions contain the same information about the
system, but in different domains. In fact, h(t ) and H(ω) form a Fourier pair. It is also emphasized that the pa-
rameters describing the system are constant (independent of time) as we assume a time-invariant system. For
a mechanical system (e.g. a bridge) this means that the masses, springs and dampers are not changing with
time. This is often a reasonable assumption during the time over which we measure, but over a long enough
time span, very few systems are time invariant. For example, the characteristics of a bridge can change due
to the changing temperature between day and night, or its characteristics can change (on a more long-term
span) due to aging or fatigue of the structure [3].

The system is subjected to a single (unknown) force f (t ) and the response is denoted as x(t ). The response
of the linear system is obtained as the convolution between the time history of the force and the impulse
response function

x(t ) = h(t )∗ f (t ) =
∫ ∞

−∞
h(τ) f (t −τ)dτ (3.1)

in which the lower limit is essentially zero because the system only responds to past inputs (causal system).

15
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Equivalently, the response of the system can be given in the frequency domain, which is obtain by the
Fourier transform of equation (3.1) and by virtue of the convolution theorem

X (ω) = H(ω)F (ω) (3.2)

where F (ω) denotes the Fourier transform of the input f (t ) and X (ω) the Fourier transform of the response
x(t ) (assuming these transforms exist). For similarity filtering we need the response of the system due to a
wide range of variable input forces. Therefore, equation (3.1) and (3.2) are slightly adapted to indicate the
different responses. Let

{
f (t )

} = {
f1(t ), f2(t ), . . .

}
and

{
x(t )

} = {
x1(t ), x2(t ), . . .

}
denote the set of forces and

corresponding system responses, respectively, where fk (t ) and xk (t ) denote the k-th time history in the set.
Then the time domain response, equation (3.1), becomes

xk (t ) = h(t )∗ fk (t ) (3.3)

in which the IRF h(t ) is constant as we assume a time-invariant system. Analogue to this, the response in the
frequency domain, equation (3.2), is reformulated. Note that the subscript k should not be confused with the
subscript used in case of multiple input/output, where it refers to the input or output location. In general,
the meaning of the subscript will be clear from the context.

Similarity filtering produces a new signal y(t ), also referred to as processed signal, which is obtained by succes-
sive convolution of multiple response time histories from the set

{
x(t )

}
. Mathematically this can be expressed

as

y(t ) = x1(t )∗x2(t )∗·· ·∗xn(t )

= (
h(t )∗ f1(t )

)∗ (
h(t )∗ f2(t )

)∗·· ·∗ (
h(t )∗ fn(t )

) (3.4)

where n denotes the number of signals involved, this number will be referred to as the order of similarity filter.
Note that the number of convolutions performed is one less than the order of similarity filtering. Introducing
the convolution operator∗n

k=1 for n-fold convolution, equation (3.4) can be reformulated as

y(t ) =
n∗

k=1
xk (t ) =

n∗
k=1

(
h(t )∗ fk (t )

)= h∗n(t )∗
(

n∗
k=1

fk (t )

)
(3.5)

where h∗n(t ) denotes the n-fold convolution of h(t ) with itself. The last equality in equation (3.5) follows
from the fact that the convolution operation is commutative and associative.

The resulting convolution in equation (3.5) does not have a very clear interpretation. Therefore the same
relation will be presented in the frequency domain. From the convolution theorem it follows that convolution
in the time domain is equivalent to multiplication in the frequency domain. Hence, the convolution opera-
tion in equation (3.5) becomes a multiplication operation in the frequency domain, which can be expressed
as

Y (ω) =
n∏

k=1
Xk (ω) =

n∏
k=1

H(ω)Fk (ω) = H(ω)n ·
n∏

k=1
Fk (ω) (3.6)

Note that the quantities in equation (3.6) are generally complex-valued, which can be written in terms of a
real-valued amplitude and associated phase angle as

Y (ω) = |Y (ω)|eiϕY (ω) (3.7)

where

|Y (ω)| = |H(ω)|n ·
n∏

k=1
|Fk (ω)| (3.8)

ϕY (ω) = n ·ϕH (ω)+
n∑

k=1
ϕFk (3.9)

Equation (3.8) and (3.9) are referred to as the amplitude spectrum and then phase spectrum, respectively. The
first term in equation (3.8) holds all information regarding the dynamical properties of the system whereas
the last term describes the “average” frequency content of the excitation. The term “average" is related to
the observation that if we take the n-th root of equation (3.6), we would obtain the geometric mean of the
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frequency response functions (which is just the FRF H(ω)) times the geometric mean of the forces. If the
frequency content of each force in the set

{
f (t )

}
is different, then the geometric mean of the frequency con-

tent will become more constant (i.e. differences in the spectrum are smoothen by averaging). This leads to
the idea of similarity filtering in which successive convolution of different excitation time histories results in
a white noise signal with constant intensity in the frequency domain. This idea is further elaborated in the
following.

White noise

Up to now the excitation f (t ) was undefined, but we will now assume that the product
∏n

k=1 Fk (ω) tends to a
constant intensity. In other words, we assume that multiple convolutions of variable (unknown) input time
signals tends to approximate white noise. White noise is a random signal whose correlation function is of the
form

Rw (τ) = E [w(t )w(t +τ)] =Cδ(τ) (3.10)

in which E [•] is the expectation operator and C is the intensity of the white noise process. The correlation
function implies that two samples of a white noise process are not correlated when they are taken at different
time instances; while the variance is infinite when two samples are taken at the same time instance. The
Power Spectral Density (PSD) of a white noise process equals

Sw (ω) =
∫ ∞

−∞
Rw (τ)e−iωτdτ=C

∫ ∞

−∞
δ(τ)e−iωτdτ=C (3.11)

This means that the PSD of a white noise process is real and constant, and has infinite bandwidth. This latter
property is not feasible for describing most physical processes. Therefore, it is usually assumed that the white
noise process has constant PSD over a finite frequency bandwidth. In order to apply the white noise concept
in the methodology of the similarity filtering we will establish the PSD of the processed signal.

The power spectral density function of a random signal x(t ) is defined as [2, p. 127]

Sxx (ω) = lim
T→∞

1

T
E

[
X (ω,T )X (ω,T )∗

]= lim
T→∞

1

T
E

[|X (ω,T )|2] (3.12)

where (•)∗ denotes the complex conjugate and X (ω,T ) represent the finite Fourier transform of x(t ) with
t ∈ [0,T ], which is defined as

X (ω,T ) =
∫ T

0
x(t )e−iωt dt (3.13)

This finite Fourier transform will exist for the (stationary) random data, whereas their infinite Fourier trans-
form would not exist, because the random signal theoretically persist forever. In reality, the acquired signals
are always finite hence the Fourier transform will exist. In fact, we can always compute the Discrete Fourier
Transform (DFT) of a discrete signal (random or not) but should take care of bias introduced by sampling.

Using equation (3.12), the PSD of the processed signal y(t ) after similarity filtering is given by (omitting
the limit for brevity)

Sy y (ω) = 1

T
E

[|Y (ω)|2]= 1

T
E

[
n∏

k=1
|Xk (ω)|2

]
(3.14)

where the last equality follows from the substitution of the relation for similarity filtering in the frequency
domain, equation (3.6). It is assumed that the response signals in the set

{
x(t )

}
are uncorrelated; that is,

E [xk (t )xl (t )] = E [xk (t )]E [xl (t )] for k 6= l . Consequently, the amplitude spectra of these signals are also un-
correlated. Hence, equation (3.14) can be written as

Sy y (ω) = 1

T

n∏
k=1

E
[|Xk (ω)|2] (3.15)

Let Sxx,k (ω) = E
[|Xk (ω)|2]/Tk denote the PSD of the k-th response signal with finite length Tk , then (3.15)

becomes

Sy y (ω) = c
n∏

k=1
Sxx,k (ω) (3.16)



18 3. Theory: Similarity Filtering and Frequency Domain Decomposition

where c is a scaling factor that depends on the individual length of the signals xk (t ) and the total length of the
processed signal. Let Tk denote the length of xk (t ) and T denote the length of the processed signal y(t ), then

c = 1

T

n∏
k=1

Tk (3.17)

The PSD of a processed signal is thus simply proportional to the product of the power spectra of the response
signals used for similarity filtering. The latter spectra can be written in terms of the frequency response func-
tion and the random inputs as

Sxx,k (ω) = |H(ω)|2S f f ,k (ω) (3.18)

where S f f ,k (ω) denotes the PSD of the random input signal fk (t ), which is defined according to equation
(3.12) as (again omitting the limit for brevity)

S f f ,k (ω) = 1

Tk
E

[|Fk (ω)|2] (3.19)

Substituting equation (3.18) into equation (3.16) yields the PSD of a processed signal in terms of the frequency
response function and the PSDs of the random inputs

Sy y (ω) = c
n∏

k=1
|H(ω)|2S f f ,k (ω) = c|H(ω)|2n ·

n∏
k=1

S f f ,k (ω) (3.20)

where the last equality follows from the assumption that the system is time invariant (i.e. the frequency
response function is constant).

As mentioned before, it is assumed that by successive convolution of the random input signals in the set{
f (t )

}
, the resulting signal tends to approximate a white noise signal w(t ), that is

n∗
k=1

fk (t ) = f1(t )∗ f2(t )∗·· ·∗ fn(t ) ≈ w(t )

which implies that the product of the input spectra in equation (3.20) becomes approximately constant. Con-
sequently, the PSD of the processed signal becomes proportional to the amplitude spectrum of the frequency
response function raised to the order 2n

Sy y (ω) = c|H(ω)|2n ·
n∏

k=1
S f f ,k (ω)︸ ︷︷ ︸

constant

∝|H(ω)|2n (3.21)

which illustrates the fundamental idea of similarity filtering; that is, by multiple convolutions of response
measurements the system characteristics are amplified and the variations from the random excitation are re-
moved. It must be noted that this is only true when the following two assumptions are satisfied: 1) the system
is time invariant, and 2) the n-fold convolution of the input signals in the set

{
f (t )

}
tends to approximate a

white noise signal (at least in some sense). The relative short time window in the application of the similarity
filtering ensures that the first assumption is satisfied. The second assumption is often more difficult to vali-
date, because the excitation is not always directly measured. In general, the excitation can be considered as
random signals, which are characterized by multivariate density functions. The random nature of the excita-
tion makes a general proof of the assumption difficult. The white noise assumption was validated with some
simple numerical examples by Milosevic in his thesis [32].

Ensemble averaging

The similarity filtering can be related to a method that is commonly applied to estimate the PSD of a random
signal. To illustrate this, we take the n-th root of equation (3.16) and omit the constant c for the moment,
which yields (

Sy y (ω)
) 1

n =
(

n∏
k=1

Sxx,k (ω)

) 1
n

(3.22)

which is essentially a geometric mean of the power spectra of the response signals in the set
{

x(t )
}
. The

resulting spectrum can be seen as an estimate of the power spectrum of the random signal x(t ). So, similarity
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filtering yields some kind of average spectrum, which is very similar to the averaging methods that are often
used in practice for estimating the power spectrum of a random signal.

In practice, the method of averaging provides a way to reduce the variance of an estimate in exchange for a
reduction of frequency resolution. One of the simplest among these methods is Bartlett’s method (also known
as the method of averaged periodograms). In this method the random signal x(t ) is split into n segments,
each of length Tk (thereby reducing the frequency resolution), and for each segment an estimate of the power
spectrum is computed as

Sxx,k (ω) = 1

Tk
|Xk (ω)|2 (3.23)

which is also referred to a periodogram. A final estimate of the power spectrum of the random signal x(t ) is
defined as the arithmetic mean of the periodograms

Ŝxx (ω) = 1

n

n∑
k=1

Sxx,k (ω) (3.24)

The averaging reduces the variance, compared to a single estimate. Note that the periodogram in equation
(3.23) can be obtained from the definition of the PSD (3.12) by dropping the limit and the expectation opera-
tor.

The estimates in equations (3.22) and (3.24) are very similar. The former uses the geometric mean to
obtain an estimate of the power spectrum of the random signal x(t ), while the latter uses the arithmetic
mean. Based on this observation we can state that similarity filtering is similar to Bartlett’s method in which
the arithmetic ensemble mean is replaced by the geometric ensemble mean. Note however that the two are
not exactly equivalent because we have omitted the constant in equation (3.22).

3.1.2 Multiple-Input/Single-Output System

This section is concerned with the generalization of the fundamental idea of similarity filtering, as discussed
in the previous section, to Multi-Degree-of-Freedom (MDOF) systems. MDOF systems are defined such that
each response is caused by a linear combination of all the inputs, and there are no causal relations between
any of the responses (i.e. one response does not have to be known to determine the other responses). The
MDOF system can therefore be seen as a number of parallel Multiple-Input/Single-Output (MISO) systems.
Since there are no causal relations between the responses, similarity filtering is applied to the response from
each Degree-of-Freedom (DOF) separately. This means that response signals from different DOFs are not
combined in the similarity filtering method. We can thus concentrate on looking at the MISO system, at least
from a conceptual point of view. It is noted that computationally it may be more efficient to compute the
entire MDOF system at once, but the understanding of the method is best illustrated by a MISO system. We
will start with the introduction of matrix formulas for MDOF systems, from which the formulas for MISO
systems are readily obtained.

Let x(t ) ∈Rp×1 be a column vector containing p response signals, and f(t ) ∈Rq×1 be a column vector contain-
ing q input signals

x(t ) =


x1(t )
x2(t )

...
xp (t )

 , f(t ) =


f1(t )
f2(t )

...
fq (t )

 (3.25)

Then, the response vector x(t ) is the result of convolution between the input vector f(t ) and an impulse re-
sponse matrix hx f (t ) ∈Rp×q , which in matrix form is formulated as

x(t ) = hx f (t )∗ f(t ) =
∫ ∞

−∞
hx f (τ)f(t −τ)dτ (3.26)

in which the convolution operates analogue to a matrix-vector multiplication. The impulse response matrix
hx f (t ) has the following form

hx f (t ) =


h11(t ) h12(t ) . . . h1q (t )
h21(t ) h22(t ) . . . h2q (t )

...
...

. . .
...

hp1(t ) hp2(t ) . . . hpq (t )

 (3.27)
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in which the element hi j (t ) is referred to as an impulse response function, which is the response at DOF i due
to an impulse loading at DOF j and zero loading at all other DOFs. We will often drop the time variable t for
brevity. As already mentioned we will concentrate on looking at a single response of the system, which will
be denoted by x j (t ) where the index j refers to a specific DOF; for example, this might be a sensor measuring
the vertical acceleration at a specific location of a structure. From equation (3.26) it follows that the response
of DOF j can be expressed as

x j (t ) = h j∗(t )∗ f(t ) =
q∑

l=1
h j l (t )∗ fl (t ) for j = 1, . . . , p (3.28)

where the row vector h j∗(t ) ∈R1×q denotes the j -th row of the impulse response matrix.

Let X(ω) ∈ Cp×1 be a column vector representing the Fourier transform of the response signals X j (ω) =
F

{
x j (t )

}
, j = 1, . . . , p, and F(ω) ∈ Cq×1 be a column vector representing the Fourier transform of the input

signals F j (ω) =F
{

f j (t )
}
, j = 1, . . . , q ; that is

X(ω) =


X1(ω)
X2(ω)

...
Xp (ω)

 , F(ω) =


F1(ω)
F2(ω)

...
Fq (ω)

 (3.29)

By virtue of the convolution theorem, equation (3.26) is transformed to the frequency domain

X(ω) = Hx f (ω)F(ω) (3.30)

in which Hx f (ω) ∈Cp×q is the frequency response matrix defined as

Hx f (ω) =


H11(ω) H12(ω) . . . H1q (ω)
H21(ω) H22(ω) . . . H2q (ω)

...
...

. . .
...

Hp1(ω) Hp2(ω) . . . Hpq (ω)

 (3.31)

The element Hi j (ω) is referred to as a frequency response function which is the Fourier transform of the
impulse response function hi j (t ). The frequency dependence will often be omitted for brevity. The frequency
response of DOF j will be denoted as

X j (ω) = H j∗(ω)F(ω) =
q∑

l=1
H j l (ω)Fl (ω) for j = 1, . . . , p (3.32)

where the row vector H j∗(ω) ∈ C1×q denotes the j -th row of the frequency response matrix. Notice that the
single response is caused by a linear combination of all inputs, weighted by the respective elements in the
frequency response matrix, and that this response does not cause another response (i.e. no causal relations
between any of the responses).

As for the SDOF system, we need the response of the system due to variable input forces, the latter being
distributed over multiple DOFs. The set of forces is denoted by

{
f(t )

} = {
f1(t ), f2(t ), . . .

}
and the set of corre-

sponding responses at DOF j is denoted by
{

x j (t )
} = {

x j ,1(t ), x j ,2(t ), . . .
}
. The different signals are indicated

with an additional index k, which is separated by a comma from the index that refers to the input or output
DOF. For example, equation (3.28) for the k-th signal now becomes

x j ,k (t ) = h j∗(t )∗ fk (t ) =
q∑

l=1
h j l (t )∗ fl ,k (t ) for j = 1, . . . , p (3.33)

Analogue to this, the response in the frequency domain can be reformulated. It must be noted that the el-
ements of the impulse response matrix and frequency response matrix do not change from one response to
the other, as we assume a time-invariant system, and thus the index k is omitted.
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Let y j (t ) now denote a processed signal obtained by applying n-th order similarity filtering to the set of
responses

{
x j ,k (t ) : k = 1, . . . ,n

}
from DOF j . This signal can be expressed as follows, where the time depen-

dence is omitted for brevity

y j (t ) = x j ,1 ∗x j ,2 ∗·· ·∗x j ,n

=
(

q∑
l1=1

h j l1 ∗ fl1,1

)
∗

(
q∑

l2=1
h j l2 ∗ fl2,2

)
∗·· ·∗

(
q∑

ln=1
h j ln ∗ fln ,n

)

=
q∑

l1=1

q∑
l2=1

· · ·
q∑

ln=1

(
h j l1 ∗ fl1,1

)
∗

(
h j l2 ∗ fl2,2

)
∗·· ·∗

(
h j ln ∗ fln ,n

)
=

q∑
l1=1

q∑
l2=1

· · ·
q∑

ln=1

(
h j l1 ∗h j l2 ∗·· ·∗h j ln

)
∗

(
fl1,1 ∗ fl2,2 ∗·· ·∗ fln ,n

)
(3.34)

By virtue of the convolution theorem, equation (3.34) can be transformed to the frequency domain; that
is, convolution in the time domain is equivalent to multiplication in the frequency domain. Letting Y j (ω)
denote the Fourier transform of y j (t ) and omitting the frequency dependence for brevity, the transformation
of equation (3.34) yields

Y j (ω) = X j ,1 ·X j ,2 · · ·X j ,n

=
(

q∑
l1=1

H j l1 Fl1,1

)
·
(

q∑
l2=1

H j l2 Fl2,2

)
· · ·

(
q∑

ln=1
H j ln Fln ,n

)

=
q∑

l1=1

q∑
l2=1

· · ·
q∑

ln=1

(
H j l1 Fl1,1

)
·
(
H j l2 Fl2,2

)
· · ·

(
H j ln Fln ,n

)
=

q∑
l1=1

q∑
l2=1

· · ·
q∑

ln=1

(
H j l1 H j l2 · · ·H j ln

)
·
(
Fl1,1Fl2,2 · · ·Fln ,n

)
(3.35)

Equation (3.34) and (3.35) show that it is possible to isolate the excitation term in the same way as for the
SDOF system, although the notation is more complex than before. In fact, from the last expression in equa-
tion (3.35) we observe that it is possible to isolate two n-dimensional arrays with qn components. The com-
ponents of the first array are the products H j l1 H j l2 · · ·H j ln and the components of the second array are the
products Fl1,1Fl2,2 · · ·Fln ,n where the indices l1, l2, . . . , ln range from 1 to q . The frequency response Y j (ω) is
then the sum of the products of the corresponding components in the two arrays. To illustrate this, equation
(3.35) is expanded for q = 2 and n = 2 (i.e. the system is excited at two DOFs and second order similarity
filtering is considered)

Y2, j (ω) =
2∑

l1=1

2∑
l2=1

(
H j l1 H j l2

)
·
(
Fl1,1Fl2,2

)
=

(
H j 1H j 1

)
·
(
F1,1F1,2

)
+

(
H j 1H j 2

)
·
(
F1,1F2,2

)
+

(
H j 2H j 1

)
·
(
F2,1F1,2

)
+

(
H j 2H j 2

)
·
(
F2,1F2,2

) (3.36)

where the subscript 2 in the left hand side indicates the corresponding order of similarity filtering; in general
this subscript will be omitted. The equation is reformulated as the following matrix equation

Y2, j (ω) = H2, j (ω) : F2(ω) (3.37)

where the two-dimensional arrays (matrices) are defined as

H2, j (ω) =
[

H j 1H j 1 H j 1H j 2

H j 2H j 1 H j 2H j 2

]
2×2

, F2(ω) =
[

F1,1F1,2 F1,1F2,2

F2,1F1,2 F2,1F2,2

]
2×2

(3.38)

The “double dot” product (denoted by :) in equation (3.37) implies the summation of the products of the
corresponding components of two matrices having the same size (analogue to the dot product for vectors).
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Increasing the order of similarity filtering leads to higher-order tensors that takes the form of multi-
dimensional arrays. Third order similarity filtering yields a third order tensor equation that implies the fol-
lowing summation (expanding equation (3.35) with n = 3)

Y3, j (ω) =
2∑

l1=1

2∑
l2=1

2∑
l3=1

(
H j l1 H j l2 H j l3

)
·
(
Fl1,1Fl2,2Fl3,3

)
=

(
H j 1H j 1H j 1

)
·
(
F1,1F1,2F1,3

)
+

(
H j 2H j 1H j 1

)
·
(
F2,1F1,2F1,3

)
+

(
H j 1H j 2H j 1

)
·
(
F1,1F2,2F1,3

)
+

(
H j 2H j 2H j 1

)
·
(
F2,1F2,2F1,3

)
+

(
H j 1H j 1H j 2

)
·
(
F1,1F1,2F2,3

)
+

(
H j 2H j 1H j 2

)
·
(
F2,1F1,2F2,3

)
+

(
H j 1H j 2H j 2

)
·
(
F1,1F2,2F2,3

)
+

(
H j 2H j 2H j 2

)
·
(
F2,1F2,2F2,3

)
(3.39)

which can be reformulated as the following tensor equation, similar to equation (3.37)

Y3, j (ω) = H3, j (ω)•F3(ω) (3.40)

where the third-order tensors (three-dimensional arrays) H3, j (ω) and F3(ω) are defined as

H3, j (ω) =
[(

H j 1H j 1H j 1 H j 1H j 2H j 1

H j 2H j 1H j 1 H j 2H j 2H j 1

)
,

(
H j 1H j 1H j 2 H j 1H j 2H j 2

H j 2H j 1H j 2 H j 2H j 2H j 2

)]
2×2×2

(3.41)

F3(ω) =
[(

F1,1F1,2F1,3 F1,1F2,2F1,3

F2,1F1,2F1,3 F2,1F2,2F1,3

)
,

(
F1,1F1,2F2,3 F1,1F2,2F2,3

F2,1F1,2F2,3 F2,1F2,2F2,3

)]
2×2×2

(3.42)

The “big dot” product (denoted by •) generalizes the dot product for vectors to higher-order tensors. For
three-dimensional arrays this product must be interpreted as a “triple dot” product. Observe that the dimen-
sion of the arrays is equal to the order of similarity filtering while the shape is determined by the number of
inputs.

The notation with multidimensional arrays can be extended to the general case of q input DOFs and
order n similarity filtering (i.e. the convolution of n response measurements). However, this leads to a rather
complex equation that is not easy to handle in further computations. Therefore, the Kronecker notation
will be introduced in which the components of a potentially multi-dimensional array are ordered in a block
matrix, which enables one to use the more convenient matrix notation.

Generalization using Kronecker notation

One difficulty in describing the similarity filtering for MDOF systems is the choice of an appropriate nota-
tion. We found that for single-input systems, the expressions describing the method of similarity filtering
simply contain scalar quantities. For multiple-input systems, we found a matrix equation when the order of
similarity filtering is n = 2; this was illustrated for the case that the system is excited at two DOFs resulting in
2×2 matrices. However it can be shown that this holds for any number of inputs, resulting in q ×q matrices.
Increasing the order of the similarity filtering leads to multi-dimensional arrays. These arrays take the form
of higher-order tensors and we could refer to its components using appropriate indices. However, the algebra
for higher-order tensors is rather abstract and will be avoided. Kronecker algebra is used instead for which
the basic concepts are presented in Appendix B.2. The Kronecker product is denoted by ⊗ and operates on
two matrices of arbitrary size resulting in a block matrix.

We will now rewrite the result in equation (3.39) using the Kronecker notation to illustrate its applica-
tion. Using the matrix formulation from equation (3.32), the third-order similarity filtering in the frequency
domain is expressed as

Y3, j (ω) = X j ,1 ·X j ,2 ·X j ,3 =
(
H j∗F1

)
·
(
H j∗F2

)
·
(
H j∗F3

)
(3.43)

where H j∗ is a row vector and Fk , k = 1,2,3 is a column vector, both having a length of q = 2 (corresponding
to two different input DOFs). Notice that the last term in equation (3.43) is a product of three vector products
which, according to Kronecker’s mixed-product property for vectors (B.14), can be rewritten as

Y3, j (ω) =
(
H j∗⊗H j∗⊗H j∗

)
·
(
F1 ⊗F2 ⊗F3

)
(3.44)
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The Kronecker products of the vectors between the brackets are again vectors with a length of 23, which
are referred to as block vectors. Lets introduce new variables for the two block vectors that results from the
Kronecker products between the brackets

Ĥ3, j (ω) = H j∗⊗H j∗⊗H j∗ (3.45a)

F̂3(ω) = F1 ⊗F2 ⊗F3 (3.45b)

where the block vectors Ĥ3, j (ω) and F̂3(ω) have dimensions 1×8 and 8×1, respectively. The subscript 3 in the
notation of a block vector refers to the order of similarity filtering and must not be confused with the indices
used to refer to the components of a matrix. It is noted that Ĥ3, j (ω) contains every component of the multi-
dimensional arrays that was defined in (3.41), and F̂3(ω) contains every component of the multi-dimensional
arrays that was defined in (3.42). The only difference is that the components are now arranged in vectors of
length 23 instead of in arrays of dimension 2×2×2. Using the previously defined variables for the Kronecker
products, equation (3.44) can be reformulated as

Y3, j (ω) = Ĥ3, j (ω)F̂3(ω) (3.46)

which shows that the frequency response of a processed signal can be expressed in two terms; one related to
the system characteristics and one related to the excitation of the system. Hence, it is possible to isolate the
excitation term in the same way as we did for the SDOF system.

The previous can be extended to the general case of n-th order similarity filtering for a system with q
inputs at different DOFs, leading to the following definition for the frequency response of the processed signal

Y j (ω) = Ĥn, j (ω)F̂n(ω) (3.47)

where the block vectors Ĥn, j (ω) ∈C1×qn
and F̂n(ω) ∈Cqn×1 are formed from all possible combinations of the

components in the vectors from different observations (indicated with the subscript k); that is, the compo-
nents of the block vectors have the form

H j l1 (ω) ·H j l2 (ω) · · ·H j ln (ω)

and
Fl1,1(ω) ·Fl2,2(ω) · · ·Fln ,n(ω)

respectively, where all possible combinations of the indices l1, l2, . . . , ln ranging from 1 to q are included. The
length of the block vectors increases thus with the order of similarity filtering n and the number of input
DOFs q ; that is the vectors consist of qn components. The block vectors are in general defined as

Ĥn, j (ω) = H j∗⊗H j∗⊗·· ·⊗H j∗ = H[n]
j∗ (3.48)

F̂n(ω) = F1 ⊗F2 ⊗·· ·⊗Fn =
n⊗

k=1
Fk (3.49)

where H[n]
j∗ denotes the n-fold Kronecker product of the row vector H j∗ with itself, this product is also known

as the n-th Kronecker power. The operator
⊗n

k=1 is used to indicate the n-fold Kronecker product of matrices
or vectors that are not constant. Hence, the definition in equation (3.47) can alternatively be expressed as

Y j (ω) = H[n]
j∗ (ω)

n⊗
k=1

Fk (ω) (3.50)

which is very similar to equation (3.6); the result of similarity filtering in the frequency domain in case of a
SDOF system. In fact, if q = 1 (i.e. only one input DOF) the Kronecker products of vectors reduce to multipli-
cations of scalar quantities.

The remarkable result in equation (3.50) for a MDOF system is very similar to the expression for Y (ω) in
equation (3.6) for a SDOF system, showing the correspondence of similarity filtering between the two sys-
tems. Moreover, the result for Y j (ω) in equation (3.47) is very similar to equation (3.32) for X j (ω). The only
difference is that the former involves block vectors resulting from the Kronecker product of multiple obser-
vations. Note that for q = 1 the result in equation (3.50) reduces to the result for a SDOF system; that is, the
vectors become scalars and the Kronecker product becomes a normal multiplication.

Finally, by considering a different row of the frequency response matrix (i.e. by changing the index j ) pro-
cessed signals for all p output locations are obtained. Notice that the excitation block vector (3.49) remains
the same for all output locations.
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3.1.3 PSD of Processed Signal

Similarity filtering will be used as a preprocessing step before the actual damage detection, to enhance the
changes in structural properties caused by damage. In the following chapters, we will use the principal values
of the spectral density matrix to detect these changes and thus potential faults in the structure. Therefore, it is
interesting at this point to see what the spectral density matrix of a processed signal will look like. Moreover,
the main assumption for similarity filtering relates to the input spectra, as we will assume that these become
approximately constant for a sufficient high order.

The PSD function of a random signal x(t ) is already defined in equation (3.12). Similarly, the Cross Spec-
tral Density (CSD) function of two random signals x(t ) and f (t ) is defined as

Sx f (ω) = lim
T→∞

1

T
E

[
X (ω)F (ω)∗

]
(3.51)

where E [•] is the expectation operator, and X (ω) and F (ω) are the finite Fourier transforms as defined in
equation (3.13). For multiple-input/multiple-output systems, the input and output processes could be col-
lected in vectors f(t ) and x(t ), respectively. The power spectral density matrix and the cross spectral density
matrix are then defined as

Sxx (ω) = lim
T→∞

1

T
E

[
X(ω)X(ω)H]

(3.52)

S f f (ω) = lim
T→∞

1

T
E

[
F(ω)F(ω)H]

(3.53)

Sx f (ω) = lim
T→∞

1

T
E

[
X(ω)F(ω)H]

(3.54)

where (•)H denotes the complex conjugate transpose. Then from the relation between input and output
X(ω) = H(ω)F(ω) we can derive the following relations between the spectral density matrices and the fre-
quency response matrix

Sxx (ω) = H(ω)S f f (ω)H(ω)H (3.55)

Sx f (ω) = H(ω)S f f (ω) (3.56)

The cross spectral density function between the response of DOF j and the response of DOF l is defined as

S j l (ω) = H j∗(ω)S f f (ω)Hl∗(ω)H (3.57)

where the row vectors H j∗(ω) and Hl∗(ω) correspond to the j -th and the l -th row of the frequency response
matrix, respectively.

Now, the spectral density matrix Sy y (ω) for the processed signals in the vector y(t ) will be derived. For
this, it is sufficient to consider the CSD for two processed signals y j (t ) and yl (t ) for two arbitrary DOFs j
and l . The PSD of the processed signal y j (t ) is then obtained for the particular case that l = j (i.e. diagonal
elements of the matrix). The two processed signals are obtained by similarity filtering using the response
signals from the corresponding DOF; that is, the set

{
x j ,k (t ) : k = 1, . . . ,n

}
is used to compute y j (t ) and the set{

xl ,k (t ) : k = 1, . . . ,n
}

is used to compute yl (t ). The CSD for two processed signals y j (t ) and yl (t ) is defined as

Sy j yl (ω) = 1

T
E

[
Y j (ω)Yl (ω)∗

]
(3.58)

where Y j (ω) and Yl (ω) are the the Fourier transforms of the processed signals, which can be expressed as the
product of the Fourier transforms of the response signals, as shown in the first expression of equation (3.35).
Hence, the CSD in equation (3.58) can be expanded as

Sy j yl (ω) = 1

T
E

[(
X j ,1(ω)X j ,2(ω) · · ·X j ,n(ω)

) · (Xl ,1(ω)∗Xl ,2(ω)∗ · · ·Xl ,n(ω)∗
)]

= 1

T
E

[(
X j ,1(ω)Xl ,1(ω)∗

) · (X j ,2(ω)Xl ,2(ω)∗
) · · ·(X j ,n(ω)Xl ,n(ω)∗

)]
= 1

T
E

[
X j ,1(ω)Xl ,1(ω)∗

] ·E
[

X j ,2(ω)Xl ,2(ω)∗
] · · ·E[

X j ,n(ω)Xl ,n(ω)∗
] (3.59)
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The last equality implies that the response signals from different time moments are uncorrelated so that the
expectation of the products is the product of the expectations. The cross spectrum of two response signals
x j ,k (t ) and xl ,k (t ) both with length Tk is defined as

Sx j xl ,k (ω) = 1

Tk
E

[
X j ,k (ω)Xl ,k (ω)∗

]
(3.60)

Hence, the last expression in equation (3.59) can be written as

Sy j yl (ω) = c ·Sx j xl ,1(ω) ·Sx j xl ,2(ω) · · ·Sx j xl ,n(ω) = c
n∏

k=1
Sx j xl ,k (ω) (3.61)

where c is a scaling factor that depends on the length Tk of the individual response signals and the length
T of the processed signals. This factor was earlier defined in equation (3.17). The cross spectrum of two
processed signals is thus proportional to the product of the cross spectra of the response signals that are used
for similarity filtering. The same holds for the power spectrum of a processed signal which is obtained by
setting l = j . Notice that this was also found for the SDOF system considered previously.

The relation between the spectra of the processed signals and the spectra of the forces that excite the
structure can be found upon substitution of equation (3.47) into equation (3.58), which yields

Sy j yl (ω) = 1

T
E

[
Y j (ω)Yl (ω)H]= 1

T
E

[
Ĥn, j (ω)F̂n(ω)F̂n(ω)HĤn,l (ω)H]

(3.62)

Substituting the definition of the block vector F̂n(ω) (3.49) into the last equation and omitting the frequency
dependence for brevity yields

Sy j yl (ω) = Ĥn, j
1

T
E

[
(F1 ⊗F2 ⊗·· ·⊗Fn) · (F1 ⊗F2 ⊗·· ·⊗Fn)H]

Ĥ
H
n,l

= Ĥn, j
1

T
E

[
F1F1

H ⊗F2F2
H ⊗·· ·⊗Fn FH

n

]
Ĥ

H
n,l

= Ĥn, j
1

T
E

[
F1F1

H]⊗E
[
F2F2

H]⊗·· ·⊗E
[
Fn FH

n

]
Ĥ

H
n,l

(3.63)

where the second equality follows from the mixed-product property of the Kronecker product (B.14), which is
used to change the order of the vector products. The last equality implies that the input signals from different
time moments are uncorrelated so that the expectation of the Kronecker product is the Kronecker product
of the expectations. Using the definition of the spectral density matrix for the input vectors fk (t ), k = 1, . . . ,n
(3.53), the last equation can be rewritten as

Sy j yl (ω) = c · Ĥn, j
(
S f f ,1 ⊗S f f ,2 ⊗·· ·⊗S f f ,n

)
Ĥ

H
n,l (3.64)

where the scaling factor c is given by equation (3.17). The result in equation (3.64) is similar to the relation
in equation (3.57) and shows that the CSD of two processed signals can be written in terms of the spectral
density matrices associated with the force vectors of the different observations and two block vectors con-
structed from the rows of the frequency response matrix. Again, it is assumed that by successive convolution
of multiple response signals, the part related to the random excitation tends to approximate white noise. Con-
sequently, the Kronecker product in between the brackets in equation (3.64) tend to approximate a constant
matrix C ∈Cqn×qn

; that is
n⊗

k=1
S f f ,k (ω) = (

S f f ,1 ⊗S f f ,2 ⊗·· ·⊗S f f ,n
)≈ C (3.65)

Consequently, the cross-spectrum in equation (3.64) becomes

Sy j yl (ω) = c · Ĥn, j
(
S f f ,1 ⊗S f f ,2 ⊗·· ·⊗S f f ,n

)︸ ︷︷ ︸
constant

Ĥ
H
n,l ≈ Ĥn, j (ω)CĤn,l (ω)H (3.66)

The result obtained here is not so straightforward as the result that was found in equation (3.21) for the SDOF
system, but the concept is the same; the spectrum of the processed signal becomes “proportional” to the
FRFs. Although for the SDOF system there is only one FRF characterizing the system, in the present case
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there are multiple FRFs, one for each input-output pair (e.g. if two outputs are considered at DOF j and l and
q inputs, there are 2q different FRFs given by H j k (ω), Hl k (ω), k = 1, . . . , q).

To illustrate how the resulting spectrum will look like, equation (3.64) is evaluated for the case that the system
has two inputs and the similarity filtering is performed with two different observations; that is q = 2 and n = 2

Sy j yl (ω) = Ĥ2, j
(
S f f ,1 ⊗S f f ,2

)
Ĥ

H
2,l (3.67)

which applies to any combination of indices j and l , being the DOFs where the responses are measured. The
vectors Ĥ2, j and Ĥ2,l are given by equation (3.48), and for DOF j reads as

Ĥ2, j (ω) = H j∗⊗H j∗ = [
H j 1H j 1 H j 1H j 2 H j 2H j 1 H j 2H j 2

]
(3.68)

which consists of the elements of the j -th row in the FRF matrix (omitting the frequency dependency). The
spectral density matrix S f f ,k can be estimated as

Ŝ f f ,k (ω) = 1

T
Fk FH

k = 1

T

[
F1,k F∗

1,k F1,k F∗
2,k

F2,k F∗
1,k F2,k F∗

2,k

]
(3.69)

which is simply obtained by omitting the limit and expectation operator in the definition of the spectral den-
sity matrix (3.53). Subsequently, expanding the Kronecker product in equation (3.67) yields the following 4×4
matrix

Ŝ f f ,1 ⊗ Ŝ f f ,2 =
1

T

[
F1,1F∗

1,1Ŝ f f ,2 F1,1F∗
2,1Ŝ f f ,2

F2,1F∗
1,1Ŝ f f ,2 F2,1F∗

2,1Ŝ f f ,2

]
(3.70)

The elements in this matrix are composed of different combinations of the Fourier transforms (and their
complex conjugate) of the forces from different DOFs and from distinct observations, indicated by the two
indices. The number of combinations (and thus the size of the matrix) increases for increasing order of sim-
ilarity filtering. In the general case where the number of inputs is q and the order of similarity filtering is n,
the matrix has dimensions qn × qn . The fundamental idea of similarity filtering is that the elements in the
latter matrix become constant.

3.1.4 Practical Matters: Segments

So far we have assumed time-continuous signals of infinite length, hence the limits in the convolution inte-
grals are infinite. However, in practice we have finite measurements and thus the convolution integral can
only be evaluated over a finite time interval. Suppose we have measured the response of a structure over a
certain period of time, and repeated this measurement nm times. The response measurements are collected
in a set denoted by Z = {

uk (t ,Tk ) : k = 1,2, . . . ,nm
}
, where Tk denotes the measurement window of the k-th

response signal. The response signals in the set are subsequently processed with similarity filtering to filter
out the operational variability. The method of similarity filtering is based on successive convolution of the
response signals, and the basic formation of n-th order similarity filtering can be written as

y(t ,T ) = u1(t ,T1)∗u2(t ,T2)∗·· ·∗un(t ,Tn) (3.71)

where y(t ,T ) denotes the processed signal of length T . Notice that the measurement window Tk might vary
between different measurement and thus the input signals in equation (3.71) might have different length.
Although this is not a problem for the convolution operation, the operation will be computationally very
expensive when the measurement window is very long. Therefore, it is chosen to split the measurement into
consecutive segments of Ts seconds (with Ts < Tk ) and perform the similarity filtering using these smaller
time segments. This means that the signals in the set of response measurements, Z , are split into a number
of segments, each with length Ts seconds. Assuming that each measurement can be split into ns segments of
Ts seconds, a new set of signals is obtained denoted by S = {

xk (t ,Ts ) : k = 1,2, . . . ,ns ·nm
}

and equation (3.71)
becomes

y(t ,T ) = x1(t ,Ts )∗x2(t ,Ts )∗·· ·∗xn(t ,Ts ) (3.72)

The question now is, what should be the length of the segments? To answer this question three aspects are
considered:

1. the computational cost of similarity filtering;
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2. the time scale on which similarity filtering operates;

3. the expected natural frequencies of the structure.

The first aspect is merely related to the amount of data that is necessary to produce one processed signal
y(t ,T ). From equation (3.72) it follows that for n-th order similarity filtering, n segments of Ts seconds are
used meaning that for one processed signal T = n ·Ts seconds of data is required. So, longer segments means
that there is more data needed for processing. In fact, the amount of data also depends on the number of
segments (i.e. the order of similarity filtering). Hence, from this point of view it makes more sense to choose
the length of the segments in combination with the order of similarity filtering. Although, the discussion here
is limited to the choice of a suitable length of the segments, it is emphasized that the final selection of the
parameters n and Ts will be based on an analysis of the combination of both parameters. The analysis that is
performed to select suitable parameters for the data considered in this thesis will be discussed in Chapter 4.

Recall that the purpose of similarity filtering is, loosely speaking, to amplify the similarities in the data and
at the same time damp the differences in the data to improve the performance of damage detection. For the
bridge under consideration, it is assumed that the differences are primarily related to variations in traffic load
(operational variability), and that the similarities are related to the underlying system, which is assumed to be
linear and time-invariant (see theory). The latter assumption is often reasonable during a short time window,
but over a longer time span, very few real systems are time-invariant. The characteristics of the bridge, for
example, can change under varying environmental conditions such as temperature. Hence, we must ensure
that the data of a processed signal spans over a short enough time window so that the system can be con-
sidered time-invariant, and at the same time, the operational conditions will change from one time segment
to another. In general, the time scale on which the characteristics of the system change due to changing en-
vironmental conditions are much larger than the time scale of the operational variability. For example, the
passage of a vehicle over the bridge segment with sensors takes less than a second, while the change of envi-
ronmental conditions (and thus the system properties) can take minutes to an hour; temperature changes in
less than a second are rarely the case. Therefore, it is concluded that the length of a time segment Ts can best
be chosen in the order of magnitude of seconds.

The smaller the segments, the less data is required and the less expensive is the computational cost to pro-
cess one signal according to equation (3.72). However, the length of the signals must not be chosen too short,
which brings us to the third aspect: the expected natural frequencies of the structure. The frequency compo-
nents of interest must be well represented in a time segment; that is, the time segment must properly captures
the dynamic behavior of the system, and thus a sufficient number of cycles of the lowest frequency compo-
nent of interest must be included. Moreover, one should take care of the following, the length of the segments
governs the frequency resolution of the processed signal and the ability to distinguish between closely spaced
modal frequencies. In fact, the successive convolutions performed in similarity filtering “smoothen” the Fast
Fourier Transform (FFT) of a signal. When very short segments are used, then a large amount of smoothing
is applied and closely-spaced frequency components are possibly merged into one single peak and can no
longer be distinguished from each other.

This is illustrated using the synthetic signal shown in Figure 3.1, which has two dominant frequency com-
ponents at 5.0 Hz and 5.1 Hz and a smaller frequency component at 0.5 Hz. The signal has a length of 100
seconds and is sampled with a sample rate of 100 Hz resulting in N = 10000 samples. The amplitude spectrum
shown in Figure 3.1b is computed with a N -point FFT using all samples, resulting in a frequency resolution
of 0.01 Hz. To separate the two closely-spaced components, the frequency resolution should be at least 0.1
Hz, which means that we should use a time window of at least 10 seconds (i.e. 1000 samples) in the FFT.
The signal will be split into a number of segments, which are then convolved with each other (as in similarity
filtering). Two cases are considered:

1. The signal is split into 10 segments of 10 s length (i.e. 1000 samples per segment), yielding a frequency
resolution of 0.1 Hz.

2. The signal is split into 20 segments of 5 s length (i.e. 500 samples per segment), yielding a frequency
resolution of 0.2 Hz.

The intermediate results after 1, 2, 3, 8 and 9 convolutions are shown in Figures 3.2a and 3.2b for the first and
second case, respectively. From the evolution of the amplitude spectrum during successive convolution it is
clear from that the second case should be avoided as it is no longer possible to separate the closely spaced
frequency components from each other.
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Figure 3.1: Three superimposed harmonics embedded in random noise, presented in (a) the time domain, and (b) the frequency domain.
The two closely spaced frequency components are located 0.1 Hz apart at 5.0 and 5.1 Hz, respectively.
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Figure 3.2: Evolution of the time signal and corresponding amplitude spectrum for successive convolutions of (a) 10 second segments
and (b) 5 second segments. The figures from the top to the bottom show intermediate results for 1, 2, 3, 8 and 9 convolutions.

To summarize, short time segments are used for similarity filtering rather than the raw signal length. The
length of the time segments must be chosen in the order of magnitude of the time scale of the operational
variability, which is generally much smaller than the time scale of the environmental variability.
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3.1.5 Summary

In this chapter we have presented the theory of similarity filtering for linear time-invariant systems. The aim
of similarity filtering is to remove the variations in the response measurements that are induced by changing
operational conditions (e.g. varying traffic load). To achieve this, multiple response measurements (from
a single sensor) are convolved with each other. The idea behind this operation is that by multiple convo-
lutions, the similarities (system characteristics) are amplified and the differences (operational conditions)
are damped. Ideally, the resulting signal represent a response signal of the system that one would obtain if
the system is excited by white noise. The input signals being white noise is a common assumption in many
system identification algorithms (e.g. frequency domain decomposition).

The main assumptions of the similarity filtering are:

• The system is Linear Time-Invariant (LTI);

• By multiple convolutions of response measurements, the part related to the random excitation tends
to approximate white noise.

General

In general it is assumed that we have a set of response measurements, denoted by
{

x j ,k (t ) : k = 1, . . . ,n
}

where
index j indicates the DOF which is measured and index k indicates the measurement number. The variable
n denotes the number of signals used for processing and defines the order of similarity filtering. The basic
formation of n-th order similarity filtering for the response at DOF j is

y j (t ) = x j ,1(t )∗x j ,2(t )∗·· ·∗x j ,n(t ) =
n∗

k=1
x j ,k (t ) (3.73)

which by virtue of the convolution theorem can be transformed to the frequency domain

Y j (ω) = X j ,1(ω) ·X j ,2(ω) · · ·X j ,n(ω) =
n∏

k=1
X j ,k (ω) (3.74)

The multiplication in the frequency domain is more appealing than the convolution in the time domain,
hence most of the relations are presented in the frequency domain.

SDOF system

To show the idea of similarity filtering a linear time-invariant system was introduced and the formulation
of similarity filtering was written in terms of the system characteristics and excitation. For a SDOF system
with frequency response function H(ω), where the k-th response can be written as Xk (ω) = H(ω)Fk (ω), the
following relation was obtained for the processed signal in the frequency domain

Y (ω) = H(ω)n ·
n∏

k=1
Fk (ω) (3.6 revisited)

which shows that the (unknown) excitation can be isolated from the system characteristics. It is assumed
that by multiple convolutions of the response measurements, the part related to the excitation tends to ap-
proximate a white noise signal w(t ). A white noise signal is characterized by a constant PSD. Therefore the
PSD of the processed signal was derived and it was shown that if the assumption holds, the PSD becomes
proportional to the amplitude spectrum of the FRF raised to the order 2n

Sy y (ω) = c|H(ω)|2n ·
n∏

k=1
S f f ,k (ω)︸ ︷︷ ︸

constant

∝|H(ω)|2n (3.21 revisited)

which illustrates the fundamental idea of similarity filtering; that is, by multiple convolutions of response
measurements the system characteristics are amplified and the variations from the random excitation are
removed.
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MDOF system

The idea of similarity filtering was then extended to a MDOF system with q inputs and p outputs. Since there
are no causal relations between any of the outputs, similarity filtering is applied to the response of each DOF
separately. A response of the system at DOF j due to input forces at q different DOFs can be expressed as

X j ,k (ω) = H j∗(ω)Fk (ω) (3.75)

where H j∗ ∈ C1×q is the j -th row of the FRF matrix and the index k indicates the different observations that
are used for similarity filtering. The Kronecker product, denoted by ⊗, was introduced to obtain convenient
notations of the results for a MDOF system. Using this product, a processed signal can be expressed in the
frequency domain as

Y j (ω) = H[n]
j∗ (ω)

n⊗
k=1

Fk (ω) (3.50 revisited)

with

H[n]
j∗ (ω) = H j∗⊗H j∗⊗·· ·⊗H j∗ = Ĥn, j (ω)

n⊗
k=1

Fk (ω) = F1 ⊗F2 ⊗·· ·⊗Fn = F̂n(ω)

where H[n]
j∗ denotes the n-fold Kronecker product of the row vector H j∗ with itself. The operator

⊗n
k=1 is

used to indicate the n-fold Kronecker product of matrices or vectors that are not constant. Two new variables
were introduced to denote the block vectors that result from the Kronecker product; Ĥn, j (ω) ∈ C1×qn

and

F̂n(ω) ∈C1×qn
, respectively. The components of these vectors have the form

H j l1 (ω) ·H j l2 (ω) · · ·H j ln (ω)

and
Fl1,1(ω) ·Fl2,2(ω) · · ·Fln ,n(ω)

respectively, where all possible combinations of the indices l1, l2, . . . , ln ranging from 1 to q are included.
Hence, the length of the block vectors increases with the order of similarity filtering n and the number of
input DOFs q ; that is the vectors consist of qn components.

Subsequently the cross-spectral density function between two processed signals y j (t ) and yl (t ) was de-
rived

Sy j yl (ω) = c · Ĥn, j
(
S f f ,1 ⊗S f f ,2 ⊗·· ·⊗S f f ,n

)︸ ︷︷ ︸
constant

Ĥ
H
n,l ≈ Ĥn, j (ω)CĤn,l (ω)H (3.66 revisited)

where it was again assumed that by multiple convolutions of the response measurements the part related
to the random excitation tends to approximate white noise, implying that the spectrum is constant. The
correspondence with the SDOF system is very clear, in fact when q = 1 (i.e. only one input DOF) the result
in equation (3.50 revisited) reduces to (3.6 revisited), and the result in equation (3.66 revisited) reduces to
(3.21 revisited).
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3.2 Frequency Domain Decomposition

The Frequency Domain Decomposition (FDD) is an output-only system identification technique developed
by Brincker et al. [7]. The FDD method is based on the fact that if a lightly damped system is excited by
white noise inputs, its modes can be identified using the spectral densities of the output signals. It is a
non-parametric method that estimates the modal parameters of a system directly using some basic signal
processing.

The idea behind FDD is to perform a decomposition of the system responses into a set of independent
SDOF systems, one for each mode. The decomposition can directly be obtained with the Singular Value
Decomposition (SVD) of the spectral density matrix. Plotting the singular values as function of frequency
yields a so-called singular value spectrum. This spectrum can be seen as an overlaid plot of the auto-spectral
density functions of the SDOF systems, whose resonance frequencies can be observed from the peaks in the
spectrum. So, the modes of the system are identifiable by simply looking at the singular value spectrum. By
picking the peaks in the spectrum, estimates of the natural frequencies can be obtained together with the
corresponding mode shape. The FDD technique is able to identify closely spaced modes, and effectively
deals with noise in the signals. However, since the information from a single frequency line is used, it is
not possible to estimate the modal damping ratios directly with this method. For this reason the Enhanced
Frequency Domain Decomposition (EFDD) method has been developed [26].

The FDD technique is based on the following assumptions regarding the unknown input and the system:

• The system is Linear Time-Invariant (LTI);

• The system is lightly damped;

• The input signals are white noise and uncorrelated in space.

Violation of one of these assumption does not mean that the method cannot be applied, but one must be
careful with the interpretation of the results. For example, if the input signals are not white noise or contain
some harmonic components, spurious peaks might occur in the singular value spectrum that are not related
to the system characteristics.

3.2.1 Modal Decomposition

The explanation of the FDD technique starts with the modal decomposition of the output spectral density
matrix. Let x(t ) ∈ Rq×1 denote the vector with q unknown inputs and y(t ) ∈ Rp×1 denote the vector with
the p measured displacement responses of the system. The relation between the unknown inputs and the
measured displacements can be expressed as [2, p. 241]

Sy y (ω) = H(ω)Sxx (ω)H(ω)H (3.76)

where H(ω) ∈Cp×q is the force-displacement Frequency Response Function (FRF) matrix, Sxx (ω) ∈Cq×q and
Sy y (ω) ∈ Cp×p are the input and output Power Spectral Density (PSD) matrix, respectively, and (•)H denotes
the complex conjugate transpose. The FRF matrix can be expressed in partial fraction form via poles λr and
residue matrices Rr [3, p. 136]

H(ω) =
M∑

r=1

Rr

iω−λr
+ R∗

r

iω−λ∗
r

(3.77)

with

λr =−σr + iωdr

where M is the number of modes of interest, λr is the pole of the r -th mode, σr is the modal damping (decay
rate) and ωdr is the damped natural frequency of the r -th mode. Rr ∈Cp×q is the residue matrix correspond-
ing to the r -th pole, which can be expressed as

Rr =Qrθrγ
T
r (3.78)

where θr ∈ Cp×1, γr ∈ Cq×1 and Qr are the r -th mode shape, modal participation vector and modal scal-
ing factor, respectively. The latter depends on the normalization of the mode shapes [3, p. 139]. When all
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output measurements points are taken as reference (i.e. q = p), then H(ω) is a square matrix and γr = θr .
Substituting equation (3.77) into equation (3.76) yields

Sy y (ω) =
( M∑

r=1

Rr

iω−λr
+ R∗

r

iω−λ∗
r

)
Sxx (ω)

( M∑
s=1

RH
s

−iω−λ∗
s
+ RT

s

−iω−λs

)
(3.79)

Multiply the two partial fraction factors and assume that the input is white noise (i.e. constant input PSD
Sxx (ω) = Sxx ). Subsequently, using Heaviside partial fraction theorem (cover-up method), the output PSD
matrix can be reduced to the following pole-residue form (see Appendix D for derivation)

Sy y (ω) =
M∑

r=1

Ar

iω−λr
+ AH

r

−iω−λ∗
r
+ A∗

r

iω−λ∗
r
+ AT

r

−iω−λr
(3.80)

where Ar ∈ Cp×p is the residue matrix of the PSD matrix corresponding to the r -th pole λr , which is defined
as

Ar =
M∑

s=1

Rr Sxx RH
s

−λr −λ∗
s
+ Rr Sxx RT

s

−λr −λs
(3.81)

Using the definition for Rr , equation (3.78), the residue matrix of the PSD matrix can be expressed in terms
of modal quantities as

Ar = θr

M∑
s=1

Qrγ
T
r SxxQ∗

s γ
∗
s θ

H
s

−λr −λ∗
s

+ Qrγ
T
r SxxQsγsθ

T
s

−λr −λs︸ ︷︷ ︸
,χT

r

= θrχ
T
r (3.82)

where χr ∈ Cp×q is the stochastic modal participation vector of mode r . This vector depends on the modal
parameters of all modes and the PSD matrix of the unknown excitation (assumed to be white noise). Hence,
the output PSD matrix can be rewritten as

Sy y (ω) =
M∑

r=1

θrχ
T
r

iω−λr
+ χ∗

r θ
H
r

−iω−λ∗
r
+ θ∗r χH

r

iω−λ∗
r
+ χrθ

T
r

−iω−λr
(3.83)

which is the modal decomposition of an output PSD matrix in case of displacement measurements. A similar
expression can be derived for accelerations, see for instance [36, Eq. A.8].

Narrow-banded spectrum

As seen from equation (3.83) the output PSD matrix can be decomposed into four terms expressed by the
modal parameters

{
λr ,θr ,χr

}
. Approximating this PSD matrix for spectral lines in the vicinity of a modal

frequency (i.e. ω→ωdr ), then only the first two terms in equation (3.83) are dominating [5]

Sy y (ω) =
S∑

r=1

θrχ
T
r

iω−λr
+ χ∗

r θ
H
r

−iω−λ∗
r

(3.84)

where S denotes the number of significantly contributing modes, typically one or two modes. The contribu-
tion from mode r to the modal participation vector χr can be derived from equation (3.82) as

χT
r = Qrγ

T
r SxxQ∗

r γ
∗
r θ

H
r

2σr
+ Qrγ

T
r SxxQrγrθ

T
r

−2λr
(3.85)

where σr is minus the real part of the pole λr =−σr + iωdr . For lightly damped structures (i.e. σr ¿ωdr ) the
first term in equation (3.85) is dominating and thus the modal participation vector becomes proportional to
the mode shape vector

χT
r ≈ |Qr |γT

r Sxxγ
∗
r

2σr︸ ︷︷ ︸
,cr

θH
r = crθ

H
r (3.86)

where cr is a real-valued scaling factor. Substituting this result into equation (3.84) yields

Sy y (ω) ≈
S∑

r=1

crθrθ
H
r

iω−λr
+ crθrθ

H
r

−iω−λ∗
r

=
S∑

r=1
ℜ

{
2cr

iω−λr

}
θrθ

H
r (3.87)
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where ℜ {•} denotes the real-part of its complex argument. Equation (3.87) can be rewritten in matrix form as

Sy y (ω) ≈Θdiag

(
ℜ

{
2cr

iω−λr

})
ΘH (3.88)

whereΘ= (θ1,θ2, . . . ,θS ) ∈Cp×S is the mode shape matrix that contains only the mode shapes of dominating
modes as columns. The diagonal matrix in the middle is real-valued and contains the poles of dominating
modes. This diagonal matrix can be thought of as an power spectral density matrix of uncorrelated modal
coordinates, analogue to the observation in Section 3.2.2.

The contribution to the spectral density matrix from a single mode can be expressed as

∆Sy y,r (ω) ≈ℜ
{

2cr

iω−λr

}
θrθ

H
r =αr (ω)θrθ

H
r (3.89)

where αr (ω) is a real-valued function which can be thought of as a PSD function of the modal coordinate of
mode r . Substituting the pole λr =−σr + iωdr yields

αr (ω) =ℜ
{

2cr

iω−λr

}
= 2crσr

σ2
r + (ω−ωdr )2 (3.90)

which shows that the spectrum ∆Sy y,r (ω) reaches a local maximum at the damped natural frequencies ω =
ωdr .

It should be noted that if the decomposition is only conducted in a narrow frequency band, the require-
ment of white noise excitation spectrum, can be reduced to broadband excitation; that is, approximately flat
spectrum in the frequency band around the considered mode.

3.2.2 Uncorrelated Modal Coordinates

The decomposition of the spectral density matrix can also be seen as a result of uncorrelated modal coordi-
nates. In fact, any dynamic response of a linear system can be written in modal coordinates as

y(t ) =Φq(t ) =
M∑

r=1
φr qr (t ) (3.91)

whereΦ= (
φ1,φ2, . . . ,φM

) ∈ Rp×M is the real-valued mode shape matrix and q(t ) ∈ RM×1 is a column vector
with the modal coordinates. Note that in contrast to previous section, the mode shapes must be real-valued
here to ensure that the response in the left hand side of equation (3.91) is real valued (hence the different
symbol for the mode shapes).

For zero-mean stationary responses y(t ) the covariance matrix (or correlation matrix) is given by the fol-
lowing relation

Cy y (τ) = E
[
y(t +τ)y(t )T]

(3.92)

where E [•] is the expectation operator. Substituting the modal coordinates form of equation (3.91) into the
covariance matrix leads to

Cy y (τ) = E
[
Φq(t +τ)q(t )TΦT] =ΦE

[
q(t +τ)q(t )T]

ΦT =ΦCqq (τ)ΦT (3.93)

where Cqq (τ) ∈RM×M is the covariance matrix of the modal coordinates. If we assume that the modal coordi-
nates are uncorrelated, then all off-diagonal elements in Cqq (τ) are zero, and thus Cqq (τ) is diagonal holding
the auto-covariance functions of the modal coordinates.

Now, transforming equation (3.93) into the frequency domain by applying the Fourier transform, we ob-
tain the corresponding output PSD matrix (Wiener-Khinchin theorem), which can be expressed as

Sy y (ω) =ΦSqq (ω)ΦT =
M∑

r=1
Sqq,r (ω)φrφ

T
r (3.94)

where Sqq (ω) ∈ RM×M is the PSD matrix of the modal coordinates. Since the covariance matrix of the modal
coordinates is assumed to be diagonal, the PSD matrix Sqq (ω) will also be diagonal with positive real compo-
nents Sqq,r (ω).

For the general case with complex mode shapes a similar result can be derived, see for instance [5].
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3.2.3 Spectral Matrix Decomposition

In Section 3.2.1 and Section 3.2.2 it was shown that the output PSD matrix can be decomposed into the mode
shapes of the system and the PSD functions of the modal coordinates associated with each mode. In both
sections we found a decomposition of the following form

Sy y (ω) = UΣUH (3.95)

The factorization UΣUH at a discrete frequency ω = ωk can be described as a SVD where Σ is a diagonal
matrix holding the singular values and U is a unitary matrix holding the singular vectors corresponding to the
singular values.

In general, the SVD of an arbitrary (real or complex) matrix A ∈Cm×n is given by

A = UΣVH =
r∑

i=1
σi ui vH

i (3.96)

where U = (u1,u2, . . . ,um) ∈Cm×m and V = (v1,v2, . . . ,vn) ∈Cn×n are unitary matrices holding the left and right
singular vectors, respectively, and Σ ∈ Cm×n is a “diagonal" matrix holding the nonzero singular values in
descending order; that is σ1 ≥ σ2 ≥ ·· · ≥ σr > 0. The rank r of matrix A is the number of nonzero diagonal
elements of Σ, or in practice due to the presence of noise; the number of elements large enough to be con-
sidered nonzero. For a positive definite Hermitian matrix (i.e. all eigenvalues are positive and A = AH) the left
and right singular vectors are equal, hence UΣVH = UΣUH.

Notice that instead of the SVD we could also use the Eigenvalue Decomposition (EVD) as the basis for the
FDD. This can be obtained by post-multiplying equation (3.95) by U and using the fact that U is unitary (i.e.
U−1 = UH)

Sy y U = UΣ (3.97)

which we could recognize as an eigenvalue problem. However, in practice the result is not exactly the same,
as SVD normally sorts the singular values in descending order and the EVD usually does not, furthermore the
singular vectors and eigenvectors tolerate some arbitrary phases that may not be the same [5, p. 620].

Modal identification

As explained previously, the key is to conduct a factorization like equation (3.95) of the spectral density matrix
at discrete frequenciesωk ∈ [

0,2π fs /2
]
. When the frequency approaches a modal frequencyωk →ωdr and in

case of well-separated modes, the spectral density matrix approximates to a rank one matrix as

Sy y (ωk )
ωk→ωdr

≈σ1(ωk )u1(ωk )u1(ωk )H (3.98)

where σ1(ωk ) and u1(ωk ) are the first singular value and first singular vector, respectively, computed at dis-
crete frequency ωk . Comparing equation (3.98) with the contribution of a single mode to the PSD matrix,
equation (3.89), it is observed that the singular values reaches a local maximum at the damped natural fre-
quency. Therefore, modes can be identified as peaks in the singular value spectrum; which is obtained by
plotting the singular values as a function of frequency. The frequency at a local maximum is an estimate of
the natural frequency, denoted by ωr , and the associated singular vector is an estimate of the mode shape
with unitary normalization

φ̂r = u1(ωr ) (3.99)

If two or more modes have about the same natural frequency, the rank of the PSD matrix will be two or
more at that frequency. Consequently, equation (3.98) contains two or more terms and the closely-spaced (or
repeated) modes can be identified from two or more distinct singular values. This means that we have to plot
an appropriate number of singular values as function of frequency and identify possible modes as peaks in
these curves.

It must be noted that not all peaks in singular value spectrum indicate modes [39]. Errors such as noise,
leakage, non-linearity and a cross singular value effect can also generate apparent peaks. The cross singular
value effect is an computational characteristic that develops due to the way the singular values are plotted,
and only occurs in the lower singular value curves. In the singular value spectrum, the singular values are
plotted as a function of frequency, where the largest singular value is plotted first at each frequency followed
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by subsequently smaller singular values. Since the contributions from different modes vary along the fre-
quency axis, the contribution of two modes can be approximately equal at a specific frequency. At this fre-
quency the functions of the corresponding SDOF systems cross each other. Consequently, the lower singular
value curve appears to peak, while the higher singular value curve appears to dip. Hence, the peak in this
case is not due to a system pole but is caused by an equal contribution from two modes. This characteristic
is identifiable since the peak occurs in the lower singular value curve at the same frequency as a dip in the
higher singular value curve.

3.2.4 Identification Algorithm

In this section the different steps of the FDD procedure are briefly described. The first step is to estimate the
output spectral density matrix from the measured responses. Suppose that the responses are measured at
p locations and are collected in a vector denoted by y(t ) ∈ Rp . The spectral density matrix has the following
form

Sy y (ω) =


S11(ω) S12(ω) . . . S1p (ω)
S21(ω) S22(ω) . . . S2p (ω)

...
...

. . .
...

Sp1(ω) Sp2(ω) . . . Spp (ω)

 (3.100)

where the diagonal elements represent the PSD functions of the responses and the off-diagonal elements
represent the CSD functions of two response signals. The elements of this matrix are defined as

Si j = lim
T→∞

1

T
E

[
Yi (ω)Y j (ω)∗

]
for i , j = 1,2, . . . , p (3.101)

where E [•] denotes the expectation operator, (•)∗ denotes the complex conjugate and Y j (ω) is the Fourier
transform of signal y j (t ). In the particular case that i = j , the PSD functions are obtained corresponding
to the diagonal in the spectral density matrix. The definition in equation (3.101) can be written in matrix
notation as

Sy y (ω) = lim
T→∞

1

T
E

[
Y(ω)Y(ω)H]

(3.102)

where (•)H denotes the complex conjugate transpose and Y(ω) ∈Cp×1 is the Fourier transform of the response
vector y(t ). The definition of the spectral density functions assumes that the signals have infinite length. In
reality this is never the case and the spectral density functions are thus estimated. A “raw” estimate of the
spectral density matrix is obtained by simply dropping the limit and expectation operator in (3.102); that is

Ŝy y (ω) = 1

T
Y(ω)Y(ω)H (3.103)

However, this estimation is often not very accurate and suffer from high variance. In order to reduce this
variance, the time series are usually divided into (possible overlapping) data segments yk (t ), k = 1, . . . , Ns

where Ns is the number of data segments. Then for each segment a raw estimate of the spectral density matrix
is computed according to equation (3.103), where the Fourier transforms are computed for the (shorter) data
segments. A final estimate of the spectral density matrix is obtained by averaging the raw estimates of the
spectral density matrices computed for the data segments

Ŝy y (ω) = 1

Ns

Ns∑
k=1

Yk (ω)Yk (ω)H (3.104)

where Yk (ω) ∈Cp×1 is the Fourier transform of data segment yk (t ). The method of averaging is also known as
Welch’s method (or Bartlett’s method in case of non-overlapping data segments) and provides a way to reduce
the variance of the “raw” spectral density estimate in exchange for a reduction of frequency resolution (due to
the shorter time segments). Moreover, the rank of the PSD matrix is increased, which is necessary to resolve
the mode multiplicity with the SVD.

Once the spectral density matrix is constructed the matrix can be factorized using SVD. Repeating the
SVD for discrete frequencies ωk ∈ [

0,2π fs /2
]

results into a collection of singular values and corresponding
singular vectors as function of frequency. By plotting the singular values as function of the relative frequency
a singular value spectrum is obtain. Modes can be identified as peaks in this spectrum. The frequencies
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corresponding to these peaks are estimates of the natural frequencies of the system, and the left singular
vectors corresponding to these peaks are estimates of the mode shape vectors. In the case of well-separated
natural frequencies only the first singular values and corresponding singular vectors are important. On the
other hand, in case of closely-spaced or repeated modes, the number of relevant singular values is equal to
the mode multiplicity. Then the closely-spaced modes can be identified as peaks in distinct singular values.
The most dominating mode will show up as peak in the first singular value, the second dominating mode in
the second singular value and so forth. Typically, not more than two modes have almost the same natural
frequency, thus considering the first two singular values as a function of frequency is often sufficient. Fig-
ure 3.3 shows an example of the singular value spectrum, in which five different modes can be observed, of
which two have the same frequency (around 56 Hz). The repeated mode shows up in the second singular
value curve with approximately the same magnitude. The peak in the second singular value around 20 Hz is
an computational characteristics that develops due to the way the singular values are plotted as mentioned
at the end of previous section (cross singular value effect).

Figure 3.3: Example of singular values of the response spectral density matrix [7].

So far, the natural frequencies and mode shapes are estimated from the information of the frequency lines
corresponding to the peaks in the singular value spectrum. Damping ratios could not be estimated from these
frequency lines. For this reason the EFDD technique has been developed. The EFDD method is an extension
of the FDD technique in order to estimate the modal damping of the system under observation. The EFDD
method is based on the identification of the SDOF auto-spectral density functions from the singular value
spectrum.

Once a mode is identified in the singular value spectrum, the auto-spectral density function of the corre-
sponding SDOF system (modal coordinate) can be estimated by comparing the mode shape vector φ̂r (3.99)
with the singular vectors of the frequency lines around the peak. The consistency between the two vectors
is measured using the Modal Assurance Criterion (MAC) [1] (see Section 3.2.5 for a description of this mea-
sure). As long as singular vectors are found that has high MAC value with φ̂r , then the corresponding singular
value belongs to the modal domain of the SDOF system. If at a certain line none of the singular values has a
singular vector with a MAC value larger than a certain threshold, the search for matching parts of the modal
domain is terminated. In the end, we have identified a frequency range [ωr −∆ω1,ωr +∆ω2] around a peak
at frequencyωr of modal dominance called the modal domain, see Figure 3.4. The associated singular values
estimate the auto-spectral density function of the corresponding SDOF system, which can be transformed
back to the time domain by inverse Fourier transform, yielding the auto correlation function of the SDOF
system from which the natural frequency and damping ratio can be found by estimating crossing times and
logarithmic decrements [6].

In this work the modal domain is used to distinguish between different modes (or modes and noise) rather
than estimating modal damping ratios. Therefore we introduce the following discriminator function

dr (ωk ) = MAC
(
φ̂r ,u1(ωk )

)
(3.105)

where φ̂r is the estimated mode shape vector and u1(ωk ) is the left singular vector at neighboring frequency
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Figure 3.4: Definition of the modal domain for an identified mode. Top figure shows the modal decomposition using the SVD of the
spectral density matrix. Bottom figure shows how the modal domain is defined by the part where the discriminator function is larger
than the threshold [8].

ωk . The modal domain of mode r is defined by the following criterion

dr (ωk ) ≥Ω (3.106)

The lower the value ofΩ the larger the bandwidth of the modal domain ∆ω=ω1 +ω2.

Summary process

The steps of the FDD technique can be summarized as follows:

Step 1. Estimate the spectral density matrix Sy y (ω) according to equation (3.104).

Step 2. Factorize Sy y (ω) as in equation (3.95) at discrete frequenciesωk ∈ [
0,2π fs /2

]
using the singular value

decomposition, to obtain a set with singular values and corresponding singular vectors. Usually it
is sufficient to consider the set with first singular values and vectors denoted by

{
σ1(ωk ),u1(ωk )

}
(except in the case of closely-spaced modes).

Step 3. Identify peaks in the singular value spectrum and let ωr , r = 1, . . . , M denote the corresponding fre-
quencies. Estimates of the natural frequencies are obtained by the frequencies corresponding to the
peaks, and estimates of the mode shapes are obtained by the left singular vectors corresponding to
the peaks; that is

φ̂r = u1(ωr ) (3.107)

The natural frequencies and mode shapes are estimated from the information of a single frequency line,
namely the one associated with a peak in the singular value spectrum. The estimation of the damping ratios
requires the following additional steps [6]:

Step 4. For each mode, estimate the SDOF auto-spectral density function from the singular value spectrum
based on the MAC value between the mode shape estimate φ̂r and the singular vectors of neighboring
frequency lines.

Step 5. Transform a fully or partially identified auto-spectral density function back to the time domain and
determine the natural frequency and damping ratio based on zero crossings and logarithmic decre-
ments. The natural frequencies estimated in this step are usually more accurate than the ones ob-
tained in Step 3.
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Rank of PSD matrix

The ability to separate closely-spaced modes with the FDD method depends on the rank of the spectral den-
sity matrix. The rank of this matrix is limited by the following factors [5, p. 622]:

• The number of distinct measurement points. If multiple sensors are close to each other, it is possible
that these sensors measure the same information, and this does not contribute to the matrix rank.

• The number of independent force inputs.

• The number of data segments used to estimate the PSD matrix according to equation (3.104). If the
information of only one data segment is used to estimate a PSD matrix, then the rank of this matrix will
always be one.

3.2.5 Modal Assurance Criterion

The Modal Assurance Criterion (MAC) is used as a measure of consistency (degree of linearity) between esti-
mates of mode shapes. This provides a confidence factor in the evaluation of mode shapes from different ref-
erence locations or different modal parameter estimation algorithms. The MAC is defined as a scalar constant
measuring the degree of linearity between one mode shape and another reference mode shape as follows

MAC(φr ,φs ) = |φH
r φs |2

φH
r φrφ

H
s φs

(3.108)

The MAC takes on values in the range from zero to one, where zero implies no consistent correspondence be-
tween the mode shapes and one implies a consistent correspondence. In this manner, if the mode shape un-
der consideration truly exhibit a consistent, linear relationship, then the MAC should approach unity. How-
ever, the MAC can only indicate consistency, not validity or orthogonality. If the same errors exist on all mode
shape estimates, then the MAC is close to unity, even though the mode shape estimates are not valid. So,
careful interpretation of MAC is import to avoid potential errors. Possible reasons of the MAC being close to
zero or unity are listed below [1].

Possible reasons for the MAC being zero (modal vectors are not consistent):

• The system is non-stationary.

• There is noise on the reference modal vector.

• The modal parameter estimation is invalid.

• The modal vectors are from linearly unrelated mode shape vectors, which implies that the modal vec-
tors are orthogonal.

Possible reasons for the MAC being unity (modal vectors are consistent):

• The modal vectors have been incompletely measured.

• The modal vectors are the result of a forced excitation other than the desired input.

• The modal vectors are primarily coherent noise.

• The modal vectors represent the same modal vector with different arbitrary scaling.



4
Application: Similarity Filtering and
Frequency Domain Decomposition

In this chapter the processing of the Zwartewaterbrug data from raw data to initial features is described. An
overview of the processing steps is given in Figure 4.1. First, in Section 4.1 a reliable high frequency range
is determined that is sensitive to small changes in the bridge deck, and a band-pass filter is designed to op-
erate in this range. In Section 4.2 the similarity filtering is applied, which is a necessary step to reduce the
non-stationarities in the acceleration time histories due to large variations in traffic load. Finally, in Sec-
tion 4.3 the Frequency Domain Decomposition (FDD) is applied to the processed signals (i.e. band-pass and
similarity filtered signals), in order to obtain 1) the singular value spectra and 2) the natural frequencies and
mode shapes of the bridge. The singular value spectra and the natural frequencies will both serve as damage-
sensitive features in the subsequent chapters about machine learning.

Raw data

Band-pass filtering

Similarity filtering

Frequency domain
decomposition

Singular value spectra
Natural frequencies

& mode shapes

Figure 4.1: Overview of processing steps.
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4.1 Bandpass Filtering
The aim of this section is to determine a reliable high frequency range in the vibration data for damage de-
tection purposes. The reason for this is twofold: 1) the higher the frequency region, the more the response
spectra are sensitive to small changes, and 2) to reduce the number of frequency lines that will be used as
damage-sensitive features in the machine learning algorithms. The first reason is directly related with the
main goal of the Zwartewaterbrug project, which is to detect small changes in the deck structure of the bridge
(e.g. local increase of the structural mass which simulates the presence of damage). The second reason is
primarily related to the performance of the machine learning algorithms as it is known that some algorithm
perform poorly with high dimensional feature vectors. This dimensionality problem is often referred to as the
curse of dimensionality and will be explained in more detail in Chapter 5. Before proceeding to the method-
ology, first some words are spent on the meaning of a “reliable high frequency range”. The term “reliable”
implies that the frequency region is active in most of the measurements and the term “high frequency range”
implies that the selected frequency region covers primarily local modes (i.e. local with respect to the spatial
size of the sensor network), so the fundamental modes are not considered.

The modes are identified from the vibration data using the Frequency Domain Decomposition (FDD)
technique. The key of the FDD technique is to perform a Singular Value Decomposition (SVD) of the spectral
density matrix to obtain the singular values and singular vectors at discrete frequencies fk ∈ [0, fs /2]. Plotting
the singular values as function of frequency will provide an overlaid plot of the auto spectral densities of the
modal coordinates and thus modes can be identified as peaks in the singular value spectrum. Hence, we
can identify the peaks in the singular value spectra of all the measurements and draw conclusions about the
frequency content based on the number of identified peaks in certain frequency regions. However, not every
peak in the singular value spectrum indicates a mode. Errors such as noise, leakage, and non-linearities
could generate spurious peaks, also referred to as noise peaks. So, it is important to distinguish between
modal peaks and spurious peaks. In this section a discriminator function is introduced that will be used
to distinguish between the peaks of modes and those related to noise. In fact, the discriminator function
introduced here is very similar to the function that defines the modal domain, as explained in Section 3.2.4.

Suppose a peak is identified in the singular value spectrum at frequency fr . Calculating the Modal Assur-
ance Criterion (MAC), equation (3.108), between the singular vector associated with the peak and the singular
vectors of neighboring frequency lines defines the following discriminator function

dr ( fr ) = MAC
(
u1( fr ),u1( fk )

)
(4.1)

where u1( fr ) is the singular vector at the peak and u1( fk ) is the singular vector at a neighboring frequency fk .
If the components of each of the singular vectors are random, which is generally the case for a noise peak, then
this function is close to zero. On the other hand, if the singular vectors are consistent (linear correlated), the
MAC is close to unity meaning that the associated singular values correspond to the same modal coordinate.
Hence, modal and noise peaks can be discriminated using the requirement that for neighboring frequency
lines the following criterion is met

dr ( fk ) ≥Ω (4.2)

whereΩ is a threshold value that defines the minimum MAC value so that the two vectors can be considered
consistent. When several frequency lines are considered at each side of the peak, then a peak is accepted
as modal peak if the criterion (4.2) is met for all frequency lines. Hence, the singular vectors u1( fk ), with
fk = fr ±∆ f , should be consistent with the singular vector associated with the peak at a frequency fr . For
discrete frequencies, the bandwidth ∆ f can be expressed as ∆ f = k · f0, where k is the considered number of
frequency lines around the peak and f0 is the frequency resolution which is defined as f0 = fs /N , in which
fs is the sample rate and N are the number of samples used in the Fast Fourier Transform (FFT). Notice that
this bandwidth is similar to the modal domain introduced in Section 3.2.4 and shown in Figure 3.4. So, it
is equivalent to state that the modal peaks are discriminated from noise peaks based on the width of the
associated modal domain.

Application

For the selection of the reliable high frequency range in the vibration data of the Zwartewaterbrug it is chosen
to consider a bandwidth of 0.5 Hz around a peak in combination with a threshold level Ω= 0.90. The band-
width is fixed to 0.5 Hz based on visual inspection of some singular value spectra. However, it is probably
better to have a frequency dependent bandwidth as the modal peaks of the lower modes are different than
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for the higher modes due to different amount of damping. Higher modes have generally larger damping val-
ues resulting in a wider modal peak while the lower modes with lower damping value have more sharp peaks.
Hence, for the former the bandwidth may be larger than for the latter.

The process to identify the consistent peaks (and thus the reliable high frequency range) in the vibration
data is summarized below.

Step 1. Preparation of data. Since the measurements do not have the same length, the spectral density es-
timation will not have the same quality. Therefore, measurement samples are concatenated to a
common length of 60 s (60000 samples).

Step 2. Estimate the spectral density matrix Sy y ( fk ) using the data from all 32 sensors resulting in a complex
matrix of size 32×32. Welch’s method of averaged periodograms is applied for estimating the power
spectral densities (diagonal elements of the matrix) and the cross spectral densities (off-diagonal el-
ements of the matrix). The averaged periodograms are computed using 11 segments of 10 s (10000
samples) length with 50% overlap and a hamming window is applied to the data of each segment to
reduce spectral leakage.

Step 3. For all discrete frequencies fk ∈ [0, fs /2] perform a singular value decomposition of the spectral den-
sity matrix obtained in Step 2 to obtain a set of singular values and singular vectors.

Step 4. Find a peak in the first singular valuesσ1( fk ), the frequency corresponding to this peak is denoted fr .

Step 5. Evaluate the discriminator function (4.1) for frequency lines within a bandwidth of ∆ f = 0.5 Hz
around the peak. The number of frequency lines depends on the sample rate fs and the number
of samples used in the FFT. With fs = 1000 Hz and N = 10000 the frequency resolution f0 = 0.1 Hz
and thus the number of frequency lines in a bandwidth of 0.5 Hz is 5.

Step 6. Accept the peak as modal peak if the discriminator function (MAC value) for all five neighboring
frequency lines is larger than the threshold valueΩ= 0.90. Otherwise, the peak is labeled as spurious.

Step 7. Repeat Step 4 to Step 6 until no more new peaks can be found or until a user defined number of peaks
are found.

Step 8. Repeat Step 1 to Step 7 until no more data is available.

In the end, we have a set of consistent peaks for each measurement that was prepared in Step 1. Subsequently,
histograms are formed to show the distribution of the frequencies corresponding to the consistent peaks,
from which the reliable high frequency content is determined.

Results

In total there are 764 measurements divided over five different mass classes (see Table 2.1). In order to obtain
equal quality of the FDD, multiple measurements are combined to form data blocks of 60 seconds. Per mass
class, the following number of data blocks are extracted: 69 (0 kg), 38 (25 kg), 82 (50 kg), 53 (75 kg) and 56 (100
kg). In Figure 4.2, five examples of the singular value spectrum with indication of consistent peaks (possible
modes) are provided. It must be noted that 32 singular values per frequency line are obtained and that only
the largest two singular values per frequency line are presented in the figures, the other thirty values are omit-
ted because these are less important and most of them are close to zero. It is further noted that the consistent
peaks are obtained from the largest/first singular values only. From the set of consistent peaks, histograms of
frequency count are formed separated by added mass class, as shown in Figure 4.3. The frequency axis in the
figures is limited to 300 Hz, since no peaks were found above 300 Hz.

Conclusion

From the histograms, it can be observed that the frequency region from 50 to 100 Hz has a large number of
consistent modes. It is assumed that the aforementioned frequency region corresponds to the local modes
related to the spatial size of the sensor network and thus is the region of interest. Notice that the local modes
are related to the complete sensor network (i.e. over all three instrumented segments) since the spectral
density matrix in Step 2 of the process above is estimated using the data from all 32 sensors. Similar results
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Figure 4.2: Singular value spectrum with consistent modes.
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Figure 4.3: Histograms of consistent mode count.

are obtained if the analysis is performed for each bridge segment separately, showing that the selected high
frequency content applies to all segments.

In correspondence with the analysis goals we want to find a reliable high frequency range that potentially
increases the sensitivity of damage for the damage detection algorithm. Based on the histograms, the fre-
quency range from 50 to 100 Hz is chosen and subsequently a band-pass filter is designed to operate in the
given frequency range. In the next section, the data will be band-pass filtered to the given frequency region
before the similarity filtering.

The selected frequency region is broader than the one from 60 to 75 Hz used in the thesis of Milosevic on
the Zwartewaterbrug [32]. In that thesis it was found that the added mass could be detected based on one
dominant mode in the data of the second segment of the bridge. This mode had a local mode shape with a
nonzero displacement at the added mass, which makes it reasonable that this mode is sensitive to the added
mass. In fact, it is expected that the modes with a local mode shape having a nonzero displacement at the
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added mass have the largest mass sensitivity. Now the question raised, what would happen if the mass was
located at another position in the instrumented bridge section, for example between sensor 12 and 13? Then
it seems to me that the frequency region from 60 to 75 Hz might not be suitable because the modes in this
range are not sensitive to the added mass at the different location. So to be less restricted to the location of
the added mass, a broader frequency region from 50 to 100 Hz is considered in this thesis.

Another reason for the choice of a broader frequency region is related to the similarity filtering. As stated
in the thesis of Milosevic, the data must be band-pass filtered to the frequency range of interest before ap-
plication of the similarity filtering, otherwise you would not get the expected results. The similarity filtering
appeared to work well when the data was band-pass filtered to the range 60-75 Hz, but no other frequency
ranges were considered in his report. So, it is interesting to investigate whether the similarity filtering also
works when the data is band-pass filtered to a broader frequency range.

4.2 Similarity Filtering

Once the reliable high frequency region has been established, the similarity filtering can be performed. It is
emphasized that the aim of this processing step is to reduce the operational variability. For the bridge under
consideration this variability is primarily caused by the large differences in traffic load, as the vehicle weight
ranges from 200 kg motor cycles to 50000 kg heavy trucks. In this section, a description of the processing
algorithm is given first, followed by some results.

4.2.1 Algorithm Composition

In Section 3.1 the theory of similarity is discussed. In this section it is shown how the similarity filtering is
applied on real data. Recall that similarity filtering is based on successive convolution of different measure-
ments (from the same sensor), which can be expressed as

y j (t ) =
n∗

k=1
x j ,k (t ) = x j ,1(t )∗x j ,2(t )∗·· ·∗x j ,n(t ) (4.3)

where n is the order of similarity filtering, and the index j = 1,2, . . . ,32 refers to the sensor location. Recall
that the order of similarity filtering is defined as the number of signals/segments being convolved and that
the number of convolutions is one less than the order of similarity filtering. The signals x j ,k (t ) might have
different lengths, but for now it will be assumed that the signals have equal length, which will be denoted by
Ts . In order to reduce the operational variability to an acceptable level, a sufficient number of measurements
should be used in the convolution. In other words, the order n of similarity filtering should be high enough.
In Section 3.1.4 it was concluded that it is better to use smaller time segments in the order of magnitude of
seconds rather than the raw signal length. This conclusion was based on the consideration of three aspects,
namely 1) the computational cost of similarity filtering, 2) the time scale on which similarity filtering oper-
ates, and 3) the expected natural frequencies of the structure. It was also mentioned that the final selection of
the order n and the segment length Ts should be based on an analysis of the combination of both parameters.
In Appendix E the evolution of the singular value spectrum (resulting from FDD) for an increasing number of
convolutions and for different segment lengths are shown. Suitable parameters are chosen based on visual
inspection of the figures and consideration of previous aspects. The chosen parameters are listed in Table 4.1,
in which T denotes the length of the data blocks in seconds, necessary for one processed signal andα denotes
the percentage overlap between two successive data blocks. It is noted that the processed signals will con-
tain much more samples than the original signals due to the convolution operations, and thus require more
memory for storage (i.e. the processed signals consist of 249901 samples while the original signals have on
average about 25000 samples). To reduce the number of samples, the processed signals are truncated at both
ends at the expense of the quality of the (singular value) spectrum, as will be explained later.

Table 4.1: Selected parameters for similarity filtering, in seconds and number of samples (sample rate is 1000 Hz).

n Segment length Total length Overlap

Ts (s) Ns T (s) N To (s) No α (%)

100 2.5 2500 250 250000 225 225000 90
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Let Z = {
x j ,k (t ,Tk ) : k = 1,2, . . . ,nm

}
denote the set of acceleration time histories (raw data) from sensor

j , where Tk is the length of the k-th signal and nm is the number of signals available. It is assumed that the
signals in the set are associated with the same added mass class. Once the order of similarity filtering n and
the length of the segments Ts are chosen, the application of similarity filtering to one data set involves the
following steps:

Step 1. Form a data block with at least a length of T seconds by concatenating measurement samples from
the set of measurements Z = {

x j ,k (t ,Tk ) : k = 1,2, . . . ,nm
}
. To ensure that variations, other than oper-

ational variations, within the selected data will be minimal, consecutive samples are used rather than
randomly selecting the samples.

Step 2. Apply a band-pass filter of 50-100 Hz to the data block from the previous step. The given frequency
region was determined as a reliable high-frequency region in Section 4.1.

Step 3. Split the data block into n segments, each with a length of Ts seconds.

Step 4. Perform similarity filtering of the segmented data; that is, successive convolution of the data seg-
ments according to equation (4.3).

Step 5. Repeat Step 1 to Step 3 until all measurement samples in the set
{

x j ,k (t ,Tk ) : k = 1,2, . . . ,nm
}

are used.
In Step 1 some amount of overlap between the data blocks from successive runs is applied to obtain
a reasonable number of processed signals.

Step 6. Repeat Step 1 to Step 4 for all sensors.

There are two remarks on the described approach: 1) the applied overlap between the data blocks, and 2) the
selection of the measurement samples, which are explained in more detail below.

First, it is noted that the set with processed signals can be considerably smaller than the original set with
raw signals, because multiple measurements are used to produce one processed signal. For example, when
similarity filtering is performed with 100 segments of 2.5 s, then 250 s of data is required to generated one
processed signal. The acceleration time histories from the Zwartewaterbrug have on average a length of 25
seconds, meaning that approximately ten measurements are concatenated to form the data block in the first
step of the process above. The set with processed signals after similarity filtering will be approximately ten
times smaller than the original set.

Recall that the aim of this thesis is to detect the small added masses using machine learning algorithms.
The performance of machine learning algorithms depends on the size of the data set and is generally better
for large data sets. Hence, the reduction of the data set due to the application of similarity filtering might be
problematic for the machine learning algorithms, especially when the original data set is already small (as is
the case for the Zwartewaterbrug data). To overcome this problem, some amount of overlap is applied in Step
1 between the data blocks from successive runs. This is illustrated in Figure 4.4, in which the overlapping
data blocks of five successive runs are shown. There will be a large correlation between the signals from
overlapping data blocks, which might negatively affect the performance of the machine learning algorithms.
When a very large data set is acquired then overlapping data blocks do not have to be applied, because the
size of the resulting set with processed signals will be satisfactory.

In this thesis it is chosen to use 90% overlap (see Table 4.1) between the data blocks from successive runs,
in order to obtain a reasonable number of processed signals.

Secondly, it is noted that the measurement samples in Step 1 should not be randomly selected, because
then the assumption of a time-invariant system might be violated. In particular, the environmental condi-
tions (e.g. temperature) vary during the measurements, which change the characteristics of the bridge. If
the changes in structural properties are large within a data block, the similarity filtering cannot be applied as
it was developed to remove operational variations under the assumption that the system is time-invariant.
To illustrate this, the mean temperature and standard deviation for a number of data blocks are shown in
Figure 4.5a. The data blocks are formed using a random and normal (i.e. in chronological order) sample
selection to a total length of 250 seconds, followed by computing the mean and standard deviation of the
temperature corresponding to the selected samples. Obviously, the variations in temperature are larger when
the measurement samples are randomly selected and the characteristics of the system might not be constant.
Hence, the time-invariant assumption will no longer hold and the similarity filtering should not be applied.

Notice that with normal sample selection, the variations within a data block are smaller, but the variations
between the data blocks are larger. However, this is not relevant for the application of the similarity filtering,
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Figure 4.4: Illustration of overlapping data blocks that are formed in Step 1 during five successive runs. The length of the data blocks is
T = 250 seconds, and the amount of overlap is α= 80%.

where one data block at the time is considered. The variations between the data blocks will be present in the
processed signals and might also be reflected on the damage-sensitive features. If this is the case, then the
temperature effects must be removed from the features (i.e. data normalization, which will be discussed in
Chapter 8), otherwise the temperature effects might mask the damage effects and complicates the damage
detection. This also applies to other environmental variables, although temperature is usually seen as most
important.

The time-invariant assumption might also be violated when the length of a data block is very long, be-
cause a longer data block covers a larger time range with potentially larger variations in the environmental
conditions. This is illustrated in Figure 4.5b in which the mean temperature and standard deviation for a
number of data blocks are shown. The data blocks are formed with a fixed number of segments ns = 50 and
the length of the segments is 2.5 or 10 seconds; for the 2.5 s segments this means that one data block spans
125 s and for the 10 s segments one data block spans 500 s of data. The data blocks are formed with the same
set of data, so there are less data blocks formed with the longer segments than with the shorter segments.
Here the variation of temperature within a data block are comparable for the two different lengths, but the
variation between the data blocks are much larger for the longer data blocks. However, only the variation
within a data block is important for the time-invariant assumption in similarity filtering.
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Figure 4.5: Mean temperature and variation of the selected measurement samples that form a data block for similarity filtering. The data
blocks are formed with (a) random sample selection and (b) different segment length.
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In the end, we have a new data set of processed signals consisting of 32 channels as in the original data set,
but less observations because multiple measurement samples are used to produce one processed signal. The
reduction of the data set is however limited because we have applied overlapping data blocks. The sizes of
the original data sets and the data sets with processed signals are listed in Table 4.2. In the table the number
of records per dataset are presented, each record consists of 32 (processed) signals.

An example of a processed signal per sensor is shown in Figure 4.6. The signals are generated using 100
segments of 2.5 seconds, resulting in processed signals of 250 s length. In general, the signals contain many
leading and trailing zeros, which are the results of how the discrete convolution was performed. These ze-
ros are of minor importance for further processing, what is important is the more stationary central part of
the signals, which is marked gray in the figures. However, in the next section, it will become apparent that
important information might be lost when only the central part of the signal is considered.

Table 4.2: Overview of the number of received data records with raw signals, and the number of data records with processed signals after
similarity filtering. Each record consists of 32 signals, one signal per sensor.

Dataset/ added mass Total

1/m0 2/m100 3/m50 4/m0 5/m25 6/m50 7m75

Raw data 52 150 85 109 111 125 120 752
After similarity filtering 43 141 74 101 100 114 114 687
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Figure 4.6: Example of processed signals after the application of similarity filtering with n = 100 and Ts = 2.5 seconds. The marked area
indicates the centered signal with a length of 80 seconds (i.e. 80000 samples). The units on the vertical axis are omitted because these
are meaningless and not relevant for our application.
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4.3 Frequency Domain Decomposition
This section is concerned with the application of the FDD method to the processed signals obtained in previ-
ous section. The theory about FDD is described in Section 3.2. The first step of the FDD method is to estimate
the spectral density matrix as described in Section 3.2.4. The spectral density matrix of the processed signals
(i.e. band-pass and similarity filtered signals) is simply computed (omitting any scaling factor) as

Sy y (ω) = Y(ω)Y(ω)H (4.4)

where Y(ω) is the Fourier transform of the processed signals y(t ). The FDD is performed for each bridge
segment separately because of the following two reasons: 1) to enhance the mass sensitivity of a particular
segment, and 2) to allow for some global damage localization; for example, if the mass can be detected with
the data from segment 2, but not with the data from segment 1 and 3, the mass will most likely be located in
segment 2. This means that the vector y(t ) contains the processed signals from one bridge segment only. Fur-
thermore, the same output measurement points are taken as reference and thus Sy y (ω) is a square Hermitian
matrix.

A diagonal element of the spectral density matrix represents the Power Spectral Density (PSD) function,
also called auto-spectral density function. This function describes the rate of change of the variance with
frequency in the corresponding signal. In Figure 4.7 the PSDs of the processed signals (Figure 4.6) are shown.
To illustrate the effect of similarity filtering, Figure 4.8 shows the PSDs of the unprocessed signals. It must be
noted that these signals have already been band-pass filtered, so the term “unprocessed” merely refers to the
fact that similarity filtering has not been applied to these signals. In this example, the spectra before and after
similarity filtering are computed using the same data; that is, a data block of 250 seconds. The spectra of the
unprocessed signals are estimated using Welch’s method of averaged periodograms.

The effect of similarity filtering can readily be seen from the figures. Figure 4.7 shows that the power
spectrum of the majority of the sensors contain one dominant frequency component, except for 14 sensors.
A closer look to the figure reveals that the magnitude of the spectral values in the spectra of these 14 sensors
is much lower. The lower magnitude can be explained by the purpose of similarity filtering, which is among
others to amplify the system characteristics in a measured signal. In other words, similarity filtering was
unable to amplify the system characteristics in the signals of the 14 sensors. The reason for this might be
related to the local modes that were excited at these senors; either one of the following reasons might be the
case: 1) no local modes are excited at these sensors, or 2) only modes with very low energy are excited at these
sensors, or 3) the local modes are not consistently excited at these sensors and thus not present in all the
signals/segments that are used in the similarity filtering for the generation of a processed signal.

The sensors with low quality power spectra (i.e. large variability and low magnitude) are not useful for the
purpose of damage detection due to the large variability in spectral density, which are obviously not related
to damage. These sensors will have a low contribution in the singular value decomposition of the spectral
density matrix in the next step.

Figures F.1–F.4 in the appendix show the PSDs per sensor of all processed signals in the form of a spec-
trogram. These figures show that the observations done for the example above apply to all processed signals.
Moreover, they show that the dominant frequency component changes over time, presumably due to varia-
tions in the environmental conditions.

The next step in the FDD method is to factorize the spectral density matrix using SVD at discrete frequencies
fk ∈ [50,100] Hz (i.e. the frequency range of interest as determined in Section 4.1). This factorization results
into a collection of singular values and corresponding singular vectors. The number of singular values and
singular vectors is equal to the number of sensors used to form the square spectral density matrix. For seg-
ment 1 a 10×10 matrix is constructed using the signals from sensors 1 to 10; for segment 2 a 12×12 matrix is
constructed using the signals from sensors 11 to 22; and for segment 3 a 10×10 matrix is constructed using
the signals from sensors 23 to 32.

For each of the three segments, an example of the singular value spectrum before and after similarity fil-
tering is shown in Figures 4.10–4.12. Only the first two singular values (i.e. the largest two singular values) are
shown. This shows that the singular value spectra after similarity filtering are much smoother and multiple
dominant frequency components are clearly visible. These frequency components cannot be observed in
the spectra of the unprocessed signals before similarity filtering. The dominant frequency components are
assumed to be related to the dynamic characteristics of the system, which are amplified by the application of
similarity filtering.
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Figure 4.7: Power spectral density functions of the processed signals shown in Figure 4.6 (i.e. band-pass and similarity filtered signals).
The processed signals were obtained by successive convolution of 100 segments of 2.5 seconds (i.e. using a data block with a total length
of 250 s).
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Figure 4.8: Power spectral densities of band-pass filtered signals (50–100 Hz). The PSD is estimated using Welch’s method, in which
the data block of 250 seconds is divided into 49 segments of 10 seconds with 50% overlap and the segments are weighted with a Hann
window.
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The spectrum of the largest singular values is the most important for FDD, and this spectrum is often
intended when referring to the singular value spectrum. This spectrum can be seen as an overlaid plot of
the PSDs of the sensors used to construct the spectral density matrix. (i.e. the diagonal elements in the
spectral density matrix). So, the information of all PSDs is combined in a single spectrum, where a PSD with
a relative low magnitude has a low contribution to the singular value spectrum. Previously, it was observed
that the PSD of 14 sensors shows a lot of noise with considerably lower magnitude than the other sensors.
The noise in these PSDs is not reflected in the singular value spectrum because of the minor importance of
these sensors.

One remark must be made regarding the computation of the singular value spectrum of the processed
signals (after similarity filtering). The singular value spectra shown in Figures 4.10–4.12 are obtained using
the central parts of the of the processed signals (i.e. marked area in Figure 4.6). This means that the leading
and trailing zeros in the processed signal are removed, resulting in shorter “centered” signals. However, some
information is lost when computing the singular value spectrum using the central parts of the signals rather
than the full length of the signal. This is demonstrated in Figure 4.9 (first singular value only), where the
“regular” spectrum is computed using all 250000 samples in the FFT, while for the “centered” spectrum only
80000 samples are used. It can be observed that some smaller frequency components are overpowered by
dominant frequency components. This is the consequence of spectral leakage, which is an inherent effect of
the Discrete Fourier Transform (DFT). The DFT assumes that the signals are periodic. In our case, the edges
of a centered signal will not be completely zero, meaning that the periodic extension of this signal contains
discontinuities, which leads to spectral leakage when computing the DFT/FFT of the centered signal.

Figure 4.13 shows the singular value spectra (first singular value only) of all processed signals of segment
2. The results are presented per dataset, where each sample represents a singular value spectrum. The num-
ber of samples in each dataset corresponds to the number of data files after similarity filtering as listed in
Table 4.2. The singular value spectra of all samples in a dataset are shown in the form of a spectrogram (top
axis). The average spectrum over all samples are shown in the bottom axis. From the figures it can be ob-
served that the dominant frequency components changes over time, presumably due to variations in the
environmental conditions. Similar observations can be done from the singular value spectra for segment 1
and 3, which are shown in the appendix, Figure F.7 and Figure F.8, respectively.
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Figure 4.9: Comparison of the singular value spectrum for processed signals in case the full measurement is considered (regular) and
when only the central part is used. The central part of the processed signals is illustrated in Figure 4.6.
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Figure 4.10: Segment 1 – Singular value spectrum obtained from vibration data (a) before similarity filtering and (b) after similarity
filtering. Only the first two singular values of the spectral density matrix are shown.
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Figure 4.11: Segment 2 – Singular value spectrum obtained from vibration data (a) before similarity filtering and (b) after similarity
filtering. Only the first two singular values of the spectral density matrix are shown.
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Figure 4.12: Segment 3 – Singular value spectrum obtained from vibration data (a) before similarity filtering and (b) after similarity
filtering. Only the first two singular values of the spectral density matrix are shown.
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(e) Dataset 5 (25 kg)
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(f ) Dataset 6 (50 kg)
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Figure 4.13: Singular value spectra of the processed signals from segment 2, separated by dataset (added mass). The top figure shows
a spectrogram with observations in chronological order on the vertical axis; the bottom figure shows the average spectrum over all
observations of the particular dataset.
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4.3.1 Modal Analysis

In this section the modal parameters, natural frequencies and mode shapes, of the bridge are identified using
the FDD technique. The identification process is explained in Section 3.2.4, where the modal parameters
are identified from a set of singular values and corresponding singular vectors, denoted by

{
σ1( f ),u1( f )

}
.

These sets were obtained in previous section, resulting from the singular value decomposition. An overview
of the number of sets that are considered for the modal analysis is provided in Table 4.3, where the number
of samples in each dataset corresponds to the number of data files after similarity filtering. In the following,
a single set will also be referred to as an observation or a sample.

Table 4.3: Number of measurements in dataset 1 to 7 that are considered for the modal analysis.

1 2 3 4 5 6 7

Added mass (kg) 0 100 50 0 25 50 75
Number of samples 43 141 74 101 100 114 114

To determine the modes from all observations efficiently, an automatic identification algorithm is imple-
mented in python. This algorithm involves the following steps:

Step 1. Find peaks in the singular value spectrumσ1( f ) of a single observation; let fr , r = 1, . . . , Np denote the
frequencies of the Np peaks found. Each peak represents a possible mode, whose natural frequency
is estimated by the peak frequency fr and the corresponding mode shape is estimated by the left
singular vector; that is, φr = u1( fr ). At the end of this step, we have a set

{(
fr ,φr

)
: r = 1, . . . , Np

}
consisting of Np possible modes, where a mode is characterized by its natural frequency and mode
shape.

Step 2. Remove non-uniquely identified modes. For this we compute the pairwise distance (4.5) between all
possible modes that were identified from a single observation. The distance between two identified
modes,

{
f j ,φ j

}
and

{
fl ,φl

}
, is defined as

d j l =
| f j − fl |

max( f j , fl )
+1−MAC(φ j ,φl ) (4.5)

which considers both the difference in natural frequency and mode shape; the latter is given by the
MAC, which is introduced in Section 3.2.5. The distance in equation (4.5) is close to zero for two
modes that belong to the same mode. If multiple modes are found with pairwise distances close
to zero (lower than a certain threshold Ω1) then these modes are removed from the set of possible
modes except the mode with the largest peak value in the singular value spectrum. In this way a set
of certainly different modes is obtained.

Step 3. Repeat Step 1 and Step 2 for all the observations, to obtain a set of uniquely determined possible
modes for each observation.

Step 4. Cluster the modes from different observations using hierarchical clustering. Again, the pairwise dis-
tance between two modes is computed as in (4.5). Average linkage is used to form successive clusters.
Modes with similar characteristics will have a distance close to zero.

Step 5. Obtain clusters with similar modes. The distances between observations in a cluster should be small
enough for the observations to belong to the same mode, while the distance between two clusters
must be large enough for the clusters to represent two distinct modes.

Step 6. Count the number of elements in each cluster and disregard clusters with less elements than a certain
threshold; For example, 50% of the total number of observations, which means that a mode must be
present in 50% of the observations. In this way spurious modes are removed.

In the end, we have a set of modal parameters
{(

fn ,φn

)
: n = 1, . . . , Nm

}
for each observation. A set con-

sist of Nm pairs formed by a natural frequency fn and a mode shape φn . A step-by-step description of the
identification algorithm including visualization is given in Appendix G.1.



56 4. Application: Similarity Filtering and Frequency Domain Decomposition

Examples of singular value spectra with identified modes are shown in Figure 4.14. The mode shapes corre-
sponding to the identified modes in Figure 4.14c are shown in Figure 4.15. It is noted that the description of
a mode shape is limited to the spatial position of the sensors in the considered segment (i.e. the mode shape
values are only known at the sensor positions). From the figure it can be observed that the mode shapes have
a nonzero amplitude at a single sensor and are zero at the other sensors, confirming the local character of the
modes. The same mode shapes are found for all five mass classes, which means that the mode shapes are not
sensitive to the added mass. The frequency count of the identified modes are shown in Figure 4.16 in the form
of histograms, separated by added mass. Similar figures are presented in Appendix G.2 and Appendix G.3 for
the identification results of segment 1 and 3, respectively.

For each segment, the natural frequencies of all 687 observations are summarized in Tables 4.4–4.6 and
visualized in Figures 4.17–4.19. Here, the modes are notated as X/SY, where X indicates the mode number
and Y refers to the sensor number where the amplitude of the local mode shape is unity (amplitude is zero
at the other sensors, visualized in Figure 4.15). This notation is chosen so that a certain mode can directly be
related to a position on the bridge deck. The “success rate” in the tables expresses the percentage of successful
identification of a certain mode, with respect to the size of the dataset. For example, mode 1/S4 has a success
rate of 16% for dataset 1 with size 43, so this mode is successfully determined in 7 of the observations.

Seven modes are identified per bridge segment. However, it appears that not all modes are correctly de-
termined. The natural frequencies of mode 1/S4 (segment 1) and mode 2/S27 (segment 3) show large scatter,
which can be attributed to the erroneous identification by the automatic algorithm. Furthermore, mode
1/S32 and mode 7/S25 (both segment 3) could not be determined for all datasets. This is due to the chosen
frequency range of 50–100 Hz for band-pass filtering in combination with the varying environmental condi-
tions. More specifically, these two modes have a natural frequency around 50 Hz and 100 Hz, respectively.
Due to varying environmental conditions, the natural frequencies change and might fall outside the consid-
ered frequency range, and consequently cannot be identified. For correct identification of these modes, the
frequency range should have been chosen slightly larger (e.g. from 45 to 105 Hz).

In general, the largest variations in the natural frequencies are found for datasets 2 (100 kg) and 5 (25
kg), and to a lesser extend for datasets 6 (50 kg) and 7 (75 kg). These variations are presumably caused by
changes in the environmental conditions (e.g. temperature). The correlation between the natural frequency
and temperature is analyzed in more depth in Chapter 8.

4.3.2 Conclusions

In this chapter the Frequency Domain Decomposition is applied on the processed data. First, the PSD and
the singular value spectra were analyzed, followed by the identification of the modal parameters (natural
frequencies and mode shapes). The results in this section are complemented with the results in Appendix G.

Based on the outcomes, the following observation can be made:

• The power spectrum and singular value spectrum of the processed signals (after band-pass and simi-
larity filtering) are smoother than of the unprocessed signals and dominant frequency components are
clearly visible. The dominant frequency components are related to the dynamic characteristics of the
system, which are amplified by the application of similarity filtering. Moreover, all the singular value
spectra of a segment (for all processed signals) look very similar, the same applies to all the power spec-
tra of a sensor. These observations indicate that in the processed signals the operational variability
is reduced (i.e. smoother spectra, and less variations between the signals), and the dynamic charac-
teristic of the system are amplified (i.e. dominant frequency components are clearly visible). So, the
similarity filtering seems to work for its intended goal; that is, to reduce the operational variability in
a measurement and at the same time enhance the similarities (i.e. the dynamic characteristics of the
system).

It must be noted that although the resonances in the spectra are clearly visible, the “shape” of the spec-
tra are highly modified. This means that important information for damage detection might be lost due
to the similarity filtering, given that changes in the structural properties could also affect the shape of a
spectrum.

• Figures F.1–F.4 in the appendix show that most of the sensors have a power spectrum with one dominant
frequency component only, while the other sensors have low quality spectra (i.e. large variability and
very low magnitude). In particular, the following sensors have considerably lower quality power spectra
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for all processed signals: 4, 5, 6, 9, 11, 14, 20, 21, 22, 24, 27, 29. Furthermore, the power spectra of sensors
25, 30 and 32 have a dominant frequency component close to one of the ends of the frequency range
50–100 Hz, which is not consistently observed in all processed signals. Those 15 sensors are not useful
for damage detection due to the large variability in spectral density that are obviously not related to
damage.

So, the similarity filtering did not succeed in amplifying a dominant frequency component in the sig-
nals of 15 sensors, which might be related to the local modes that were excited (or were not excited) at
these sensors. However, no obvious reason is found why these sensors have low quality power spectra
and the other sensors not.

From the figures it can also be observed that the dominant frequency components in the power spectra
changes over time, presumably due to the variations in environmental conditions.

• Seven modes were identified per bridge segment. However, the natural frequencies of modes 1/S4
(segment 1) and 2/S27 (segment 3) showed large scatter, and modes 1/S32 and 7/S25 (both segment
3) were not consistently determined in all datasets. The large scatter is attributed to the erroneous
identification of these modes by the automatic algorithm. The inability to identify the modes 1/S32
and 7/S25 in all datasets is due to the chosen frequency range of 50–100 Hz for band-pass filtering in
combination with the varying environmental conditions. For correct identification of these modes, the
frequency range should have been chosen slightly larger (e.g. from 45 to 105 Hz).

Those four modes will be disregarded in the analyses performed in the following chapters.

• The identified natural frequencies (Figures 4.17–4.19) show large variations across the different obser-
vations, especially for dataset 2 (100 kg) and 5 (25 kg). The standard deviations of the natural frequen-
cies of these two datasets are considerably larger compared to the other datasets. The change of natural
frequency over time might be the result of variations in the environmental conditions (e.g. tempera-
ture). The correlation between a natural frequency and the temperature is analyzed in more depth in
Chapter 8. It must be noted that the variation within a dataset (with constant added mass) will not be
the result of the added mass.

• The measurements of dataset 1 and 4 both are related to the 0 kg mass class. The average value of the
natural frequencies of these two datasets show absolute differences of more than 4 Hz (maximum 5.1
Hz), this is clearly visible in Figure 4.16a. The datasets are both obtained on March 23, 2017, dataset 1
in the morning from 8:29 to 9:48 and dataset 4 in the afternoon from 14:12 to 15:36, see Table 2.1.

The measurements of dataset 3 and 6 are both related to the 50 kg mass class. The average value of
the natural frequencies of these datasets show difference of more than 2 Hz (maximum 2.6 Hz), this is
clearly visible in Figure 4.16c. Dataset 3 is measured on March 23, 2017 from 12:40 to 13:40 and dataset
6 is measured on March 28, 2017 from 11:34 to 12:53. So, both sets are measured around the same time
of the day but on different days.

Obviously, the frequency differences in these two cases cannot be caused by the presence of an added
mass. Hence, these must be the result of other factors, such as varying environmental conditions (e.g.
temperature). The correlations between the natural frequencies and the temperature is analyzed in
more depth in Chapter 8.

• Figure 4.15, and Figures G.6 and G.9 in the appendix, show that the mode shapes have a nonzero ampli-
tude at a single sensor and are zero at the other sensors. This confirms the local character of the modes
(with respect to the spatial size of the sensor network). The mode shapes are not sensitive to the added
mass, because the same mode shapes are found for all five mass classes. By analyzing the figures of the
mode shapes it can be concluded that no modes were found with a local mode shape having a nonzero
amplitude at one of the sensors with low quality PSD (i.e. the sensors mentioned in the second bullet).

It is noted that the description of the mode shapes is limited to the spatial position of the sensors in a
segment, but the same mode shapes would have been found if the signals from all sensors were used
in the FDD (not shown here).
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(a) Example 5: dataset 2 (100 kg)
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(b) Example 3: dataset 3 (50 kg)
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(c) Example 1: dataset 4 (0 kg)
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(d) Example 2: dataset 5 (25 kg)
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(e) Example 4: dataset 7 (75 kg)

Figure 4.14: Examples of the singular value spectrum of the processed signals from segment 2, including the identified modes (ä). The
red crosses indicate peaks that are removed during the modal clustering.
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Mode 1: 62.51 Hz
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Mode 2: 66.44 Hz
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Mode 3: 70.33 Hz
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Mode 4: 75.84 Hz
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Mode 5: 77.17 Hz
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Mode 6: 84.33 Hz
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Mode 7: 90.42 Hz

Figure 4.15: Local mode shapes of segment 2, corresponding to the identified modes in Figure 4.14c.
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(b) Dataset 2 (100 kg)
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(c) Datasets 3 and 6 (50 kg)
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(d) Dataset 5 (25 kg)
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Figure 4.16: Frequency count of identified modes from the singular value spectra of the processed signals from segment 2, separated by
added mass class.
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Figure 4.17: Segment 1 – Identified natural frequencies from processed data sets. The horizontal axis represents the sam-
ples/observations in chronological order.

Table 4.4: Segment 1 – Automatic modal analysis results for different datasets. The mean value and standard deviation (Std) of the
natural frequencies are specified, together with the success rate.

Mode Dataset/added mass

1/m0 2/m100 3/m50 4/m0 5/m25 6/m50 7/m75

1/S4* Succes rate (%) 16 48 100 97 56 72 50
Mean (Hz) 67.10 64.76 64.79 64.87 64.89 64.39 65.37
Std (Hz) 0.80 1.09 0.46 0.69 0.46 0.71 1.36

2/S1 Succes rate (%) 100 100 100 100 100 100 100
Mean (Hz) 63.15 66.30 67.78 68.03 66.52 69.24 66.47
Std (Hz) 0.17 0.61 0.19 0.16 0.51 0.33 0.29

3/S8 Succes rate (%) 81 100 95 97 99 94 100
Mean (Hz) 70.59 73.66 75.12 75.07 74.15 77.12 73.87
Std (Hz) 0.11 0.51 0.14 0.15 0.54 0.33 0.26

4/S3 Succes rate (%) 100 100 100 100 100 100 100
Mean (Hz) 71.93 75.20 76.66 76.82 75.65 78.02 75.72
Std (Hz) 0.18 0.50 0.17 0.21 0.51 0.34 0.24

5/S2 Succes rate (%) 100 100 100 100 100 100 100
Mean (Hz) 83.95 86.78 88.15 88.47 87.00 89.30 87.12
Std (Hz) 0.18 0.49 0.15 0.15 0.48 0.32 0.23

6/S7 Succes rate (%) 98 100 100 100 100 100 100
Mean (Hz) 87.98 90.08 91.76 92.03 90.45 93.54 91.58
Std (Hz) 0.09 0.63 0.06 0.04 0.56 0.38 0.20

7/S10 Succes rate (%) 98 96 100 99 100 59 100
Mean (Hz) 92.38 95.04 96.63 96.88 95.97 99.05 96.35
Std (Hz) 0.06 0.70 0.06 0.08 0.73 0.33 0.25

* Not well determined mode, natural frequencies show large scatter.
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Figure 4.18: Segment 2 – Identified natural frequencies from processed data sets. The horizontal axis represents the sam-
ples/observations in chronological order.

Table 4.5: Segment 2 – Automatic modal analysis results for different datasets. The mean value and standard deviation (Std) of the
natural frequencies are specified, together with the success rate.

Mode Dataset/added mass

1/m0 2/m100 3/m50 4/m0 5/m25 6/m50 7/m75

1/S15 Succes rate (%) 100 100 100 100 100 100 100
Mean (Hz) 57.60 61.29 62.60 62.31 61.37 64.37 61.15
Std (Hz) 0.13 0.55 0.06 0.12 0.63 0.33 0.28

2/S16** Succes rate (%) 100 100 100 100 100 100 100
Mean (Hz) 61.45 64.99 66.07 66.53 65.68 68.57 65.65
Std (Hz) 0.11 0.58 0.06 0.08 0.58 0.36 0.24

3/S12 Succes rate (%) 100 90 76 93 100 100 93
Mean (Hz) 65.76 68.29 70.08 69.52 68.68 71.04 68.93
Std (Hz) 0.15 0.53 0.32 0.29 0.43 0.29 0.48

4/S13 Succes rate (%) 98 77 42 66 93 96 82
Mean (Hz) 70.83 74.04 75.56 75.92 74.92 77.84 74.72
Std (Hz) 0.08 0.70 0.15 0.04 0.67 0.31 0.28

5/S17** Succes rate (%) 100 92 81 78 100 96 89
Mean (Hz) 72.71 75.69 76.76 77.24 76.50 79.38 76.68
Std (Hz) 0.06 0.52 0.14 0.07 0.55 0.32 0.24

6/S19* Succes rate (%) 88 38 23 35 53 60 59
Mean (Hz) 79.74 83.20 84.40 84.33 83.48 87.01 81.66
Std (Hz) 0.16 0.58 0.15 0.09 0.62 0.29 4.36

7/S18 Succes rate (%) 98 91 68 94 94 95 94
Mean (Hz) 86.61 88.20 90.00 90.44 88.48 91.24 89.78
Std (Hz) 0.15 0.36 0.18 0.05 0.40 0.26 0.23

* Inconsistently determined mode, low success rate.
** Mode with a mode shape having a nonzero displacement close to the added mass; at the position of sensor 16 and 17.



4.3. Frequency Domain Decomposition 63

0 43 184 258 359 459 573 687
Sample number

50

60

70

80

90

100
Fr

eq
ue

nc
y 

(H
z)

mode 1/S32

mode 2/S27

mode 3/S23

mode 4/S31

mode 5/S28

mode 6/S26

mode 7/S25

Dataset
1/m0 2/m100 3/m50 4/m0 5/m25 6/m50 7/m75

Figure 4.19: Segment 3 – Identified natural frequencies from processed data sets. The horizontal axis represents the sam-
ples/observations in chronological order.

Table 4.6: Segment 3 – Automatic modal analysis results for different datasets. The mean value and standard deviation (Std) of the
natural frequencies are specified, together with the success rate.

Mode Dataset/added mass

1/m0 2/m100 3/m50 4/m0 5/m25 6/m50 7/m75

1/S32** Succes rate (%) 0 0 46 95 57 100 28
Mean (Hz) - - 50.35 50.69 50.54 51.93 50.36
Std (Hz) - - 0.04 0.13 0.11 0.40 0.08

2/S27* Succes rate (%) 37 60 97 98 70 75 75
Mean (Hz) 66.64 66.51 65.73 66.15 66.09 65.15 66.42
Std (Hz) 2.20 1.42 0.85 1.31 0.96 1.22 1.02

3/S23 Succes rate (%) 100 100 100 100 100 100 100
Mean (Hz) 73.53 77.09 77.82 78.47 77.34 79.91 77.03
Std (Hz) 0.19 0.41 0.10 0.09 0.60 0.21 0.24

4/S31 Succes rate (%) 100 100 100 100 100 100 100
Mean (Hz) 80.59 82.37 83.71 84.24 82.56 85.45 83.53
Std (Hz) 0.15 0.54 0.15 0.07 0.39 0.34 0.21

5/S28 Succes rate (%) 86 100 100 92 100 100 96
Mean (Hz) 86.72 88.79 90.36 90.94 89.14 92.15 89.73
Std (Hz) 0.11 0.54 0.16 0.09 0.28 0.46 0.23

6/S26 Succes rate (%) 72 100 100 98 100 89 96
Mean (Hz) 89.26 92.04 93.41 93.87 92.90 95.32 92.84
Std (Hz) 0.10 0.63 0.12 0.09 0.64 0.33 0.28

7/S25** Succes rate (%) 53 91 22 0 100 0 80
Mean (Hz) 96.38 98.44 99.50 - 99.03 - 99.33
Std (Hz) 0.15 0.27 0.04 - 0.17 - 0.18

* Not well determined mode, natural frequencies show large scatter.
** Natural frequencies could not be determined for some datasets, as they fall outside the range 50–100 Hz.





5
Feature Engineering

In this chapter some important aspects of feature engineering are briefly discussed. Feature engineering is
the general process of generating proper inputs for the machine learning algorithms. The inputs of the algo-
rithms are then referred to as features; in the context of structural health monitoring they are often referred
to as damage-sensitive features. A damage-sensitive feature is some quantity extracted from the measured
system response that indicates the presence of damage in a structure. These features vary considerably in
their complexity. Ideally, we wish to have low-dimensional feature vectors that are highly sensitive to the
condition of the structure and insensitive to all forms of operational and environmental variability. The di-
mension of a feature vector refers to the number of scalar quantities in the vector. Many techniques used
for machine learning have difficulties in dealing with feature vectors of high dimensionality; this problem
is usually referred to as the curse of dimensionality. The curse is simply that, in order to obtain acceptable
performance of these techniques, the number of training data theoretically grows exponentially with the di-
mensionality p of the feature space. To get an idea of this curse, suppose a one-dimensional interval needs,
say, N equidistant points to be properly described, the corresponding two-dimensional square will need N 2,
the three-dimensional cube N 3, and so on. This would mean that for a p-dimensional space we need N p

samples. Another problem associated with high-dimensional spaces is that, in practice, due to the lack of
enough training data points some regions in the feature space may be sparsely represented in the data set
[46].

This curse is problematic for most probability density estimation techniques, as well as for classifiers
that make their decision based on a certain distance metric. In a high-dimensional space two samples are,
on average, further located from each other compared to the same number of points in a low-dimensional
space. When the distance between samples grows, classification becomes more difficult because prediction
for new samples are less likely to be based on learning from similar training samples.

From a practical point of view, there are two solutions to this problem. The first solution is to obtain ad-
equate training data sets. This would mean that we have to acquire more data, which is not always possible
due to the size and expense of the measurement campaign. The second solution is to reduce the dimensions
of the features to a point where the available data is sufficient. The latter approach is often more feasible and
is an important aspect in feature engineering. A large range of techniques exists for dimensionality reduction,
which differ in their criteria used for deciding which information should be preserved. Obviously, the dimen-
sions of the feature space should be reduced without the loss of important, damage-related information.

Feature extraction and feature selection are the two main classes for reducing the dimensions of the feature
space. Feature extraction refers to the process of transforming the measured data into some alternative lower-
dimensional form where the correlation with the damage is more readily observed. This process often also
includes the fusion of data from multiple sensors. Feature selection is the process of determining which
feature to use in the damage detection process. Ideally one should select a feature that is sensitive to the
presence of damage in the structure and insensitive to all forms of operational and environmental variability.
However, in practice, features that are sensitive to damage are also sensitive to changes in the structural
response that are not related to damage. This issue often requires an additional processing step after the
feature engineering, which will be discussed in Chapter 8 (data normalization).

Although feature extraction and selection both aim at reducing the dimensions of the feature space, they
use a different approach to achieve this. Feature extraction maps (in a linear or nonlinear manner) all p ob-
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served variables to a smaller number of variables, while feature selection selects a subset of variables. The
main advantage of feature extraction is that it is not necessarily axis-aligned, implying that the process may
involve nonlinear mappings. Principal Component Analysis (PCA) is one of the most-popular method for fea-
ture extraction and dimensionality reduction in general. The theory of PCA is briefly described in Appendix C.
PCA is also often used for visualization of the data, where the dimensions of the features are reduced to two or
three. Depending on which information content is preserved by the transformation, the important structure
of the data may be accessible by visual inspection.

In our case, the feature extraction process is actually already performed in Chapter 4. In that chapter,
the processed signals (i.e. time series after band-pass and similarity filtering) are transformed to alterna-
tive forms that are more useful for damage detection. For the signals per sensor, the Power Spectral Density
(PSD) functions were computed for the frequency range of 50 to 100 Hz. The information of multiple sensors
(sensors per bridge segment) was combined into a singular value spectrum; that is, the first/largest singular
values of the spectral density matrix computed from the processed signals of multiple sensors. The computed
spectra for the processed signals consist of 4000 spectral lines between 50 and 100 Hz (frequency resolution
0.0125 Hz). Using all the spectral lines as damage-sensitive features results in a 4000-dimensional feature
vector, which is not desirable. The very high dimensionality of the feature space in combination with the the
small number of observations might result in bad performance of the machine learning algorithms. There-
fore, the dimensions of the feature space are further reduced using a simple but pragmatic feature selection
process. The idea of the feature selection process for a spectrum is rather straightforward and consists of
selecting the spectral lines centered around the peaks in the spectrum, as these are known to be sensitive
to the damage of a structure. In this way, the dimension of the feature vector is reduced without losing the
damage-related information. However, the peaks in a response spectrum are also sensitive to changes in the
structural response that are not related to damage. Recall that in Chapter 4, estimates of the bridge’s natural
frequencies were identified from the peaks in a singular value spectrum. So, in the particular case that we se-
lect the spectral lines at the peaks only, the features correspond to estimates of the resonance frequencies of
the considered structure. Using the natural frequencies of the structure as damage sensitive features results
in low dimensional feature vectors, which are desirable for most machine learning applications.

In this thesis, features selected from a singular value spectrum are used for the classification task in Chap-
ter 6. The resulting feature space is high-dimensional which is problematic for many machine learning algo-
rithms. However, not for the Support Vector Machine (SVM) algorithm that will be applied for the classifica-
tion problem. The computational complexity of the SVM is independent of the input feature space (or the
kernel space where the input feature space is mapped), hence bypassing the curse of dimensionality.

On the other hand, the natural frequencies are used for the novelty detection in Chapter 7 because of
their low dimensionality. The employed method for novelty detection is based on the Mahalanobis Squared
Distance (MSD), which involves the inverse of a covariance matrix. An accurate estimate of the covariance
matrix requires a lot of data, especially for high dimensional feature vectors. Therefore, the natural frequen-
cies of the structure are used rather than the singular values spectrum. The former yields a feature vector
with only five or six elements while the for latter the feature vector easily contains more than 200 elements.

5.1 Visual Inspection of the Spectra

In previous chapter, the spectra associated with the different mass classes were considered, but the results
of the different mass classes were not compared yet. Here, the singular value spectra and PSD of four mass
classes will be compared to get an idea of the possible class separability.

The singular value spectra of the processed signals were previously shown in the form of spectrograms,
displaying the frequency content across a set; see Figure 4.13 for the data of segment 2 and Figures F.7 and F.8
in the appendix for the data of segment 1 and 3, respectively. Based on these figures the frequency range of 50
to 100 Hz will be further reduced as part of the feature selection process. Recall that the frequency range of 50
to 100 Hz was determined using the Frequency Domain Decomposition (FDD) in which the spectral density
matrix was constructed with all the sensors. However, for the processed signals after similarity filtering it
was chosen to perform the FDD for each bridge segment separately (using only a subset of the sensors for
the construction of the spectral density matrix). It then appears that the resonance frequencies of the three
segments do not coincide and that these frequency components appear in a smaller frequency range. By
visual inspection of the spectrograms it is chosen to consider the following frequency ranges: 65 to 100 Hz
for segment 1, 55 to 72 Hz for segment 2, and 75 to 95 Hz for segment 3. The frequency ranges of the three
segments are not the same, so are the number of spectral lines.
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In Figures 5.1a–5.3a overlaid plots of the normalized singular value spectra for four different mass classes
are shown. In these figures we would expect a frequency shift of the peaks towards the left for increasing
weight of the mass; that is, an increase in mass leads to a reduction of the natural frequency, which is based
on the formula for the natural frequency of a SDOF system ωn = p

k/m. Moreover, it is expected that this
effect will be most apparent for the spectra of segment 2 in which the mass is located. The expected behavior
can indeed be observed from the spectra of segment 2 for the peaks around 66 Hz, but is less obvious for the
other peaks. It can also be seen that there is a large spread in the location of the peaks for the 100 kg mass
class. Similar frequency shifts can be observed in the spectra of segment 1 and segment 3, although this is less
clear in the former. The observations for segment 1 and 3 seem a bit strange because the mass is located in
segment 2 and it is unlikely that the mass will cause these changes, given that the mass is very small compared
to the weight of a segment and the segments are separated by stiff transverse beams. It is more likely that the
observed frequency shifts are the result of changes in the environmental conditions (e.g. temperature). The
correlation between natural frequency and the temperature will be investigated in Chapter 8.

Next to the usual representation of the spectra, the data is also visualized in an alternative form in an
attempt to show the separability of the mass classes. The PCA is employed to obtain the first three principal
components of the data matrix (i.e. matrix holding the singular value spectra). In Figures 5.1b–5.3b the
three principal components are shown. From these figures it can be seen that the observations from the
different mass classes cluster quite well. In particular, the observations without mass (0 kg class) is clearly
separated from the observations with mass. It is noted that the PCA is solely applied as visualization tool
in this thesis. The PCA could also be applied as feature extraction tool to obtain low-dimensional feature
vectors; for example, the three principal components form a three-dimensional feature vector. However,
the PCA involves the estimation of a covariance matrix (see Appendix C), which requires a lot of data for an
accurate estimate. Besides, the damage-related information may be lost by the projection of the data on
the principal components. Therefore, the PCA will not be used for dimensionality reduction of the high-
dimensional feature vectors. Instead, another method will be used for feature selection as will be explained
later.

The PSDs of the processed signals for each sensor were also shown in the form of spectrograms, see Fig-
ures F.1–F.4 in the appendix. From these figures it was observed that for 17 sensors the PSDs have one dom-
inant frequency component (i.e. resonance frequency of the structure), while for the other 15 sensors the
spectra is of low quality. The latter spectra are not useful for damage detection and will be disregarded. Fig-
ure 5.4 shows overlaid plots of the normalized PSD for four different mass classes. Similar plots with the data
grouped by measurement date are shown in Figures F.5 and F.6. From these figures the shift in resonance
frequency is clearly visible for all sensors. For most of the sensors, the shift is consistent with the increasing
weight of the added mass. The shift in resonance frequency is not more pronounced for the sensors closest
to the added mass (i.e. sensors 16 and 17). For example, for sensor 26 and 28 (located in the middle of seg-
ment 3) the shift in the resonance frequency is also very consistent with the increase of the mass. Besides in
Figure F.6 in the appendix the opposite behavior is observed; that is, the resonance frequencies for the 50 kg
mass are higher than for the 25 kg mass, while it is expected that the heavier mass leads to reduced resonance
frequencies. The location of the peaks in the spectra is very distinct between the two mass classes; the differ-
ence between them is for all sensors about 2 Hz. Based on these two observations it is questionable whether
the added mass has an observable effect on the spectra. It fact, it seems that the the shift in frequency reflects
the time moment at which the data is measured. This statement is supported by the following observations:

• The resonance frequencies also change considerably in the spectra of the same added mass class, which
will not be the result of the added mass. Considering the measurement time corresponding to the
spectra it appears that the resonance frequencies generally increase while time elapsed.

• The resonance frequencies in the spectra of a certain dataset/mass class are generally the lowest for the
dataset that is measured first (i.e. in the morning). For example, the measurements on March 23, 2017
are performed with a mass of 0 kg, 100 kg, 50 kg, and again 0 kg between 08:29 and 15:37 (see Table 2.1
for the time periods per dataset). From Figure F.5 it can be observed that the resonance frequencies in
the spectra corresponding to these measurements also occur in this order, with the lowest frequency for
the 0 kg class measured first. The same can be observed in Figure F.6 for the measurements on March
28, 2017, where the 25 kg class is measured first followed by the 50 kg class.

Of course, the time moment itself does not cause the observed frequency shifts; it will be the variables that
are related to the time moments, with the environmental conditions presumably as the main source. The
correlation between natural frequency and the temperature will be investigated in Chapter 8.
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Figure 5.1: Normalized features for bridge segment 1. In (a) the features represent 2800 frequency lines from singular value spectra
between 65 and 100 Hz, and in (b) the first three principal components are shown which explain 44% of the variance in the original 2800
features.
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Figure 5.2: Normalized features for bridge segment 2. In (a) the features represent 1360 frequency lines from singular value spectra
between 55 and 72 Hz, and in (b) the first three principal components are shown which explain 44% of the variance in the original 1360
features.
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Figure 5.3: Normalized features for bridge segment 3. In (a) the features represent 1600 frequency lines from singular value spectra
between 75 and 95 Hz, and in (b) the first three principal components are shown which explain 44% of the variance in the original 1600
features.
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Figure 5.4: Normalized PSD for four different mass classes; not shown are the sensors for which the PSDs are of low quality. Sensors in
the range from 1 to 10 are located in segment 1, from 11 to 22 in segment 2, and from 23 to 32 in segment 3. The added mass is attached
to the bridge deck between sensor 16 and 17.
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5.2 Feature Selection
In this section the feature selection procedures that are applied for the selection of damage-sensitive features
in Chapter 6 and Chapter 7 are explained.

Spectrum

In Chapter 6 the SVM algorithm is applied for the classification problem. The features for the SVM algorithm
are selected from the spectrum (particularly, the singular value spectrum or the power spectrum). Not all the
spectral lines of a spectrum will be used as features, only a subset of the spectral lines will be used, which is
defined in the following.

The spectra are scaled to equal order of magnitude before the feature selection, so that the features from
different observations will be comparable. The normalization is performed for each spectrum individually as
follows: first the spectrum is log-transformed, followed by the extraction of the mean value of the spectrum.
In this way all the observations will have zero mean, while retaining the relative magnitude of the peaks. It is
noted that in the following the features are not standardized because the features already have the same units
(i.e. all the features represents a spectral quantity).

The spectra obtained from the processed signals after similarity filtering consist of 4000 spectral lines
between 50 and 100 Hz (frequency resolution 0.0125 Hz). These spectral lines are the potential features for
the machine learning algorithms, but as already mentioned it is not desirable to have so many of them. To
reduce the number of features in a feature vector, the following feature selection procedure is applied:

Step 1. The spectra are down sampled to 1666 spectral lines in the frequency range of 50 to 100 Hz (compared
to 4000 lines in the original spectrum). The resulting spectra have a frequency resolution of 0.03 Hz.
At the end of this step the number of potential features is already reduced by almost 60%.

Step 2. The actual features are selected based on the variance of each spectral line. This variance is com-
puted from the set of observations that includes all the mass classes (in general this will be a set with
training vectors). Let

{
x j : j = 1, . . . , N

}
denote this set with N number of observations (i.e. the spectra

resulting from the previous step), then the variance of the k-th spectral line is computed as

Var(xk ) = 1

N −1

N∑
j=1

(
xk, j − x̄k

)2 , x̄k = 1

N

N∑
j=1

xk, j (5.1)

where x̄k is the mean value of the k-th spectral line. Subsequently, the spectral lines with a variance
larger than some threshold are selected as features for damage detection. For example, we can select
the spectral lines that have a variance larger than 5% of the maximum variance. The idea behind this
step is that by choosing features with high variance the observations of different classes are better
separable. There is a caveat associated with this selection. The features with low variance may in
practice be most relevant for damage detection an may be erroneously disregarded. Besides, a large
variance is not necessarily related to the class separability but can also be the result of large varia-
tion between the observations from a single class; for example when a certain state of the structure
is measured under varying environmental conditions. For the spectrum, the largest variance is ex-
pected around the peak, which is the region of interest and thus it is acceptable to apply this selection
procedure.

The feature selection process will be further clarified with an application to the singular value spectrum.
Recall that the singular value spectra are computed for each bridge segment separately. So, for each segment
the damage sensitive features must be selected using the process described above. In previous section, a new
frequency range was defined for the singular value spectra of each segment; 65 to 100 Hz for segment 1, 55 to
72 Hz for segment 2, and 75 to 95 Hz for segment 3. The frequency ranges of the three segments are not the
same, so are the number of spectral lines. These spectra are down sampled to a frequency resolution of 0.03
Hz in Step 1, so at the end of this step a singular value spectrum corresponding to segment 1, 2 and 3 consists
of 1166, 566 and 666 spectral lines, respectively. It is noted that the shape of the spectra after this step does
not differ from the spectra shown in Figures 5.1a–5.3a.

In Step 2 the final features are selected based on a variance threshold. Figure 5.5b shows an example of
the set with singular value spectra for segment 3 that results from the first step. The horizontal axis represents
now the spectral lines of the spectra rather than the frequency, each line is referred to as a feature. The set
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consists of four mass classes, but the class labels are not important here because these are not considered for
the feature selection. For this particular set with singular value spectra, the variance of each spectral line is
computed according to equation (5.1) and shown in Figure 5.5a. The dashed line indicates the 5% variance
threshold, which is equal to 5% of the maximum variance. By comparing Figure 5.5a and Figure 5.5b it is
clear that the regions with largest variance correspond to the regions with peaks in the spectra, which are
the regions of interest for damage detection. Subsequently, the spectral lines with a variance larger than the
threshold level are selected as features, which in this case are roughly the lines in the ranges 40–125, 200–
325, and 420–640. In total 430 of the 666 spectral lines are selected as features. The selected features are
highlighted in the figures.

Examples of the selected features from the singular value spectra are shown in Figures 5.6–5.8 for the three
segments. The figures in the left column show the spectra after the first step, the highlighted regions indicate
the spectral lines with a variance larger than 5% of the maximum variance. The spectral lines in these regions
are selected as features and shown in the figures in the right column.

It is noted that the number of features selected depends on the data that is used to compute the variances
of the spectral lines. Therefore, this feature selection step should be part of the classification algorithm, where
the variances of the spectral lines are usually computed using a set of training vectors.
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Figure 5.5: Example variance-based feature selection. In (a) the variance of each spectral line is shown together with the 5% threshold
level (dashed line). The variances are computed for the spectra shown in (b). The spectral lines with a variance larger than the threshold
are selected as features and highlighted in the figure.
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Figure 5.6: Segment 1 – Selected features after Step 1 (left) and after Step 2 (right). The selected spectral lines shown in the figure on the
right are highlighted in the figure on the left. The spectra in the left figure consist of 1166 spectral lines (frequency resolution 0.03 Hz),
and 644 spectral lines are selected with a variance of at least 5% of the maximum variance in the data set.
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Figure 5.7: Segment 2 – Selected features after Step 1 (left) and after Step 2 (right).The selected spectral lines shown in the figure on the
right are highlighted in the figure on the left. The spectra in the left figure consist of 566 spectral lines (frequency resolution 0.03 Hz),
and 283 spectral lines are selected with a variance of at least 5% of the maximum variance in the data set.
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Figure 5.8: Segment 3 – Selected features after Step 1 (left) and after Step 2 (right). The selected spectral lines shown in the figure on the
right are highlighted in the figure on the left. The spectra in the left figure consist of 666 spectral lines (frequency resolution 0.03 Hz),
and 430 spectral lines are selected with a variance of at least 5% of the maximum variance in the data set.
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The previous application of the feature selection procedure was tailored to the singular value spectra. The
same procedure is applied for the selection of features from the PSD (to be used for the classification per
sensor). In that case, there is only one peak in the PSD and the spectral lines centered around the peak
frequency are selected as features. For the spectra shown in Figure 5.4, the number of spectral lines that are
selected as features vary between 100 and 350.

Natural frequencies

In Chapter 7 the novelty detection method is applied for the detection of the added mass. For this method
the natural frequencies will be used as damage-sensitive features, because of their low dimensionality. The
natural frequencies were estimated in Section 4.3.1. The feature selection in this case is simple; the natural
frequencies with a success rate larger than 80% are selected as features. This results in a 6-dimensional feature
vector for segment 1, a 5-dimensional feature vector for segment 2, and a 4-dimensional feature vector for
segment 3.





6
Supervised Learning - Classification

6.1 Introduction
The preceding chapters focused on the data acquisition, preprocessing of the data and feature engineering.
At this point we are now faced with the challenge of making an accurate assessment of the damage condition
of the structure based on the extracted features. For this we will use an approach that is based on the pattern
recognition aspect of machine learning. The idea is that we can learn relationships from the measured data.
In the context of SHM, this means that we can learn to assign a damage condition or class to a given feature
vector of the structure. The feature vectors are formed from the measurement data and must be sensitive to
damage. In this thesis, we have chosen to use the singular values of the spectral density matrix or the natural
frequencies as features. The former are used as features in this chapter.

Most pattern recognition algorithms work by training a diagnostic. The type of learning algorithms in
which the diagnostic is trained by showing it the true label for each data set is called supervised learning. This
type of learning suggests that data from every conceivable damage condition should be available, which is
not always possible. The two possible sources to acquire such data are physically-based modeling and exper-
iments. The former can be very complex in case the structure and damage are difficult to model. In case of
experiments it would be necessary to make copies of the structure of interest and damage it in all the ways
that might naturally occur. For operational structures like bridges, this is simply not possible. However, we
can still obtain data from experiments by simulating the damage rather than actually damaging the struc-
ture. The damage can be simulated with added masses, which is believed to have an equivalent effect on the
selected features as the stiffness reduction caused by damage.

Fortunately there is an alternative to supervised learning, that is unsupervised learning. In this case, only
training data from the normal operating condition of the structure is used to establish the diagnostic. In this
way a model of the normal condition is trained. Then, during monitoring, newly acquired data are compared
with this model. If there are any significant deviations, then the data is flagged as abnormal, which means
that the structure has departed from its normal condition, so potential damage has occurred. The techniques
used here are often referred to as novelty detection or anomaly detection methods. Novelty detection methods
can only be used for detection and possibly locating damage (quantification of damage and prediction of
remaining life time—level 3 and 4 diagnostics—are not possible). It is an important qualifier that the novelty
detector should flag only if significant deviations from its normal operating condition occur. In reality, the
structure is subjected to measurement noise and usually operate in changing environmental conditions, so
the algorithm must be able to distinguish between a statistical fluctuation in the data and a real deviation
from normality.

The damage identification problem in this sense is thus considered as a pattern recognition problem.
Three types of algorithms can be distinguished depending on the desired diagnostic [19]:

1. Novelty detection; the algorithm simply indicate if the data come from a normal operating condition
or not. This is a one-class problem, which has the advantage that unsupervised learning can be used.
Novelty detection will be discussed in Chapter 7.

2. Classification; the algorithm returns a discrete label for given feature vector. In most basic form, the
algorithm might assign a “damaged” or “not damaged” label to the features. In general, more classes

75
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are used in order to quantify the damage states; for example, for the type of damage, different labels
are used for different damage mechanisms that may occur and, for damage localization, the structure
may be divided into labeled substructures. Classification is usually expressed as a pattern recognition
problem and will be discussed in this chapter.

3. Regression; the algorithm returns values for one or more continuous variables. Regression is a super-
vised learning problem and could be useful, for e.g. severity assessment in which the output of the
algorithm is the length of a fatigue crack. This algorithm is not discussed in this report, the interested
reader is referred to [19] or [46].

Although the novelty detection is referred to as an unsupervised learning method, this is not completely
correct. The term “unsupervised learning” is usually reserved for self-learning algorithms that search for
previously unknown patterns in a dataset without pre-existing labels (e.g. cluster algorithms). However, for
novelty detection it is assumed that the labels of one class are known, namely the normal condition, making
it not completely unsupervised. Therefore, the novelty detection is sometimes referred to as semi-supervised
anomaly detection.

In the next section, the pattern recognition approach is described in more detail. The discussion is limited
to the classification problem. Although the presented classifier will not be applied in this work, it is very
intuitive and allows for some important concepts to be introduced.

6.2 Bayesian Decision Theory

The problem of pattern recognition is to associate classes ωi , i = 1,2, . . . , M with measured data usually ex-
pressed in terms of feature vectors x. In the simplest case there will be just two classes, but in a sense this is the
most important problem in SHM as one wish to distinguish between the classes “healthy” (H) and “damaged”
(D). The considered problem is one of supervised learning, hence we will assumed that data from the dam-
aged condition is available. In a probabilistic context, we are interested in the probability that the system is
damaged or undamaged given that one has observed the feature vector x, and this can be expressed in terms
of the conditional probabilities P (H |x) and P (D |x), respectively. If these probabilities can be computed, it is
natural to assign an unknown pattern to the class that has the highest probability of the two. Hence, the basic
decision rule now is

Choose H if P (H |x) > P (D |x), otherwise choose D (6.1)

Unfortunately, the two probabilities in question are usually not directly available. However, it is assumed that
training data from the structure in healthy and damaged condition is available; that is, the data sets DH ={
(x j , H) : j = 1, . . . , N

}
and DD = {

(x j ,D) : j = 1, . . . , N
}

for the healthy and damaged condition, respectively, are
known. Both sets consists of N observations of the p-dimensional feature vector, x j ∈Rp , extracted from the
measurements. Then it is possible to determine the class-conditional probability density functions P (x | H)
and P (x |D), also referred to as the likelihood functions, which specify the probabilities that a measurement
vector x arises from class H and D , respectively. Now the required probabilities P (H |x) and P (D |x) can be
computed based on Bayes theorem, which, for a general class ωi , is defined as

P (ωi |x) = p(x |ωi )P (ωi )

p(x)
(6.2)

where P (ωi ) is the prior probability of finding an example from class ωi without considering any measure-
ment information. p(x) is the probability density function of x, which can be computed based on the law of
total probability

p(x) =
M∑

i=1
p(x |ωi )P (ωi ) (6.3)

Using equation (6.2), the decision rule (6.1) can equivalently be based on the inequality

p(x |H)P (H) > p(x |D)P (D) (6.4)

in which p(x) is not taken into account, because it is the same for all classes and it does not affect the decision.
In the context of SHM, one will usually not know the prior class probabilities P (H) and P (D), although one
would hope that P (H) À P (D). The prior probabilities can be determined based on engineering knowledge,
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or in the absence of any information the classes may be assumed equally likely; that is P (H) = P (D) = 1/2. If
this latter applies, then the decision rule is based solely on the likelihoods calculated from the training set.

Figure 6.1 shows an example of two equiprobable classes and shows the likelihoods as a function of x
for the simple case of a single feature (p = 1). The dotted line at x0 is a threshold partitioning the feature
space into two regions, R1 and R2. According to the decision rule, the classifier assigns all values of x in R1

to H and all values in R2 to D . However, the probability density functions overlap so classification errors are
unavoidable. From the figure it is readily seen that the total probability of committing a classification error is
given by

Pe = P (x ∈ R2 ∩H)+P (x ∈ R1 ∩D)

= P (x ∈ R2 |H)P (H)+P (x ∈ R1 |D)P (D)

= P (H)
∫ ∞

x0

P (x |H)dx +P (D)
∫ x0

−∞
P (x |D)dx

(6.5)

which is equal to the total shaded area under the curves in Figure 6.1. It can be proven that, in general, the
Bayesian classifier is optimal with respect to minimizing the classification error probability [46]. This means
that if R1 is the region of space in which P (ω1 |x) > P (ω2 |x), and R2 the region where the reverse is true, then
the probability of error is minimized.

Figure 6.1: Example of two regions R1 and R2 formed by the Bayesian classifier for the case of two classes [46].

It is noted that the classification error probability is not always the best criterion to be adopted for min-
imization. This is because it assigns the same importance to all errors. However, there are cases in which
some wrong decisions may have more serious consequences than others. In fact, in the two class problem
considered above two types of error can occur:

1. Type I error, also called false-positive or false alarm. This type of error occurs when the structure is
indicated as damaged while it is actually healthy. This could result in a structure being withdrawn from
service or closed and has potentially severe financial consequences.

2. Type II error, also called false-negative or missed detection. This type of error occurs when the structure
is indicated as healthy even though it is damaged. This means that the damaged structure is allowed to
continue to operate in a misdiagnosed damaged state, which potentially may lead to complete loss of
the structure and consequent loss of life. Hence the consequences of this type of error are more severe
than a type I error as there will be a threat to safety.

So, it may be more appropriate to assign a penalty term to weight each error. In our case, the probability
to commit a type I error is PI = P (x ∈ R2 | H)P (H) and for type II this is PI I = P (x ∈ R1 |D)P (D). Instead of
selecting R1 and R2 so that Pe is minimized, we can also minimize the following weighted version

Pe =λI P (H)
∫ ∞

x0

P (x |H)dx +λI I P (D)
∫ x0

−∞
P (x |D)dx (6.6)
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in which each of the two terms that contribute to the overall probability is weighted according to its signif-
icance. In our case, the reasonable choice would be to have λI I > λI , because type II error has more severe
consequences. Alternative cost functions can be established depending on the considered problem.

So far, we have dealt with the simple case of two classes. Generalization to the multiclass case is straight-
forward. In a classification problem with M classes, ω1,ω2, . . . ,ωM , an unknown pattern, represented by the
feature vector x, is assigned to class ωi if

p(x |ωi )P (ωi ) > p(x |ω j )P (ω j ) ∀ j 6= i (6.7)

It can be shown that such a choice also minimizes the classification probability [46].

The Bayesian classifier is a supervised learning algorithm, which means that measurement data from all con-
ceivable classes are available. The general Bayesian classifier can be summarized as follows:

Step 1. Establish a training set Di =
{
(x j , y j =ωi ) : j = 1,2, . . . , Ni

}
consisting of Ni number of observations of

the p-dimensional feature vector, x j ∈Rp , for each class ωi , i = 1,2, . . . , M .

Step 2. Estimate the likelihood functions p(x |ωi ) and the a prior probabilities P (ωi ) for each class. This is
the training stage of the classifier.

Step 3. Given a new unclassified measurement y ∈ Rp , compute the probability that the vector y can arise
from each class ωi ; that is, evaluate p(y |ωi ).

Step 4. Assign y to class ωi so that p(y |ωi )P (ωi ) > p(y |ω j )P (ω j ) for all j 6= i . This is the testing/monitoring
stage of the classifier.

Some remarks on the Bayesian classifier;

• The new unclassified observations are denoted y to distinguish them from the training vector x, but it
must be remembered that both vectors represents the same type of features.

• The prior probabilities in Step 2 are usually estimated from the data as P (ωi ) = Ni /N , where N is the
total number of samples from all classes. However, in the context of SHM, the data associated with the
damage classes is usually obtained by inducing different types of damage (real or pseudo), meaning
that the number of observations of a certain type of damage will not be equal to the real number of
events, and the prior probabilities that are estimated from the data might differ significantly from the
true probabilities. Alternatively, the prior probabilities can be determined based on engineering judg-
ment or in the absence of any information regarding the occurrences of the different damage classes
the classes may be assumed equally likely. The latter might be better than the estimation of the prior
probabilities from the data, in that the resulting classifier does not favor the classes that are measured
most. Obviously, we wish that the probabilities of the damaged classes are much smaller than the prob-
abilities of the undamaged classes.

• The estimation of the probability density functions p(x |ωi ) in Step 2 is one of the most challenging
tasks of all machine learning problems. There are two main possibilities here: a parametric form can
be assumed for the probability density with the training data set used to determine the values of the pa-
rameters or a nonparametric form can be obtained. In the latter case, the probability density function
can be constructed from a frequency histogram, Kernel Density Estimate (KDE) or Gaussian Mixture
Model (GMM) over the training and stored as an array of values. In the former approach, in the vast
majority of cases, the probability density is assumed to be Gaussian.

• Once new observations are classified in Step 4, it is possible to diagnose the condition of the structure.
If some observations are classified to one of the damage classes, then an alarm should be issued.

Discriminant Functions and Decision Surfaces

It should be clear that, in case of M classes, the feature space is partitioned into M regions. If regions Ri and
R j happen to be contiguous, then they are separated by a decision surface in the multidimensional feature
space. In case of minimum error probability, the decision surface is described by

gi j (x) = P (ωi |x)−P (ω j |x) = 0 (6.8)
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Instead of working directly with probabilities it may be more convinient, from a mathematical point of view,
to work with an equivalent function of them, for example gi = f (P (ωi | x)), where f (•) is a monotonically
increasing function. gi (x) is known as a discriminant function. The decision decision rule can now be stated
as

assign x to ωi if gi (x) > g j (x) for all j 6= i (6.9)

The decision surfaces, separating contiguous regions are then described by

gi j (x) = gi (x)− g j (x) = 0, i , j = 1,2, . . . , M , i 6= j (6.10)

The concepts of discriminant functions and decision boundaries are also used in the theory about support
vector machines (Section 6.3), where g (x) will be a linear function of x and the corresponding decision surface
is a hyperplane.

In the previous, we have approached the classification problem via Bayesian probabilistic arguments and
the goal was to minimize the classification error probability or the risk. However, not all problems are well
suited to such approaches. For example, in many cases the involved probability density functions are compli-
cated and their estimation is not an easy task (especially in case of high dimensional features). In such cases,
it may be preferable to compute decision surfaces directly by means of alternative costs; for example, maxi-
mizing the margin in support vector machine classifier or minimizing a certain distance metric in k-nearest
neighbor classifier. Such approaches give rise to discriminant functions and decision surfaces, which are en-
tities with no direct relation to Bayesian classification, and they are, in general, suboptimal with respect to
Bayesian classifiers. The support vector machine classifier is discussed in more detail later, but first we will
elaborate the Bayesian classification for the special case of Gaussian density function, which allows for the
introduction of some important concepts that are used in the novelty detection method in Chapter 7.

The Bayesian Classifier for Gaussian Distributed Classes

As noted earlier, the estimation of the involved probability density functions, p(x | ωi ) (likelihood functions
of ωi with respect to x), is far from trivial. Here we will assume a parametric form for the probability density.
More specifically, we will assume that the likelihood functions describing the data distribution in each one of
the classes are multivariate Gaussian distributions, that is

p(x |ωi ) = 1

(2π)p/2|Σi |1/2
exp

(
−1

2
(x−µi )TΣ−1

i (x−µi )

)
(6.11)

whereµi ∈Rp andΣi ∈Rp×p are respectively the mean vector and the covariance matrix associated with class
ωi , and |Σi | denotes the determinant of Σi . In this case, the problem of parameter estimation is reduced to
obtaining µi and Σi . One popular method for achieving this is the maximum likelihood (ML) approach. It
can be shown that the maximum likelihood estimate of the mean vector is the sample mean vector, denoted
as x̄, taken over all training vectors

x̄ =
N∑

j=1
x j (6.12)

and that the maximum likelihood estimate of the covariance matrix is equal to the sample covariance matrix,
denoted as C

C = 1

N

N∑
j=1

(
x j −µ

)(
x j −µ

)T (6.13)

in which µ= E [x] is the population mean. If this mean is unknown it can be replaced with the sample mean
(6.12), then the factor in front should be 1/(N −1) rather than 1/N in order to yield unbiased estimates of the
covariance matrix.

Returning to the problem, the Bayesian classifier depends on maximizing the discriminator function

gi (x) = p(x |ωi )P (ωi ) (6.14)

over all classes. In case of Gaussian distributed classes, it is more convenient to work with the following
discriminant function, which is obtained by taking the natural logarithm of equation (6.14)

gi (x) = ln
(
p(x |ωi )P (ωi )

)= ln p(x |ωi )+ lnP (ωi ) (6.15)
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and using equation (6.11) we obtain

gi (x) =−1

2
(x−µi )TΣ−1

i (x−µi )+ lnP (ωi )+ ci (6.16)

in which the constant ci =−(p/2) ln2π− (1/2) ln |Σi |. In general, this discriminator function has a quadratic
form.

We will now show that maximizing gi (x) is equivalent to minimizing a certain distance. Assuming equiprob-
able classes and ignoring the constant, equation (6.16) simplifies to

gi (x) =−1

2
(x−µi )TΣ−1

i (x−µi ) (6.17)

Maximizing this discriminant function is equivalent to minimizing

‖x−µi‖2
Σ−1 ≡ (x−µi )TΣ−1

i (x−µi ) (6.18)

which has the form of a distance squared, based on a norm weighted by the inverse of the covariance ma-
trix, Σ−1

i , also known as the precision matrix. The distance ‖x−µ‖Σ−1 is known as the Mahalanobis distance.
Hence, from a geometrical point of view, under restricted circumstances, classification is performed by min-
imizing the Mahalanobis distance between a feature vector x and the class mean vector µi .

In the particular case that the covariance matrix is diagonal with equal elements; that is, the features are
uncorrelated and of the same variance Σ=σ2Ip , the norm in equation (6.18) becomes

‖x−µi‖2

σ2 ≡ 1

σ2 (x−µi )T(x−µi ) (6.19)

in which ‖•‖ is the Euclidean norm. So, in this case the feature vectors are assigned to classes based on their
Euclidean distance from the respective mean points.

In Figure 6.2 both distance are illustrated in a two-dimensional feature space (p = 2). Figure 6.2a shows
the case of diagonal covariance matrix in which the curves of equal Euclidean distance from the mean points
are circles (in a high-dimensional feature space these will be hyperspheres). Figure 6.2b shows the general
case of nondiagonal covariance matrix, in which the curves of constant Mahalanobis distance are ellipses
(or hyperellipses in a high-dimensional feature space). So, all points having the same Mahalanobis distance
from a specific point are located on an ellipse (rather than a circle), and it can be shown that the distance
from the center of mass of an ellipse to a point with Mahalanobis distance c, in the direction of a principal

axis, is 2
√
λ j c, where λ j , j = 1, . . . , p are the eigenvalues of the covariance matrix and the principal axis are

aligned with the corresponding eigenvectors.

(a) (b)

Figure 6.2: An example of curves of (a) equal Euclidean distance and (b) equal Mahalanobis distance from the mean points of each class
[46]. In the two-dimensional space, they are circles in case of Euclidean distance and ellipses in the case of Mahalanobis distance.

Previous consideration serves as an introduction of the Mahalanobis distance that will be used for novelty
detection in Chapter 7. The geometrical interpretation, illustrated in Figure 6.2, might be useful for under-
standing the basics of this method.
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Remarks

• The most challenging task while designing a Bayesian classifier is the estimation of the probability den-
sity functions p(x |ωi ), especially in the case of a high-dimensional feature space. Usually a large num-
ber of samples are necessary for acceptable performance of the density estimation techniques. This
number grows exponentially with the dimension of the feature space, which is usually referred to as
the curse of dimensionality.

• In practice it is common to assume that the data in each class are adequately described by a Gaussian
distribution. This means that the data of each class can be characterized by its first two statistical mo-
ments (i.e. the mean vector and covariance matrix). The problem now reduces to one of estimating the
mean vector and covariance matrix from the data of each class. Maximum likelihood is often used for
the estimation of the unknown parameters that define the mean vectors and the covariance matrices.
The number of unknown parameters to be estimated depends on the adopted assumption concerning
the covariance matrices. That is, if they are all equal or different for the classes.

6.3 Support Vector Machines

We will start with a linearly separable two-class problem, and then extend the method to more general cases
where the data are not separable and/or multiple classes are involved.

Let DN = {
(x j , y j ) : j = 1, . . . , N

}
denote a data set consisting of N number of p-dimensional feature vec-

tors, x j ∈ Rp , extracted from measurements and the corresponding labels, y j ∈
{− 1,1

}
. The labels belong

to either of the two classes ω1 or ω2, which are assumed to be linearly separable. The task now is to find a
linear separating boundary between these two classes, which classifies correctly all the training vectors. The
boundary will be a hyperplane (or a straight line in case of two-dimensional feature vectors), which can be
expressed as

g (x) = wTx+b = 0 (6.20)

in which w ∈ Rp determines the direction of the hyperplane and b determines the exact position in space.
Figure 6.3 illustrates the classification task with three possible hyperplane solutions. Obvious, all three hy-
perplanes perfectly separate the two classes. However, some hyperplanes are closer to the training data than
other, which means that there is less room for the data to move without causing an error.

Figure 6.3: An example of a linearly separable two-class problem with three possible separating lines [47]. The width around each line
up to the nearest point in each class (margin) is marked.

In general there will be (infinite) many separating hyperplanes. The problem with most of them is that
they will not generalize well; that is, the classifier, designed using the training data set, will not operate well
with data outside this set. The idea of a Support Vector Machine (SVM) is that it will select the hyperplane
that generalizes the best, and in this case this means that the one that is furthest from the data in some sense.
The total distance that a hyperplane leaves from both classes is referred to as the margin. Our goal is to find
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the hyperplane that gives the maximum possible margin. However, the parametrisation of the hyperplane
(6.20) is currently arbitrary. This will be fixed by appropriate scaling of all the candidate hyperplanes.

The training vectors x j can be seen as points in a p-dimensional space, and the distance of each point
from the separating hyperplane is

z j =
|g (x j )|
‖w‖ (6.21)

We can now scale w, b so that the value of g (x), at the nearest points in ω1, ω2, is equal to 1 for ω1 and equal
to −1 for ω2 (we want to give no preference to any of the classes, so the hyperplane is placed at the same
distance from the respective nearest points inω1 andω2). The margin will then be 2/‖w‖, and the separation
conditions are given by

g (x j ) = wTx j +b ≥ 1, ∀x j ∈ω1 (6.22)

g (x j ) = wTx j +b ≤−1, ∀x j ∈ω2 (6.23)

or more concisely

g (x j ) = y j
(
wTx+b

)≥ 1 (6.24)

where ω1 and ω2 are the two classes, and y j in this case is a class label y j = 1 if x j ∈ω1, and y j =−1 if x j ∈ω2.
It should be clear now that maximizing the margin will place the hyperplane at the furthest point from

the data and this can be accomplished by minimizing the norm of the weight vector, ‖w‖, subject to the
constraint of equation (6.24). This can be formulated as the following primal optimization problem

minimize
w,b

J (w,b) = 1

2
‖w‖2

subject to y j
(
wTx+b

)≥ 1, j = 1,2, . . . , N
(6.25)

The optimization variables w, b are referred to as primal variables and the optimal values of the problem are
denoted as w∗, b∗, respectively. The optimization problem is a quadratic programme one because the cost
function is quadratic and the constraints are all linear.

To solve this constrained optimization problem we use the method of Lagrange multipliers. This method
involves a Lagrangian function, which for optimization problem in (6.25) is defined as

L (w,b,λ) = 1

2
wTw−

N∑
j=1

λ j
(
y j

(
wTx j +b

)−1
)

(6.26)

where λ j ≥ 0, j = 1,2, . . . , N are the Lagrangian multipliers. Furthermore, we make use of the special nature
of the optimization problem. That is, the cost function is convex and the constraints are linear and define
a convex set of feasible solutions. Such problems can be solved by considering the Lagrangian duality. La-
grangian treatment of convex optimization problems lead to an alternative dual description, which often
turns out to be easier to solve than the primal problem since handling inequality constraints directly is dif-
ficult. Moreover, the dual formulation has the attractive property that the data only appear inside an inner
product, which allows for efficient generalizations in the nonlinear case.

We can transform the primal optimization problem into the dual by simply setting to zero the derivatives
of the Lagrangian function with respect to the primal variables, and substituting the so obtained relations
back into the Lagrangian. This transformation removes the dependence on the primal variables. The result-
ing function contains only dual variables and must be maximized under simpler constraints.

The corresponding dual representation of (6.25) is found by differentiating the Lagrangian with respect to
w, b, imposing stationarity

∂

∂w
L (w,b,λ) = 0 ⇒ w =

N∑
j=1

λ j y j x j (6.27)

∂

∂b
L (w,b,λ) = 0 ⇒

N∑
j=1

λ j y j = 0 (6.28)
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and substituting the so obtained relations back into the Lagrangian (6.26); We obtain an equivalent optimiza-
tion task

maximize
λ

N∑
j
λ j − 1

2

N∑
j

N∑
k
λ jλk y j yk xT

j xk

subject to
N∑

j=1
λ j y j = 0

λ j ≥ 0, j = 1,2, . . . , N

(6.29)

Once the optimal Lagrange multipliers have been obtained by maximizing equation (6.29), the optimal weight
vector w∗ that realizes the maximum margin hyperplane is obtained via equation (6.27) as

w∗ =
N∑

j=1
λ∗

j y j x j (6.30)

The value of b does not appear in the dual problem and so b∗ must be found making use of some other condi-
tions. To this end we introduce the Karush-Kuhn-Tucker (KKT) complementary conditions. These conditions
state that the optimal solution λ∗

j , w∗, b∗ must satisfy

λ∗
j

(
y j

(
w∗Tx j +b∗

)
−1

)
= 0, j = 1,2, . . . , N (6.31)

Either one of the terms in these conditions must be zero. If λ∗
j is nonzero, then the second term in equation

(6.31) must be zero, which implies that the corresponding feature vector x j lies on the boundary of the mar-
gin, these vectors are termed support vectors. The set of indices of the support vectors will be denoted with
Ωsv. Now b∗ can be obtained from any of the complementary conditions (6.31) satisfying λ∗

j 6= 0, that is

b∗ = y j −w∗Tx j = y j −
∑

k∈sv
λ∗

k yk xT
k x j ∀ j ∈ sv (6.32)

Notice that this parameter is solely determined by the position of the support vectors. In practice, b∗ is
computed as an average value obtained using all conditions of this type.

The optimal hyperplane can be expressed in terms of the dual variables

g (x) = w∗Tx+b∗ = ∑
j∈Ωsv

λ∗
j y j xT

j x+b∗ (6.33)

The Lagrange multipliers (or dual variables) associated with each point quantifies how important a given
point is in forming the final solution. Points that are not support vectors (λ j = 0) have no influence, so slight
perturbations of such points will not affect the solution.

Remarks

• The Lagrange multipliers can be either zero or positive. Thus, the vector parameter w∗ of the optimal
solution is a linear combination of Ns ≤ N feature vectors that are associated with λ∗

j 6= 0; that is

w∗ = ∑
j∈Ωsv

λ∗
j y j x j (6.34)

WhereΩsv denotes a subset of indices. The considered feature vectors x j , j ∈Ωsv are known as support
vectors and the optimum hyperplane classifier as a support vector machine. As already mentioned, the
set of constraints in (6.31) suggests forλ∗

j 6= 0 that the support vectors lie on the boundary of the margin,

that is
w∗Tx+b =±1 (6.35)

In other words, they are the training vectors that are closest to the linear classifier, and they consti-
tute the critical elements of the training set. The resulting separating hyperplane only depends on the
number and position of the support vectors.

• The cost function in equation (6.25) is strict convex. Furthermore, the inequality constraints consist of
linear functions. These two conditions guarantee that any local minimum is also global and unique.
Hence, the optimal hyperplane classifier of a support vector machine is unique.
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Figure 6.4: An example of a linearly separable two-class problem with the dividing line (solid) that maximizes the margin between the
two sets of points [47]. The support vectors are enclosed by circles.

• The training vectors enter the dual problem (6.29) via equality constraints and not inequality ones, as
was the case for (6.25), which are easier to handle. Furthermore, the vectors enter the dual problem
in pairs, in the form of inner products. Hence, the cost function does not depend explicitly on the
dimensionality of the input space, which allows for efficient generalizations in the nonlinear case.

6.3.1 Nonseparable Classes

When the classes are not separable, previous classifier cannot be used since it is designed to always produce
a perfect separation, that is all training points are correctly classified. Figure 6.5 illustrates the case in which
two classes are not separable. Any attempt to draw a hyperplane will never result in a perfect separation with
no data points inside the margin, as was previously the case.

Figure 6.5: An example of linearly nonseparable classes [46].

In order to allow the margin constraints to be violated, a new set of variables is introduced, namely

y j
(
wTx j +b

)≥ 1−ξ j (6.36)

The variables ξ j are known as slack variables. The training vectors can now belong to one of the following
categories, depending on the value these variables:
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1. ξ j = 0, vectors that fall outside the margin and are correctly classified. These vectors comply with the
constraints in (6.25).

2. 0 < ξ j ≤ 1, vectors falling inside the margin and are correctly classified. They are placed in squares in
Figure 6.5.

3. ξ j > 1, vectors that are misclassified. They are enclosed by circles in Figure 6.5.

The goal now is to make the margin as large as possible but at the same time to keep the number of points
with ξ j > 0 (i.e. vectors inside the margin and misclassified vectors) as small as possible. The mathematical
formulation of this problem involves a discontinuous function, which complicates the optimization tasks.
Therefore, a closely related cost function is optimized that contains a penalty term of the form

∑N
j=1 ξ

p
j . If

p = 1 or 2, the optimization problem remains one of quadratic programming. Furthermore, if p = 1 then the
slack variables do not appear in the dual problem (which simplifies the computations). With p = 1, the primal
optimization problem becomes

minimize
w,b

J (w,b,ξ) = 1

2
wTw+C

N∑
j=1

ξ j

subject to y j
(
wTx j +b

)≥ 1−ξ j , ξ j ≥ 0, j = 1,2, . . . , N

(6.37)

in which the parameter C is a positive constant that controls the cost of nonseparation. The problem is again
a convex quadratic programming one, and the corresponding Lagrangian is given by

L (w,b,ξ,λ,µ) =1

2
wTw+C

N∑
j=1

ξ j −
N∑

j=1
µ jξ j

−
N∑

j=1
λ j

(
y j

(
wTx j +b

)−1+ξ j
) (6.38)

with λ j ≥ 0 and µ j ≥ 0; the latter are the Lagrangian multipliers that force the ξ j to be positive. The corre-
sponding dual formulation is found by differentiating the Lagrangian with respect to the primal variable, w,
ξ and b, imposing stationarity

∂

∂w
L (w,b,ξ,λ,µ) = 0 ⇒ w =

N∑
j=1

λ j y j x j (6.39)

∂

∂b
L (w,b,ξ,λ,µ) = 0 ⇒

N∑
j=1

λ j y j = 0 (6.40)

∂

∂ξ j
L (w,b,ξ,λ,µ) = 0 ⇒ C −λ j −µ j = 0 (6.41)

and substituting the so obtained relations into the Lagrangian (6.38); we obtain the following dual represen-
tation of the optimization problem

maximize
λ

N∑
j=1

λ j − 1

2

N∑
j=1

N∑
k=1

λ jλk y j yk xT
j xk

subject to
N∑

j=1
λ j y j = 0

0 ≤λ j ≤C , j = 1,2, . . . , N

(6.42)

Note that this problem is identical to that for the separable case. The only difference is that the constraint
C −λ j −µ j = 0, together with µ j ≥ 0, enforces λ j ≤C . In particular, the linearly separable case corresponds to
C →∞. Further note that the slack variables ξ j , and their associated Lagrangian multipliers µ j , do not enter
into the problem explicitly. Their presence is reflected through the parameter C .

Solving (6.53) for the optimal parameters λ∗, the corresponding expression for the hyperplane is exactly
as before, given by equation (6.33). Such a classifier is said to have a soft margin.
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Remarks

• For larger values of C , the second term in (6.36) has more influence in the cost. The optimization
process tries to satisfy this demand by reducing the margin and consequently the number of points
with ξ j > 0. In other words, the width of the margin does not depend entirely on the data distribution,
as was the case with the completely separable classes, but is heavily affected by the choice of C. This is
the reason SVM classifiers of this type are also known as soft margin classifiers.

• One problem with the soft margin approach is the choice of the parameter C. Typically a range of values
must be tried before the best choice for a particular training set can be selected. Furthermore, the scale
of the parameter is affected by the size of the feature space.

6.3.2 The Multiclass Case

The discussion so far was restricted to a two-class classification problem. In an M-class problem, a straight-
forward extension is to consider it as a set of M two class problems (one-versus-rest). For each one of the
classes, we seek to design an optimal discriminant function gm(x), m = 1,2, . . . , M so that gm(x) > gn(x) for all
m 6= n, if x ∈ωm . Then classification is achieved according to the following rule

assign x to ωm if m = argmax
n

{
gn(x)

}
(6.43)

This technique, however, may lead to indeterminate regions, where more than one discriminant function is
positive. Furthermore, each binary classification is rather asymmetric in the sense that training is carried out
with many more negative than positive examples. This becomes more serious when the number of classes is
relative large.

An alternative technique is the one-versus-one. In this case M(M −1)/2 binary classifiers are trained and
each classifier separates a pair of classes. Classification is then achieved based on majority vote. The ob-
vious disadvantage of this technique is that a relatively large number of binary classifiers has to be trained.
Nevertheless, the one-versus-one technique is used in this thesis because it has less drawbacks. Although
this method is computationally more expensive than the one-versus-rest technique, this will not be excessive
because the considered data sets are relative small.

6.3.3 The Nonlinear Case

The analysis so far has assumed that the classifier is linear, but this can easily be extended to nonlinear prob-
lems. These problems are basically solved by first transforming the data into a high-dimensional space in a
nonlinear manner and then linearly separating the classes in this space. The underlying justification is found
in Cover’s theorem [12] on the separability of patterns, which, in quality terms may be stated as follows

“A complex pattern-classification problem, cast in a high-dimensional space nonlinearly, is more
likely to be linearly separable than in a low-dimensional space, provided that the space is not

densely populated.”

The input data are therefore mapped into a higher-dimensional feature space using a nonlinear mapping
φ : Rp →RQ , that is

x 7→φ(x) ∈RQ (6.44)

Recall that once the optimal hyperplane has been computed, classification is performed according to the
following rule

assign x to

{
ω1 if g (x) ≥ 0

ω2 if g (x) < 0
(6.45)

where the decision function g (x) is given in equation (6.33), and repeated here

g (x) = w∗Tx+b∗ = ∑
j∈Ωsv

λ∗
j y j xT

j x+b∗ (6.46)

whereΩsv denotes the subset of indices corresponding to the support vectors; that is, the vectors with nonzero
weightsλ∗

j . The feature vectors participate in pairs, via the inner product operation. Thus, if the classification

takes place in a new Q-dimensional space, then the only difference is that the involved vectors will be the Q-
dimensional mappings of the original input vectors. At first sight it seems that the complexity for making the
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classes linear separable is much higher now, since Q is usually much higher than the dimension of the input
space, in order to make the classes linear separable. However, according to Mercer’s theorem [46] it is possible
to express the inner product of the vectors in the high-dimensional feature space as a function of the inner
product of the corresponding vectors evaluated in the original input space; that is

K (x,z) =φ(x)Tφ(z) (6.47)

where K (x,z) denotes a kernel function evaluated in the input space.

We will illustrate the concept of a kernel function with a simple example. Assume that φ : R2 →R3

x =
(

x1

x2

)
7→φ(x) =

 x2
1

x2
2p

2x1x2

 (6.48)

Then the inner product between φ(x) and φ(z) is

φ(x)Tφ(z) = (
x2

1 x2
2

p
2x1x2

) z2
1

z2
2p

2z1z2


= x2

1 z2
1 +x2

2 z2
2 +2x1x2z1z2

= (x1z1 +x2z2)2

= (
xTz

)2

(6.49)

In words, the inner product of vectors in the new (higher-dimensional) space has been expressed as function
of the inner product of the corresponding vectors in the original space. So, we can compute the inner product
without explicitly computingφ(x) andφ(z). All that is required, in this specific example, is the kernel K (x,z) =(
xTz

)2
.

Some common kernels that are often used for SVM are

Polynomials K (x,z) = (
xTz+1

)q
, q > 0 (6.50)

Radial Basis Functions (RBF) K (x,z) = exp
(−γ‖x−z‖2) (6.51)

Hyperbolic Tangent K (x,z) = tanh
(
αxTz+β)

(6.52)

for appropriate values ofα andβ so that Mercer’s conditions are satisfied. Working values areα= 2,β= 1. The
actual mapping φ is in general not known, just like the dimension of the space, which can even be infinite.

Once an appropriate kernel has been adopted that implicitly defines a mapping into a higher dimensional
space, the dual optimization task, equations (6.42), becomes

maximize
λ

N∑
j=1

λ j − 1

2

N∑
j=1

N∑
k=1

λ jλk y j yk K (x j ,xk )

subject to
N∑

j=1
λ j y j = 0

0 ≤λ j ≤C , j = 1,2, . . . , N

(6.53)

Solving this optimization problem yields the nonzero weights λ∗
j , j = 1,2, . . . , Ns for the support vectors, then

w∗ can be obtained from equation (6.34). The resulting linear (in the high-dimensional space) classifier is the
same as in equation (6.45), but now the decision function is given, in RQ , by

g (x) = w∗T
φ(x)+b∗ = ∑

j∈Ωsv

λ∗
j y j K (x j ,x)+b∗ (6.54)

where the offset b∗ can be obtained from the support vectors as

b∗ = y j −
∑

k∈Ωsv

λ∗
k yk K (x j ,xk ) (6.55)

for any j provided that λ j 6= 0. The resulting classifier is nonlinear in the original space, because of the non-
linearity of the kernel function, see Figure 6.6.
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(a) (b)

Figure 6.6: Example of a nonlinear SVM classifier for the case of two nonlinearly separable classes [47]. (a) The input space with nonlinear
decision boundary, dotted lines mark the margin while points enclosed by circles are the support vectors. (b) The projected data, using
a radial basis function centered on the middle clump, in three-dimensions, in which the data is linearly separable.

Remarks

• A notable characteristic of the support vector machines is that the computational complexity is inde-
pendent of the dimensionality of the kernel space, where the input feature space is mapped. Thus the
curse of dimensionality is bypassed.

• The generalization capabilities of the classifier depends on the selected kernel parameters and smooth-
ing parameter C in the cost function. The most common procedure to obtain the best set of parameters,
also known as hyperparameters, is to solve the SVM task for different sets of hyperparameters and fi-
nally select the SVM classifier corresponding to the set optimizing the adopted bound. For example, the
bound may represent the number of correctly classified points (score) when the classifier is confronted
with data outside the training set.

6.3.4 Summary

The Support Vector Machine (SVM) classifier is a linear model for classification problems. It can solve linear
and nonlinear problems and work well for many practical problems. The SVM aims to find a hyperplane
which separates the data into two/multiple classes. The SVM maximizes the margin around the separating
hyperplane. The decision function is fully specified by a usually very small subset of training samples, known
as the support vectors. This becomes a quadratic programming problem that can be easily be solved by
standard methods.

The support vector machine is a powerful classification method for a number of reasons [47]:

• The method depends on relatively small number of support vectors, which means that the models are
very compact and require very little memory.

• Once a model is trained, the prediction phase is very fast due to the simple formulation of the decision
function/rule.

• The method is only affected by points near the margin, and therefore work well with high-dimensional
data, even data with more dimensions than samples, which is challenging for most other algorithms.

• The formulation with kernels makes the method very flexible and suitable for many types of data.

However, SVM has several disadvantages as well:

• The scaling with the number of samples N is O [N 3] at worst, or O [N 2] for efficient implementations.
For large number of training samples, this computational cost can be prohibitive.

• The results are strongly dependent on a suitable choice for the smoothing parameter C and the kernel
parameters. This must be carefully chosen, for example via cross-validation, which can be computa-
tionally expensive for large data sets.
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• The results do not have a direct probabilistic interpretation, as is the case for the Bayes classifier.

6.4 Application
In this section the SVM classifier is applied to the Zwartewaterbrug data. The goal is to correctly classify the
data samples according to the corresponding weight of the added mass. In a SHM context, this is equivalent
to detecting damage of different degrees of severity in the structure. The data for classification consists of N
number of p-dimensional feature vectors x ∈Rp extracted from the measurements, with corresponding class
label y ∈ {

0kg, 25kg, 50kg, 75kg, 100kg
}
. The known class labels for the feature vectors makes the classification

problem a supervised learning problem. The features used here are selected spectral lines of a spectrum; the
type of spectrum depends on the chosen approach for classification as will be explained below.

Two approaches for classification are considered:

1. Classification per segment – a SVM model will be trained for each of the three bridge segments using the
data of the particular segment. The spectral lines around the peaks in the singular value spectrum of
the considered segment are used as damage-sensitive features. The singular value spectra associated
with each segment were extracted from the processed signals (i.e. band-pass and similarity filtered
signals) in Chapter 4.

2. Classification per sensor – a SVM model will be trained for each sensor using the data of the particular
sensor. The spectral lines around the peak in the Power Spectral Density (PSD) functions of the consid-
ered sensor are used as damage-sensitive features. In Chapter 4 the PSDs associated with each sensor
were computed from the processed signals.

For both approaches the number of samples/observations that are available for a SVM model is the same.
The number of samples are divided over seven different datasets (corresponding to the seven datasets with
raw signals). An overview of the number of samples per dataset together with the corresponding mass class
is presented in Table 6.1. The number of samples apply for each segment/sensor, where a single sample
represents either a singular value spectrum or a power spectrum depending on the problem being analyzed.
Dataset 1 and 6 are not used in the training phase of the models, but are used for model validation in the first
approach.

Table 6.1: Available number of samples per dataset for the classification problem, together with the corresponding mass class.

1 2 3 4 5 6 7

Added mass (kg) 0 100 50 0 25 50 75
Number of samples 43 141 74 101 100 114 114

6.4.1 Classification per segment

Here, per segment a SVM model will be trained using the data of the particular segment. Hence, three differ-
ent SVM models will be considered. The idea behind this distinction is that one would expect that the model
of segment 2 shows better performance for classification than the other two models, because the added mass
is located in segment 2. In this way more informative results are obtained.

Feature selection

Recall that feature extraction involves the generation of damage sensitive features from the measurements.
Here, the singular value spectra extracted from the processed signals are used. A singular value spectrum
represents the first singular value of the spectral density matrix per frequency. The resulting spectra are down
sampled to a frequency resolution of 0.03 Hz. Next, the spectra are scaled to an equal order of magnitude
as follows; per spectrum the singular values are first log-transformed, followed by the extraction of the mean
value. The resulting spectral lines are referred to as initial features. Standardization of the features is not
applied because the features already have the same units. Since the feature space is still high dimensional,
further reduction is achieved by a simple feature selection approach consisting of two parts. First, a frequency
region with many modal peaks is manually selected, followed by the selection of spectral lines in this region
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with a variance larger than 5% of the maximum variance. The last feature selection step, actually already
forms part of the classifier and the variance of each feature should be computed using the training data set
only. This feature selection method is motivated by the idea that low variance features are less important for
classification. In our case the initial features have the largest variance around the peaks, which is the region
that is expected to be most important for fault detection. Hence, dimensionality reduction is achieved with-
out significant loss of fault related information. The initial features and the selected features for classification
are shown in the left and right figure of Figures 6.7–6.9, respectively. In the left figure, the features that are
selected from the initial features are highlighted, and these features are shown in the figure on the right.

Classification

Once the damage-sensitive features are defined, classification can be performed. In summary the analysis
consists of the following steps:

Step 1. Choose a classification model.
Step 2. Split the data set into two subsets for training and testing.
Step 3. Determine appropriate values for the hyper-parameters of the model (if there are any); e.g. using

cross-validation.
Step 4. Train the model using the training data set.
Step 5. Evaluate the performance of the model using the testing data set.

In Step 1 any classification model can be chosen. However, the analysis here is restricted to the SVM classifier
because this model is very suitable for small data sets with high dimensional features. A Radial Basis Function
(RBF) kernel (6.56) is used to implicitly map the features into a higher-dimensional space.

K (x,z) = exp
(−γ‖x−z‖2) (6.56)

where the parameter γ controls the size of the RBF kernel, and should be specified before training. Fur-
thermore, the one-versus-one approach is employed to separate the multiple classes, as discussed in Sec-
tion 6.3.2. This means that for each pair of classes a classifier is trained (for 5 classes, 10 classifiers are trained).
Classification is then achieved based on majority vote.

The available data per segment is split into two subsets for training and testing of the models. The three
models will be trained using 80% of the data, and the other 20% is held back for testing. The training data set
is also used to tune the hyper-parameters (C and γ) by means of cross-validation. The number of samples
in the training and testing data set per mass class are listed in Table 6.2. This shows that the different classes
are more or less equally represented in both the training and testing data set, implying that the data sets are
balanced. The applied training/testing splits are the same for the data of each segment, in other words the
same number of data samples are used for training and testing of the three models.

As already mentioned, the performance of the models will also be validated using two completely new
data sets (i.e. set 1 and 6 in Table 6.1). While the previously defined testing sets contain samples from the
same sets that are used for training the model, the two new data sets contain observations that are obtained
under different environmental conditions than those in the training/testing sets.

Table 6.2: Number of data samples in training and testing data set per mass class.

Mass class
Number of samples

(% of total)

Training Testing

0 kg 81 (15.28) 20 (3.77)
25 kg 83 (15.66) 17 (3.21)
50 kg 57 (10.75) 17 (3.21)
75 kg 91 (17.17) 23 (4.34)

100 kg 112 (21.13) 29 (5.47)
Total 424 (80.00) 106 (20.00)

The SVM model with RBF kernel contains two hyper-parameters, C and γ, which must be chosen in Step
3 before training. The parameter C controls the hardness of the margin; it trades off misclassification of
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Figure 6.7: Segment 1 – Features for classification before (left) and after (right) variance-based feature selection. Initially, the spectra
consist of 1166 spectral lines between 65 and 100 Hz (frequency resolution 0.03 Hz), and 679 spectral lines are selected with a variance
of at least 5% of the maximum variance in the training data set.
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Figure 6.8: Segment 2 – Features for classification before (left) and after (right) feature selection. Initially, the spectra consist of 566
spectral lines between 55 and 72 Hz (frequency resolution 0.03 Hz), and 294 spectral lines are selected with a variance of at least 5% of
the maximum variance in the training data set.
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Figure 6.9: Segment 3 – Features for classification before (left) and after (right) feature selection. Initially, the spectra consist of 666
spectral lines between 75 and 95 Hz (frequency resolution 0.03 Hz), and 413 spectral lines are selected with a variance of at least 5% of
the maximum variance in the training data set.
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training examples against the simplicity of the decision surface. A low C makes the decision surface “soft”,
while a high C aims at classifying all training examples correctly. The γ parameter controls the size of the
RBF kernel. Intuitively, it defines how much influence a single training example has. The larger γ is, the
closer other examples must be to be affected. This parameter can also be seen as the inverse of the radius
of the area of influence of the support vectors of the model. The behavior of the model is very sensitive to
the choice of the parameters, hence it is important to determine appropriate values. The optimal parameters
are determined from a parameter grid via an optimization approach based on cross-validation. For the C
values a logarithmic grid from 1e−1 to 1e+9 is considered and for the the γ values a logarithmic grid from
1e−12 to 1e−1 is considered (in practice, a logarithmic grid from 1e−3 to 1e+3 is usually sufficient but this
is extended here for illustrative purposes). For each combination of parameters a number of models are
trained and validated, each time using a different fraction of the training data set for training and validation
(i.e. cross-validation). The training and validation score of each run and for each combination of parameter
are stored. Finally, the optimal parameters are chosen as the one that result in the highest mean validation
score. It is noted that using an average score rather than using a single score is better for determining the
hyper-parameters. The optimal hyper-parameters are not the same for the three models, so the optimization
should be performed for each model separately.

A note on cross-validation; one could split the data set into three smaller data sets for training, validation
and testing, respectively. The training data set is used to fit the model (e.g. to determine coefficient of sep-
arating hyperplane in the case of SVM). The validation set is used to evaluate a given model while tuning
hyper-parameters, hence this is for frequent evaluation. The testing set is used to evaluate a model once it is
completely trained (using the training and validation sets). This latter set can be seen as unknown data, be-
cause the model has not “seen” it before during training. One disadvantage of using one particular subset of
the data for validation is that a portion of the data have been lost for training the model. One way to address
this is to use cross-validation; that is, to do a sequence of fits where each subset of the data is used both as a
training set and as a validation set. The validation scores could be combined, for example by taking the mean,
to obtain a single validation score. This score is in general a better measure of model performance than the
score of a single validation set. The most popular method is K -fold cross validation, in which the data set is
split into K (randomized) folds, each fold is then used once as a validation set while the K −1 remaining folds
form the training set. Several variations of this method exist; for example, the stratified K-fold cross validation
method in which the percentage of data samples for each class is preserved.

For the optimization of C and γ, the training data set is randomly split in a stratified fashion, into 90%/10%
sets for training and validation. Fifteen splits are performed for each combination of parameters to smooth
out spurious variation in the scores that are the result of random splits. Figures 6.10a–6.10c show the mean
validation scores for each combination of parameters for the three models. This shows that if γ is smaller
than 1e−12, the models are too constrained and cannot capture the complexity or shape of the data; that is,
the models are underfitting the data. The region of influence of any selected support vector will include the
whole training set. The resulting model will behave similarly to a linear model with a set of hyperplanes that
separate the centers of high density of any pair of classes. On the other hand, if γ is larger than 1e−2, then the
radius of the area of influence of the support vectors only includes the support vectors itself and no amount
of regularization with C will be able to prevent overfitting. Both, underfitting and overfitting leads to poor
performance of the models when evaluated on the validation set (i.e. poor generalization).

For intermediate values, the figures show that good models can be found on a “diagonal” of C andγ values.
Smooth models (lower γ values) can be made more complex by increasing the importance of classifying each
point correctly (larger C values), without loss of generality. It can also be observed that for some intermediate
values of γ, equally well performing models are obtained when C becomes very large. In particular, for γ =
1e−4 for the models of segment 1 and segment 2, and for values of γ between 1e−10 and 1e−4 for the model
of segment 3. This implies that it is not necessary to regularize by enforcing a larger margin. It appears that
the radius of the RBF kernel alone acts as a good structural regularizer. In practice though it might still be
interesting to simplify the decision function with a lower value of C , to favor models that use less memory
and that are faster to predict.

In Table 6.3 the optimal parameters are presented that were found for the three models. The optimal
values for γ are the same for all three models, while the optimal values for C slightly differ. However, from
Figure 6.10 it was observed that for the optimal values of γ the amount of regularization by C is not so impor-
tant.
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(a) Model 1
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(b) Model 2
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(c) Model 3

Figure 6.10: Grid search optimal parameter selection. The three models correspond to the three bridge segments.

Table 6.3: Optimal hyper-parameters for SVM model per model.

Model C γ

1 1 1e−4
2 10 1e−4
3 1 1e−4

One important aspect of the hyper-parameters (i.e. model complexity) is that the optimal values will gen-
erally depend on the size of the training set. Therefore, it is useful to explore the behavior of the model with
given complexity as a function of the number of training points. A graph showing the training and validation
score with respect to the size of the training set is known as a learning curve. This kind of graph is often used
to find out how much the model benefits from adding more training data, and whether the estimator suffers
more from a variance error (overfitting) or a bias error (underfitting). Figures 6.11a–6.11c show the learning
curves of the three models corresponding to the three different segments. The notable feature of the learn-
ing curve is the convergence to a particular score as the number of training samples grows. In particular,
if enough training examples are used so that a particular model has converged, then adding more training
data will not improve the model any further. If the model performance in this case is satisfactory, then the
only way to improve it is to use another (often more complex) model. The curves show that the model overfits
small data sets (relatively high training score, but relatively low validation score), while better fits are obtained
when increasing the size of the data set. The models of segment 1 and 3 have converged to a high score when
all the training examples are considered, while model 2 is not converged yet (although the difference with the
other two models is small). The performance of model 2 will most likely increase when adding more training
samples. The model for segment 1 has the least steep learning curve. The number of training samples that
are necessary for the three models to obtain a (mean) validation score larger than 0.9 is 87, 73 and 61, respec-
tively. Hence, the model of segment 3 requires least amount of training samples, i.e. has steepest learning
curve.

Once the optimal hyper-parameters are selected, the final models can be trained using all samples of the
training set. The training phase of a model consists of the following steps:

Step 1. Selection of the spectral lines that will be used as features. The selection is based on a minimum
amount of variance of the spectral values in the training data set as explained before.

Step 2. Training of the SVM model.

Both steps must be part of the same training process to avoid data leakage; in other words, to avoid that
some testing samples are also considered in the training phase. The features that are selected in Step 1, were
presented in Figures 6.7–6.9 for each model.

In Step 2, training a SVM model implies solving the optimization problem (6.53) for the dual coefficients
λ j , j = 1,2, . . . , N , which quantify the importance of each training sample in forming the decision boundary.
As many coefficients as observations in the considered training set are solved, many of them will be zero
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Figure 6.11: Learning curve. The three models correspond to the three bridge segments.

while the nonzero coefficients define the support vectors. In Table 6.4 the number of support vectors per
model are listed. The value in between brackets represents the percentage of the training samples that are
support vectors. The total number of support vectors is subdivided into the number of vectors per mass class.
For model 1 almost 60% of the training samples are used as support vector, for model 2 and 3 this is about 46%
and 42%, respectively. The highest percentage of support vectors are found for the 25 kg followed by the 100
kg mass class. The large number of support vectors implies that almost all training vectors of the particular
class are considered as the critical elements of the training set. Consequently, the resulting decision surfaces
has high complexity and the models might perform poorly for unseen data (except when the unseen data
is very close to the data used for training). The large number of support vectors can be related to the large
variations in the training data. Recall that the 25 kg and 100 kg mass classes correspond to dataset 5 and
2, respectively. For these two datasets it was observed that the natural frequencies of the bridge changes
considerably over time, see for example Figures 4.17–4.19. It is noted that the natural frequencies are related
to the peaks in the singular value spectra, in the sense that a change of natural frequency is equivalent to
a shift of the corresponding peak in a singular value spectrum. So, large variations exist among the feature
vectors of these two mass classes and to account for these variations many support vectors are required. As
mentioned before, the observed variations are presumably related to the varying environmental conditions.

Subsequently, the trained models are used to predict labels for the data samples in the testing data sets
(note that the testing sets, just like the training sets, are not the same for the three models). The results of
the three models are presented in Figures 6.12–6.14. The figures on the left show the initial testing vectors in
which the highlighted regions indicate the selected features. It is noted that the selected features are based
on the training data set and not on the testing set (i.e. the highlighted regions in these figures are the identical
to the ones in Figures 6.7–6.9). The figures on the right visualize the performance of the models in the form
of a confusion matrix, displaying the predicted class against the true class. Both the number of observations
predicted and the corresponding percentage of test observations in the true class (i.e. the class supports) are
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Table 6.4: Number of support vectors used by the SVM model per segment.

Mass class
Number of support vectors

(% of training samples)

Model 1 Model 2 Model 3

0 kg 36 (44.44) 22 (27.16) 20 (24.69)
25 kg 67 (80.72) 57 (68.67) 56 (67.47)
50 kg 27 (47.37) 14 (24.56) 17 (29.82)
75 kg 43 (47.25) 43 (47.25) 32 (35.16)

100 kg 75 (66.96) 57 (50.89) 53 (47.32)
Total 248 (58.49) 193 (45.52) 178 (41.98)

shown in each cell of the matrix. This shows that the models are able to correctly classify almost all samples
from the testing data set. Most misclassification are observed for the 25 kg and 100 kg class.

A brief explanation for the interpretation of the confusion matrix. The diagonal elements represent the num-
ber of test samples for which the predicted label is equal to the true label, while the off-diagonal elements are
those that are mislabeled by the classifier. In particular, the off-diagonal elements in the top row (true class 0
kg and predicted class a nonzero mass) represent the false-negatives or false alarm; that is, the model predicts
“damage” while this is actually not the case. On the other hand, the off-diagonal elements in the column on
the far left (predicted class 0 kg and true class a nonzero mass) represent the false-positives or missed detec-
tion; that is, the model predicts “no damage”, while there might actually be damage. As mentioned earlier,
the latter might have more severe consequences.

The performance of all three models is remarkable high. However, as already mentioned, the observations in
the training and testing sets are from the same data sets. This means that the testing set most likely consist
of similar patterns as those in the training set used for training the models. So, even though the models
have not seen the testing data during training, it is not surprising that the models are able to classify all test
observations correctly. It is more interesting to see whether the models generalize well on completely new
data. For this we will use dataset 1 (0kg) and 6 (50 kg) as defined in Table 6.1. The samples (i.e. the singular
value spectra) of these sets and the corresponding classification results are shown in Figures 6.15–6.17. This
shows that the models are unable to classify the new data correctly. Most of the samples are assigned to
either the 25 kg or 100 kg class. It appears that the current models do not have enough flexibility to suitably
account for all the features in the new data. The best way to address this problem is to train new models using
samples from all the available data sets. Hence, the process described above is repeated, but now using all the
available data samples. The performance of the models is again validated using 20% of the data that was held
back during training. The testing samples are shown in Figures 6.18a–6.20a, including the selected spectral
lines that are used as features for the new models. From this it is immediately clear that the new models use
considerably more spectral lines as features than previous models, which is necessary to account for all the
features in the data. The performance of the new models are visualized in Figures 6.18b–6.20b. This shows
that the new models are able to correctly classify most of the samples, including those for which the previous
models failed.

6.4.2 Classification per sensor

Previously, a SVM model was trained for each bridge segment separately, and the damage-sensitive features
were extracted from the measurements of the particular segment. Alternatively, we could extract features
from the measurements of a single sensor or from a subset of sensors. Suppose that for each sensor a model
is trained, then the performance of a model might be an indication of the sensitivity of the corresponding
sensor/location to the added mass, which on its turn might allow for the localization of the mass. For this it is
presumed that a model associated with a sensor closest to the added mass performs the best. This is reason-
able because the features extracted from a sensor close to the added mass are most likely the most sensitive
to the added mass. However, the features are also sensitive to other factors such as the environmental con-
ditions. So, the performance of a model will also be affected by these factors, and a good performing model
does not necessarily implies that the model is good for detecting the added mass.
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(b) Confusion matrix.

Figure 6.12: Segment 1 – Classification of the test data using model 1 trained with the samples shown in Figure 6.7. In (a), the selected
spectral lines that are used as features are highlighted.
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(b) Confusion matrix.

Figure 6.13: Segment 2 – Classification of the test data using model 2 trained with the samples shown in Figure 6.8. In (a), the selected
spectral lines that are used as features are highlighted.
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Figure 6.14: Segment 3 – Classification of the test data using model 3 trained with the samples shown in Figure 6.9. In (a), the selected
spectral lines that are used as features are highlighted.
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Figure 6.15: Segment 1 – Classification of the new data using model 1 trained with the samples shown in Figure 6.7. In (a), the selected
spectral lines that are used as features are highlighted.
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(a) Samples from dataset 1 (0 kg) and 6 (50 kg).
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Figure 6.16: Segment 2 – Classification of the new data using model 2 trained with the samples shown in Figure 6.8. In (a), the selected
spectral lines that are used as features are highlighted.
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(a) Samples from dataset 1 (0 kg) and 6 (50 kg).
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Figure 6.17: Segment 3 – Classification of the new data using model 3 trained with the samples shown in Figure 6.9. In (a), the selected
spectral lines that are used as features are highlighted.
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Figure 6.18: Segment 1 – Classification of testing samples using a new model for segment 1 trained with feature vectors extracted from
all the datasets (training vectors are not shown). In (a), the selected spectral lines that are used as features are highlighted.
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Figure 6.19: Segment 2 – Classification of testing samples using a new model for segment 2 trained with feature vectors extracted from
all the datasets (training vectors are not shown). In (a), the selected spectral lines that are used as features are highlighted.
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Figure 6.20: Segment 3 – Classification of testing samples using a new model for segment 3 trained with feature vectors extracted from
all the datasets (training vectors are not shown). In (a), the selected spectral lines that are used as features are highlighted.
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Next, the idea discussed above is further elaborated with an application on the data. A SVM model is
trained using feature vectors extracted from the measurements of a single sensor, in order to investigate
whether certain sensors are more sensitive to the added mass. In this analysis, data set 1 and 6 are disre-
garded, and the number of samples and the corresponding mass class of the remaining datasets can be found
in Table 6.1. The features are now selected from the PSD of a single sensor. The feature selection procedure is
conducted in the same way as before; that is, the power spectra are down sampled to a frequency resolution
of 0.03 Hz and scaled to equal order of magnitude. The spectral lines with a variance larger than 5% of the
maximum variance in the training set will be selected during training of the classifier model. The variance
of each spectral line is computed across the training data set. The selected spectral lines are used as features
for classification. A SVM model will be trained for every relevant sensor. In Chapter 4 it was found that for
15 sensors the spectra have relatively low magnitude and show large variations, as can be observed from Fig-
ures F.1–F.4 in the appendix. So, it is impossible to extract useful features from the spectra of these sensors
and thus no model will be trained for these sensors. For each of the remaining sensors a SVM model is trained
in the same way as we did before. Once a model is trained, labels are predicted for the testing samples and
the performance of the model can be validated. The results per sensor are shown in Figures H.2–H.6 in the
appendix. There the testing samples are presented, and the performance of the model is visualized in the
form of a confusion matrix. An overview of the accuracy scores of the different models, each one associated
with a different sensor, is shown Figure 6.21. The accuracy score is computed as the number of correct pre-
dictions divided by the total number of predictions. In this figure the scores are related to the spatial position
of the sensors, and the location of the added mass is indicated with a red dot between sensors 16 and 17. The
15 sensors for which no model could be trained are labeled with NA (Not Available).

In general, the scores are relatively high for all considered sensors. This means that the features extracted
from a sensor close to the added mass are not necessarily more suitable for classification than features that
are extracted from sensors further away from the added mass. So, from this it cannot be concluded that a
specific sensor/location is more sensitive to the added mass. By analyzing the power spectra (i.e. feature
vectors) that are used here, it can be observed that the shift in peak frequency is very similar for all sensors.
This implies that there are some variables that affect the dynamic properties of the bridge globally, while the
added mass will only have a local effect. Environmental variables (e.g. temperature) are the most obvious
variables that will cause these global changes.
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6.5 Conclusion
In this section the capability of the support vector machine classification for damage detection was analyzed.
Two different approaches were considered: 1) classification per segment, and 2) classification per sensor. In
both approaches multiple models were trained; in the first approach a SVM model was trained for each bridge
segment using feature vectors extracted from the particular segment, and in the second approach a SVM was
trained for each relevant sensor using feature vectors extracted from the particular sensor. The main differ-
ence between the two approaches is the type of features used. In both approaches the features are spectral
lines that are selected from of a certain spectrum; in the first approach the singular value spectrum of a seg-
ment is considered, while in the second approach the power-spectral density of a sensor is considered. The
steps that are performed to build each SVM model are identical. The performance of a model was quanti-
fied with an accuracy score, and visualized in the form of a confusion matrix, displaying the predicted labels
versus the true labels. From the results obtained in previous two sections the following observations were
made:

• The feature vectors in a dataset of a mass class show large variations (especially for the 25 kg and 100 kg
mass class). Moreover, the variations are very similar for the three segments, and also for the 17 consid-
ered sensors. Since the added mass is very small and only present at a single location, the effects of the
added mass are very local and will not have caused the “overall” variations in the feature vectors. This
implies that the feature vectors are affected by some global factors, presumably related to the environ-
mental conditions. Recall that the features are selected from the singular value spectrum (classification
per segment) and power spectrum (classification per sensor). Both types of spectra are related to the
dynamic characteristics of the bridge and will be sensitive to environmental variability. Hence previous
statement is reasonable. This was already found in previous chapters, where it was observed that the
peaks in the spectrum changes considerably over time.

• In general, all the SVM models that were trained use a large number of support vectors to separate the
different mass classes. Especially for the 25 kg and 100 kg class, which can be attributed to the large
variations of the feature vectors as mentioned in the previous point.

• The classification results of the three SVM models associated with the three bridge segments are com-
parable. Even though, it is reasonable to expect that the model associated with segment 2 (with the
added mass) would perform better than the the models for segment 1 and 3. Similarly, the classifica-
tion results of the models associated with the 17 sensors were also comparable, while it was expected
that the models associated with the sensors close to the added mass perform better than the other sen-
sors. Based on these results it is very unlikely that the separability of the mass classes is truly caused
by the added mass itself. Instead, it is concluded that the large variations of the features vectors, as
mentioned in the first point above, mask the effects of the added mass on the feature vectors.

• The SVM models perform very poorly when observations are tested that were not part of the train/test
datasets. In other words, the models do not generalize well for new data. Again, this can be attributed
to the large variations of the feature vectors. If a portion of the new observations is considered in the
training phase of the models, the newly trained models are able to classify all test observations correctly,
including those for which the previous models failed.

The observations have in common that they can all be related to the large variations in the feature vectors
that are presumable caused by changing environmental conditions. However, it must be noted that the pro-
posed methodology is not intended to account for the environmental variability, but only for the operational
variability by means of the similarity filtering. So, these observations are not very surprising. Nevertheless,
they emphasize the importance of data normalization, which aims to remove the variations of the feature
vectors that are caused by changing environmental conditions.

In conclusion, the current dataset of the Zwartewaterbrug is not suitable for the application of a SVM
classification (as part of the followed methodology). In general it may not be suitable for any type of machine
learning algorithm because of the limited amount of data in combination with the distinct environmental
conditions under which the data for the different mass classes are obtained. The latter issue could be solved
by proper data normalization as discussed in Chapter 8. However this generally requires a dataset that is
obtained over a sufficient long time period (to account for a full range of environmental conditions).



7
Unsupervised Learning - Novelty Detection

In previous chapter we have introduced the basic idea of the pattern recognition aspect of machine learning.
It was assumed that the training data for the expected damage states is available, and the employed methods
were supervised learning methods. As already mentioned, it is not always possible to obtain data of the dam-
aged structure. In these cases, unsupervised learning algorithm can be employed. Two of the main methods
used in unsupervised learning are principal component analysis and cluster analysis. These methods use un-
labeled training data, hence no prior information regarding the nature of the data is used. However, it is often
assumed that the training data describes the normal condition of the structure; meaning that the structure
is assumed in normal operating state during acquisition of the training data. Then, during monitoring, one
needs to determine whether a new observation belongs to the same distribution as the normal condition, or
whether it is significantly different. The involved techniques are called novelty detection or outlier detection,
which both can be used for anomaly detection. The names of the methods are often used interchangeable,
however the methods make different assumptions regarding the training data. In outlier detection, the train-
ing data contains outliers which are defined as observations that are far from the others. Outliers detection
estimators thus try to fit the regions where the training data is the most concentrated, ignoring the deviant ob-
servations. In novelty detection, the training data is not polluted by outliers and the aim is to detect whether
a new observation is an outlier. In this context an outlier is also called a novelty. Both methods are used for
anomaly detection, where one is interested in detecting abnormal observations. Outlier detection is then also
known as unsupervised anomaly detection and novelty detection as semi-supervised anomaly detection.

In general, the anomaly detection is based on certain statistics/measures that are derived from the train-
ing data. These statistics are either inclusive or exclusive depending on whether or not the potential outliers
are included in the training data [19]. Hence, outlier detection essentially uses inclusive measures, while
exclusive measures are used in novelty detection.

In the context of SHM, it is often assumed that the training data represents the normal/healthy condi-
tion of the structure and does not contain outliers. The outliers correspond to observations from an ab-
normal/damaged condition of the structure. In this sense, novelty detection is of most interest and will be
applied in this thesis.

7.1 Discordance Measures

The basic idea of novelty detection is to compute discordance measures (also called novelty scores) for the
data and then compare the measures with a threshold; if a measure exceeds the threshold then the data is
flagged as novelty, which implies that the structure has departed from its normal condition. The decision
function can be expressed as

D(x) < ξ (7.1)

where D(x) is some appropriate discordance measure and ξ is a threshold value. The discordance measure
indicates how much a certain observation x departs from the distribution of the normal condition data. A
suitable choice for this measure is [19]

D(x) =− ln
(
p(x)

)
(7.2)
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where p(x) is the probability density function of the normal condition data. Note that the probability density
yield values between zero and one, so the discordance measure ranges from zero to infinity, where low scores
correspond to high probabilities and high scores correspond to low probabilities.

It is assumed that the probability density function p(x) of the damage-sensitive features can be estimated
from the measured data, and that this function represents the normal/healthy condition of the structure.
Note that this function is essentially the same as the conditional probability p(x|H) that was used in previous
chapter, because it is assumed that the data comes from a healthy structure. The probability distribution
associated with the damaged condition of the structure does not need to be known. This is a big advantage
over the damage detection methods discussed in previous chapter. Once this probability density function is
known, new observations can be labeled as normal or abnormal on the basis of the novelty score for this new
feature vector; that is, feature vectors that have a novelty score higher than a predefined threshold value are
diagnosed as abnormal (implying significant departures from the normal condition of the structure). This can
be interpreted as follows: features with large novelty score have low probability values and are thus unlikely
to have come from the undamaged distribution. The determination of a suitable threshold value will be
discussed later.

It must be noted that the estimation of the probability density function in its full generality, is essentially
the hardest problem of all machine learning problems [19]. There are numerous nonparametric methods of
estimating densities for multivariate data, such as kernel density estimation (KDE) or Gaussian mixture mod-
els (GMM). Alternatively, the problem can be made more tractable at the expense of generality if a parametric
form for the probability density is assumed. The Gaussian distribution is adopted in most cases, which is
restricted to data that can be characterized by its first two statistical moments; the mean and variance (or
covariance for multidimensional feature vectors). The Gaussian assumption leads to a much simpler dis-
criminator function that depends on only a small number of parameters (i.e. much smaller than the number
of parameters involved in the nonparametric density estimation methods).

7.1.1 A Gaussian Distributed Normal Condition

As discussed above, one can make progress in novelty detection by assuming a particular form for the prob-
ability distribution of the features that define the normal conditions. The method discussed in this section
is tailored to the Gaussian distribution and therefore depends on the implicit assumption that the data can
be characterized by its first two statistical moments: the mean and covariance. This assumption reduces the
problem to one where the probability density function of the normal condition data is fixed by the estimation
of a small number of parameters; the main drawback is that the assumption of Gaussianity is by no means
always merited. However, the method may still perform well if the departures from a Gaussian distribution
are small; that is, the normal condition data looks “elliptical” in the feature space and its probability density
function is unimodal (only has one peak). If the data departs radically from these assumptions, for example,
if the distribution is not convex or, in the worst case, actually separated into distinct unconnected regions, the
novelty detection may fail badly. It is thus important to assess the assumption of Gaussianity for the normal
condition data.

Recall that the probability density function of a multivariate Gaussian distribution is given by

p(x) = 1

(2π)p/2|C|1/2
exp

(
−1

2
(x− x̄)TC−1(x− x̄)

)
(7.3)

where x̄ ∈ Rp and C ∈ Rp×p are the sample mean vector and the sample covariance matrix, respectively, and
|C| denotes the determinant of C. Let DN = {

x j ∈ Rp : j = 1, . . . , N
}

denote the training data set consisting of
N number of p-dimensional feature vectors obtained from the structure in normal/healthy condition. The
sample mean vector and sample covariance matrix are computed using the training vectors as

x̄ =
N∑

j=1
x j (7.4)

C = 1

N −1

N∑
j=1

(
x j − x̄

)(
x j − x̄

)T (7.5)

These two measures are also referred to as sample statistics and can be inclusive or exclusive depending on
whether or not the potential outliers are included in the training data. In the context of SHM, it is assumed
that the potential outlier is not included in the training data and so the statistics are exclusive.
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Evaluating the discordance measure (7.1) for the multivariate Gaussian distribution yields

D(x) = 1

2
(x− x̄)TC−1(x− x̄)+ c (7.6)

where the constant c = (p/2) ln2π+ (1/2) ln |C|, which is the same for each observation and can thus be ig-
nored. Hence, the discordance measure for novelty detection in case of Gaussian distributed data simply
becomes

D(x) = (x− x̄)TC−1(x− x̄) (7.7)

which can be recognized as the Mahalanobis Squared Distance (MSD) that was introduced in previous chap-
ter in the context of a minimum distance classifier for Gaussian distributed classes. The squared distance is
based on a norm that is weighted by the inverse of the covariance matrix C−1, also known as the precision
matrix. The MSD is illustrated in Figure 6.2b for a two dimensional feature space. This shows that all points
having the same Mahalanobis distance from a specific point are located on an ellipse (or hyperellipses in a
high-dimensional feature space).

In novelty detection, observations that have a MSD larger than a certain threshold are labeled as abnor-
mal. The MSD is much simpler than the general discordance measure for an arbitrary probability distribution
of the data, because it only requires the estimation of the mean vector and covariance matrix rather than the
full multivariate probability density function. This latter is one of the most challenging tasks in machine
learning, especially in the case of a high-dimensional feature space, due to the curse of dimensionality.

7.1.2 Calculation of Threshold Values

In order to detect damage using a novelty detector, it is necessary to set a threshold above which the condition
of the system will be considered as abnormal. This value depends on both the number of training vectors and
of the number of dimensions of the problem being analyzed. The value also depends on whether an inclusive
or exclusive threshold is required. As explained in the introduction of this chapter, in the context of SHM it is
assumed that the potential outlier is not included in the normal condition data and so an exclusive threshold
should be established.

The threshold value is determined based on statistical analysis, by choosing a type I error level γ. This
level is related to the percentage of false-positive errors (also called type I errors or false alarm) in the normal
condition data. For example, a value of γ = 0.01 will correspond to a threshold level in which the top 1% of
the data is considered a false-positive. In other words, it is statistically normal to have 1 out of 100 samples
above the threshold. It is noted that for the discordance measure only the upper limit of the distribution is of
interest.

In case that the data is Gaussian distributed, the threshold can be computed in terms of a chi-squared
statistic. In fact, the MSD can be written as a sum of squares of p independent standard normal random
variables, which forms a chi-squared distribution with p degrees of freedom, denoted as χ2(p). The threshold
can then be computed for an error levelγby inverting the expressionγ= 1−F (ξ), where F (•) is the Cumulative
Density Function (CDF) of the chi-squared distribution and ξ is the threshold value. The resulting threshold
corresponds to the value below which 100(1−γ)% of the observations may be found.

Alternatively, the threshold value can be determined using a Monte Carlo simulation in which it is as-
sumed that the data is Gaussian distributed [19, 51]. This numerical method consist of the following steps:

Step 1. Construct a data set DN = {
x j ∈ Rp : j = 1, . . . , N

}
consisting of N number of p-dimensional feature

vectors, randomly generated from a standard normal distribution; Gaussian distribution with zero
mean and unit standard deviation.

Step 2. Compute the sample mean vector x̄ ∈Rp and the sample covariance matrix C ∈Rp×p from the data set
DN , using equation (7.4) and (7.5). The potential outliers are included in the computation, yielding
inclusive statistics.

Step 3. Compute the MSD for all the observations in DN , using equation (7.7), and store the largest distance
value.

Step 4. Repeat Step 1 to Step 3 for a large number of trials, to obtain a vector that contains the largest MSD of
each trial. Let Nt denote the number of trials (e.g. Nt = 1000) and dmax ∈RNt×1 the resulting vector.
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Step 5. Determine the threshold value for the 100γ% test of discordance. This value can be obtained as fol-
lows; sort the values of the vector dmax in ascending order of magnitude, and select the distance
below which 100(1−γ)% of the trials occur (i.e. the 100(1−γ)th percentile).

Note that above process yields an inclusive threshold, because the potential outliers are included in the data
that was used to compute the mean vector and the covariance matrix. To compute the exclusive threshold,
the exclusive mean vector and covariance matrix (exclusive statistics) must be computed for every subset
of the data that is formed by excluding one observation. Then the MSD is computed for each observation
using the corresponding exclusive statistics, implying that the covariance matrix must be inverted each time
again. Computing the inverse of a matrix is computational expensive, which makes the determination of the
exclusive threshold directly from this process not very appealing. Fortunate, the exclusive threshold is related
to the inclusive threshold by means of a simple formula [19, Eq. 6.74]

ξexc = (N −1)(N −1)2ξi nc

N
(
N 2 − (N +1)ξi nc

) (7.8)

in which ξi nc , ξexc are the inclusive and exclusive threshold, respectively. So, for the speed of computation,
the inclusive threshold is always computed first. If an exclusive threshold is required, then this can be ob-
tained from the simple relation above.

Extreme Value Statistics

In general, one will infer damage if the new observation is far from the mean of the distribution of the normal
condition data or in a region of very low probability density. In both these cases, the implication is that the
new measurement point will be somewhere in the tails of the distribution. This means that that the thresh-
old will be sensitive to how well the distributions of the tails are understood. The methods of determining
the threshold that has been discussed so far are based on assuming that the normal condition data is Gaus-
sian distributed, which involves a severe assumption on the nature of the tails that may not be justified [19].
Therefore, more refined methods for modeling the tails of arbitrary distributions are considered. The relevant
field is referred to as extreme value statistics, which is generally applicable to any type of distribution.

Suppose that one is given a set of samples
{

X1, X2, . . . , Xn
}

(e.g. values of the MSD) from an arbitrary
parent distribution. Then the right tail of the parent distribution is described by the maximum operator,
max

({
X1, X2, . . . , Xn

})
, which selects the maximum value from the sample vector. The theorem of extreme

value statistics states that in the limit as the number samples (from an arbitrary parent distribution) tends to
infinity, the induced distribution on the maximums of these samples can only take one of the following three
forms: Gumbel, Weibull or Frechet distribution. Note that the distribution of the maximums is relevant for the
right tail of a univariate distribution only. For the left tail, the minimum of the samples should be considered,
and for this a similar theorem exists. The minimum distribution is not relevant in this thesis, because, the
discordance measure used for the novelty detection has the form of a distance, where large values might
indicate departures from the normal condition. Hence, the distribution for the maximums should be used
for setting the upper threshold level.

The three types of limit distribution for maximums are given by [53]

FRECHET: F1(x) =

exp

(
−

(
x −λ
δ

)−β)
, if x ≥λ

0, otherwise

(7.9)

WEIBULL: F2(x) =


1, if x ≥λ

exp

(
−

(
λ−x

δ

)β)
, otherwise

(7.10)

GUMBEL: F3(x) = exp

(
−exp

(
−

(
x −λ
δ

)))
, −∞< x <∞ and δ> 0 (7.11)

where λ and δ are the location and scale parameter, respectively, and β is a shape parameter. These param-
eters should be estimated from the data. Now given a vector of samples of maximum data, it is possible to
select an appropriate limit distribution and fit a parametric model to the data. Once the parametric model is
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obtained, it can be used to compute an effective threshold for novelty based on the true statistics of the data
as opposed to statistics based the assumption of a Gaussian distribution. For example, the 100(1−γ)% upper
threshold level can be determined by inverting the relation γ= 1−F (ξ), where ξ is the threshold value.

7.1.3 Process of Novelty Detection

The general process of novelty detection can be summarized as follows:

Step 1. Establish a training set DN = {
x j ∈ Rp : j = 1, . . . , N

}
consisting of N number of p-dimensional fea-

ture vectors extracted from measurements. The training data should represent the normal/healthy
condition of the structure.

Step 2. Estimate the probability density function p(x) of the features using the training data.

Step 3. Determine the threshold value for the discordance measure above which the condition of the struc-
ture will be considered abnormal. This value can be computed using extreme value statistics, which
is generally applicable to any type of distribution.

Step 4. For a new observation y ∈ Rp , evaluate the discordance measure D(y) = − ln
(
p(y)

)
using the previ-

ously estimated probability density function. Note that a new observation is denoted y to distinguish
it from the training vectors x, but it must be remembered that both vectors represents the same type
of features.

Step 5. Diagnose the condition of the structure based on new observations. If the discordance measure ex-
ceeds the threshold level, then the structure has departed significantly from its normal condition,
which might indicate that the structure is damaged and an alarm should be issued.

As mentioned before, the estimation of the probability density function in Step 2 is one of the most challeng-
ing tasks of all machine learning problems. To avoid this problem, it is often assumed that the training data
is Gaussian distributed, which implies that the data can be characterized by its mean vector and covariance
matrix. In that case, the following changes can be made to the above process:

• The estimation of the probability density function in Step 2 reduces to the estimation of the mean
vector and covariance matrix. Unbiased estimators for these statistics are given by equation (7.4) and
(7.5).

• The threshold level in Step 3 can also be computed using other methods that rely on the assumption of
Gaussian distributed data, such as the chi-squared statistic and the numerical method as described in
Section 7.1.2.

• The discordance measure in Step 4 reduces to the MSD, which is given by equation (7.7).

It is clear that the Gaussian assumption leads to a simple method for damage detection. However, if this as-
sumption cannot be justified (e.g. non-elliptical distributions), then the damage detection may be unreliable.

7.2 Application
In this section, the application of novelty detection is illustrated for the Zwartewaterbrug data. Similar to the
previous chapters, the damage detection is performed separately for each bridge segment. First, the analysis
of segment 2 is discussed in detail and the results of the all three segments are compared at the end of this
section.

7.2.1 Feature Selection

First, suitable features are selected for the novelty detection. In contrast to previous chapter it is chosen to use
the natural frequencies of a particular bridge segment as features rather than the spectral lines of the singular
value spectrum. This results in a much smaller dimension of the feature space, which requires less data
samples for an accurate estimation of the probability density or other statistics such as the mean vector and
covariance matrix. Seven different modes were identified per segment in the range of 50–100 Hz (Tables 4.4–
4.6), but these modes were not consistently identified in all measurements (indicated by the success rate in
the tables). This means that the original data contains a lot of missing values. The dataset that is used for the
analysis related to each one of the three segments is formed as follows:
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1. Modes of the particular segment that were identified in less than 80% of the measurements are disre-
garded, the remaining number of modes determines the number of features.

2. The observations for which the natural frequencies of all remaining modes were identified forms the
dataset. Observations with missing values are disregarded.

The resulting sets might have different number of features and observations.
It is assumed that the data from dataset four (0 kg) and five (25 kg) represent the normal condition of the

bridge. There are two reasons why the 25 kg class is also considered for the normal condition data: 1) the
number of training vectors is increased resulting in better estimations for the mean vector and covariance
matrix, and 2) the 25 kg class is obtained under varying environmental conditions which is required for data
normalization as will become clear in Chapter 8. Note that the 25 kg mass accounts for only 0.0625% of the
total weight of one bridge segment, and that this mass is only located in segment 2. Hence, it is reasonable
to assume that the dynamic properties of the bridge are not affected by the added mass, which justifies the
choice to consider this for the normal condition of the structure.

The selected features for segment 2 are the natural frequencies of five modes as shown in Figure 7.1.
The normal/healthy condition data is labeled as “H” and comprises samples of the 0 kg and 25 kg class as
explained above. This data will be used for training the novelty detector, while the remaining observations
are used for testing. It is noted that normally if novelty detection is performed there will be no data from the
damage structure available no data is available from the damaged structure. It is assumed that this data is
Gaussian distributed so that the MSD can be used as discordance measure.
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Figure 7.1: Features for damage detection, being the natural frequencies of five modes of bridge segment 2 (segment in which the added
mass is located) in the range 50–100 Hz. Horizontal axis represents the different observations/samples, and the horizontal axis represents
the frequency axis.

Normality test

It is assumed that the normal condition data is Gaussian distributed, so that the MSD can be used as discor-
dance measure for the novelty detection. However, for valid interference of the results, this assumption must
be validated. The assessment of normality for data with more than two variables is not so straightforward as
for data with one or two variables. However, for multivariate Gaussian distributed data, the marginal distri-
butions and any linear combination of variables should be Gaussian distributed as well. These conditions are
necessary but insufficient conditions for multivariate normality [9]. So, satisfying these conditions does not
guarantee that the data is multivariate Gaussian distributed, but these conditions provide a starting point for
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assessing the multivariate normality. The approach that will be followed for assessing multivariate normality
of the data, proceeds from univariate to bivariate to multivariate examination of the data. The advantage of
this procedure over direct assessment of multivariate normality is that it results in better understanding of
the underlying distribution. It is noted that if any of the variables in the data set is not univariate Gaussian,
and/or any pair of variables is not bivariate Gaussian, the dataset cannot be multivariate Gaussian.

There are several techniques that can be used to check whether the data deviates from a Gaussian dis-
tribution, called normality tests [9, 35]. Two classes of normality tests can be distinguished: 1) graphical
methods, which are methods for plotting the data and qualitatively evaluating whether the data looks Gaus-
sian, and 2) statistical tests, which are methods that calculate statistics (e.g. kurtosis and skewness) on the
data and quantify how likely it is that the data was drawn from a Gaussian distribution. One of the most pop-
ular graphical methods for testing univariate normality (and the one that will be used here) is the probability
plot or Q–Q plot (quantile versus quantile plot) in which the observations are arranged in increasing order
of magnitude and then plotted against the theoretical normal distribution values. A perfect match between
the observations and the theoretical distribution is found when the samples lie on a straight line. Deviations
by the samples from this line indicate a deviation from the expected distribution. The probability plot is not
restricted to the normal distribution but can be used for any type of distribution. This test allows a quick and
simple means of evaluating the shape of the univariate distribution for each dependent variable.

A scatter plot of all possible pairs of variables can be used in checking the bivariate normality. If the sam-
ple points do not look ellipsoidal in the two dimensional space, then the normality of the data is questionable.
On the other hand, if the plot is ellipsoidal, there is no guarantee of bivariate normality since many other dis-
tributions have this shape. Another method for evaluating the normality of a dataset of two or more variables
is by means of the MSD. It can be shown that if the data is drawn from a p dimensional multivariate Gaussian
distribution, then the MSDs of the data has a chi-square distribution with p degrees of freedom. The Q–Q plot
can be used to check the correspondence between the MSDs of the data and the chi-squared distribution. If
the data is multivariate Gaussian, then the data points must lie on the line y = x in the Q–Q plot.

Statistical tests may be used complementary to the graphical methods. A large range of statistical tests
exist having their own strength and weaknesses [35]. In the following, D’Agostino-Pearson omnibus test is
used for assessing univariate normality. This test uses the skewness (measure of the asymmetry in the distri-
bution) and kurtosis (measure of the shape) of the data to quantify how far from Gaussian the data is in terms
of asymmetry and shape.

The assessment of multivariate normality starts with examining the univariate normality and bivariate nor-
mality. Recall that the dataset consist of five features, namely the natural frequencies of the five selected
modes (considering the data of segment 2). The feature vectors are standardized to normal scores as

z j = S−1 (
x j − x̄

)
, j = 1, . . . , N (7.12)

where x j ∈ Rp is an observation of the original feature vector, x̄ ∈ Rp is the sample mean vector of the fea-
tures, and S ∈ Rp×p is a diagonal matrix whose diagonal elements are the sample standard deviations of the
features. Consequently, all the individual features have zero mean and unit standard deviation, so that the
expected univariate distribution is a standard normal distribution. Figure 7.2 shows the probability plots of
the individual features, in which the horizontal axis represents the theoretical quantiles of a standard normal
distribution (zero mean and unit standard deviation), and the vertical axis represents the ordered standard-
ized feature values. As a reference, a straight line is fitted to the data points. The large deviations of the
data points from the straight line as well as the very low p-values suggest that the individual features are not
Gaussian distributed. Figure 7.3 shows the marginal distributions of the individual features and the pairs of
features; the univariate distributions are shown in the form of a histogram on the “diagonal” and the bivari-
ate distributions are shown in the form of a scatter plot in the “lower-triangle”. It is noted that only the lower
triangle is shown because of symmetry. As a reference, the estimated (joint) probability density function is
also shown in the figures. If the data is Gaussian distributed then the histograms will have a bell shape, and
the data points in the scatter plot will look ellipsoidal in the two dimensional feature space.

The third level of assessment is to examine the MSD of the data, which will have a chi-squared distribu-
tion in case the data is multivariate Gaussian. The sample mean vector x̄ and sample covariance matrix C
are computed using all feature vectors in the normal condition set. Subsequently, the MSDs are computed
using these statistics. It is noted that standardization of the features vectors does not affect the MSD, so the
distances can be computed using either the original or standardized feature vectors. The MSD for all vectors
in the normal condition set is shown in Figure 7.4. By comparing the histogram with the theoretical distribu-
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Figure 7.2: Normal probability plot of the individual features. The horizontal axis represents the theoretical quantiles of a standard
normal distribution, and the vertical axis represents the ordered standardized feature values. Deviations by the data points from the
straight line suggest departures from normality. The R2 value is the coefficient of determination and indicates how well the data points
can be represented by the best-fitted straight line. The p-value is computed using D’Agostino-Pearson omnibus test which is based on
the skewness and kurtosis value of the data, the null hypothesis that a sample originates from a normal distribution can be rejected if
the p-value is less than a chosen confidence level α, typically α= 0.05.
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tion it can be observed that the distribution of the MSD is indeed close to a chi-squared distribution, however
quantification of the correspondence is not possible. The correspondence of the distributions is assessed in
Figure 7.5 by means of a probability plot in which the vertical axis represents the ordered MSD values and the
horizontal axis represents the theoretical quantiles of a chi-squared distribution with 5 degrees of freedom.
As a reference the line y = x is plotted, which represents perfect correspondence. A good correspondence
between the MSD and the theoretical distribution is found for MSD smaller than ten, while large deviations
of the data points from the reference line are found above this value, which suggest that these data points are
not multivariate Gaussian.
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Figure 7.4: Mahalanobis squared distance of the normal condition data set. The involved covariance matrix and mean vector are com-
puted using all samples in the considered data set. The distribution of the MSD is shown in the form of a histogram in the figure on
the right, the solid line represents the theoretical chi-squared distribution with 5 degrees of freedom. The MSD of multivariate Gaussian
distributed data has a chi-squared distribution, hence deviations suggest departures from normality.
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Figure 7.5: Chi-squared probability plot of the Mahalanobis squared distance of the normal condition data. Vertical axis represents the
ordered MSD values and the horizontal axis represents the theoretical quantiles of a chi-squared distribution with 5 degrees of free-
dom. Deviations from the line y = x suggest departures from the chi-squared distribution. The R2 value (coefficient of determination)
quantifies the correspondence of the data with the chi-squared distribution. An R2 value of 1 indicates perfect correspondence.
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From Figure 7.2 and Figure 7.3 it is clear that the individual features and the pairs of features are not
Gaussian. Consequently, the multivariate distribution of the data will also not be Gaussian because univariate
and bivariate normality of the data are necessary conditions for multivariate normality. This could have been
concluded directly on the basis of Figure 7.5, since the MSD of the data does not correspond to a chi-squared
distribution. The Gaussian assumption for the normal condition data is thus not satisfied. Nevertheless, the
MSD will be used as discordance measure for the novelty detection, justified by the following two arguments:

1. Figure 7.3 shows that the the data looks elliptical in the feature space (at least in the two dimensional
space), and that the probability density function has only one peak, except for the fifth feature. This
suggest that the departures from a Gaussian distribution are small and that the method based on MSD
may still perform well.

2. The estimation of a probability density in its full generality is a challenging task, especially given the
limited number of observations (curse of dimensionality). Hence, the general approach will not neces-
sarily provide more accurate results then when a parametric form of the distribution is assumed (e.g.
Gaussian). The reliability of the general approach is mainly determined by the accuracy of the density
estimation, which is known to be poor for small data sets.

7.2.2 Threshold Value

The threshold value is determined using the three methods introduced in Section 7.1.2; the methods are
1) based on a Monte Carlo simulation, 2) based on the chi-squared statistic, and 3) based on extreme value
statistics. The first two methods assume that the data is Gaussian distributed, while the third method is
applicable to any type of distribution. The type I error level is fixed to γ= 0.01 for all the methods, resulting
in a threshold value for the 1% test of discordance.

For the first approach a (161×5) matrix (number of observation × number of features; same size as the
normal condition set) is generated with each element being a randomly generated number from a zero mean
and unit standard deviation Gaussian distribution; for all elements the MSD is then computed and the largest
value stored. This is repeated a large number of times (5000 – 10000 times suggested in literature), each time
storing the largest MSD in an array. The inclusive threshold ξi ncl can then be obtained from the array as the
value below which 99% of the trials occur. The desired exclusive threshold is computed from equation (7.8).
The 1% (exclusive) threshold value for the 5-dimensional problem with 161 observations was found to be
30.34 after 10000 trials.

The second method based on the chi-squared statistic is the simplest among the three methods. The MSD
of the 5-dimensional feature vectors has a chi-squared distribution with five degrees of freedom (assuming
that the data is Gaussian distributed). The threshold value ξ is computed by inverting the relation F (ξ) = 1−γ,
where F (•) is the cumulative density function of the chi-squared distribution. The 1% threshold value for the
5-dimensional problem was found to be 15.09. Note that this threshold depends only on the number of
features.

In the third method, the threshold value is computed based on extreme value statistics. The methodology
is briefly described in Section 7.1.2. The method consist of fitting a parametric model to the right tail of the
empirical cumulative density function of the MSDs computed from the training data. The only three possible
parametric models for the distribution of maximums are the Frechet, Weibull and Gumbel distribution whose
cumulative density functions are given in equation (7.9), (7.10) and (7.11), respectively. The distribution that
describes the maximum data best is chosen for the computation of the threshold. The approach to find the
best model consists of fitting the parameters of the three distributions to the data using maximum likelihood
estimation and selecting the model which gives the highest likelihood. In this case the Gumbel distribution
with parameters δ = 3.346 and λ = 6.292 has the largest likelihood and is chosen for the computation of the
threshold. The threshold value ξ is computed by inverting the expression F3(ξ) = 1−γ, where F3(•) is the CDF
of the Gumbel distribution given by equation (7.11). This leads to the following threshold

ξ=λ−δ ln
(− ln

(
1−γ))

(7.13)

The 1% threshold value obtained using the fitted Gumbel distribution is 21.70. This threshold is presented in
Figure 7.6 together with the threshold of the second method. In this figure only the MSDs of the normal con-
dition data is presented, which should ideally be below the thresholds. However, considering the threshold
based on the chi-squared statistic there are several false-positives observed (i.e. values above the threshold),
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but not for the other threshold. This implies that the threshold based on extreme value statistics is much
more adequate than the one computed based on the normality assumption.
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Figure 7.6: Threshold levels (γ= 0.01) based on the chi-squared distribution with five degrees of freedom and the Gumbel distribution
fitted on the maximums of the MSD. The dashed lines represent the threshold levels. The histograms on the right represent the empirical
probability density function of the MSD and the maximums. The density function of both the fitted Gumbel distribution and the chi-
squared distribution are plotted with solid lines in the corresponding colors.

The three threshold values for the 1%, 2% and 5% test of discordance computed using the three different
methods are listed in Table 7.1. This shows that the threshold values that are computed with Monte Carlo
simulation (first method) are in general the largest. The values computed with the second method are in
general the lowest and might lead to several false-positives.

Table 7.1: Threshold values for the 1%, 2% and 5% test of discordance. The values are computed using all observations from the healthy
state of the structure.

Method Threshold level

1% 2% 5%

1. Monte Carlo simulation 30.34 28.36 25.72
2. Chi-squared distribution 15.09 13.39 11.07
3. Gumbel distribution 21.70 19.33 16.16

So far we only considered the data from the healthy state of the bridge (segment 2) for assessing the
normality and computing threshold levels to give insight in the methodology. Now will will apply the method
for damage detection as described in Section 7.1.3, where the other observations are considered as anomalies
(samples 162 to 496 in Figure 7.1). To show the influence of the training set size; 20%, 40%, 60%, and 80% of
the healthy data set is randomly taken to form the training set for computing the sample mean vector and
sample covariance matrix. The remaining observations are used for testing the novelty detector models. The
results of these four models are shown in Figure 7.7. The three threshold levels as discussed above, are plotted
in the figures too. It must be noted that both the thresholds based on Monte Carlo simulation and extreme
values statistics depend on the training size while the threshold based on the chi-squared is independent of
the training size. From the figures is can be observed that the training size is only of minor importance, as
the results are very similar for all four cases. However, including more observations from the healthy state of
the structure in the training set will in general improve the performance of the model. The threshold levels
indicate that it is possible to separate the abnormal observations (with added mass) from the normal ones
(labeled as healthy). The threshold based on the chi-squared distribution is in general the lowest, while the
other two are comparable at a higher level.

A larger threshold value is more conservative with respect to the false-positive errors (observations above
the threshold in the healthy state), but at the same time there are potentially more false-negative errors (ob-
servations below the threshold for the damaged state). In the latter, no alarm is issued while the structure is
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damaged (missed detection) and will usually have more severe consequences than false-positive errors (false
alarm). Hence, we are looking for a threshold that minimizes the number of false-negative errors while being
the number of false-positive errors at an acceptable level. To determine the most optimal threshold level,
knowledge about the expected number of false-negative errors is needed for which data of the faulted struc-
ture is required. However, this is usually not possible in an unsupervised learning mode, when this type of
data is not available.
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Figure 7.7: Mahalanobis squared distance and threshold levels for novelty detection. The three horizontal lines represents a threshold
level based on the Monte Carlo method (solid line), extreme value statistics (dashed line), and chi-squared distribution (dotted line).
The size of the training data set in (a), (b), (c) and (d) is 20%, 40%, 60% and 80% of the normal condition set, respectively.

7.2.3 Comparison results per segment

In previous sections, the method of novelty detection have been applied to the data of segment 2 only. The
same analysis is performed for segment 1 and 3, and in this section the results of all three segments are
discussed.

Figures 7.8 and 7.9 show the selected features associated with segment 1 and 3, respectively. The approach
for feature selection is the same as done for segment 2, which is described in Section 7.2.1. For segment 1,
the natural frequency of six modes are selected as features and the total set consist of 582 samples of which
the first 196 samples represent the healthy condition. For segment 3, the natural frequency of four modes
are selected as features and the total set consist of 614 samples of which the first 192 samples represent the
healthy condition.

For each segment, a novelty detection model is designed using the process described in Section 7.1.3 for
Gaussian distributed data. Here, 80% of the healthy condition is used to train the model and the remaining
20% are used for testing. Training the model implies computing the mean vector and the covariance matrix of
the features, which characterize the probability distribution of the features associated with the healthy state
of the structure. These statistics are subsequently used to evaluate the mahalahobis squared distance. The
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threshold level is computed based on the extreme value statistics as described before.
The results are shown in Figures 7.10–7.12 for segment 1, 2, and 3, respectively. The confusion matrix

visualizes the performance of the model. The diagonal elements of this matrix represent the true negatives
(upper left) and true positives (lower right). The off-diagonal elements represent the false-positives (lower
left) and false-negatives (upper right). The overall accuracy is computed as the number of correctly labeled
observations divided by the total number of observation.

The model for segment 1 and segment 3 seems to perform poorly showing a lot of false-negatives. How-
ever, it should be realized that the dynamic properties of these two segments might not be affected by the
added mass because the added mass is located in segment 2 (given that the added mass is very small com-
pared to the weight of the segments and the segments are separated by stiff transverse beams). In fact, the
values below the threshold implies that the structure has not be departed from the undamaged state of the
corresponding segment. The false-negatives of segment 1 and 3 might thus suggest that these segments are
less sensitive to the added mass, as expected. The large values of the MSD in these segments are probably
caused by other factors (e.g. variations in environmental conditions) that were not included in the training
data set. It is emphasized that the current training set covers only a small range of environmental conditions
and thus outliers cannot be attributed to the added mass alone.

The model of segment 2 performs well since it labels almost all observations correctly. The dynamic
properties (e.g. natural frequencies) of this segment are most affected by the added mass and one might
expect that the MSD increases for increasing weight, which cannot be observed for the 50 kg and 75 kg mass
class. This might be because the effect of damage is compensated by the effect of other factors that were not
included in the training set.
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Figure 7.8: Features for damage detection, being the natural frequencies of six modes of bridge segment 1 (segment without added mass)
in the range 50–100 Hz. Horizontal axis represents the different observations/samples, and the horizontal axis represents the frequency
axis.
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Figure 7.10: Detection of anomalies in the observations of segment 1. Observations that are labeled with a weight correspond to obser-
vations obtained when the added mass was present in segment 2.
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Figure 7.11: Detection of anomalies in the observations of segment 2, in which the added mass is located.
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Figure 7.12: Detection of anomalies in the observations of segment 3. Observations that are labeled with a weight correspond to obser-
vations obtained when the added mass was present in segment 2.
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7.3 Conclusions
In this chapter the method of novelty detection is discussed. The aim of this method is to detect anomalies
in the data, which are related to observations that are far from the probability distribution of the reference
data. In the context of SHM, the probability distribution of the reference state is established using data ob-
tained from the healthy condition of the structure. For new observations it is then checked whether it is likely
that these observations come from the distribution of the reference state. A discordance measure is used to
quantify the correspondence of a new observation with the reference data. For Gaussian distributed data this
measure is simply the MSD. The normality of the reference data is checked. Although it appears that the data
is not normally distributed, the Gaussian assumption is applied in this thesis, justified by two arguments:
1) the departures from a Gaussian distribution are small, and 2) due to the limited number of observation,
the estimation of a probability density in its full generality is a challenging task. The threshold is based on
three methods: the chi-squared distribution, the Monte Carlo simulation and extreme value statistics. The
first two methods assume that the data is Gaussian distributed, while the third method is applicable to any
type of distribution. For each one of the three segments, a novelty detection model was constructed using the
natural frequencies of the particular segment as feature.

Due to the limited data available no hard conclusions can be drawn, but the following observation were
made from the results:

• The threshold based on the extreme value statistics is more adequate as the one based on the chi-
squared distribution. Moreover, the extreme value statistics can be applied to any type of distributions
and is not restricted to Gaussian distributed data.

• All the observation are correctly labeled with a detector model that uses the natural frequencies of
segment 2 as features. On the other hand, models that uses the natural frequencies of either segment
1 or 3 yield a large number of false-negatives. This suggests that the natural frequencies/ dynamic
properties of segment 1 and 3 are less sensitive to the added mass located in segment 2.

• Other factor (e.g. variations in the environmental conditions) that were not included in the training set
might also yield large values of the MSD, which might mask or compensate the effect of damage. This
can explain the suspicious large values that were obtained from the models of segment 1 and 3.
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The basic concept underlying the use of vibration-based damage detection is that global vibration properties,
notably natural frequencies, mode shapes and modal damping, are functions of the physical parameters of
the structural mass, damping and stiffness. Changes in the physical parameters will cause detectable changes
in the vibration properties. This sounds simple, but for in-service structures, the application of vibration-
based damage detection is complicated because the vibration properties of a real structure are strongly af-
fected by factors other than structural damages. Variations in environmental conditions (e.g. temperature,
humidity, wind) and operational conditions (e.g. traffic loads) also cause changes in dynamic properties
which may mask the changes caused by structural damage.

The employed damage detection methods in previous chapters were based on changes in the dynamic
response of the system. In fact, it is assumed that damage will alter the stiffness of a system (could also be
mass, or energy dissipation properties), which in turn will alter the measured dynamic response of the sys-
tem. However, variations in the environmental and operational conditions of the structure will often mask
subtler structural changes caused by damage. The damage-sensitive features used in the damage detection
techniques often appear to be sensitive to these changes in environmental and operational conditions of the
structure. This was already observed from the results of the modal analyses, in some datasets the identified
natural frequencies show large variations, which cannot be allocated to the added mass, but must be caused
by other sources like environmental and operational conditions. In order to design a reliable damage detec-
tion model it is necessary to account for the changes in environmental and operational conditions, this is
often referred to as data normalization. Data normalization is a procedure to normalize data sets, so that
signal changes caused by operational and environmental variations of the system can be distinguished from
structural changes of interest, such as structural damage.

8.1 Overview of Studies on Environmental and Operational Variability

In this section, a brief summary about the Environmental and Operational Variability (EOV) is provided. The
focus will mainly be on the influence of environmental variability. It must be noted that the similarity filtering
method was intended to remove the effects due to variations in operational conditions, but not in the envi-
ronmental conditions. The operational conditions include ambient loading conditions, operational speed
and mass loading.

Mass loading effects

The influence of traffic loading on modal parameters of bridge structures has been investigated by Kim et al.
and Zhang et al. [28, 58]. In both studies it was found that the mass loading effect of moving vehicles varies
depending on the mass of the vehicles relative to the mass of the considered section of the bridge. Kim et al.
[28] reported that the natural frequencies of a 46 meter long simply supported bridge decreased by 5.4% as a
result of heavy traffic (mass ratio of heavy vehicles to the super structure is about 3.8%). On the other hand,
for middle-and long span bridges, changes in the measured natural frequencies due to different types of
vehicle masses (mass ratio for heavy vehicles is about 0.38%) were hardly detectable. Zhang et al. [58] found
for a cable stayed bridge that the natural frequencies the global modes, up to 2 Hz can exhibit as much as

117



118 8. Data Normalization

1% change within a day. In these studies it was assumed that changes due to environmental variations were
limited but in general the structures are exposed to the combined action of environmental conditions and
operational conditions.

Temperature effects

Most studies about environmental conditions in the context of vibration-based damage detection investigate
the effects of temperature variability on the measured dynamic response of a structure.

Wood [50] reported that changes of bridge responses were closely related to the structural temperature
based on the vibration test of five bridges in the UK. Analyses based on the data compiled suggested that the
variability of the asphalt elastic modulus due to temperature effects was a major contributor to the changes
in structural stiffness.

Based on vibration tests conducted on four different footbridges, Weber [49] found a large variation of
dynamic properties with the asphalt temperature. The bridges were also modeled numerically using a visco-
elastic material for asphalt. The experiments and models show that both the natural frequencies and the
damping ratios can change significantly with temperature. In one particular case (timber bridge), an increase
in natural frequency of 25% has been when asphalt temperature decreased. In general, the natural frequen-
cies (of the first three modes) decrease with increasing temperature. For high temperatures, the asphalt is
weak and gives practically no contribution to the stiffness. For colder temperatures, the asphalt stiffness in-
creases and the fundamental frequencies increase. However, not all the bridges were affected the same way.
This is mostly explained by considering the cross-sections of the bridges. The further away the pavement is
from the neutral axis, the higher is the influence. The author also concluded that other effect may play a role
as well: 1) if the pavement is not fully bonded to the beam the interface stiffness may reduce the effect, 2) if the
dynamic behavior is not entirely governed by bending, the effect of asphalt is reduced, and 3) short bridges
might vibrate more like a plate than like a beam, in which case the cross section might not fully describe the
dynamic behavior.

Researchers from Los Alamos National Laboratory performed several tests on the Alamos Canyon bridge
located in southern New Mexico [11, 21, 22]. The results revealed that the first three natural frequencies of
the bridge varied about 4.7%, 6.6%, and 5.0% during a 24 h period as the temperature of the bridge deck
changed by approximately 22◦C. The temperature gradient largely influences the variation of the fundamen-
tal frequency. They have also studied the I-40 bridge over the Rio Grande which was artificially damaged by
making various torch cuts in the web and flange of one of the two plate girders, which support the concrete
deck [20]. It was found that no change in dynamic properties can be observed until the final level of damage
is introduced (10 mm wide cut through half the height of the plate girder, including the bottom flange). At
the final level of damage the natural frequencies for the first two modes have dropped to values 7.6 and 4.4%
less, respectively, than those measured during the undamaged tests.

Peeters et al. [37, 38] conducted a study devoted to monitoring the effect of changing environmental con-
ditions on structural vibration properties on the Z24 Bridge in Switzerland. It was continuously monitored
for nearly a year. It was reported that the relative variation of the first four natural frequencies varied between
14% and 18% during the 10 months. It was also found that the natural frequencies of all the modes analyzed,
except the second mode, decreased when the temperature increase. The natural frequency of the second
mode increased with increasing temperature (for positive temperatures). In particular, a bilinear relation-
ship was observed between the measured frequencies and temperature. There was a clear linear relationship
above the freezing temperature (0◦C) and a different linear correlation below the freezing temperature. It was
demonstrated that this bilinear behavior could be attributed to the asphalt layer on the deck. Although the
asphalt layer did not contribute to the overall stiffness at warm temperatures, it added significant stiffness to
the bridge at cold temperatures. This was also mentioned by Weber in his work [49].

Ni et al. [34] addresses the modeling of temperature effects on the modal frequencies for the cable-stayed
Ting Kau Bridge (Hong Kong), which has been instrumented with a long-term monitoring system. The bridge
comprises two main spans of 448 m and 475 m respectively, and two side spans of 127 m each. Based on one-
year measurement data obtained from 45 accelerometers and 83 temperature sensors, natural frequencies
and mode shapes of the first eight modes, in the range from 0.1 to 0.4 Hz, and temperatures at different lo-
cations of the bridge are obtained at one-hour intervals. The one-hour average temperature from 20 temper-
ature sensors ranges from 2.83 to 53.46 degree Celsius. It was observed that environmental and operational
variations account for relative variations in the modal frequencies between 1.505% and 6.689% for the first
eight modes [60], which may mask the modal changes caused by structural damage. For all the measured
modes, an overall decrease in modal frequency is observed with increase in temperature of the bridge. The
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variation in mode shapes does not depend on the environmental effects.

Ding and Li [16] investigated the daily and seasonal correlations modal frequency-temperature using 215
days of health monitoring data obtained on the Runyang Suspension Bridge. The bridge is a single-span steel
suspension bridge with main span of 1490 m. The aerodynamically shaped closed box steel girder is 36.3 m
wide and 3.0 m high. A total of 27 uni-axial accelerometers were installed on nine sections of the bridge deck
to measure the dynamic response, and a total of 40 temperature sensors were installed on five sections which
effectively measure the global temperature of the steel girder. The natural frequencies of the first six modes,
in the range of 0.1 to 0.5 Hz, were identified at 10 minutes intervals. In order to eliminate the variations rising
from the identification algorithm, the daily averaged modal frequencies were computed. It was shown that
the daily averaged modal frequencies have remarkable seasonal correlation with the daily averaged temper-
ature. For all six modes, an overall decrease in modal frequency was observed with the increase of average
temperature of the bridge, and the measured modal frequencies of higher modes are more sensitive to am-
bient temperatures. Average temperature ranges from -2 to 38 degrees Celsius and relative variation of daily
averaged modal frequencies ranges from 0.324% to 2.132%.

As the temperature of an entire structure is usually nonuniformly distributed, Xia et al. [54] states that us-
ing the air temperature and/or surface temperatures alone may not sufficiently capture the relation between
the vibration properties and temperatures. Based on FEM analyses and experiments with a simply supported
reinforced concrete slab, he concluded that the consideration of the temperature distribution of the whole
structure (especially over the height of the RC slab) will lead to more accurate results of the temperature effect
on the vibration properties of the structure. It was found that the frequency of the structure decreases when
temperature goes up.

Geng et al. [23] performed experiments to investigate the vibration and acoustic response characteristic
of a clamped rectangular aluminum plate (0.4 x 0.3 x 0.003 m3) in thermal environment. Results show that
the natural frequencies of the plate decrease when temperature is elevated. Thermal stresses were regarded
as the major reason for the reduction of the natural frequencies of the heated clamped plate. This thermally
induced softening effect has unequal influence on the structural stiffness along the two in-plane directions.
Besides, it was observed that the initial deflection of the plate has a large influence on the natural vibration
of the heated plate, because it reduces the thermally induced softening effect.

Boundary condition effects

Temperature variations not only affect the material properties (in most studies the modulus of elasticity was
found to be most affected), but could also change the boundary conditions. Freezing of the bridge supports
was supposed to be one of the main driving forces behind the observed piecewise linear relationship between
ambient temperature and the fundamental frequencies of the Z24 bridge that was found by Peeters and Roeck
[37] based on one-year monitoring data. As already mentioned, the bilinear behavior could also be attributed
to the stiffness of the asphalt layer on the deck. It is likely that both effects happen when the temperature fall
below the freezing point. Other researchers also show that freezing of the bridge supports significantly affects
the natural frequencies. In general, the natural frequencies increase due to the increased overall stiffness of
the structure.

Theoretical derivation

In the above literature, most studies show that the modal frequencies decreases when the temperature rises.
The magnitude of frequency change varies between different studies and depends on the type of structure,
the materials and the temperature range. Next it will be shown that the observations can partially be ex-
plained by Euler-Bernoulli beam theory and plate theory. Consider a simply supported single-span prismatic
beam made of an isotropic material. It is assumed that variation in the temperature will not affect the mass
and boundary conditions, but only the geometry of the structure and the mechanical properties of the mate-
rial. For this beam, the undamped natural frequency of mode n are given by [10]

ωn = n2π2

L2

√
E I

µ
(8.1)

in which L is the length of the beam, µ= ρA is the mass per unit length, E is the modulus of elasticity, and I is
the moment of inertia of the cross-sectional area. The dimensional rate of natural frequency change can be
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expressed in terms of an increment of the involved parameters [55]
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Lets denote the thermal coefficient of linear expansion of the material as αT , and the thermal coefficient of
modulus as αE . Assuming that the variations in modulus of elasticity with temperature are linear (for small
changes in temperature), the variations in moment of area are four times the variation in linear expansion,
and the mass per unit length is inversely proportional to the length as the total mass is assumed constant,
one obtains

δL

L
=αTδT,

δE

E
=αEδT,

δI

I
= 4αTδT,

δµ

µ
=−αTδT (8.3)

Consequently, equation (8.2) can be simplified to

δωn

ωn
= 1

2
(αT +αE ) (8.4)

which estimates the dimensionless rate of the frequency change with the temperature change. For most en-
gineering materials αE is much larger than αT (in absolute sense), which implies that the variation in natural
frequency subjected to a temperature change are governed by αE . For example, the linear coefficients (αT )
of steel, aluminum and concrete are 1.1e−5, 2.3e−5 and 1.0e−5/◦C, respectively. The thermal coefficients
of modulus (αE ) of the three materials are −3.6e−4, −5.6e−4 and −3.0e−3/◦C, respectively [55]. Hence, the
theoretical variation of the natural frequencies of steel beams is 0.018% per degree Celsius (positive for tem-
perature decrease and negative for temperature increase).

In addition, temperature changes may induce thermal axial forces in the structure, which alters the nat-
ural frequencies by changing the longitudinal bending stiffness [55]. These forces arise, for example, when
the thermal expansion/contraction of the structure is constrained or when changes in the support bearings
occur. The natural frequencies of a simply supported single-span prismatic beam under constant axial force
are [10]

ω̄n =ωn

√
1+ N

n2Ncr
(8.5)

in whichωn is the natural frequency of the beam without axial force given by equation (8.1), N represents the
constant axial force (positive is tension, and negative is compression), Ncr = π2E I /L2 is the critical buckling
load for a pin ended column with length L and flexural rigidity E I . For instance, the axial force that arises
due to a uniform temperature increase ∆T is equal to N =−E AαT∆T , where αT is the thermal coefficient of
linear expansion and E A is the axial stiffness of the beam. This shows that the natural frequency increases
when the beam is tensioned, and decreases when the beam is compressed. The latter is due to the softening
of the beam in compression. It also shows that the higher order modes are less sensitive to the (thermally
induced) axial forces. Previously it was assumed that the temperature change is constant and uniform across
the beam. In reality this is rarely the case, for instance, when some parts of a structure are more exposed
to heating than others (e.g. the top surface of a bridge deck will often experience higher temperatures than
the bottom surface, due to the solar radiation on the top surface). Moreover, temperature variations inside a
structure lag behind those on the surface because of temperature inertia, especially for concrete structures.

Similar derivation can be done for plate structures. Consider an isotropic rectangular thin plate simply
supported on each edge. The plate is lying in the plane z = 0 with dimensions a in the x-direction an b in the
y-direction and t denotes the thickness of the plate. It is assumed that the plate is stress-free at the reference
temperature T0. Subjected to the variation of temperature (uniform across the thickness of the plate), it is
assumed that static membrane forces will be generated in the plate

Nx = Ny =−EtαT∆T

1−ν , Nx y = 0 (8.6)

In whichαT is the thermal expansion coefficient,∆T is the temperature change with positive values denoting
a temperature increase (i.e. increase of temperature results in compression membrane forces). The natural
frequencies of a simply supported plate in thermal environment are given by [23]

ωmn =
√
π4D

ρt

(
m2
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)2

− π2EαT∆T

ρ(1−ν)

(
m2
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b2

)
(8.7)
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in which D = Et 3/12(1−ν2) is the flexural rigidity of the plate, E is the modulus of elasticity, ν is the Poisson’s
ratio, and ρ is the mass density. The corresponding mode shape of mode (m,n) is

φmn(x, y) = sin
mπx

a
sin

nπy

b
(8.8)

From equation (8.7) it is clear that there are two factors affecting the natural frequencies of the plate, namely,
variations in material properties and thermally induced forces. When a constrained plate is heated, the ther-
mal expansion of the plate will be limited by the boundaries. Then, compression forces are generated in the
plate, which reduces the natural frequencies. At the same time, for most structural materials, the modulus of
elasticity will decrease as the temperature rises. Both these two variations will reduce the natural frequency
of the plate. When the plate is cooled, the natural frequencies will increase. It is noted again that a uniform
temperature variation has been assumed. When the temperature at the top face of the plate is higher than at
the bottom side, then the top face expands more than the bottom, and moments are generated in addition to
membrane forces.

8.2 Temperature Dependency of Natural Frequencies

In this section we will analyze the temperature dependency of the natural frequencies of the Zwartewater-
brug, that were identified in section Chapter 4. In particular, the natural frequencies of the four most domi-
nant modes for each of the three bridge segments are considered (12 in total). These frequencies are summa-
rized in Tables 8.1–8.3. Recall that the notation of the modes is X/SY, where X indicates the mode number and
Y refers to the sensor number where the amplitude of the local mode shape is unity. The relative frequency
differences presented in the tables is the frequency difference normalized by the mean value and computed
as

∆ f (%) = fmax − fmi n

f̄
·100% (8.9)

where fmax , fmi n , and f̄ are the maximum, minimum, and mean frequency, respectively.
The relative frequency difference considering all data, ranges between 6.76% and 12.21%. The smallest

relative frequency difference can be found in segment three and the largest can be found in segment two
(in particular found by modes in segment two with a local mode shape close to the added mass). When the
mass classes are taken into account, the 0 kg mass class showed for all modes the highest relative frequencies
differences, ranging from 4.72% to 8.47% (note that the data of the 0 kg mass class is measured once in the
morning and once in the afternoon with 7 hours between them). The range of the 0 kg mass class have to be
explained by normal environmental changes.

Based on the studies from previous literature, it is suspected that the variations in the natural frequencies
are the result of changing environmental conditions, like the temperature. The ambient temperature mea-
sured during the tests on the Zwartewaterbrug were previously shown in Chapter 2, Figures 2.10–2.12 and are
summarized in Tables 8.1–8.3. Note that the temperature is measured at the data acquisition system (location
of eRIO in Figure 2.3), and applies to all segments.

Figures 8.1, 8.3 and 8.5 show the variation of temperature and natural frequency of the four most dom-
inant modes of each of the three bridge segment. The sample numbers on the horizontal axis are sorted in
chronological order and includes all measurements (for the samples per dataset, see Table 4.3). In most cases,
the datasets can easily be distinguished based on the “jumps" in the plots. Although the mass classes are not
distinguished in the figures, some might argue that the added mass can affect the natural frequency. How-
ever, the natural frequencies of the outer segments without added mass (segment 1 and 3) are hardly affected
by the small mass in the center segment (segment 2), because the weight of the added mass is relatively small
compared to the weight of the segments, and the segments are separated by stiff transverse I-beams. So, any
deviations in the natural frequencies of segment one or segment three are almost certainly caused by other
factors like temperature. The added mass will influence the modes with a local mode shape that is close to the
added mass the most, but also for segment two other factors (like temperature) will have more effect. From
the figures it is readily seen that the natural frequency follows the temperature pattern. The small deviations
imply that the relation between the temperature and frequency is not perfectly linear.

The correlation between the natural frequencies and the ambient temperature is analyzed in more detail,
considering 1) the data of the five mass classes separately to exclude the potential influence of the mass on
the variation of the natural frequency, and 2) all the available data (i.e. data of all mass classes combined) to
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analyze the overall relation. For the latter, the temperature is plotted versus the natural frequencies in Fig-
ures 8.2, 8.4 and 8.6. These figures show that all the frequencies increase with increasing temperature, and
that there is a linear relation between the temperature and frequencies. The temperature-frequency rela-
tion is discussed in more depth after the introduction of the correlation coefficient and the linear regression
model.

The strength of a linear relationship between two variables x and y is measured by the (Pearson product-
moment) correlation coefficient, ρx y , which is defined as

ρx y =
Cx y

σxσy
(8.10)

where Cx y is the sample covariance

Cx y = 1

N −1

N∑
k=1

(xk − x̄)
(
yk − ȳ

)
, x̄ = 1

N

N∑
k=1

xk (8.11)

and σx = p
Cxx , σy = √

Cy y are the sample standard deviations, x̄ is the sample mean value, and N is the
number of observations. The correlation coefficient has a value between -1 and +1, where -1 indicates a per-
fect negative correlation, 0 means no linear correlation, and +1 indicates a perfect positive linear correlation.
This metric is used as a measure for the goodness of fit of the linear model introduced next.

A linear regression model is fitted to the temperature–frequency data in order to examine the suggested
linear relationship between the temperature and a natural frequency. The relationship between the temper-
ature input Tk at time instant k, and the natural frequency can be expressed as

fk = w1Tk +w0 +εk (8.12)

where w0 (intercept) and w1 (slope) are the regression coefficients, and εk is the error term. The coefficient
w1 indicates the frequency change for a unit temperature increase, and w1/w0 gives the percentage of the fre-
quency change for a unit temperature increase with respect to the intercept w0. Suppose that N observations
are available, then equation (8.12) can be written in matrix notation as

f = Xw+ε (8.13)

where w = (w0, w1)T, and with N observations

f =


f1

f2
...

fN

 , X =


1 T1

1 T2
...

...
1 TN

 , ε=


ε1

ε2
...
εN


The method of least squares (LS) is used to estimate the coefficients of the linear model. In this method the
coefficients are determined such that the sum of the squares of the errors is minimized

min
w

N∑
k=1

ε2
k ≡ min

w
‖f−Xw‖2 (8.14)

Solving this quadratic minimization problem with respect to w yields

ŵ = (
XTX

)−1
XTf (8.15)

where ŵ denote the estimated coefficients. Equation (8.15) is used to compute the intercept and slope of the
linear line for a given set of input-output pairs.

Multiple linear regression models are fitted to the temperature-frequency data, each corresponding to
one of the twelve modes. Moreover, linear regression models are fitted to the data of the five mass classes
separately, and one to all the available data (i.e. data of all mass classes combined), resulting in a total of 72
models. The regression coefficients of these models and corresponding correlation coefficients are listed in
Tables 8.1–8.3.
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(a) Second mode (2/S1)
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(b) Fourth mode (4/S3)
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(c) Fifth mode (5/S2)
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(d) Sixth mode (6/S7)

Figure 8.1: Segment 1 – Variation of temperature and natural frequency of the four most dominant modes in segment 1. The samples on
the horizontal axis are sorted in chronological order.
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(b) Fourth mode (4/S3)
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(c) Fifth mode (5/S2)
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Figure 8.2: Segment 1 – Correlation between natural frequency and temperature for the four most dominant modes in segment 1. The
suggested linear relationship among the variables is emphasized with a linear regression fit (dashed line). Markers: (.) 23 March 2017,
(x) 28 March 2017, (+) 31 March 2017.
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(a) First mode (1/S15)
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(b) Second mode (2/S16)
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(c) Fourth mode (4/S13)
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(d) Fifth mode (5/S17)

Figure 8.3: Segment 2 – Variation of temperature and natural frequency of the four most dominant modes in segment 2. The samples on
the horizontal axis are sorted in chronological order.
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(b) Second mode (2/S16)
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(c) Fourth mode (4/S13)

8 10 12 14 16 18
Temperature (°C)

73

74

75

76

77

78

79

80

Fr
eq

ue
nc

y 
(H

z)

 = 0.912

(d) Fifth mode (5/S17)

Figure 8.4: Segment 2 – Correlation between natural frequency and temperature for the four most dominant modes in segment 2. The
suggested linear relationship among the variables is emphasized with a linear regression fit (dashed line). Markers: (.) 23 March 2017,
(x) 28 March 2017, (+) 31 March 2017.
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(a) Third mode (3/S23)
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(b) Fourth mode (4/S31)
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(c) Fifth mode (5/S28)
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(d) Sixth mode (6/S26)

Figure 8.5: Segment 3 – Variation of temperature and natural frequency of the four most dominant modes in segment 3. The samples on
the horizontal axis are sorted in chronological order.
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Figure 8.6: Segment 3 – Correlation between natural frequency and temperature for the four most dominant modes in segment 3. The
suggested linear relationship among the variables is emphasized with a linear regression fit (dashed line). Markers: (.) 23 March 2017,
(x) 28 March 2017, (+) 31 March 2017.
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Table 8.1: Segment 1 – Summary of the natural frequency data and temperature data, together with the results of the corresponding linear regression for different datasets (separated by added mass). The
natural frequency of the four most dominant modes in segment 1 are presented. The temperature data is the same for each mode because no spatial temperature data is available. The slope (w1) and
intercept (w0) of the fitted line are specified, together with the percentage of the frequency change with respect to the intercept for unit temperature increase and the correlation coefficient ρ.

Mode Dataset Added
mass (kg)*

Natural frequency Temperature Linear regression

Mean (Hz) Min (Hz) Max (Hz) Rel. diff. (%) Mean (◦C) Min (◦C) Max (◦C) w0 (Hz) w1 (Hz/◦C) w1/w0 ·100% ρ

2/S1 1 & 4 0 66.57 62.93 68.24 7.99 11.42 7.01 13.18 56.24 0.91 1.61 0.996
2 100 66.30 65.17 67.28 3.19 11.32 10.45 11.99 50.05 1.44 2.87 0.993
3 & 6 50 68.67 67.46 69.72 3.29 14.95 12.20 17.34 63.30 0.36 0.57 0.981
5 25 66.52 65.54 67.39 2.78 13.07 11.72 14.46 58.03 0.65 1.12 0.977
7 75 66.47 66.00 66.93 1.39 15.23 14.77 15.92 53.36 0.86 1.61 0.939
all 67.07 62.93 69.72 10.12 13.24 7.01 17.34 60.45 0.50 0.83 0.773

4/S3 1 & 4 0 75.36 71.62 77.23 7.44 11.42 7.01 13.18 65.01 0.91 1.39 0.995
2 100 75.20 74.27 75.99 2.28 11.32 10.45 11.99 61.95 1.17 1.89 0.994
3 & 6 50 77.49 76.29 78.59 2.96 14.95 12.20 17.34 72.48 0.33 0.46 0.974
5 25 75.65 74.75 76.54 2.36 13.07 11.72 14.46 67.15 0.65 0.97 0.987
7 75 75.72 75.29 76.19 1.19 15.23 14.77 15.92 64.75 0.72 1.11 0.954
all 76.01 71.62 78.59 9.16 13.24 7.01 17.34 69.20 0.51 0.74 0.824

5/S2 1 & 4 0 87.12 83.66 88.69 5.77 11.42 7.01 13.18 77.55 0.84 1.08 0.997
2 100 86.78 85.98 87.62 1.88 11.32 10.45 11.99 73.76 1.15 1.56 0.991
3 & 6 50 88.85 87.84 89.84 2.25 14.95 12.20 17.34 84.56 0.29 0.34 0.967
5 25 87.00 86.20 87.76 1.80 13.07 11.72 14.46 78.93 0.62 0.78 0.986
7 75 87.12 86.73 87.55 0.95 15.23 14.77 15.92 76.36 0.71 0.93 0.970
all 87.51 83.66 89.84 7.06 13.24 7.01 17.34 81.60 0.45 0.55 0.784

6/S7 1 & 4 0 90.84 87.81 92.10 4.72 11.42 7.01 13.18 82.26 0.75 0.91 0.998
2 100 90.08 89.05 91.19 2.38 11.32 10.45 11.99 73.42 1.47 2.00 0.990
3 & 6 50 92.84 91.55 94.10 2.75 14.95 12.20 17.34 86.35 0.43 0.50 0.989
5 25 90.45 89.70 91.61 2.11 13.07 11.72 14.46 81.25 0.70 0.87 0.976
7 75 91.58 91.22 91.93 0.77 15.23 14.77 15.92 82.05 0.63 0.76 0.966
all 91.30 87.81 94.10 6.89 13.24 7.01 17.34 83.88 0.56 0.67 0.887

* The added mass is not located in this segment, but this weight refers to the added mass that was attached to the bridge deck of segment 2.
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Table 8.2: Segment 2 – Summary of the natural frequency data and temperature data, together with the results of the corresponding linear regression for different datasets (separated by added mass). The
natural frequency of the four most dominant modes in segment 2 are presented. The temperature data is the same for each mode because no spatial temperature data is available. The slope (w1) and
intercept (w0) of the fitted line are specified, together with the percentage of the frequency change with respect to the intercept for unit temperature increase and the correlation coefficient ρ.

Mode Dataset Added
mass (kg)*

Natural frequency Temperature Linear regression

Mean (Hz) Min (Hz) Max (Hz) Rel. diff. (%) Mean (◦C) Min (◦C) Max (◦C) w0 (Hz) w1 (Hz/◦C) w1/w0 ·100% ρ

1/S15 1 & 4 0 60.90 57.35 62.51 8.47 11.42 7.01 13.18 50.93 0.87 1.72 0.997
2 100 61.29 60.26 62.19 3.15 11.32 10.45 11.99 46.58 1.30 2.79 0.993
3 & 6 50 63.67 62.48 64.90 3.80 14.95 12.20 17.34 57.29 0.43 0.74 0.992
5 25 61.37 60.36 62.49 3.48 13.07 11.72 14.46 50.82 0.81 1.59 0.989
7 75 61.15 60.68 61.65 1.57 15.23 14.77 15.92 48.14 0.85 1.77 0.973
all 61.85 57.35 64.90 12.21 13.24 7.01 17.34 54.73 0.54 0.98 0.783

2/S16** 1 & 4 0 65.01 61.22 66.67 8.39 11.42 7.01 13.18 54.27 0.94 1.73 0.998
2 100 64.99 63.99 65.86 2.89 11.32 10.45 11.99 49.63 1.36 2.73 0.992
3 & 6 50 67.59 65.90 69.17 4.84 14.95 12.20 17.34 58.67 0.60 1.02 0.998
5 25 65.68 64.63 66.68 3.12 13.07 11.72 14.46 56.05 0.74 1.31 0.980
7 75 65.65 65.32 66.10 1.19 15.23 14.77 15.92 54.26 0.75 1.38 0.981
all 65.91 61.22 69.17 12.06 13.24 7.01 17.34 57.65 0.62 1.08 0.874

4/S13 1 & 4 0 73.96 70.73 75.98 7.10 11.42 7.01 13.18 63.67 0.94 1.48 0.997
2 100 74.04 72.93 75.38 3.31 11.32 10.45 11.99 54.76 1.72 3.14 0.990
3 & 6 50 77.34 75.30 78.42 4.03 14.95 12.20 17.34 68.66 0.55 0.80 0.997
5 25 74.92 73.78 75.97 2.92 13.07 11.72 14.46 64.01 0.84 1.31 0.984
7 75 74.72 74.28 75.25 1.30 15.23 14.77 15.92 62.33 0.81 1.30 0.978
all 75.14 70.73 78.42 10.23 13.24 7.01 17.34 66.60 0.64 0.96 0.876

5/S17** 1 & 4 0 75.64 72.54 77.35 6.36 11.42 7.01 13.18 66.33 0.84 1.26 0.997
2 100 75.69 74.77 76.38 2.13 11.32 10.45 11.99 62.13 1.20 1.93 0.983
3 & 6 50 78.45 76.49 79.83 4.26 14.95 12.20 17.34 69.04 0.62 0.90 0.998
5 25 76.50 75.52 77.47 2.54 13.07 11.72 14.46 67.34 0.70 1.04 0.988
7 75 76.68 76.32 77.10 1.00 15.23 14.77 15.92 65.18 0.75 1.16 0.981
all 76.72 72.54 79.83 9.51 13.24 7.01 17.34 68.48 0.62 0.91 0.912

* The added mass is located in this segment.
** Modes with a local mode shape close to the added mass.
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Table 8.3: Segment 3 – Summary of the natural frequency data and temperature data, together with the results of the corresponding linear regression for different datasets (separated by added mass). The
natural frequency of the four most dominant modes in segment 3 are presented. The temperature data is the same for each mode because no spatial temperature data is available. The slope (w1) and
intercept (w0) of the fitted line are specified, together with the percentage of the frequency change with respect to the intercept for unit temperature increase and the correlation coefficient ρ.

Mode Dataset Added
mass (kg)*

Natural frequency Temperature Linear regression

Mean (Hz) Min (Hz) Max (Hz) Rel. diff. (%) Mean (◦C) Min (◦C) Max (◦C) w0 (Hz) w1 (Hz/◦C) w1/w0 ·100% ρ

3/S23 1 & 4 0 77.00 73.24 78.61 6.98 11.42 7.01 13.18 66.53 0.92 1.38 0.998
2 100 77.09 76.17 77.50 1.72 11.32 10.45 11.99 66.73 0.92 1.37 0.940
3 & 6 50 79.09 77.70 80.23 3.20 14.95 12.20 17.34 71.74 0.49 0.68 0.998
5 25 77.34 76.35 78.30 2.53 13.07 11.72 14.46 67.36 0.76 1.13 0.988
7 75 77.03 76.65 77.50 1.10 15.23 14.77 15.92 65.74 0.74 1.13 0.977
all 77.64 73.24 80.23 9.00 13.24 7.01 17.34 70.91 0.51 0.72 0.797

4/S31 1 & 4 0 83.15 80.31 84.35 4.86 11.42 7.01 13.18 75.41 0.68 0.90 0.999
2 100 82.37 81.44 83.18 2.11 11.32 10.45 11.99 67.95 1.27 1.87 0.992
3 & 6 50 84.76 83.49 85.95 2.91 14.95 12.20 17.34 78.47 0.42 0.54 0.990
5 25 82.56 82.08 83.41 1.62 13.07 11.72 14.46 76.22 0.49 0.64 0.964
7 75 83.53 83.26 83.95 0.82 15.23 14.77 15.92 73.74 0.64 0.87 0.988
all 83.41 80.31 85.95 6.77 13.24 7.01 17.34 77.00 0.48 0.63 0.863

5/S28 1 & 4 0 89.74 86.56 91.14 5.10 11.42 7.01 13.18 80.65 0.79 0.98 0.997
2 100 88.79 88.12 89.78 1.86 11.32 10.45 11.99 74.90 1.23 1.64 0.965
3 & 6 50 91.44 90.07 92.77 2.96 14.95 12.20 17.34 84.83 0.44 0.52 0.978
5 25 89.14 88.69 89.81 1.25 13.07 11.72 14.46 84.50 0.35 0.42 0.967
7 75 89.73 89.35 90.21 0.96 15.23 14.77 15.92 78.94 0.71 0.90 0.979
all 89.93 86.56 92.77 6.91 13.24 7.01 17.34 83.12 0.51 0.62 0.824

6/S26 1 & 4 0 92.77 89.13 94.06 5.31 11.42 7.01 13.18 82.57 0.87 1.05 0.997
2 100 92.04 90.89 92.90 2.19 11.32 10.45 11.99 75.44 1.47 1.94 0.992
3 & 6 50 94.51 93.26 95.84 2.73 14.95 12.20 17.34 87.65 0.46 0.53 0.995
5 25 92.90 91.82 93.95 2.29 13.07 11.72 14.46 82.19 0.82 1.00 0.989
7 75 92.84 92.41 93.35 1.02 15.23 14.77 15.92 79.84 0.85 1.07 0.971
all 93.11 89.13 95.84 7.21 13.24 7.01 17.34 86.01 0.54 0.62 0.837

* The added mass is not located in this segment, but this weight refers to the added mass that was attached to the bridge deck of segment 2.
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The following observation based on the Tables 8.1–8.3 and Figures 8.2, 8.4 and 8.6 can be made:

• In general for all modes, the natural frequency increases with increasing temperature. This is not in
line with the studies in literature, where in the majority of the cases the natural frequency decreases
with increasing temperature. It was tried to find a reasonable explanation for this contradiction, but
this was not possible with the available data. More research is needed to get a better understanding
of the influence of temperature on the dynamic properties (e.g. natural frequencies) of the bridge.
It must be noted that the studies in the literature consider the temperature–frequency relation of the
fundamental modes, while in this thesis higher order modes were considered. This is important as
higher order modes might have different behavior. No studies were found that analyze the influence of
temperature on such modes.

• The correlation coefficients of the temperature-frequency data of the five mass classes range between
0.939 and 0.999, implying that there is a strong positive linear correlation between the two variables.

• The correlation coefficient between the temperature and frequency using all the available data range
between 0.597 and 0.912, showing that there is a good linear correlation between the variables, but the
correlation is less strong than for the data when the mass classes are analyzed separately.

• When short time periods (i.e. data obtained at one day) are analyzed, the temperature-frequency re-
lation tends to be linear (not shown in the table, but can be observed in Figures 8.2, 8.4 and 8.6 by
considering the different markers).

• The frequency change per unit temperature increase, indicated by the coefficient w1 (i.e. slope of the
line), is not constant over all datasets, which can probably be explained by the time moments. The
measurement periods of the datasets are listed in Table 2.1. The largest value of the coefficient w1 is
found for dataset two, which is measured in the morning between 10:40 to 12:23.

• Considering all data, the relative frequency differences range between 6.76% and 12.21%. The smallest
relative frequency difference can be found in segment three and the largest can be found in segment
two (in particular found by modes in segment two with a local mode shape close to the added mass).
For higher modes the frequency difference tends to decrease, except for the modes of segment three,
suggesting that the higher modes are less sensitive to variations in the dependent variables such as the
environmental conditions. The corresponding temperature increase was in all cases 10.33◦C.

8.2.1 Mass effect or temperature effect?

The added mass classes are disregarded in previous analysis. However, it is worth noting the following ob-
servations regarding the class separability. In Chapter 7 and Chapter 6 it was assumed that the added mass
changes the natural frequencies of the bridge, resulting into a shift of the peaks in the PSD (or singular value
spectrum resulting from FDD). In particular, based on the formula for the natural frequency of a SDOF sys-
tem it is expected that the natural frequencies decrease when a heavier mass is attached to the bridge. Based
on Figure 8.7 someone might argue that this is indeed the case (except for 0 kg at low temperatures), but
Figure 8.8 contradicts this observation. The changes in the natural frequencies caused by the temperature
variations seem to completely mask the changes caused by the the added mass. This is supported by the
following observations that can be made from figures:

• It is expected that the two modes 2/S16 and 5/S17 have the highest sensitivity to the added mass, be-
cause these modes have a mode shape close to the added mass. However, the frequency variation is
very similar for all modes and no obvious deviations can be found for the two modes with highest mass
sensitivity.

• The variations of a natural frequency that can be observed within the dataset of a particular mass class
will not be the result of the added mass. Instead, an instant change of structural mass will result in an
abrupt change in natural frequency, particularly for the modes closest to the added mass. This abrupt
change is not observed in the figures.

In addition, in Chapter 6 we found that the support vector machine exhibit good capabilities for predict-
ing the mass classes of data. However, considering the temperature data and the results of previous analysis,
the following comment can be made: since each mass class is measured by a different temperature, the mass
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classes can be distinguished from each other by temperature. The temperature is not directly included as
feature in the classification algorithm. However, from previous analysis it can be concluded that the tem-
perature has a linear effect on the natural frequencies of the bridge. Thus, the differences in temperature is
reflected in the differences of the natural frequencies. So when using the natural frequencies as features for
the classification algorithm (without data normalization), the classification is implicitly based on the temper-
ature. This is supported by the figures where it can be observed that the temperature has more effect on the
natural frequency than the added mass; that is the natural frequency of all modes show similar relation with
temperature, with no obvious deviations for modes close to the added mass.
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Figure 8.7: Correlation between natural frequency and temperature for the data obtained on March 23, 2017. Each one of the three
columns presents the modes from a different bridge segment; the column on the left for the first segment, the middle one for the second
segment, and the column on the right for the third segment. The added mass is located in second (middle) segment.
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Figure 8.8: Correlation between natural frequency and temperature for the data obtained on March 28, 2017. Each one of the three
columns presents the modes from a different bridge segment; the column on the left for the first segment, the middle one for the second
segment, and the column on the right for the third segment. The added mass is located in second (middle) segment.
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8.3 Data Normalization
When the environmental and/or operational variabilities are significant, the effects must be removed from
the features before any damage detection algorithm is employed. Two complementary approaches can be
used for this purpose.

The first one consists in extracting features that are mainly sensitive to damage but insensitive to the vari-
ability of the system and its environment. For example, Deraemaeker and Preumont [15] propose to use the
appearance of spurious peaks in the outputs of modal filters as features for damage detection, because this
feature is very sensitive to a local damage scenario, but not very sensitive to global changes due to the envi-
ronment. Cross et al. [13] uses the univariate novelty index and the principal component analysis to identify
a subset of the feature variables which are insensitive to temperature variations yet sensitive to damage. This
approach requires data from different structural conditions (healthy and damaged) measured under varying
environmental and operational conditions, which might be difficult to obtain. In fact, this is a supervised
learning approach for feature selection.

The second approach uses a model of the impact of the environment on the features of interest in order
to remove it from the extracted features. Three methods can be used for this purpose. First, one can attempt
to directly model the impact of the environment on the dynamical characteristic of the structure (based on
physical laws). This is a difficult task, because there may be many factors which need to be taken into account,
and the types of models (e.g. constitutive equations and its parameters) are generally unknown.

One alternative is to model the relation between the dynamic characteristics of the structure and the
environmental and/or operational variables based on measurements on real structures. Different types of
models including linear models, nonlinear models and learning models can be used for this. However, these
models do not have a real physical meaning, as they only model an input-output relationship, and they are
not derived from physical laws. This restricts their use for the structure for which they have been developed.
In practical applications, most researchers have limited their studies to modeling the relationship between
the first few natural frequencies and one environmental variable (e.g. temperature). Examples of such are:
Peeters and Roeck use an ARX model for the Z24 bridge, Sohn et al. use a linear filter for the Alamos Canyon
bridge and Ni et al. use the Support Vector Machine (SVM) and neural networks for the Ting Kau bridge, Ding
and Li use a polynomial regression model for the Runyang Suspension Bridge.

Previous approach has several practical drawbacks. As pointed out by Kullaa [30], the optimal locations
of the temperature sensors may be difficult to determine or to reach. Another difficulty is that other envi-
ronmental and/or operational variables might also affect the features, some of them might be difficult to
measure. Moreover, once the correlation models has been established, the sensors that measure the environ-
mental and/or operational variables must remain at same place on the structure, any change in the monitor-
ing system (e.g. failure of a sensor) might cause problems for the damage detection. In order to overcome
these drawbacks, other methods have been proposed that could remove the variability due to environment
without measuring the environmental variables. Examples of such are: linear or nonlinear principal compo-
nent analysis [56, 57], factor analysis [30], singular value decomposition [41, 48] and Auto-associative Neural
Network [45].

8.3.1 Regression and Interpolation models

Several researchers show that it is possible to train a model that accurately describe the relation between
modal parameters (often the natural frequencies) and some environmental parameters. These models can
subsequently be used to eliminate the environmental effects in vibration-based damage detection.

Sohn et al. and Peeters and Roeck both proposed a (multivariate) linear model to accommodate the
changes in temperature to the damage detection system. Here it was assumed that the dynamic properties
change with temperature linearly. The proposed linear models are very easy to implement and are consistent
with the simplified theoretical formulations [59].

Sohn et al. [43, 44] proposed a linear adaptive filter for predicting changes in modal parameters of a full-
scale bridge due to environmental temperature. Data from the Alamosa Canyon Bridge in New Mexico were
used to demonstrate the applicability of the adaptive filter. The first dataset from 1996 was used to train
the adaptive filter, while the second dataset from 1997 was used to test the prediction performance. The
modal parameters were extracted using the Eigensystem Realization Algorithm (ERA). Approximately nine
meaningful modes were identified from the ERA within the range of 0–30 Hz. Only the first two modes are
considered in the study. The temperature is measured at nine different locations across the centre of the
span.
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In previous studies by Farrar et al. [22] it was shown that the measured first modal frequency varied ap-
proximately 5% during the 24 hour test period, and the change in the measured fundamental frequency was
found to correlate with the temperature difference across the deck. Similar variations and correlations with
deck temperature difference were observed for the other modes of the bridge.

A simple multivariate linear regression model was used to describe the relationship between the selected
bridge temperatures and its measured fundamental frequency, which can be expressed as

y = w0 +w1x1 +w2x2 +·· ·+wr xr +ε= w0 +xTw+ε (8.16)

where y is the fundamental frequency, x = (x1, x2, . . . , xr )T are the selected temperature inputs, w is a vector
with regression coefficients that weight each input, and ε is the error term. The inputs of the model represents
the spatial and temporal temperature distributions to account for the geographical (north-south) orientation
of the structure, and the thermal inertia of the structure. Based on statistical analyses, a satisfactory model
was selected that reproduced the variation of the natural frequencies reasonably well. The selected model
includes two temporally separated and two spatially separated temperature measurements, which reveals
that 1) the response change of the Alamosa Canyon Bridge lags the temperature of the bridge, and 2) the
temperature gradient between west and east largely influences the variation of the fundamental frequency
(similar as was observed by Farrar et al. [22]).

Once the regression model is trained, it can be used to establish confidence intervals of the frequencies
for a new temperature profile. A newly measured frequency can be compared against the confidence inter-
val. If the fundamental natural frequency falls outside the confidence interval, then one may suspect with
the given confidence that some changes in the underlying structural characteristic are caused by damage or
other effects. The comparison of the prediction intervals obtained from the first data set and the measured
frequencies from the second test data reveals that the bridge experienced a statistically significant decrease in
the first and second mode frequencies. This implies that the stiffness of the structure is deteriorated and/or
the mass of the structure is increased. The authors supposed that this consistent decrease of fundamen-
tal natural frequency was mainly caused by the increase of the bridge mass as the Alamosa Canyon Bridge
absorbed significant amount of moisture and the bridge retained some of the rainfall on its surface.

Peeters and Roeck [37] performed a regression analysis of the natural frequencies of the Z24 Bridge on
temperature to filter out the temperature effects from the measured frequencies. The Z24-bridge is located in
Switzerland and has been monitored for almost one year before it was artificially damaged. The bridge was
instrumented with 49 sensors to capture environmental parameters such as ambient temperature, soil tem-
perature at the boundaries, concrete temperatures, wind, humidity, and bridge expansion, but it appears that
only the temperatures were correlated with the natural frequencies of the bridge, and the study considers only
this relation. Four modes of the undamaged bridge, in the range 0–12 Hz, were identified using automated
modal analysis. Eigenfrequency differences between 14% and 18% are observed, which have to be explained
by normal environmental changes. For almost all combination of natural frequency versus temperature, a bi-
linear relationship between temperature and frequency was found, with the knee situated around 0 degrees
Celsius. It was concluded that this bilinear behaviour can be attributed to the asphalt layer. During warm
periods the asphalt did not contribute to the overall stiffness, but during cold periods, it added significant
stiffness of the structure. In general, the frequency decreases when the temperature is elevated, except for the
second mode for which the frequency increases with increasing temperatures (for positive temperatures).

To take into account the thermal inertia of the asphalt and the concrete, a dynamic linear regression
model called ARX was used to describe the relation between eigenfrequency and temperature. The ARX
model consist of an auto-regressive output and an eXogeneous input part

yk +a1 yk−1 +·· ·+ana yk−na = b1uk−nk
+b2uk−nk−1 +·· ·+bnb uk−nk−nb+1 +εk (8.17)

where yk is the output (in this case an eigenfrequency) at time instant k, uk is the input (in this case a tem-
perature), and εk is the error term. Six temperature readings were selected as representative variables for the
environmental variability. The monitored wind characteristics, rainfall and humidity were also considered as
possible inputs. However, no relation was found between these quantities and the eigenfrequencies.

The strategy followed in this study is as follows: Single-Input/Single-Output (SISO) ARX models are con-
structed for all four identified natural frequencies and six selected input candidates. A single representative
input is selected that yields on the average the best models for all four frequencies. The best models have low-
est loss function and final prediction error. The best ARX models are used for simulating the eigenfrequencies
of the Z24-bridge and estimating confidence intervals. If a new measured eigenfrequency lies outside the es-
timated confidence interval, it is likely that the bridge is damaged. In this study, the damage introduced was
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the incremental settlement of one of the bridge piers, which were successfully detected using the proposed
approach. Different types of ARX models were considered; it was found that an ARX model that include the
thermal dynamics of the bridge is superior to a static regression model. Also it turned out that a temperature
measurement at one location (single input) was sufficient to find an accurate dynamic ARX model. On the
other hand, the static regression models could be improved by adding more input variables.

The regression approaches performed by Peeters and Roeck [37] and Sohn et al. [43, 44] were compared
by Sohn [42]. It was mentioned that Peeters’ work emphasizes the thermal dynamics of the bridge by using a
single temperature measurement with multiple time lags (the temporal variation of temperature), while the
work by Sohn used temperature readings from multiple thermocouples to take into account the temperature
gradient across the bridge (the spatial variation of temperature) as well as the temporal variation. The com-
parison of these two approaches clearly demonstrates that data normalization is problem-specific; one kind
for each individual structure. The orientation and location of the Alamos Canyon Bridge makes it reasonable
that the spatial variation of the bridge temperature might have been the main driving factor for the frequency
variation. On the other hand, the magnitude of the Z24 Bride (30 m long main span and two 20 m side spans
with 8.6 m width) is larger than the 7.3 m wide and 15.2 m long span of the Alamos Canyon Bridge tested,
which makes it reasonable that it takes a longer time before the temperature affected the dynamic properties
of the bridge and thus the time-lag information of the temperature was more important for the Z24 bridge
than for the Alamos Canyon Bridge.

Ding and Li [16] proposed a polynomial regression model to describe the frequency-temperature seasonal
correlations of the Runyang Suspension Bridge, which can be mathematically described as

f (T,n) = pnT n +pn−1T n−1 +·· ·+p2T 2 +p1T +p0 (8.18)

where T is the daily averaged value of temperature, f denotes the daily averaged values of the frequency, n
denotes the order of polynomial regression model, and pi denotes the regression coefficients. It was found
that a sixth order polynomial regression model exhibits good capabilities for mapping between the tempera-
ture and measured modal frequency (a different model was used for each modal frequency). The established
models were subsequently used to normalize all the measured natural frequencies to a fixed reference tem-
perature, resulting in features that are independent of the temperature effects.

More advanced methods can also be used to model the correlation between dynamic properties and en-
vironmental parameters. For instance, Ni et al. [34] applied the SVM regression algorithm to establish re-
gression models which quantify the effect of temperature on modal frequencies for the cable-stayed Ting
Kau Bridge (Hong Kong) based on long-term monitoring data. The results obtained by the SVM models were
compared with those produced by a multivariate linear regression model and showed that the SVM models
exhibit good capabilities for mapping between the temperature and modal frequencies.

The proposed SVM model uses only the input at the current time instant (average temperature) to de-
scribe the current output (modal frequency), which is often referred to as a “static" model. In order to examine
the influence of thermal inertia, a dynamic SVM model is formulated using continuous measured data [25].
By comparing the obtained results from the static and dynamic models it was concluded that the dynamic
model is superior to the static model, which shows that the change of modal frequency lags behind the tem-
perature variation, and dynamic regression models are preferable to represent the temperature-frequency
correlation when continuous measurement data is available. Subsequently, the Principal Component Analy-
sis (PCA) was added before conducting SVM algorithm. The PCA extracts uncorrelated principal components
from the measured temperatures for dimensionality reduction and removes the redundancy in the input data.
The removal of the redundancy might improve the generalization performance of the regression models. The
proposed method using the PCA-compressed features was compared with the method directly using mea-
surement data to train the SVM models. It was found that the SVM model trained using PCA-compressed
feature vectors outperforms the SVM model trained using the original data in both model accuracy and com-
putational costs.

Ni et al. and Zhou et al. [33, 60] use neural network models to establish the correlation models between the
modal frequencies and the temperatures, for the monitoring data of the Ting Kau bridge. Different strategies
for the construction of an appropriate input to the neural networks, including mean temperatures, effective
temperatures and principal components of temperatures, were addressed by Zhou et al. [61].

Ko and Ni [29] used the monitoring data from the Ting Kau bridge to compare different learning methods
including linear regression, nonlinear regression, neural network, and SVM for modeling the effect of tem-
perature on modal frequencies. It was observed that linear and nonlinear regression models are unable to
accurately predict the frequency variations. The neural network and SVM models exhibited good capabilities
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in both reproduction and prediction. This indicate that more advanced methods are superior to the simplistic
methods.

In Section 8.2 an attempt was made to model the relation between the natural frequencies and ambi-
ent temperature for the Zwartewaterbrug data. A linear model was used to describe the relation. However,
the suggested model was not suitable for modeling the relation between temperature and natural frequency
over multiple days. The limited temperature data from a single location and the relatively small dataset of
vibration measurements are the main difficulties for the analysis. Moreover, the vibration measurements (in-
cluding different added mass) cover a wide range of temperatures, but there are only a few observations per
temperature which is insufficient for a reliable statistical analysis.

8.3.2 Decomposition methods

In previous studies a correlation model was established using the vibration measurements and the measure-
ments of some relevant environmental parameters. Sohn et al. [44] use the temperature information from
nine different locations across the center of the span. Peeters and Roeck [37] use the temperature below the
asphalt layer from a single location in the middle of the main span of the Z24 bridge. Ni et al. [34] uses the
average temperature of 20 temperature sensors across the bridge. Li et al. [31] developed a model including
both the temperature and wind velocity effects.

There are situations in which direct measurements of these operational and environmental parameters
are impractical or difficult to achieve, or it is unknown which parameters to measure or where to measure. For
these situations, it may be possible to find an underlying model or some embedded variables that can explain
the correlation among the features. The principal component analysis and factor analysis are the two most
commonly used techniques for data normalization when measurements of environmental and operational
parameters are not available. Both methods are based on a decomposition of the covariance matrix of the fea-
tures monitored over a long period of time with changing environmental conditions. For data normalization
they rely on the assumption that damage produces changes in the extracted features that are “orthogonal” to
the changes caused by the environmental and operation variations of the structure. If this assumption is not
satisfied, some damage effect might also be removed from the data with the consequent inability of damage
detection. In such cases, nonlinear methods which consist in identifying a nonlinear manifold instead of
orthogonal subspaces can be used.

Principal Component Analysis and Factor Analysis

Kullaa [30] proposed a data normalization technique based on Factor Analysis (FA). The objective of factor
analysis is to identify the underlying latent factors that can explain the correlation among the observed de-
pendent variables. In particular, the factor analysis assumes that there are a smaller number of underlying
factors that describe the variation of the measured variables and the measured variable are subjected to ran-
dom errors, which can be written as

x =Λξ+ε (8.19)

where x ∈Rp is the vector of measured variables,Λ ∈Rp×d is the matrix of factor loadings (d < p), ξ ∈Rd is the
vector of unobservable factors (in this case the environmental and operational variables such as temperature
that influence the observed feature vectors), and ε ∈Rp is the vector of unique factors. The unique factors are
assumed to be normally distributed with zero mean and a diagonal covariance matrix; that is, ε∼N (0,Ψ).

It is assumed that the factors represent the environmental and operational parameters, so that the unique
factors ε are variables independent of the common factors and can be used for damage detection. That is,
if the structural condition deteriorates so that the measured variables change, the previously trained factor
model cannot explain the multivariate correlation of the newly measured data, causing an increase in unique
factors. The training phase of the factor model involves the estimation of the factor loadingsΛ and the covari-
ance matrix of the unique factors Ψ ∈ Rp×p . The training set is formed from feature vectors obtained from
data measure on the undamaged structure under a full range of environmental and/or operational condi-
tions. The factor model is subsequently used with new data (from potentially damaged structure) resulting in
the corresponding unique factors/ residuals ε̂. The state of the structure can then be assessed using a dam-
age index, which can be defined as the Euclidean distance or the Mahalanobis distance of the residuals. The
former is simply defined as

D Ik = ‖ε̂k‖ (8.20)

If the damage index significantly deviates from zero, this indicate that the new feature vector xk are extracted
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from data corresponding to the structure in an abnormal condition that cannot be attributed to the envi-
ronmental or operational variability represented in the training data. Statistical analysis is usually used to
determine a threshold level for the damage index, when this limit is exceeded an alarm should be issued.

It is emphasized that factor analysis is limited to linear relationships among the observed features. For the
cases in which the environmental or operational variations have a nonlinear effect on the observed features,
the nonlinear relationships can be modeled by mixing different linear factor models over different data spaces
[30].

Yan et al. [56] proposed a damage detection method for structural health monitoring under varying envi-
ronmental and operational conditions based on the PCA. Similar to the previous method, the data normal-
ization is performed without measuring the environmental variables. The underlying physical quantities do
not need to be known, but the environmental effects are treated as embedded variables instead. In particular,
the PCA assumes that the total variance in the observed dependent variables (feature vectors of dimension
p) can be explained by a smaller number of uncorrelated variables of dimension d called the the principal
component scores (d < p). The linear PCA model can be written as

y = ATx (8.21)

In which x ∈Rp is the vector of measured features, A ∈Rp×d is the loading matrix that projects the measured
features into an environmental-factor characterized space, and y ∈ Rd is the vector with principal compo-
nent scores. The dimension d may be thought as the physical order of the system which corresponds here
to the number of combined environmental factors that affect the features. This dimension reduction process
forces the model to learn the inherent variables driving changes of the features and to capture the embedded
relationship between the environmental factors and the features. It is assumed that the principal compo-
nent scores computed for the data obtained from the undamaged structure represent the variations due to
environmental variations. By remapping the projected data back to the original space using the following
relation

x̂ = Ay = AATx (8.22)

and removing it from the observed data, a residual vector e that is independent of the environmental factors
is obtained, which can be used for damage detection. That is, the residual error remains small if the PCA
model is applied on data of a healthy structure (i.e. the same structural condition that was used to form
the training dataset), and it increases significantly when structural damage occurs. The residuals of a newly
obtained feature vector xk from a potentially damaged structure can be expressed as

ek = xk − x̂k = (
I−AAT)

xk (8.23)

Again, the damage index can be defined as the Euclidean distance of the residuals

D Ik = ‖ek‖ (8.24)

and a statistical analysis technique can be used to indicate damage (e.g. control charts or hypothesis testing).
The training phase of the PCA model consists of constructing the loading matrix A using the training data

obtained from the undamaged structure under a range of environmental conditions. It can be shown that
the desired projection with the PCA model is obtained when the columns of A are the eigenvectors of the
covariance matrix of the observed features corresponding to the d largest eigenvalues. The covariance matrix
is estimated from the training data obtained from the undamaged structure. The feature vectors are often
normalized by removing the mean vector of the training data. It is emphasized that the damaged-state data
should not be normalized by removing its own mean value, because then both healthy and damaged-state
data are centered at the origin and the separability between the two classes is lost, hence damage could no
longer be detected, see Figure 8.9.

The PCA is restricted to mapping only linear correlations among the observed variables, but a nonlinear
extension of the PCA exist, which can be used for modeling nonlinear relationships present in the data [45].
Alternatively, Yan et al. [57] propose to use local PCA models for local regions in the data space.

Methodology

The damage detection method based on either factor analysis or principal component analysis can be sum-
marized by the following steps
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Figure 8.9: Geometric interpretation of PCA with data normalization: (a) removing mean value of each set; (b) removing mean value of
reference data for both sets [56].

Step 1. Form a training dataset with measured variables/ features obtained from the undamaged structure
under a full range of environmental or operational conditions.

Step 2. Train the latent variable model; This step involves the estimation of the covariance matrix for the
observed features from training data, which is then decomposed into some particular matrices that
will be denoted T.

Step 3. Compute the residual vector ek = (
I−TTT

)
xk , where xk is a feature vector obtained from a potentially

damaged structure under arbitrary environmental conditions.

Step 4. Perform novelty detection analysis or some other statistical analysis to assess whether the residual
vector deviates significantly from the reference level, such that damage could be expected.

The main difference between the two methods is Step 2, where either the factor model or the PCA can
be used. The construction of matrix T for the factor model is more complex than in the PCA, and is usually
obtained through an iterative process. It can be shown that the results of FA after one iteration is identical to
the result of PCA [14].

Although the FA and PCA techniques can both be used for damage detection, the techniques have differ-
ent underlying ideas. For instance, the FA assumes the existence of an underlying linear model driving the
relation between the environmental factors and the features, but there is no such explicit model in the PCA
method. The reader may refer to [27] for the similarities and differences between both techniques.

In the study of Deraemaeker and Worden [14], the efficiency of both methods for filtering out environ-
mental variabilities is demonstrated using experimental data, and the results are compared. The experiment
concerns a wooden bridge model that have been monitored in a laboratory. Five artificial damage scenar-
ios have been created by adding five different lumped masses to the structure. The additional masses are
attached on the top flange at 600 mm left from the structural mid-span. The masses are small and ranges
from 0.065% to 0.54% of the total mass of the structure (36 kg). The bridge model is randomly excited using
an electrodynamic shaker, and acceleration measurements were collected at 15 different locations. The fea-
ture vector is made of the natural frequencies and normalized modal coordinates of nine modes, resulting in
a feature vector of dimension p = 261. A fan, which was running during the day and turned off during the
night, was mainly responsible for change in temperature and humidity. It was shown that the environmental
effects could be effectively removed without loss of damage sensitivity, using d = 81 principal components/
unobservable factors for the damage index. It was observed that the results of PCA and FA after convergence
of the iterative process are very similar. The different levels of damages were clearly detected using both
methods. It was noted that the training set should contain the full range of environmental conditions and the
feature vectors must be large enough in order to ensure some separability between the damage effects and
the environmental effects.

In the same paper it is also shown that the Mahalanobis Squared Distance (MSD) can be used to filter out
confounding effects in a very similar way to the two linear techniques, PCA and FA. The MSD was already
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introduced in Chapter 7 in the context of damage detection. It is therefore interesting to see how this method
can be used for filtering of the environmental effects.

8.3.3 Novelty Detection Under Changing Environmental Conditions

Recall that the MSD of a potential outlier x ∈Rp is defined as

D2 = (x− x̄)T C−1
x (x− x̄) (8.25)

where x̄ ∈ Rp , Cx ∈ Rp×p are the mean vector and covariance matrix, respectively. Given the set of N feature
vectors

{
x j ∈ Rp : j = 1, . . . , N

}
, representing N samples of the “healthy state" of the structure, of which the

mean vector and the covariance matrix can be estimated as follows

x̄ = 1

N

N∑
j=1

x j (8.26)

and the sample covariance matrix as

Cx = 1

N −1

N∑
j=1

(
x j − x̄

)(
x j − x̄

)T (8.27)

The components in a feature vector are usually not statistically independent, so that the covariance matrix
is not diagonal. However, it is possible to perform a transformation of the feature vector in order to diagonal-
ize the covariance matrix. The real, symmetric and non-singular covariance matrix and thus can always be
diagonalized by the following unitary transform

Cx = UΛUT (8.28)

where Λ ∈ Rp×p is a diagonal matrix whose elements are the eigenvalues of Cx , assume that the eigenvalues
are sorted in descending order of magnitude so that λ1 >λ2 > ·· · >λp . The orthogonal matrix U = (

u1, . . . ,up
)

contains the corresponding (orthonormal) eigenvectors, with the following orthogonality properties UUT =
UTU = I. Combining equation (8.25) and (8.28) yields

D2 = (x− x̄)T UΛ−1UT (x− x̄) (8.29)

Define the projection of x onto the eigenvectors as y = UTx (i.e. same transformation as the one used in the
principal component analysis). The coordinates of y are equal to uT

j x, j = 1, . . . , p. In other words, they are the

coordinates of x in the new space whose axes are determined by the eigenvectors in U. Note that the mean
vector of the transformed features is simply ȳ = UTx̄. Equation (8.29) can now be written as

D2 = (
y− ȳ

)T
Λ−1 (

y− ȳ
)

(8.30)

Which can be expanded as follows

D2 =
(
y1 − ȳ1

)2

λ1
+·· ·+

(
yp − ȳp

)2

λp
=

p∑
j=1

(
y j − ȳ j

)2

λ j
(8.31)

This shows that the MSD can be decomposed into a sum of independent contributions from each compo-
nent of the transformed variables y j = uT

j x, j = 1, . . . , p. The contributions are weighted by the inverse of the

associated eigenvaluesλ j , which can be interpreted as the variance of the new, transformed variables. In fact,
the covariance matrix of the transformed variables is Cy =Λ, and thus the variance of the j -th component is
σ2

j =λ j . If the variance is large, then the contribution to the distance is small.

Filtering of the environmental effects

The total variability in the feature vectors extracted from the undamaged structure can usually be explained
by a smaller number of transformed features. Strictly speaking, this occurs when some eigenvalues of Cx are
equal to zero, which implies that some of the columns/rows are linearly dependent. In practice, the eigen-
values are never strictly zero due to the noise and numerical precision that is involved in the analysis, but a



8.3. Data Normalization 139

significant drop can be observed in the eigenvalues which can be used to define the number of principal com-
ponents which account for most of the variability. A practical way to determine the number d of dimensions
in the principal subspace is to define the following indicator [14]

I =
∑d

j=1σ
2
j∑p

j=1σ
2
j

(8.32)

and determine the lowest integer d such that I > e(%), where e is a threshold value (e.g. 99.9%). The thresh-
olds should be interpreted as follows: d principal components are needed in order to explain e% of the vari-
ance in the observed data. Now, equation (8.31) can be split into two parts

D2 =
d∑

j=1

(
y j − ȳ j

)2

σ2
j

+
p∑

j=d+1

(
y j − ȳ j

)2

σ2
j

= D2
1 +D2

2 (8.33)

where D2
1 is the MSD of x projected on the major principal components, and D2

2 is the MSD of x projected on
the minor principal components, sometimes referred to as the null-space of the principal components.

Now assume that the first d principal components, with the largest variance, represent the environmental
factors which have strong influence on the extracted features from the undamaged structure. Because the
MSD scales each independent component with respect to the inverse of its variance, the distance will have a
very low sensitivity to the environmental changes. So, when the covariance matrix Cx is estimated from the set
of features that are extracted from the undamaged structure under a full range of environmental conditions,
then the MSD is made insensitive to the environmental changes.

In Chapter 7 the MSD for damage detection was applied on the data of the Zwartewaterbrug. The natural
frequencies of five identified modes were used as features. The features exhibit large variations, presumably
due to environmental changes, which were naturally filtered by the application of the MSD. It must be men-
tioned that this filtering will work well only when the features that are used to estimate the covariance matrix
cover a full range of environmental conditions (or at least all the environmental conditions under which the
other data sets were obtained). Because the features of the healthy condition (0 kg added mass) were mea-
sured under more or less constant environmental conditions, it was chosen to use also the features of the
25 kg mass to build the model of the reference state. These features cover a broader range of environmental
conditions which makes the MSD less sensitive to environmental changes.

The link between the MSD and the two most commonly used linear techniques to filter confounding
effects: principal component analysis and factor analysis, is demonstrated in [14]. Both methods consist of
computing a residual vector of the following form

e = (
I−TTT)

x (8.34)

where x ∈ Rp is the original feature vector, and e ∈ Rp is a residual vector that is made insensitive of the en-
vironmental variability but still sensitive to damage. T ∈ Rp×d is a transformation matrix that describes the
linear mapping between the original variables and some embedded/unobservable variables. For principal
component analysis, this matrix contains as its columns the eigenvectors of the covariance matrix Cx cor-
responding to the d largest eigenvalues in descending order. Factor analysis is slightly more complex as the
factor model must be determined iteratively, but it can be shown that the identified subspace of the first itera-
tion corresponds to the subspace of the principal components in PCA (subspace spanned by the eigenvectors
of Cx corresponding to the d largest eigenvalues) [14]. Although the two methods have different interpreta-
tion, the subspaces identified with PCA and FA are often very close.

If the MSD of the residual vector is subsequently used to perform novelty detection, it is essentially the
same as computing

D2 =
p∑

j=d+1

(
y j − ȳ j

)2

σ2
j

= D2
2 (8.35)

which is the MSD of x j projected on to the subspace of the minor principal components. The latter equation
is equivalent to considering that σ2

j = ∞ for j ≤ d in equation (8.33). Hence, if there is a clear drop in the

eigenvalues of Cx , so that σ1, . . . ,σd Àσd+1, . . . ,σp , then computing the full MSD is equivalent to computing
the MSD of the feature vector projected onto the subspace of the minor components.

Next, it will be shown that the residual vector (8.34) is identical to the projection of the feature vector
x onto the subspace of the minor principal components, so that (8.35) is indeed true. The subspace of the
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minor principal components is spanned by the last p −d eigenvectors of the covariance matrix Cx , which
corresponds to the p −d smallest eigenvalues (recall that it was assumed that the eigenvalues are sorted in
descending order of magnitude, and the corresponding eigenvectors are arranged in the same order). Hence,
the eigenvectors and eigenvalues in equation (8.28) can be partitioned as

U = (
U1 U2

)
, Λ=

(
Λ1 0
0 Λ2

)
(8.36)

whereΛ1 ∈Rd×d andΛ2 ∈R(p−d)×(p−d) are diagonal matrices containing the largest and smallest eigenvalues
of Cx , respectively, in a decreasing order. U1 ∈ Rp×d and U2 ∈ Rp×(p−d) are the corresponding eigenvectors.
Then the subspace of the minor principal components is spanned by the column vectors in U2. By introduc-
ing the identity I ≡ UUT = U1UT

1 +U2UT
2 and noting that T is equal to U1, the residual vector in equation (8.34)

reduces to
e = U2UT

2 x (8.37)

This shows that residual vector is essentially the projection of the original feature vector x onto the subspace
of the minor principal components. In this way it is possible to derive features that are insensitive to envi-
ronmental factors yet sensitive to structural damage [13]. It must be noted that the dimension of the feature
vector should be large enough in order to ensure some separability between the damage effects and the en-
vironmental effects [14].

8.3.4 Application

The PCA-based filtering method will be applied to the data of the Zwartewaterbrug and compared to the
results obtained in Chapter 7, in order to illustrate that the MSD is indeed able to filter out the environmental
variability in the data, in much the same way as the method based on linear PCA.

Consider again the feature vector that was obtained in Chapter 7 from the data of bridge segment two
(segment in which the added mass is located). The feature vector is made of five natural frequencies (p = 5)
as shown in Figure 7.1. The available data is listed in Table 8.4. The first N = 161 samples (comprising data
from the 0 kg and 25 kg class) are considered as training data for the computation of the covariance matrix Cx

and the mean vector x̄, and the total set consist of 496 samples. As mentioned before, the 25 kg case is also
used for training in order to broaden the range of environmental conditions in the training data. It is expected
that the 25 kg does not cause noticeable variation in the natural frequencies, which is reasonable because this
mass accounts for only 0.0625% of one instrumented segment. Therefore, it is reasonable to assume that the
samples from the 25 kg case represent the healthy state of the structure. The pairwise correlation between
the five natural frequencies is plotted in Figure 8.12. This shows that the natural frequencies varied consid-
erably and that they are more or less linearly correlated. The latter implies that changes in environmental
or operational variables have linear effect on the natural frequencies. It is suspected that the large variations
are mainly due to changes in environmental variables, because the operational variability have been reduced
through similarity filtering. Moreover, a strong correlation between temperature and natural frequency was
found previously. The MSD for each of the 496 feature vectors is computed according to equation (8.25), and
results were shown in Chapter 7.

Table 8.4: Added mass cases and corresponding data samples.

H* 50 kg 75 kg 100 kg

Size 161 139 88 108
First sample no. 1 162 301 389
Last sample no. 161 300 388 496

* Comprises 67 samples of 0 kg class and 94 samples of 25 kg.

In order to illustrate the correspondence between the MSD and PCA-based data normalization, a new
set of feature vectors is constructed by computing the residual vectors according to equation (8.34). Alterna-
tively, the new set of features could be obtained by projecting the feature vectors onto the subspace of minor
principal components according to (8.37). It is noted that all the feature vectors are normalized by removing
the mean vector of the training data, before application of the PCA.

The PCA involves the decomposition of the covariance matrix according to (8.28), resulting in five eigen-
values and corresponding orthonormal eigenvectors. Each one of the eigenvalues indicate the amount of
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variance that is explained by the corresponding principal component. Figure 8.10 shows the normalized
variance associated with each principal component, which is computed as follows

λk /
5∑

j=1
λ j ·100%, k = 1,2, . . . ,5

Obviously, most of the variance is explained by the first principal component (93%), the last two components
explains only 0.2% of the variance in the original data, and it is assumed that these eigenvalues are only non-
zero due to the noise in the training data. On the other hand, it is assumed that the variability explained by
the first three components (99.8%) can be attributed to the unobserved environmental factors (and possible
other factors, but not related with the deterioration of the structure). Consequently, the matrix T in equa-
tion (8.34) has dimensions 5×3 and its columns are the three eigenvectors corresponding to the three largest
eigenvalues. Figure 8.13 shows the pairwise correlation of the five components in the residual vectors. By
comparing this figure with Figure 8.12, it can be observed that the residuals are less sensitive to the variations
in the training data yet still sensitive to the added masses. An exception to this observation is the data of the
50 kg class, for which the samples do not cluster at one location. This is probably because the training data
used does not cover the full range of environmental conditions or there may be other variables that also affect
the natural frequencies, but their effect was not reflected by the training data. In both cases, the PCA-based
normalization will be unable to filter out the variations that are the result of (environmental) conditions that
are not included in the training data. Another reason might be that the changes in the latent variables have
nonlinear effect on the natural frequencies rather than the assumed linear effect. In particular, it was already
observed that the relationship between the temperature and natural frequency is lightly nonlinear, especially
for data from different days (Figures 8.2, 8.4 and 8.6). It is also emphasized that the observed separability
between the mass classes can still be the result of changes in the environmental conditions, because of the
same reasoning just mentioned. Figure 8.14 shows the normalized natural frequencies/features in a more
convenient form, which can be compared directly with Figure 7.1. The normalized vectors are obtained by
adding the mean vector of the training data to the residual vectors. In Figure 8.11, the MSDs of the original
feature vectors and the normalized vectors are compared. It appears that PCA do not result in a major im-
provement of the damage detection. This could be expected due to the significant drop in the eigenvalues
which essentially reduces the full MSD to the MSD of the feature vectors x projected on the minor principal
components, which is equivalent to the MSD of the residual vectors.
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Figure 8.10: The explained variance by each one of the principal components resulting from the PCA. The variances are normalized by
the total variance in the features.

In conclusion, when using a proper training set, the MSD is able to filter out environmental effects while
keeping a high sensitivity to structural changes (e.g. damage or added mass). It is important that the training
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set covers a full range of environmental conditions and that the feature vector is large enough in order to
ensure some separability between the damage effects and the environmental effects. For the considered
data is was found that the environmental changes have a more or less linear effect on the features, there are
however situations in which the environmental or operational variations have a strong nonlinear effect on the
features. For example, as the temperature falls below zero, its influence on the features can change abruptly
[37]. This usually results in a nonlinear correlation structure between the features. For these situations one
can use a nonlinear model or a mixture of linear models to compensate the nonlinear effects [30, 45, 57].
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Figure 8.11: Comparison of the MSD obtained from the raw features (without normalization) and the PCA-based normalized features.
The first 161 samples are used for training the model.
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Figure 8.12: Pairwise correlation between five natural frequencies of the second bridge segment.
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Figure 8.13: Pairwise correlation between the residuals after PCA-based data normalization.
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Figure 8.14: Natural frequencies/ features after PCA-based data normalization. These are obtained by adding the mean vector of the
training data to the residual vectors.

8.4 Chapter Summary

In this chapter the importance of data normalization and its application was illustrated with some literature
studies and the data from the Zwartewaterbrug.

First, some studies were summarized that reported the influence of the environmental variability on the
dynamic properties of the structure. Most studies consider the effect of temperature variations on the natural
frequency, mode shape and damping ratio of a structure. Some important points that were found in the
studies are:

• The natural frequencies of a structure decrease for increasing structural temperature.

• When the temperature drops below freezing point, the natural frequencies are significantly affected
due to freezing of the supports and the increased stiffness of the asphalt layer.

• Thermally induced stresses were regarded as the main reason for the reduction of the natural frequen-
cies of heated clamped plates.

• Theoretically it can be shown that the natural frequency decreases when temperature is increased due
to two factors: 1) variations in material properties (i.e. for most engineering materials the modulus of
elasticity decreases for increasing temperature), and 2) thermally induced compression forces resulting
from constrained expansion of the structure.

• The changes in the dynamic properties caused by variations in environmental and operational condi-
tions may mask the changes caused by structural damage, which makes damage detection impossible
without proper data normalization.

• When the correlation between temperature and the natural frequency is modeled with a regression or
interpolation model it is important to consider the thermal inertia of the structure (i.e. the time lag
information) as well as the temperature distribution across the structure (i.e. the spatial temperature
data). Which one of these variables is more important depends on the structure being analyzed.

Next, the temperature dependency of the natural frequencies of the Zwartewaterbrug was analyzed. In
particular, the correlation between the ambient temperature and the natural frequencies of the four most
dominant modes of each segment was analyzed. In short the following was observed:
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• The natural frequencies generally increase with increasing temperature, which is not in line with the
studies in literature. No reasonable explanation could be found for this deviating behavior based on
the available data.

• A strong positive correlation is found between the temperature and natural frequency for a single mass
class, correlation is less strong when considering all available data. In the latter case the relative fre-
quency differences between 6.76% and 12.21%.

• A linear model is not suitable for modeling the relation between temperature and natural frequency
over multiple days. The limited temperature data from a single location and the relatively small dataset
of vibration measurements are the main difficulties for the analysis. Moreover, the vibration measure-
ments (including different added mass) cover a relatively wide range of temperatures, but there are only
a few observations per temperature which is insufficient for a reliable statistical analysis.

Furthermore, it was mentioned that the changes in the natural frequencies due to the temperature variations
are more prominent than the changes caused by the added mass. This was supported by the following two
observations:

• The variations in natural frequency are very similar for all modes and no obvious deviations can be
found for the modes “close” to the added mass (i.e. modes with highest mass sensitivity).

• The variations in natural frequency that can be observed within the dataset of a particular mass class
will not be the result of the added mass.

At several points in this thesis it is observed that the effects of the environmental variabilities on the fea-
tures is significant. These effects should be removed by proper data normalization before any damage detec-
tion algorithm is employed.

Two classes of methods for data normalization were discussed. The first class consist of regression and
interpolation methods which require monitoring of the environmental variables of interest, which might be
impractical or difficult to achieve. The second class consist of decomposition methods which overcome the
difficulties of direct measurements of the environmental variables. The second class of methods is more
appealing because it can remove the effects caused by multiple variables without actually measuring these
variables. The Principal Component Analysis (PCA) and Factor Analysis (FA) are two most commonly used
decomposition methods for data normalization.

The PCA for data normalization was applied to the data of the Zwartewaterbrug and it was illustrated that
the MSD used in Chapter 7 is able to filter out the environmental variability in much the same way as the
method based on linear PCA. For this it is important that the training set is obtained under a full range of
environmental conditions and that the feature vector is large enough in order to ensure some separability
between the damage effects and the environmental effect.

The available data of the Zwartewaterbrug is not suitable for the application of data normalization be-
cause the normal condition data (0 kg mass class) does not cover a full range of environmental conditions. In
fact, this data is measured at almost constant temperature, while the data of the mass classes are obtained at
different and varying temperatures. To partially overcome this issue the data from 0 kg and 25 kg mass class
are considered as normal condition data. Subsequently, a PCA-based data normalization was employed. The
residuals resulting from the PCA are less sensitive to the environmental variability, though still sensitive to
the added masses. However, some deviations were observed as well resulting from the fact that the training
dataset do not cover the full range of environmental conditions. It is noted that the PCA-based normalization
will be unable to filter out the variations due to conditions that are not included in the training data.

In conclusion, the natural frequencies of the bridge are highly correlated with the ambient temperature,
and the large variations in the features can be attributed to the changing temperature. To remove the vari-
ations in the features caused by changing environmental conditions it is necessary to have datasets for the
healthy and damaged state of the structure that cover the full range of environmental conditions. For the
current research this would mean that the data of the healthy structure (0 kg mass) should be obtained un-
der the same environmental conditions as the data with added masses. This data is not available for the
Zwartewaterbrug, hence data normalization is not possible.



9
Conclusions and Recommendations

9.1 Conclusions

The main objective of this thesis was to detect the small added masses that were attached to the bridge deck
from the vibration measurements of the Zwartewaterbrug using machine learning algorithms. This research
contributes to the development of a vibration-based structural health monitoring system for early detection
of small structural faults. A data-based methodology was proposed that uses simple signal processing tech-
niques, output-only system identification technique, and machine learning algorithms. Vibration data of the
Zwartewaterbrug was used to test the methodology.

The main challenges of the research were related to the sensitivity of the algorithm to small structural
changes (e.g. added mass of 25 kg amounts for only 0.0625% of the weight of an instrumented bridge seg-
ment), the nonstationary characteristics of the dynamic responses due to large variations in traffic load, and
the limits associated with the small dataset obtained under various environmental conditions.

To increase the sensitivity of the algorithm to the small masses, the analysis was focused on the higher
frequency modes rather than the lower modes of the bridge deck. The frequency range of interest was de-
termined to be 50–100 Hz and the measurements were band-pass filtered accordingly. The large variations
in traffic load may mask the presence of the small added mass. To overcome this issue the measurements
were processed with a method called “similarity filtering”. The aim of this method is to damp the differences
between measurements and to amplify similarities, which then are considered to be related to the dynamic
characteristics of the bridge deck. The results in this thesis show that the similarity filtering seems to work for
its intended goal as local resonances could clearly be identified from the spectra of the processed signals.

Next, the damage sensitive features were extracted from the processed signals using the frequency do-
main decomposition technique. Two different types of features were used throughout the thesis: selected
frequency lines from the singular value spectrum and the natural frequencies. The former were chosen for
its simplicity because they can be obtained directly from the (processed) data using simple signal processing
tools. The resulting feature vectors however are high-dimensional which is challenging for most machine
learning algorithms, especially when the number of observations is small. Therefore, the natural frequencies
were used as alternative features (for novelty detection) because of their low-dimensionality. Different sets
of features were determined for the three bridge segments, allowing to investigate the mass sensitivity of the
different bridge segments.

As a final step, these features were used to detect the presence of the added mass on the structure. To
achieve this, two machine learning techniques were applied: a supervised learning technique (i.e. support
vector machine classification) and an unsupervised learning technique (i.e. novelty detection). Although the
results of both techniques suggest that the added mass could be detected, the results were not reliable due to
the large variations that exist in the feature vectors of a mass class.

These variations are attributed to the changing environmental conditions over the measurement period.
A strong positive correlation was found between the ambient temperature and the natural frequencies of the
bridge. The positive correlation is not in line with the literature, where mostly a negative correlation was
reported. No explanation could be found for this deviating behavior with the available data of the Zwartewa-
terbrug. Furthermore, it is concluded that the changes in the natural frequencies caused by the temperature
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variations are more prominent than the changes caused by the added mass. Therefore, for the case con-
sidered, it is impossible to detect the added masses with the proposed strategy. This conclusion is further
supported by the following observations:

• The change of natural frequency over time is very similar for all identified local modes. In other words,
there is no indication that local modes “close” to the added mass are more sensitive the added mass.

• The SVM classification is performed for the three bridge segments separately, and the classification
results are the comparable for all segments. The same applies for the SVM classification per sensor,
where similar accuracy scores were found for each sensor.

• The large variations in natural frequency that can be observed within the dataset of a particular mass
class will not be the result of the added mass.

So, when the feature vectors are highly sensitive to the environmental conditions the proposed strategy will
not work. The changes of the features caused by environmental variabilities should be removed by proper
data normalization before any damage detection algorithm could potentially be successfully employed.

Based on the conclusions above, the proposed methodology must be supplemented with data normaliza-
tion to be able to detect small structural anomalies. From the large range of data normalization techniques
that could be found in literature, two classes of methods for data normalization are discussed. The first class
consist of regression and interpolation method which requires monitoring of the environmental variables of
interest, which might be impractical or difficult to achieve. The second class consist of decomposition meth-
ods (e.g. PCA) which overcome the difficulties of direct measurements of the environmental variables. The
second class of methods is more appealing because it can remove the effects caused by multiple variables
without actually measuring these variables. Moreover, the second class is data-based which fits better in the
framework of the proposed strategy. In general, it is necessary to have a dataset that covers the full range of
environmental conditions.

An attempt was made to remove the changes in the features caused by environmental variabilities using
a PCA-based normalization technique. The normalized features seem less sensitive to the environmental
variability. However, some deviations were observed resulting from the fact that the dataset for the healthy
structure (i.e. reference dataset) do not cover the environmental conditions that are present in the dataset of
the added masses. Therefore, it is concluded that the dataset of the Zwartewaterbrug is not suitable for data
normalization.

In conclusion, it was not possible to properly test the proposed methodology for damage detection using
the data of the Zwartewarterbrug, mainly because the datasets were not suitable for the machine learning
algorithms employed. In the following some recommendations are given for future measurement campaigns
to obtain data that is more suitable for application of the methodologies employed in the present project.

9.2 Recommendations
Resulting from the research that is carried out, some recommendation are given below related to the method-
ology and for future measurement campaigns.

9.2.1 Recommendations related to the methodology

Similarity filtering

The method of similarity filtering is an important part of the damage detection algorithm, and the following
recommendation are made:

• The theory of similarity filtering is extensively presented, however in this thesis no attention was given
to the numerical aspects of the method; e.g. discrete convolution of sampled time series. It is recom-
mended to address more research to the optimization of the method of similarity filtering.

• The parameters of similarity filtering were determined by means of visual inspection of the singular
value spectrum; this selection procedure is far from optimal. More appropriate approaches to select the
parameters of similarity filtering should be developed.

• The similarity filtering is based on multiple convolutions of short time signals (e.g. in this thesis 100
convolutions of 2.5 seconds were applied). This process is computationally expensive and the compu-
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tation time will become very long for large datasets. To speed up the similarity filtering process, a more
efficient implementation of the method is needed.

• So far, the method of similarity filtering is only applied to the data of the Zwartewaterbrug. The method
seems to work well for this particular case, but this does not guarantee that it will work for other similar
problems or cases. It is recommended to test the method of similarity filtering with vibration data from
other bridges and/or other structural parts; e.g. main girders rather than an orthotropic deck structure.

High frequency range

It is recommended to develop an algorithm for robust selection of the high frequency region that is sensitive to
small faults in the structure. To increase the sensitivity of the algorithm to the small added masses, the analy-
sis was focused on the higher resonances rather than the lower modes of the bridge. The frequency range of
interest was determined based on the number of consistent modes that could be identified from the data. The
process relies on the assumption that the modal peaks in the singular value spectrum can be distinguished
from the noise peaks based on the Modal Assurance Criterion (MAC). However, the MAC value also implies
consistency when, for example, the inputs are primarily coherent noise, or the inputs are the result of forced
excitation rather than the structural modes. Furthermore, the process involves a bandwidth over which the
consistency of a possible mode is measured, it was noted that this should be frequency dependent.

Added mass

It is recommended to determine the actual effect of the added mass on the dynamic properties. In this thesis
the actual effect of the added mass on the resonance frequencies is not known. Therefore, it was impossible
to quantify the changes caused by the added mass and those caused by the environmental conditions.

Machine learning algorithm

In this thesis a supervised learning and an unsupervised learning algorithm were applied, both having their
strengths and weaknesses. Although both methods can be used to detect the structural faults, the unsuper-
vised learning algorithm is more appealing as it requires only data from the healthy structure (i.e. normal op-
erating conditions) to establish the normal condition model. During monitoring newly acquired data is com-
pared with the model and any significant deviations indicate that the structure has departed from the healthy
state. On the other hand, supervised learning algorithms generally require that data from every conceivable
damage state of the structure is available. This mode of learning could potentially be used for damage local-
ization and quantification. Since the main goal is initially to detect structural faults (i.e. abnormalities), it is
suggested to focus on the unsupervised learning algorithms (i.e. novelty detection) for damage detection.

9.2.2 Recommendations for future measurement campaign

It was concluded that the current dataset of the Zwartewaterbrug is not suitable for damage detection using
the proposed methodology. One of the main problems with the dataset is that the data with and without
masses are measured in different unknown environmental conditions and thus not suitable for data normal-
ization. Therefore, it was impossible to remove the environmental variability from the feature vectors, which
is necessary before any damage detection algorithm could be successfully employed. Based on the findings in
this thesis some general recommendations are given for future (long-term) measurement campaigns, aiming
to generate data that is more suitable for testing the methodology.

• Design the measurement setup with the intended algorithm for machine learning in mind. Supervised
learning algorithms generally require that data from every conceivable damage state of the structure
is available for training, and the dataset of each damage state should contain approximately the same
number of measurements to avoid imbalanced datasets. On the other hand, for unsupervised learning
algorithms only data from the healthy structure is required to train the algorithm. Nevertheless, it is
useful to have some data from the “damaged” structure for testing the algorithm. This dataset may
be smaller than for the healthy structure, because the data of the damaged structure is not used for
training and unbalanced datasets is not a problem for unsupervised learning algorithms.

• Measure the response of the healthy structure (i.e. normal operating conditions) continuously (e.g.
10-minutes interval) over a sufficient long time period. These measurements are used to establish the
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reference dataset that is used for data normalization (i.e. all measurements are normalized with respect
to this dataset). The measurements should be obtained over the total range of possible environmental
conditions, or at least the range of environmental conditions under which the damage states of the
structure are measured (e.g. structure with added mass).

• Depending on the type of machine learning algorithm that will be used, the vibration data of the dam-
aged structure (e.g. with added mass) can be obtained over shorter time periods. However, the envi-
ronmental conditions in which these are measured should be approximately equal to the conditions in
which the data for the healthy structure (i.e. reference dataset) is obtained.

• Measure the structural temperature at several positions of the structure to capture the nonuniform
temperature distribution; e.g. at every accelerometer. It is noted that these measurements are not
required when a decomposition method is used for data normalization. However, the temperature
data is potentially very useful to validate the performed normalization in that case.

The temperature data can be used to establish correlation models describing the relationship between
the temperature and modal parameters (e.g. natural frequency). The thermally induced stresses were
seen as one of the main factors causing changes in the natural frequencies of the structure. Therefore,
even more reliable relationships can be obtained when strains are measured at different parts of the
structure, in addition to temperatures.

• Use a dense sensor network in order to increase the possibility of detecting the small added mass or
equivalent small damage. The expected damage mechanism is usually known beforehand so it possible
to design the sensor network based on this knowledge. The expected mode shapes (e.g. from FEM
analysis) of the structure can be used to determine suitable locations for the sensors.

Based on the current measurement setup of the Zwartewaterbrug (3 measurement days, several mass classes,
32 sensors and 1 DAQ system), and taking into account the above recommendations, the following changes
are proposed:

• Consider two spans between the transverse beams (instead of three); one span with added mass and
one without added mass (reference). Use 16 sensors per span and place them closer to each other (exact
position to be determined).

• Measure the response of the structure without added mass every 6 minutes for 1-2 minutes during two
consecutive days (about 240 measurements).

• Measure the response of the structure with added masses during one day (same environmental con-
ditions as the measurements without added mass). For each added mass, it is sufficient to measure
continuously for ∼2 hours. Three different mass classes (e.g. 50 kg, 75 kg and 100 kg) will be adequate
for testing the methodology.

• Measure the structural temperature at different location across the bridge deck, particularly across the
section where the accelerometers are located. In addition, monitor the (thermal) expansion/contraction
of the main structural parts in this section (notably the bridge deck, the transverse beams and the main
girders) using strain gauges.
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A
Convolution & Fourier Transform

A.1 Fourier Transform
The Fourier Transform provides a method for decomposing a time history into its frequency components.
Suppose that a function x(t ) is defined on the interval (−∞,+∞) and satisfy the so-called Dirichlet condi-
tions. These conditions ensure that x(t ) is reasonably “well-behaved"; that is, x(t ) is absolutely integrable,
has finite number of discontinuities and has a finite number of maxima and minima. Then the following
forward Fourier transform exist

X (ω) =
∫ ∞

−∞
x(t )e−iωt dt (A.1a)

The inverse Fourier transform is then

x(t ) = 1

2π

∫ ∞

−∞
X (ω)eiωt dω (A.1b)

Note that the factor in front of the integrals is not universal and different versions could be found in literature.
However, the product of the factors should always be 1/2π. Substituting the relation ω= 2π f in the previous
defined Fourier pair one obtains the following Fourier pair in terms of cyclic frequency f

X ( f ) =
∫ ∞

−∞
x(t )e−i 2π f t dt (A.2a)

x(t ) =
∫ ∞

−∞
X ( f )ei 2π f t d f (A.2b)

Algebraic properties

Some important algebraic properties of the Fourier transform are presented, without their proofs.

Linearity For any real or complex numbers a and b, if z(t ) = ax(t )+by(t ), then

Z (ω) = aX (ω)+bY (ω) (A.3)

Translation For any real number τ, if y(t ) = x(t −τ), then

Y (ω) = X (ω)e−iωτ (A.4)

Modulation For any real number ω0, if y(t ) = x(t )eiω0t , then

Y (ω) = X (ω−ω0) (A.5)

Scaling For any non-zero real number a, if y(t ) = x(at ), then

Y (ω) = 1

|a|X
(ω

a

)
(A.6)

The case a =−1 leads to the time reversal property, which states that if y(t ) = x(−t ), then Y (ω) = X (−ω).
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Differentiation For any derivative of x(t ), if dn x(t )
dt n exists, then

F

{
dn x(t )

dt n

}
= (iω)n X (ω) (A.7)

This property is very convenient for solving differential equations using Fourier transform.

A.2 Convolution

The convolution between two time signals f (t ) and g (t ) is defined as

f (t )∗ g (t ),
∫ ∞

−∞
f (τ)g (t −τ)dτ (A.8)

where the integration time variable is substituted by the variable τ. In words the convolution of two signals
is defined as the integral of the product of two functions after one is reversed and shifted by amount t . The
computed integral is a weighted average of the function f (τ) at the moment t where the weighting is given
by g (−τ) shifted by amount t . By changing t , the weighting function emphasizes different parts of the input
function.

Algebraic properties

Some important algebraic properties of the convolution are presented, without their proofs.

f (t )∗ g (t ) = g (t )∗ f (t ) commutativity (A.9a)

h(t )∗ (
f (t )∗ g (t )

)= (
h(t )∗ f (t )

)∗ g (t ) associativity (A.9b)

h(t )∗ (
f (t )+ g (t )

)= h(t )∗ f (t )+h(t )∗ g (t ) distributivity (A.9c)

Convolution Theorem

The convolution theorem states that under suitable conditions the Fourier transform of a convolution of two
signals is the multiplication of their Fourier transforms. In other words convolution in one domain (e.g. time
domain) is equivalent to multiplication in the other domain (e.g. frequency domain). Let f (t ) and g (t ) be two
functions with convolution f (t )∗ g (t ), and let F

{
f (t )

}
and F

{
g (t )

}
denote their Fourier transforms. Then

F
{

f (t )∗ g (t )
}= k ·F {

f (t )
} ·F {

g (t )
}

(A.10)

where k is a constant that depends on the specific normalization of the Fourier transform.

A.3 Basic Dynamic Characteristics

In this section some important concepts and fundamental definitions related to the dynamic behavior of
linear systems are introduced. More specifically we will restrict ourselves to the class of linear time-invariant
or LTI systems. A system is time-invariant if all system properties are invariant with respect to time. For
example, a simple mass-spring system would be a time-invariant system if the mass and stiffness do not
change from one time to another. A system is linear if the principle of superposition holds. Superposition can
be defined by the following properties

f (x1 +x2) = f (x1)+ f (x2) additivity (A.11)

f (cx) = c f (x) homogeneity (A.12)

where f (x) denotes the response due to an input x and c is an arbitrary constant.
In words Additivity means that the output to a sequence of inputs is equal to the sum of outputs produced

by each input individually. Homogeneity means that the output produced by a constant times the input is
equal to the constant times the output produced by the input alone.



A.3. Basic Dynamic Characteristics 155

The Impulse Response Characteristic

The dynamic characteristic of a linear time-invariant system can be described by an impulse response func-
tion, denoted as h(t ), which is defined as the output of a system to a unit impulse input applied at time t = 0.
The usefulness of the impulse response function as a description of the system is the following; for any ar-
bitrary input x(t ), the system output y(t ) can be computed as a weighted sum over the entire history of the
input x(t ). The impulse response act as weighting function and the infinite sum is given by the convolution
integral

y(t ) = h(t )∗x(t ) =
∫ ∞

−∞
h(τ)x(t −τ)dτ (A.13)

A linear time-invariant system is physically realizable or causal if it only responds to past inputs. This implies
that

h(t ) = 0 for t < 0 (A.14)

Hence, for physical systems, the effective lower limit of integration in equation (A.13) is zero rather than −∞.
A system is said to be stable if every possible bounded input function produces a bounded output func-

tion. It can be proven that if the impulse function h(t ) is absolutely integrable; that is∫ ∞

−∞
|h(t )|dt <∞ (A.15)

then the output will be bounded and the system is stable. A proof of this is presented in [2].

The Frequency Response Characteristic

If a linear time-invariant system is physically realizable and stable, then the dynamic characteristic of the
system can be described by a frequency response function, denoted as H(ω), which is defined as the Fourier
transform of the impulse response function h(t ); that is

H(ω) =
∫ ∞

−∞
h(t )e−iωt dt (A.16)

Note that the lower limit of integration is effectively zero because of the causality property (A.14). An impor-
tant relationship for the frequency response function is obtained by the convolution theorem, which states
that convolution in the time domain is equivalent to multiplication in the frequency domain and vice verse,
see Appendix A.2. Let X (ω) denote the Fourier transform of an input x(t ) and Y (ω) the Fourier transform
of the resulting output y(t ), assuming these transforms exist, then from equation (A.13) and by virtue of the
convolution theorem it follows

Y (ω) = H(ω)X (ω) (A.17)

So, the response of a system in the frequency domain is given by a simple algebraic expression rather than
the convolution operation in the time domain.

The frequency response function is generally a complex-valued quantity that can be written in complex
polar notation as

H(ω) = |H(ω)|eiϕ(ω) (A.18)

where |H(ω)| is a real-valued amplitude and ϕ(ω) is the associated phase angle. The interpretation is as
follows; if the system is subjected to a sinusoidal input with a frequency ω0, then the output will also be
sinusoidal with the same frequency. The ratio of the output amplitude to the input amplitude is equal to
|H(ω0)|, and the phase shift between the output and the input is equal to the ϕ(ω0) (both evaluated at the
frequency of the input).





B
Linear Algebra

B.1 Singular Value Decomposition
This appendix provides a minimum explanation of the Singular Value Decomposition (SVD), which has been
extensively applied in this work. More information about SVD can be found in almost any book about Linear
Algebra, for instance [40].

In general, every symmetric matrix A can be decomposed as A = PDPT, where P is an orthogonal matrix
and D is a diagonal matrix displaying the eigenvalues of A. If A is not symmetric, such a decomposition is not
possible, but we may still be able to decompose a square matrix A as A = PDP−1, where D is as before, but
P is now an invertible matrix. However, not every matrix has an invertible matrix P such that D = P−1DP is
diagonal.

The SVD generalizes above concepts from square matrices to any kind of matrix (symmetric or not, square
or not). In particular, any (real or complex) matrix A ∈Cm×n can be decomposed as follows

A = UΣVH (B.1)

where U = (u1,u2, . . . ,um) ∈ Cm×m and V = (v1,v2, . . . ,vn) ∈ Cn×n are unitary matrices holding the left and
right singular vectors, respectively, and Σ ∈ Cm×n is a “diagonal" matrix holding the singular values. The
superscript (•)H denotes the Hermitean conjugate (complex conjugate transpose); if A is real, this simply
becomes the superscript (•)T.

It is conventional to arrange the singular values of A in descending order as

σ1 ≥σ2 ≥ ·· · ≥σp ≥ 0 , p = min(m,n)

The rank r of matrix A is equal to the number of nonzero singular values (obviously r ≤ min(m,n)). Sup-
pose r < p, then the last p − r singular values are zero; that is σr+1 =σr+2 = ·· · =σp = 0, and the SVD can be
partitioned as

A = (
Ur U0

) [
Σr O
O O

] (
VH

r
VH

0

)
= UrΣr VH

r (B.2)

in which each matrix O is a zero matrix of the appropriate size (if r = m or r = n, some of these will not appear)
and Σr is defined as

Σr =

σ1 . . . 0
...

. . .
...

0 . . . σr

 (B.3)

In many applications it is useful to rewrite equation (B.1) in the outer product form, that is

A =σ1u1vH
1 +·· ·+σr ur vH

r =
r∑

i=1
σi ui vH

i (B.4)

Here, only the singular vectors associated with nonzero singular values are included. If the singular values
die off quickly, then it may be possible to accurately reconstruct the original matrix A using only the singular
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vectors associated with the first few singular values (i.e. the largest singular values). This leads to the idea of
truncated SVD, where the upper limit in equation (B.4) is changed to k < r . The integer k is chosen such that
σk+1, . . . ,σr ≈ 0.

The connection between eigenvectors, eigenvalues from an Eigenvalue Decomposition (EVD) and SVD is
the following. For an arbitrary (real or complex) matrix A, if A = UΣVH, then

AHA = VΣHUHUΣVH

= VΣHΣVH

= VDVH

(B.5)

where D = ΣHΣ = Σ2 is a diagonal matrix containing the squared singular values. From equation (B.5) it
follows that

AHAV = VD (B.6)

which we can recognize as an EVD of AHA and thus the eigenvectors of AHA are equal to V, the right singular
vectors of A, and the eigenvalues of AHA are equal to D, the squared singular values. Similarly, the left singular
vectors, U, are obtained from the eigendecomposition of AAH

AAHU = UD (B.7)

So, the symmetric matrices AAH and AHA share the same real nonnegative eigenvalues, equal to the squared
singular values of A.

B.2 Kronecker Notation

The Kronecker product and its most important properties are briefly described below. The properties of the
Kronecker product are given without proof. Complete proofs of each of the properties can be found in [24]
and [4].

The Kronecker product is denoted by ⊗ and defined as follows: if A is an (n ×m) rectangular matrix and B is
an (p×q) rectangular matrix, then C = A⊗B is a rectangular matrix of dimension (np×mq) with components
Cp( j1−1)+ j2,q(l1−1)+l2 = A j1l1 B j2l2 . More explicitly, this relationship can be written as

C = A⊗B =


A11B A12B . . . A1m B
A21B A22B . . . A2m B

...
...

. . .
...

An1B An2B . . . Anm B

 (B.8)

Note that in the particular case in which A and B are both vectors, we find that A⊗B is also a vector. If a is
an (n ×1) column vector and b is an (p ×1) column vector, then c = a⊗b is a column vector with dimensions
(np ×1);

c = a⊗b =


a11b
a21b

...
an1b

 (B.9)

This situation will be of particular interest in our case, because most of the equations used involve vectors.
Note that the Kronecker product is much more general than matrix multiplication and requires no restric-
tions on the dimensions of the arrays being multiplied. The Kronecker product fulfills the following linearity
properties

A⊗ (B+C) = A⊗B+A⊗C (B.10a)

(A+B)⊗C = A⊗C+B⊗C (B.10b)

A⊗ (B⊗C) = (A⊗B)⊗C (B.10c)

λ (A⊗B) = (λA)⊗B = A⊗ (λB) (B.10d)
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for any matrix A, B and C, and constant λ, showing that the operation is distributive and associative. On the
other hand A⊗B 6= B⊗A, so the operation is not commutative. A simplified notation is used for the Kronecker
product of a matrix with itself. In particular, the n-th Kronecker power of matrix A is defined as

A[n] = A⊗A⊗·· ·⊗A︸ ︷︷ ︸
n

(B.11)

Some other useful properties of the Kronecker product are

(A⊗B)H = AH ⊗BH (B.12a)

(A⊗B)−1 = A−1 ⊗B−1 if A and B are invertible (B.12b)

A[n+1] = A[n] ⊗A (B.12c)

(AB)[n] = A[n] ⊗B[n] (B.12d)

Because the relations for multiple-input systems contain matrix products, we also need a general relationship
involving the combination of matrix products and Kronecker products. This mixed-product property is

(AB)⊗ (CD) = (A⊗C) · (B⊗D) (B.13)

provided that the dimensions of the matrices are such that the products AB and CD exist. In the particular
case that one of these products is a scalar (which is only possible if the product is essentially a vector product),
we find that (AB)⊗ (CD) ≡ (AB) · (CD). Hence, we can define the following mixed-product property for vectors(

aTb
) · (cTd

)= (a⊗c)T · (b⊗d) (B.14)

in which a, b, c and d are column vectors which dimensions are such that the products aTb and cTd exist.
This latter relation is most important for the notations used in the theory about similarity filtering.





C
Principal Component Analysis

This appendix provides a minimum explanation of the Principal Component Analysis (PCA), which has been
used in this work for data normalization and visualization. More information about the PCA can be found in
many textbooks about pattern recognition or machine learning, for example [46] or [19]. Some good exam-
ples on real data sets can be found in [47].

The feature vectors used in machine learning are often high-dimensional, which are hard to visualize and
could cause problems in case of small data sets. Therefore, one often seeks to reduce the number of features
without loosing important information. The PCA is one of the most popular methods for dimensionality
reduction in pattern recognition. Furthermore, PCA is very useful in producing compact representations of
the original high-dimensional feature space, which makes it also very suitable for visualization purposes.

The PCA uses a linear transformation to transform a set of possibly correlated variables
{

xi
} ∈ Rp into a

new set of uncorrelated features
{

yi

} ∈ Rd called the principal components. This transformation is defined
in such a way that the first principal component has the largest possible variance, and each succeeding com-
ponent in turn has the highest variance possible under the constraint that it is orthogonal to the preceding
components. The resulting vectors are a linear combination of the original variables and form an orthogonal
basis set.

Mutually uncorrelated features

Let
{

xi
} ∈Rp , i = 1, . . . ,n be the set of training vectors. In order to simplify the notations, we will assume that

the variables have zero mean, that is E [x] = 0. If this is not the case, we can always subtract the mean value.
In practice, this is achieved by subtracting the sample mean x̄, which is computed from the set of training
vectors as

x̄ = 1

n

n∑
i=1

xi (C.1)

The PCA exploits the following linear transformation

yi = ATxi (C.2)

where A ∈ Rp×d is the transformation matrix (to be determined) and yi ∈ Rd is a vector of uncorrelated fea-
tures; that is, its covariance matrix Cy is diagonal. Since we have assumed that E [x] = 0, it is readily seen that
E

[
y
] = 0. For zero mean variables the covariance matrix Cy coincides with the correlation matrix Ry , and

thus, from the definition of the correlation matrix, we have

Ry = E
[
yyT]= E

[
ATxxTA

]= ATRx A (C.3)

In practice, the correlation matrix Rx is estimated as an average over the given set of training vectors
{

xi
}
, that

is

Rx ≈ 1

n −1

n∑
i=1

xi xT
i (C.4)

which is known as the sample correlation matrix, which is an unbiased estimator of the correlation matrix,
the reason the sample correlation matrix has n − 1 in the denominator rather that n is essentially that the
mean E [x] is not known and is replaced by the sample mean x̄, equation (C.1).
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The correlation matrix Rx is symmetric matrix, and hence its eigenvectors are orthogonal (aT
i a j = 0 for

i 6= j ). Thus if the transformation matrix A is chosen so that its columns are the orthonormal eigenvectors ai ,
i = 1,2, . . . , p of Rx , then Ry is diagonal

Ry = ATRx A =Λ (C.5)

where Λ ∈ Rp×p is a diagonal matrix that contain the respective eigenvalues λi , i = 1,2, . . . , p of Rx on its
diagonal. It can be shown that the correlation matrix is positive semidefinite and thus the eigenvalues are
nonnegative.

Now, we have found a diagonal correlation matrix Ry which implies that the transformed features are
uncorrelated. From the respective definitions we have that the variance of the transformed features is equal
to

Var
(
y j

)= Ry ( j , j ) =λ j for j = 1,2, . . . , p (C.6)

where y j refers to the j -th feature. Equation (C.6) shows that the eigenvalues of the correlation matrix Rx are
equal to the variances of the transformed features.

Singular Value Decomposition

Previously, the PCA is explained by means of an eigenvalue decomposition of the correlation matrix Rx (or
covariance matrix Cx ). Alternatively, PCA can be done by a Singular Value Decomposition (SVD) of the data
matrix X as shown in the following. The SVD is usually applied in practice because efficient algorithms exist
to calculate the SVD of X without having to form the matrix XTX. The data matrix is defined as follows

X = [
x1 x2 . . . xn

]T
(C.7)

That is, X ∈ Rn×p is a matrix whose rows are the available feature vectors in the set
{

xi
} ∈ Rp , i = 1, . . . ,n. The

SVD of X, with rank r ≤ min(n, p) reads as (Appendix B.1)

X = UΣVT (C.8)

where Σ ∈ Rn×p contains the nonnegative real-valued singular values of X on its diagonal and U ∈ Rn×n ,
V ∈Rp×p are orthogonal matrices. The sample correlation matrix, equation (C.4), can be written as

Rx = 1

n −1
XTX

= 1

n −1
VΣTUTUΣVT

= 1

n −1
VΣ̂

2
VT

(C.9)

where Σ̂
2 =ΣTΣ ∈Rp×p is a diagonal matrix containing the squared singular values of X.

Using the orthogonality property of the right-singular vectors (VTV = VVT = I), the correlation matrix Rx

can be diagonalized as
1

n −1
Σ̂

2 = VTRx V (C.10)

Comparing equation (C.10) with equation (C.5), it is readily seen thatΛ=Σ2/(n −1) and A = V. Hence, using
the SVD the transformation is expressed as

yi = VTxi (C.11)

which can be reformulated in matrix form using the definition of the data matrix, equation (C.7), as

Y = XV = UΣVTV = UΣ (C.12)

That is, each column of Y (the principal components) is given by one of the left singular vectors of X multiplied
by the corresponding singular value. The variances of the transformed features y j are equal to

Var
(
y j

)= σ2
j

n −1
for j = 1,2, . . . , p (C.13)

where σ j is the j -th singular value of the data matrix X, and n is the number of observations (i.e. rows in the
data matrix).
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Dimensionality Reduction

In many cases, when the number of features is large enough, the total variability in the feature vector can be
explained by a smaller number of transformed features and thereby reducing the dimensions of the feature
space. Such dimensionality reduction can be very useful for visualizing and processing high dimensional
data sets while still remaining as much of the variance in the data set as possible. The reduction is achieved
by disregarding the transformed features with low variance, which occur when the original p variables are
actually a linear combination of d < p variables.

If some eigenvalues of the correlation matrix Rx are equal to zero, then some of the variables in the original
feature vector are redundant. In practice, due to the noise and measurement uncertainty, the eigenvalues are
not strictly equal to zero, but a significant drop in the eigenvalues can be observed and can be used to define
the number of principal components which account for most of the variability. A practical way to determine
the number d of principal components for retention is to define the following indicator [14]

I =
∑d

i=1λi∑p
i=1λi

(C.14)

and determine d as the lowest integer such that I > e(%), where e is a threshold value. The meaning of this
threshold is as follows: d principal components are needed in order to explain e(%) of the total variance
associated with the original observed variables. Thus, selecting those features y j = aT

j x, corresponding to

the d largest eigenvalues makes their sum variance
∑

j λ j maximum. In other words, the selected d features
retain most of the total variance associated with the original features x.

The transformed d-dimensional feature vectors are now computed as

yi = ATxi for i = 1,2, . . . ,n (C.15)

where A ∈ Rp×d is a transformation matrix whose columns are the eigenvectors of the correlation matrix
corresponding to the d largest eigenvalues, where d is determined according to (C.14) (e.g. such that e = 99%
of the total variance in the original features is explained by the transformed features). When the vectors xi

are collected as the rows of matrix X ∈Rn×p , then the transformation can be written in matrix notation as

Y = XA (C.16)

where Y ∈Rn×d is the matrix with transformed feature vectors.
Alternatively, the PCA can be performed by a SVD of the data matrix X as explained above. Using the

SVD, the transformation is given by equation (C.12). For dimensionality reduction this equation is slightly
modified as

Y = ÛΣ̂ (C.17)

where Σ̂ ∈ Rd×d is a diagonal matrix holding the largest d singular values on its diagonal, and Û ∈ Rn×d con-
tains the corresponding left singular vectors as its columns; that is

Û = [
u1 u2 . . . ud

]
, Σ̂=

σ1 . . . 0
...

. . .
...

0 . . . σd

 (C.18)





D
PSD decomposition

This proof is provided for completeness. Starting with the relation between the unknown inputs x(t ) and the
measured displacements y(t )

Sy y (ω) = H(ω)Sxx (ω)H(ω)H (D.1)

where H(ω) is the force-displacement Frequency Response Function (FRF) matrix, which can be expressed
as partial fraction form via poles λr and residue matrices Rr

H(ω) =
M∑

r=1

Rr

iω−λr
+ R∗

r

iω−λ∗
r

(D.2)

Substitution of equation (D.2) into (D.1) yields

Sy y (ω) =
( M∑

r=1

Rr

iω−λr
+ R∗

r

iω−λ∗
r

)
Sxx (ω)

( M∑
s=1

RH
s

−iω−λ∗
s
+ RT

s

−iω−λs

)

=
M∑

r=1

M∑
s=1

Rr Sxx (ω)RH
s

(iω−λr )
(−iω−λ∗

s
) + R∗

r Sxx (ω)RH
s(

iω−λ∗
r
)(−iω−λ∗

s
)

+ Rr Sxx (ω)RT
s

(iω−λr ) (−iω−λs )
+ R∗

r Sxx (ω)RT
s(

iω−λ∗
r
)

(−iω−λs )

(D.3)

Now, assume that the input is white noise, one has that Sxx (ω) = Sxx . To simplify notations the following
definitions are introduced

A1r s = Rr Sxx RH
s (D.4)

A2r s = Rr Sxx RT
s (D.5)

Hence, the expression for Sy y (ω) reduces to

Sy y (ω) =
M∑

r=1

M∑
s=1

A1r s

(iω−λr )
(−iω−λ∗

s
) + A∗

2r s(
iω−λ∗

r
)(−iω−λ∗

s
)

+ A2r s

(iω−λr ) (−iω−λs )
+ A∗

1r s(
iω−λ∗

r
)

(−iω−λs )

(D.6)

Since the denominator of each term has two zeros, a partial fraction expansion is possible. Heaviside cover-
up method is a fast way to do the decomposition. For the first term this yields

A1r s

(iω−λr )
(−iω−λ∗

s
) =

A1r s

−λr −λ∗
s

iω−λr
+

A1r s

−λr −λ∗
s

−iω−λ∗
s

(D.7)
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166 D. PSD decomposition

Similar partial fraction expansions of the other terms, yield the following expression for Sy y (ω)

Sy y (ω) =
M∑

r=1

M∑
s=1

A1r s

−λr −λ∗
s

iω−λr
+

A1r s

−λr −λ∗
s

−iω−λ∗
s

+

A∗
2r s

−λ∗
r −λ∗

s

iω−λ∗
r

+

A∗
2r s

−λ∗
r −λ∗

s

−iω−λ∗
s

+
A2r s

−λr −λs

iω−λr
+

A2r s

−λr −λs

−iω−λs
+

A∗
1r s

−λ∗
r −λs

iω−λ∗
r

+

A∗
1r s

−λ∗
r −λs

−iω−λs

(D.8)

Partial fraction yields eight terms with four different denominators, combining the terms with the same de-
nominator leads to

Sy y (ω) =
M∑

r=1

M∑
s=1

A1r s

−λr −λ∗
s
+ A2r s

−λr −λs

iω−λr
+

A1r s

−λr −λ∗
s
+ A∗

2r s

−λ∗
r −λ∗

s

−iω−λ∗
s

+

A∗
1r s

−λ∗
r −λs

+ A∗
2r s

−λ∗
r −λ∗

s

iω−λ∗
r

+

A∗
1r s

−λ∗
r −λs

+ A2r s

−λr −λs

−iω−λs

(D.9)

By changing the order of summation in the second and fourth term (i.e. exchange the indices) and the fact
that, from their definitions, it follows that A1sr = AH

1r s and A2sr = AT
2r s (under the assumption that Sxx is real

and constant), equation (D.9) reduces to the following convenient form for the modal decomposition of an
output PSD

Sy y (ω) =
M∑

r=1

Ar

iω−λr
+ AH

r

−iω−λ∗
r
+ A∗

r

iω−λ∗
r
+ AT

r

−iω−λr
(D.10)

where Ar is defined as

Ar =
M∑

s=1

A1r s

−λr −λ∗
s
+ A2r s

−λr −λs
(D.11)



E
Performance of Similarity Filtering

In this appendix the performance of similarity filtering is analyzed by visual inspection of the singular value
spectrum of the processed signals. The main purpose of the analysis is to select suitable filter parameters.
Therefore, the spectra corresponding to different combinations of filter parameters are considered. The pro-
cessed signals are generated with data from the Zwartewaterbrug and so the results are not generally appli-
cable. First the analysis procedure is briefly described, followed by the discussion of the results.

Similarity filtering is based on successive convolution of different time series, which can be expressed as

y(t ,T ) =
n∗

k=1
xk (t ) = x1(t )∗x2(t )∗·· ·∗xn(t ) (E.1)

where n is the order of filtering (i.e. the number of response signals used), and T denotes the length of the
signal after similarity filtering. Although the time series xk (t ), k = 1, . . . ,n might have different lengths, it will
be assumed that the signals have an predefined length of Ts seconds. It is noted that the time series might
also be some segments of a long measurement, therefore the time series are also referred to as segments. The
formulation of similarity filtering involves two free parameters: the length Ts of the segments, and the order
of similarity filtering n (i.e. the number of segments). The choice of the parameters is related to the goal of
similarity filtering, which is filter out the operational variability from the measurements. The following three
aspects should be taken into account when selecting the parameters (see also Section 3.1.4):

1. the computational cost of similarity filtering;
2. the time scale on which similarity filtering operates;
3. the expected natural frequencies of the structure.

In the following, suitable parameters are determined by visual inspection of the results after similarity filter-
ing. In particular the singular value spectrum is considered because this clearly indicates which frequency
components are amplified. Moreover, the peaks in this spectrum are related to the modes of the considered
structure.

To analyze the performance of similarity filtering, different combinations of parameters n (filter order) and Ts

(segment length) are considered. The considered segment lengths are: 2.5, 4.0, 5.0, 6.0, 7.5, and 10 seconds,
and the order of similarity filtering ranges from 5 to 100 in steps of 5. It is noted that the number of convo-
lutions performed is one less than the order of similarity filtering. For each combination of parameters, the
following steps are performed:

Step 1. Apply a band-pass filter 50–100 Hz to the raw time series.

Step 2. Generate one vector of processed signals using the similarity filtering with the particular combination
of parameters. The vector consists of 12 signals, generated from the measurements of sensor 11 to 22
(located in bridge segment 2).

Step 3. (optional) remove the zeros at both ends of the processed signals; that is, extract the nonzero part of
the signals also referred to as centering.
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168 E. Performance of Similarity Filtering

Step 4. Perform a singular value decomposition of the spectral density matrix Sy y ( f ) at each discrete fre-
quency to obtain a set of singular values (only largest singular values are stored). The spectral den-
sity matrix is computed from the processed signals as Sy y (ω) = Y(ω)Y(ω)H where Y(ω) ∈ C12×1 is the
Fourier transform of the processed signals y(t ). The set of singular values forms the singular value
spectrum.

Step 5. Repeat Step 2 to Step 4 for all combinations of parameters.

Following these steps, 180 singular value spectra are obtained, one for each combination of parameters (i.e.
6 different time segments and 20 different number of convolutions).

It is noted that Step 3 is an optional step after the similarity filtering, which is not related with the sim-
ilarity filtering itself. In this step the dominant middle part of the processed signal is extracted, and thus
disregarding the edges of the signal that are close to zero. This might have influence on the further process-
ing of the signals; for example when computing the singular value spectrum considered here. Therefore, two
options are considered: 1) continue with the length of the processed signals (regular signals), and 2) remove
the parts that are approximately zero at both ends of the processed signal; the signal is assumed to be zero
when it has an amplitude smaller than 1e−5 times the maximum amplitude of the signal. So, two sets of 180
singular value spectra are generated, one for the centered signals and one for the regular signals (i.e. without
centering).

The evolution of the singular value spectrum as a function of the number of convolutions is visualized in
two ways: 1) 3D waterfall plot of the singular value spectra, and 2) 2D heatmap of the singular value spectra,
in which the darkness of the colors indicates the intensity of the frequency components. Figures E.1 and E.3
show the results for the regular signals and Figures E.2 and E.4 show the result for the centered signals. For the
interpretation of the figures it must be remembered that one of the goals of similarity filtering is to amplify the
similarities in the signals, which are related to the system characteristics. The peaks (i.e. dominant frequency
components) in the singular value spectrum are related to the modes of the considered structure. So, an
important criterion is the existence of peaks in the spectrum, and the evolution of these peaks for increasing
number of convolutions.

The following can be observed from the figures:

• In general, the singular value spectrum becomes smoother when the number of convolutions are in-
creased. However, at some point increasing the number of convolutions might not improve the spec-
trum any further. In fact, useful information might be lost when too many convolutions are performed.
This can clearly be observed from the figures where some peaks in the spectra “disappear” when the
number of convolution increases. Recall that the peaks in the singular value spectrum are related to
the modes of the considered structure. So, by increasing the number of convolutions it may happen
that a mode is damped rather than amplified. This will be the case if the mode is not excited during all
measurements and thus is not present in every segment (i.e. the signals xk (t ) in equation (E.1)) used
for similarity filtering. Consequently, this mode becomes a variation rather than a similarity between
the different segments and will be damped by the similarity filtering. So, it is important that the modes
of interest are excited during all measurements.

• In most cases, longer segments require more convolution than short segments to obtain the same
“quality” of the singular value spectrum. Together with the fact that long segments require more data
than short segments it is better to use short segments (i.e. Ts ≤ 5 s).

• By comparing the results of the centered and regular signals it can be observed that some frequency
components might be lost due to the centering of the processed signals. In general, the amplitude of
the centered signals is larger, and the spectrum looks smoother. This effect is presumably related to
the computation of the spectrum using the Fast Fourier Transform (FFT). Furthermore, the spectra of
the regular signals seems to be bounded at low values which is presumably a numerical artifact result-
ing from the large number of convolutions. The numerical aspects of the similarity filtering are not
considered in this thesis, but more research into these aspects is needed.

For the application of similarity filtering in this thesis it is chosen to use 100 segments of 2.5 seconds
length. Other combinations of parameters might also give acceptable results, but these are not considered.
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Figure E.1: Regular signals – 3D waterfall plot of the evolution of the singular value spectrum when increasing the number of convolu-
tions in similarity filtering.
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Figure E.2: Centered signals – 3D waterfall plot of the evolution of the singular value spectrum when increasing the number of convolu-
tions in similarity filtering.
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Figure E.3: Regular signals – 2D image of the evolution the of singular value spectrum when increasing the number of convolutions in
similarity filtering.
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Figure E.4: Centered signals – 2D image of the evolution of the singular value spectrum when increasing the number of convolutions in
similarity filtering.





F
Spectra of Processed Signals

F.1 PSD spectrograms
Figures F.1–F.4 show the Power Spectral Density (PSD) of all processed signals (i.e. band-pass and similarity
filtered signals) per sensor in the form of spectrograms. In the following, the power spectrum of a single signal
is also referred to as a sample or observation. In the figures, the samples are sorted in chronological order,
with the first observation at the bottom. The different datasets are separated by the dotted horizontal lines
and the cumulative size of the datasets is indicated on the vertical axis. The order of the datasets corresponds
to Table 2.1. The position of the sensors are shown in Figure 2.3, and they are divided over three segments;
sensor 1 to 10 in segment 1, sensor 11 to 22 in segment 2, and sensor 23 to 32 in segment 3.

From the figures it can be observed that most sensors have a PSD with one dominant frequency compo-
nent only, while the other sensors have low quality spectra (i.e. large variability and very low magnitude). In
particular, the following sensors have considerably lower quality power spectra for all processed signals: 4, 5,
6, 9, 11, 14, 20, 21, 22, 24, 27, 29. Furthermore, the power spectra of sensors 25, 30 and 32 have a dominant
frequency component close to the boundary of the frequency range 50–100 Hz, which is not consistently
observed in all processed signals. Those 15 sensors are not useful for damage detection due to the large vari-
ability in spectral density that are obviously not related to damage. A closer look to the figures reveals that
the spectra of these sensors has much lower magnitude than the other sensors. Hence, these sensors will also
have a low contribution in the singular value decomposition of the spectral density matrix in the frequency
domain decomposition.

The “jumps” in the spectral line with highest intensity (i.e. dominant frequency component) occurs be-
tween two distinct datasets, resulting from the instant change of measurement conditions due to the time
gap between the datasets. Moreover, the dominant frequency component changes over time, presumably
due to variations in the environmental conditions.

Figures F.5 and F.6 show the PSDs of different mass classes that were measured on 23 March 2017 and 28
March 2017, respectively.
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(a) Sensor 1
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(b) Sensor 2
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(c) Sensor 3
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(d) Sensor 4

50 60 70 80 90 100
Frequency (Hz)

0
43

184

258

359

459

573

687

Sa
m

pl
e 

nu
m

be
r

140

120

100

80

60

(e) Sensor 5
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(f ) Sensor 6
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(g) Sensor 7
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Figure F.1: PSD spectrogram for sensor 1 to 8 of all data sets. The data sets for different mass classes are separated with a dotted line and
the cumulative size of these data sets is indicated on the vertical axis. The observations are sorted in chronological order, with the first
observation at the bottom.
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(a) Sensor 9

50 60 70 80 90 100
Frequency (Hz)

0
43

184

258

359

459

573

687

Sa
m

pl
e 

nu
m

be
r

120

100

80

60

(b) Sensor 10
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(c) Sensor 11
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(d) Sensor 12
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(e) Sensor 13
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(f ) Sensor 14
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(g) Sensor 15
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(h) Sensor 16

Figure F.2: PSD spectrogram for sensor 9 to 16 over all datasets. The datasets are separated by a dotted line and the cumulative size of
the datasets is indicated on the vertical axis. The observations are sorted in chronological order, with the first observation at the bottom.
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(a) Sensor 17
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(b) Sensor 18
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(c) Sensor 19
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(d) Sensor 20
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(e) Sensor 21
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(f ) Sensor 22
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(g) Sensor 23
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(h) Sensor 24

Figure F.3: PSD spectrogram for sensor 17 to 24 over all datasets. The datasets are separated by a dotted line and the cumulative size of
the datasets is indicated on the vertical axis. The observations are sorted in chronological order, with the first observation at the bottom.
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(a) Sensor 25
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(b) Sensor 26
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(c) Sensor 27
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(d) Sensor 28
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(e) Sensor 29
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(f ) Sensor 30
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(g) Sensor 31
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(h) Sensor 32

Figure F.4: PSD spectrogram for sensor 25 to 32 over all datasets. The datasets are separated by a dotted line and the cumulative size of
the datasets is indicated on the vertical axis. The observations are sorted in chronological order, with the first observation at the bottom.
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Figure F.5: March 23, 2017 – Normalized PSDs for the data measured on March 23, 2017 (i.e. dataset 1, 2, 3 and 4); not shown are the
sensors for which the PSDs are of low quality. Sensors in the range from 1 to 10 are located in segment 1, from 11 to 22 in segment 2, and
from 23 to 32 in segment 3. The added mass is attached to the bridge deck between sensor 16 and 17.
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Figure F.6: March 28, 2017 – Normalized PSDs for the data measured on March 28, 2017 (i.e. dataset 5 and 6); not shown are the sensors
for which the PSDs are of low quality. Sensors in the range from 1 to 10 are located in segment 1, from 11 to 22 in segment 2, and from 23
to 32 in segment 3. The added mass is attached to the bridge deck between sensor 16 and 17.
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F.2 Singular value spectra segment 1 & 3
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(b) Dataset 2 (100 kg)
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(c) Dataset 3 (50 kg)
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(d) Dataset 4 (0 kg)
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(e) Dataset 5 (25 kg)
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(f ) Dataset 6 (50 kg)
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Figure F.7: Singular value spectra of the processed signals from segment 1, separated by dataset (added mass). The top figure shows
a spectrogram with the observations in chronological order on the vertical axis; the bottom figure shows the average spectrum over all
observations of the particular dataset.



182 F. Spectra of Processed Signals

0

10

20

30

40

Sa
m

pl
e 

nu
m

be
r

80

70

60

50

40

50 60 70 80 90 100
Frequency (Hz)

80

70

60

lo
g 1

0(
SV

)

(a) Dataset 1 (0 kg)
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(b) Dataset 2 (100 kg)
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(c) Dataset 3 (50 kg)
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(d) Dataset 4 (0 kg)
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(e) Dataset 5 (25 kg)
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(f ) Dataset 6 (50 kg)
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Figure F.8: Singular value spectra of the processed signals from segment 3, separated by dataset (added mass). The top figure shows
a spectrogram with the observations in chronological order on the vertical axis; the bottom figure shows the average spectrum over all
observations of the particular dataset.



G
Modal Analysis

G.1 Identification Algorithm
Description of the identification algorithm that is used for estimating the natural frequencies and mode
shapes in Chapter 4. The modal parameters are estimated using the Frequency Domain Decomposition
(FDD) method. With this method the modes of a structure can be identified from the peaks in a singular value
spectrum. This process of peak picking can easily be automated, such that the modal parameter estimation
for a large number of measurements can be done automatically. Below a simple algorithm for automatic
mode identification is described, which will be used to estimate natural frequencies and mode shapes from
the data in this thesis. It must be noted that the algorithm has its limitations and might not work well on any
dataset. Nevertheless, it works well for the dataset used in this thesis.

Suppose we have N vectors of response measurements y(t ), then for each vector the spectral density ma-
trix can be estimated by Ŝy y ( f ) = Y( f )Y( f )H where Y( f ) is the Fourier transform of y(t ). By decomposition
of the spectral density matrix using the Singular Value Decomposition (SVD) the first singular values σ1( f )
and corresponding left singular vectors u1( f ) are obtained. This can be done for all N vectors of response
measurements resulting in the set

{(
σ1,k ( f ),u1,k ( f )

)
: k = 1, . . . , N

}
. This set serves as the starting point of the

identification algorithm explained below, where an element of the set will be referred to as an observation.

To determine the modes from all observations efficiently, an automatic identification algorithm is imple-
mented in python. This algorithm involves the following steps:

Step 1. Find peaks in the singular value spectrum σ1( f ) of a single observation; let fr , r = 1, . . . , Np denote
the frequencies of the Np peaks found. Each peak represents a possible mode, whose natural fre-
quency is estimated by the peak frequency fr and the corresponding mode shape is estimated by the
left singular vector; that is, φr = u1( fr ). At the end of this step, we have a set

{(
fr ,φr

)
: r = 1, . . . , Np

}
consisting of Np possible modes, where a mode is characterized by its natural frequency and mode
shape. In Figures G.1b, G.1d, G.1f and G.1h four examples of the singular value spectrum are shown
including the peaks that were found with an automatic peak picking algorithm. Here, twelve peaks
(Np = 12) are selected in each spectrum indicated by the numbers. From the figures it can be ob-
served that the peaks are correctly found, but also some spurious peaks are selected which are not
related to a structural mode. These modes are removed in the following steps.

Step 2. Remove non-uniquely identified modes. For this we compute the pairwise distance (G.1) between all
possible modes that were identified from a single observation. The distance between two identified
modes,

{
f j ,φ j

}
and

{
fl ,φl

}
, is defined as

d j l =
| f j − fl |

max( f j , fl )
+1−MAC(φ j ,φl ) (G.1)

which considers both the difference in natural frequency and mode shape; the latter is given by the
Modal Assurance Criterion (MAC), which is introduced in Section 3.2.5. The distance in equation
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(4.5) is close to zero for two modes that belong to the same mode. If multiple modes are found with
pairwise distances close to zero (lower than a certain threshold Ω1) then these modes are removed
from the set of possible modes except the mode with the largest peak value in the singular value spec-
trum. In this way a set of certainly different modes is obtained. In Figures G.1a, G.1c, G.1e and G.1g
four examples of the pairwise distances are shown in the form of a heatmap. The pairwise distances
correspond to the possible modes that were found in the four examples of previous step. The diago-
nal elements in the matrix represents the pairwise distance of a mode with itself, which is of course
zero. The off-diagonal elements represents the pairwise distance between two different identified
modes. If this value is close to zero (i.e. lower than a certain threshold) the two modes belong to the
same mode and are not unique. If multiple values on the off-diagonal for a certain peak are close
to zero, then these peaks represent all the same mode. Only the peak with the largest peak value in
the singular value spectrum, while the others are removed from the set. For example, in Figure G.1a
the modes corresponding to peak 7 to 12 are similar to the mode corresponding to the peak 1. The
latter has the largest peak value and is retained, while the modes corresponding to peak 7 to 12 are
removed form the set of possible modes.

Step 3. Repeat Step 1 and Step 2 for all the observations, to obtain a set of uniquely determined possible
modes for each observation. The results of four runs were illustrated in the previous steps.

Step 4. Cluster the modes from different observations using hierarchical clustering. Again, the pairwise dis-
tance between two modes is computed as in (4.5). Average linkage is used to form successive clusters.
Modes with similar characteristics will have a distance close to zero.

Step 5. Obtain clusters with similar modes. The distances between observations in a cluster should be small
enough for the observations to belong to the same mode, while the distance between two clusters
must be large enough for the clusters to represent two distinct modes. To distinguish between the
different clusters a threshold Ω2 is introduced. The clusters are then formed by observations whose
cluster distance is smaller than this threshold. The result of hierarchical clustering is best visual-
ized in the form of a dendogram, which shows the hierarchy of the clusters of observations that are
formed. Each observation starts in its own cluster at the bottom of the diagram, and pairs of clusters
are merges as one moves up the hierarchy. An example of a dendrogram is shown in Figure G.2. The
tree is cut at a distance of 0.1 and clusters of similar modes are indicated with different colors. In to-
tal nine clusters are formed, seven of them are clearly visible in the dendrogram while the other two
clusters are less clear because the clusters contain only a few observations.

Step 6. Count the number of elements in each cluster and disregard clusters with less elements than a certain
threshold. In this way spurious modes are removed. Figure Figure G.3 shows the number of modes
in the nine clusters that were formed in previous step. It is clear that two clusters contain only a few
modes, and these clusters can be removed by introducing a threshold for the minimum number of
elements in a cluster. Here, a 20% threshold level is used meaning that the modes must be present in
20% of the observations (i.e. 0.2 ·N ).

In the end, we have a set of modal parameters
{(

fn ,φn

)
: n = 1, . . . , Nm

}
for each observation. A set consist of

Nm pairs formed by a natural frequency fn and a mode shapeφn .
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(a) Example 1: Distances

50 60 70 80 90 100
Frequency (Hz)

65

60

55

50

45

40

35

30

25 1

2 3

4 5

6

7 8910
11 12

Retained
Removed

(b) Example 1: singular value spectrum
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(c) Example 2: Distances
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(d) Example 2: singular value spectrum
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(e) Example 3: Distances
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(f ) Example 3: singular value spectrum
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(g) Example 4: Distances
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(h) Example 4: singular value spectrum

Figure G.1: Examples of mode identification in single observations. The figures on the right show examples of singular value spectra
with identified peaks. Red crosses indicate peaks that are removed from the set based on the pairwise distances illustrated in the left
figures. The pairwise distance is computed based on the natural frequency and mode shape corresponding to the peaks. Non-uniquely
identified modes with a distance close to zero are removed, except the one with largest peak value.
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Figure G.2: Hierarchical clustering dendrogram.
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Figure G.3: Number of modes in clusters.
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Figure G.4: Frequency count of the identified modes from the singular value spectra of the processed signals from segment 1, separated
by added mass class.
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(a) Example 5: dataset 2 (100 kg)
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(b) Example 3: dataset 3 (50 kg)
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(c) Example 1: dataset 4 (0 kg)
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(d) Example 2: dataset 5 (25 kg)
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(e) Example 4: dataset 7 (75 kg)

Figure G.5: Examples of the singular value spectrum of the processed signals from segment 1, including the identified modes (ä). The
red crosses indicate the peaks that are removed during the modal clustering.
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Figure G.6: Local mode shapes of segment 1, corresponding to the identified modes in Figure 4.14c.
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G.3 Results Segment 3

50 60 70 80 90 100
Frequency (Hz)

0

20

40

60

80

100

C
ou

nt

1/m0
4/m0

(a) Dataset 1 and 4 (0 kg)

50 60 70 80 90 100
Frequency (Hz)

0

10

20

30

40

50

60

70

C
ou

nt

(b) Dataset 2 (100 kg)

50 60 70 80 90 100
Frequency (Hz)

0

10

20

30

40

50

60

70

C
ou

nt

3/m50
6/m50

(c) Dataset 3 and 6 (50 kg)

50 60 70 80 90 100
Frequency (Hz)

0

10

20

30

40

50

60

70

C
ou

nt

(d) Dataset 5 (25 kg)

50 60 70 80 90 100
Frequency (Hz)

0

10

20

30

40

50

60

C
ou

nt

(e) Dataset 7 (75 kg)

Figure G.7: Frequency count of the identified modes from the singular value spectra of the processed signals from segment 3, separated
by added mass class.
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(a) Example 5: dataset 2 (100 kg)
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(b) Example 3: dataset 3 (50 kg)
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(c) Example 1: dataset 4 (0 kg)
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(d) Example 2: dataset 5 (25 kg)
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(e) Example 4: dataset 7 (75 kg)

Figure G.8: Examples of the singular value spectrum of the processed signals from segment 3, including the identified modes (ä). The
red crosses indicate the peaks that are removed during the modal clustering.
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Figure G.9: Local mode shapes of segment 3, corresponding to the identified modes in Figure 4.14c.
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72 73 74 75 76 77 78 79
Frequency (Hz)

5

0

5

10

15

20

25

30

N
or

m
al

iz
ed

 F
ea

tu
re

s 
(-)

Mass class
0kg
25kg
50kg
75kg
100kg

0k
g

10
0k

g
25

kg
50

kg
75

kg

Predicted label

0kg

100kg

25kg

50kg

75kg

Tr
ue

 la
be

l

91.7%
22

0.0%
0

0.0%
0

8.3%
2

0.0%
0

0.0%
0

45.5%
10

18.2%
4

0.0%
0

36.4%
8

8.0%
2

24.0%
6

32.0%
8

12.0%
3

24.0%
6

40.0%
6

0.0%
0

0.0%
0

60.0%
9

0.0%
0

0.0%
0

0.0%
0

25.0%
5

0.0%
0

75.0%
15

Accuracy: 60.38%

(c) Sensor 3

88 89 90 91 92 93 94 95
Frequency (Hz)

5

0

5

10

15

20

25

30

N
or

m
al

iz
ed

 F
ea

tu
re

s 
(-)

Mass class
0kg
25kg
50kg
75kg
100kg

0k
g

10
0k

g
25

kg
50

kg
75

kg

Predicted label

0kg

100kg

25kg

50kg

75kg

Tr
ue

 la
be

l

100.0%
24

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

54.5%
12

45.5%
10

0.0%
0

0.0%
0

0.0%
0

24.0%
6

64.0%
16

0.0%
0

12.0%
3

0.0%
0

0.0%
0

0.0%
0

93.3%
14

6.7%
1

5.0%
1

0.0%
0

0.0%
0

20.0%
4

75.0%
15

Accuracy: 76.42%
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Figure H.2: Support vector machine classification using the spectral lines of a power spectra as features. The selected spectral lines that
are used as features are highlighted and correspond to frequencies around the peak in the spectrum. The features are selected using a
variance threshold of 5% of the maximum variance in the training dataset. The shown samples form the testing dataset for which the
confusion matrix is shown in the figure on the right.
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(b) Sensor 10
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(c) Sensor 12
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(d) Sensor 13

Figure H.3: Support vector machine classification using the spectral lines of a power spectra as features. The selected spectral lines that
are used as features are highlighted and correspond to frequencies around the peak in the spectrum. The features are selected using a
variance threshold of 5% of the maximum variance in the training dataset. The shown samples form the testing dataset for which the
confusion matrix is shown in the figure on the right.
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(a) Sensor 15
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(b) Sensor 16
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(c) Sensor 17
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Figure H.4: Support vector machine classification using the spectral lines of a power spectra as features. The selected spectral lines that
are used as features are highlighted and correspond to frequencies around the peak in the spectrum. The features are selected using a
variance threshold of 5% of the maximum variance in the training dataset. The shown samples form the testing dataset for which the
confusion matrix is shown in the figure on the right.



197

80 81 82 83 84 85 86 87
Frequency (Hz)

5

0

5

10

15

20

25

30

N
or

m
al

iz
ed

 F
ea

tu
re

s 
(-)

Mass class
0kg
25kg
50kg
75kg
100kg

0k
g

10
0k

g
25

kg
50

kg
75

kg

Predicted label

0kg

100kg

25kg

50kg

75kg

Tr
ue

 la
be

l

95.8%
23

0.0%
0

0.0%
0

4.2%
1

0.0%
0

4.5%
1

68.2%
15

0.0%
0

0.0%
0

27.3%
6

16.0%
4

32.0%
8

24.0%
6

12.0%
3

16.0%
4

46.7%
7

0.0%
0

0.0%
0

53.3%
8

0.0%
0

0.0%
0

0.0%
0

5.0%
1

0.0%
0

95.0%
19

Accuracy: 66.98%

(a) Sensor 19
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(b) Sensor 23
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(c) Sensor 26
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(d) Sensor 28

Figure H.5: Support vector machine classification using the spectral lines of a power spectra as features. The selected spectral lines that
are used as features are highlighted and correspond to frequencies around the peak in the spectrum. The features are selected using a
variance threshold of 5% of the maximum variance in the training dataset. The shown samples form the testing dataset for which the
confusion matrix is shown in the figure on the right.
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(a) Sensor 31

Figure H.6: Support vector machine classification using the spectral lines of a power spectra as features. The selected spectral lines that
are used as features are highlighted and correspond to frequencies around the peak in the spectrum. The features are selected using a
variance threshold of 5% of the maximum variance in the training dataset. The shown samples form the testing dataset for which the
confusion matrix is shown in the figure on the right.
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