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Abstract Pore pressure fluctuation in subsurface 
reservoirs and its resulting mechanical response can 
cause fault reactivation. Numerical simulation of 
such induced seismicity is important to develop reli-
able seismic hazard and risk assessments. However, 
modeling of fault reactivation is quite challenging, 
especially in the case of displaced faults, i.e., faults 
with non-zero offset. In this paper, we perform a sys-
tematic benchmarking study to validate two recently 
developed numerical methods for fault slip simula-
tion. Reference solutions are based on a semi-ana-
lytical approach that makes use of inclusion theory 
and Cauchy-type singular integral equations. The 

two numerical methods both use finite volume dis-
cretizations, but they employ different approaches to 
represent faults. One of them uses a conformal dis-
crete fault model (DFM) while the other employs an 
embedded (non-conformal) fault model. The semi-
analytical test cases cover a vertical frictionless fault, 
and inclined displaced faults with constant friction 
and slip-weakening friction. It was found that both 
numerical methods accurately represent pre-slip 
stress fields caused by pore pressure changes. Moreo-
ver, they also successfully cope with a vertical fric-
tionless fault. However, for the case with an inclined 
displaced fault with a constant friction coefficient, 
the embedded method can not converge for the post-
slip phase, whereas the DFM successfully coped 
with both constant and slip-weakening friction coef-
ficients. In its current implementation, the DFM is 
therefore the model of choice when accurate simula-
tion of local faulted systems is required.

Article Highlights 

• A series of benchmarks of increasing complexity 
is designed to facilitate rigorous validation of the 
induced fault slip simulations, particularly in chal-
lenging displaced fault configuration.

• The validation of Finite-Volume-based simulators 
reveals substantially higher accuracy provided by 
the conformal discrete fault model compared to 
the embedded discrete fault model.
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1 Introduction

1.1  Induced seismicity

Safe and sustainable exploitation of geo-energy 
resources requires accurate assessments of the asso-
ciated risks, including the risk of induced seismic-
ity. Seismic events can result from the reactivation of 
natural faults due to subsurface engineering activities. 
Numerous anthropogenic activities have been iden-
tified as potential triggers of these seismic events: 
reservoir impoundment (Carder 1945; Gupta 2002), 
fluid withdrawal (Segall 1989; Van Thienen-Visser 
and Breunese 2015; Muntendam-Bos et  al. 2022), 
fluid injection (Healy et al. 1968; Davis and Penning-
ton 1989; Kim 2013), hydraulic fracturing (Atkin-
son et al. 2016; Schultz et al. 2017), mining (Riemer 
and Durrheim 2012), geothermal energy produc-
tion (Majer et al. 2007; Ellsworth et al. 2019; Buijze 
et al. 2020) and CO2 geological storage (Cheng et al. 
2023). Notably, an abrupt rise in the rate of induced 
seismicity has been observed around the globe since 
2008 (Keranen and Weingarten 2018). The risks asso-
ciated with induced seismicity stem from the poten-
tial for structural damage and adverse effects on the 
environment and human life. These concerns have 
been documented in several studies that highlight the 
importance of hazard and risk assessments and opera-
tional strategies for subsurface activities (McGarr 
et al. 2002; Voort and Vanclay 2015; Elk et al. 2017).

1.2  Numerical simulation

The increasing number of induced earthquakes has 
led to the development of various numerical models 
for fault reactivation. Classically, the Galerkin finite 
element method (FEM) has been employed to inves-
tigate the onset of induced fault slip for different geo-
energy applications (Jha and Juanes 2014; Garipov 
et al. 2016; Garipov and Hui 2019; Franceschini et al. 
2022). Additionally, methods such as the Embedded 
Finite Element Method (EFEM) (Cusini et al. 2021) 

and the extended Finite Element Method (XFEM) 
(Xu et al. 2021; Han and Younis 2023) have demon-
strated their efficacy in the modeling of fault reactiva-
tion. Recently, Finite Volume Methods (FVMs) have 
also gained considerable interest in the computational 
geoscience community, where they have been pre-
ferred over the FEM due to their local mass conserva-
tion for simulation of nonlinear transport equations. 
The corresponding numerical schemes for staggered 
(Deb and Jenny 2017; Sokolova et al. 2019) and col-
located (Nordbotten 2014; Berge et  al. 2020; Terek-
hov 2020; Tripuraneni et  al. 2023) grids have been 
developed and successfully utilized for the investi-
gation of induced fault slip (Keilegavlen et al. 2021; 
Shokrollahzadeh Behbahani et  al. 2022; Novikov 
et al. 2022b). The advantages of the FVM include the 
local preservation of momentum balance, discontinu-
ous basis functions (potentially beneficial for resolv-
ing explicit faults), and seamless integration with 
fluid mass and energy balance solvers.

1.3  Fault models

Along with numerical methods, fault representation 
in a computational grid is pivotal for an accurate 
evaluation of the stress state around discontinuities. 
The Discrete Fracture Model (DFM) implies that 
fault partitioning is conformal with domain partition-
ing while the Embedded Discrete Fracture Model 
(EDFM) allows the two grids to be independent. 
Both models have been applied for the modeling of 
induced seismicity (Keilegavlen et  al. 2021; Franc-
eschini et  al. 2022; Novikov et  al. 2022b; Deb and 
Jenny 2017; Cusini et  al. 2021; Shokrollahzadeh 
Behbahani et al. 2022).

Nevertheless, the numerical modeling of fault reac-
tivation represents a challenging task that requires rig-
orous validation. Contact mechanics requires special 
attention due to the inequality constraints it imposes 
and friction laws that strongly affect the occurrence 
of seismicity. Additionally, the reservoir geometry 
can significantly affect the potential for fault reacti-
vation and seismicity. For instance, compartmental-
ized formations often exhibit discontinuities, such as 
displaced faults, i.e. faults with a non-zero offset, that 
require an accurate representation. Given the same 
computational grid, distinct numerical methods may 
yield divergent results around these discontinuities, 
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adding complexity to the seismic hazard assessment 
of real-world geological configurations.

1.4  (Semi-)analytical solutions

In the absence of detailed field data, the validation of 
numerical models can be done with the help of ana-
lytical and semi-analytical solutions. Closed-form 
analytical expressions for the poroelastic stresses in 
a reservoir undergoing depletion or injection can be 
obtained with the aid of inclusion theory (Eshelby 
1957), or the closely-related nucleus of strain concept 
(Geertsma 1966, 1973), based on potential theory 
(Goodier 1937). These methods have initially been 
used to estimate subsidence and stress fields outside 
subsurface reservoirs (Geertsma 1973; Segall 1985, 
1989, 1992; Segall et  al. 1994). Stresses inside an 
elliptical reservoir were subsequently considered by 
Segall and Fitzgerald (1998) and inside rectangu-
lar reservoirs by Soltanzadeh and Hawkes (2008). 
Expressions for induced stresses in a reservoir with a 
displaced fault, undergoing quasi-steady state deple-
tion or injection, were published by Jansen et  al. 
(2019). Similar expression were presented concur-
rently by Lehner (2019) and later by Wu et al. (2021, 
2024), while a further clarification of some underly-
ing mathematical aspects can be found in Cornelissen 
et al. (2024). In case of a non-homogeneous pressure 
field, inclusion theory can still be applied to obtain 
the fault stresses but the resulting integrals have to 
be solved numerically; see Cornelissen and Jansen 
(2023) for an example and further references.

The representation of faults in the form of dislo-
cations (Hills et  al. 1996; Weertman 1996) simpli-
fies the problem of pressure-induced fault slip to a 
Cauchy integral equation over the fault, which can 
subsequently be solved semi-analytically using Che-
byshev polynomials (Mavko 1982; Segall 2010; 
Jansen and Meulenbroek 2022) or Gauss-Chebyshev 
quadrature (Hills et  al. 1996; Viesca and Garagash 
2018; Meulenbroek and Jansen 2024).

1.5  Comparison

This paper provides a series of semi-analytical solu-
tions of increasing complexity, as listed in Table  1, 
for rigorous validation of computational geomechan-
ics engines in challenging settings. In particular these 
solutions can be used to validate numerical schemes 

Table 1  List of proposed benchmarks

Benchmark #0 represents the comparison of initial stresses 
while benchmarks #1 − #3 include the validation of fault 
responses caused by a pore pressure change

Benchmark 
no.

Fault Friction Section

#0 – – 2.4
#1 Vertical Frictionless 3
#2 Inclined Constant 4.1
#3 Inclined Slip-weakening 4.2

for the simulation of frictional contact in the pres-
ence of both strong and weak discontinuities (i.e. 
discontinuities in displacements and stresses respec-
tively). We demonstrate the use of this series of semi-
analytical solutions by examining the capacities of 
two novel poromechanical simulation approaches 
based on the FVM. The first one, inspired by ear-
lier work of Garipov et al. (2016) and further devel-
oped and implemented by Novikov et  al. (2022b), 
employs a discrete fault model (DFM). It forms part 
of a comprehensive porous media simulator, the 
Delft Advanced Reservoir Terra Simulator (DARTS), 
and will be referred to with that acronym. The sec-
ond approach, inspired by an earlier study of Deb 
and Jenny (2017) and further developed by Shokrol-
lahzadeh Behbahani et  al. (2022), uses a smoothed 
embedded discrete fault model (sEFVM) and will be 
referred to with that last acronym. Both methods are 
developed and implemented as part of the DeepNL 
Science4Steer project (NWO 2022). Appendices 1 
and 2 provide a brief overview of their characteristic 
features. Moreover, the computational grids used in 
this study are presented in Appendix 3.

The comparison is performed against semi-ana-
lytical solutions for pre-slip fault stresses and the 
resulting induced fault slip. These solutions have 
been developed using inclusion theory and Cauchy 
singular integral equations with details reported ear-
lier in Jansen et al. (2019); Jansen and Meulenbroek 
(2022); Cornelissen et  al. (2024) and Meulenbroek 
and Jansen (2024). Appendix  4 gives a brief over-
view of these methods. The semi-analytical bench-
mark data used to generate the figures in this paper 
are available in the form of an Excel file uploaded to 
the 4TU Data Repository: https://doi.org/10.4121/
d77f1a2c-29ea-4572-ad72-e33ed8dc8d22.
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1.6  Notation

We employ the solid mechanics sign convention, i.e., 
positive strains and stresses imply extension and ten-
sion, respectively. Pore pressures are taken as posi-
tive. We will frequently refer to inital and incremental 
variables. Initial variables represent the state of the 
system before the start of reservoir depletion and are 
indicated with lowercase letters with superscript 0. 
Incremental variables represent the state of the sys-
tem during reservoir depletion and are indicated with 
plain lowercase letters. The sums of initial and incre-
mental variables are referred to as combined variables 
and they are indicated with capital letters. In particu-
lar, we have

to indicate combined stresses and pressures, respec-
tively. Moreover, a common notation for total stresses 
� and effective stresses �′ is applied. They are related 
to each other according to

where � is the Biot coefficient (Wang 2000).

1.7  Organization of the paper

This paper is organized as follows. In Sect. 2 we pre-
sent the model setup used in our benchmark study 
and calculations for the unperturbed stress state. In 
Sect.  3 we consider a vertical frictionless displaced 
fault perturbed by depletion pressure, and com-
pare numerical and semi-analytical solutions for the 
induced fault slip. Section  4 is devoted to the com-
parison of numerical and semi-analytical results in 
the case of an inclined displaced fault governed by 
static and slip-weakening friction laws. The paper is 
concluded in Sect. 5. The two finite volume strategies 
used in this benchmark study, including the formula-
tion of the conformal and embedded fracture mod-
els, are described in Appendices 1 and 2. Moreover, 
Appendix  3 provides an overview of computational 
grids used in numerical calculations. A brief descrip-
tion of the semi-analytical techniques is presented in 
Appendix 4.

(1)Σ = �0 + �, P = p0 + p,

(2)�� = � + �p, ��0 = �0 + �p0, Σ� = Σ + �P, 2  Depletion in a reservoir without faults

2.1  Model

Consider a schematic representation of a simulation 
domain to model a homogeneous horizontal reservoir 
with part of the overburden and underburden and with-
out faults, as shown in Fig. 1. The simulation domain is a 
square with the origin of the coordinate system placed at 
the center of the domain. We consider quasi-steady-state 
poromechanics in a domain with uniform elastic proper-
ties. In that case, there is no need to solve for the pressure 
field which, instead, can be specified in each cell a-priori. 
Moreover, it is assumed that no incremental pressure 
change will occur in the overburden and underburden. 
The incremental reservoir pressure, as occurs during 
depletion, can therefore be simulated by specifying the 
pressure in the reservoir cells while keeping the pressures 
in the overburden and underburden equal to their initial 
values. Alternatively, these burdens may be represented 
as consisting of a purely elastic solid without porosity.

Figure  1 indicates the horizontal and vertical load 
configuration and the mechanical boundary conditions 
to simulate the initial stress field. The dimensions of 
the simulation domain and the reservoir are indicated 
in Table  2, with a = b = 112.5 m, together with sev-
eral other parameters that will be of relevance for later 

Fig. 1  Simulation set-up to represent a square reservoir with-
out faults (not to scale). Load configuration and mechanical 
boundary conditions to simulate initial stresses
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steps of the code comparison exercise. Uniform vertical 
distributed loads, with different magnitudes and oppo-
site directions, are applied from the top and bottom 
boundaries, while non-uniform horizontal distributed 
loads, with equal magnitudes but opposite directions, are 
applied from both sides, thus ensuring a stress field that 
is symmetric around the y axis. To constrain rigid body 
translations and rotation, horizontal displacement is con-
strained in a single point at the bottom center while ver-
tical displacement is constrained in two discrete points 
at the left and right boundaries. In all other points at the 
boundaries, the shear stresses are set equal to zero, as 
indicated by the ‘rollers’ at all sides. This configuration, 
with a minimum number of constraints at the boundaries, 
ensures that during the initial loading no spurious shear 
stresses are developed because of restricted displace-
ments. Further details of the initial stress field are given 
in the next section. After the simulation of these initial 
stresses, all vertical displacements are shifted such that 
the reference (zero vertical displacement) is located at the 
bottom of the simulation domain.

To enable the subsequent simulation of the deple-
tion process in the reservoir, the vertical boundary 
conditions are changed to roller-type ones with fixed 
horizontal displacements, and the bottom one to a 
roller-type condition with fixed vertical displace-
ments, see Fig. 2. The three constraints at the bottom 
and the sides are removed. Together with the use of 
plane-strain conditions in the simulation codes, which 
can be interpreted as fixing the horizontal displace-
ments in the z direction, and given the horizontally 
constant geometry of the reservoir layer, the simula-
tion domain approximates an infinite horizontal reser-
voir in x and z directions.

2.2  Initial stresses

With the center of the reservoir (and therefore the 
center of the simulation domain) at a depth of 3500 m 
and a height of the simulation domain of 4500 m it 
follows that the top of the domain is at 1250 m below 
the surface and 2250 m above the center. The required 
vertical distributed load fv,top to simulate the com-
bined rock and fluid weight of the overburden at that 
depth follows from the text at the bottom of Table 2 
as

where � is porosity, �s is solid density, �fl is fluid 
density, g is acceleration of gravity, and D0 is depth 
below the surface at the vertical center of the reser-
voir. Because compressive normal stresses are nega-
tive, fv,top is also negatively valued which implies that 
it acts in the negative y direction (i.e., downward, as 
indicated in Fig. 1.) The distributed load at the bot-
tom of the domain is obtained in the same manner as

which, in line with its positive value, acts upward. 
The required horizontal distributed load fh can be 
obtained as

where K0 is the ratio of initial effective horizontal to 
vertical stresses. Because the initial fluid pressures 

(3)
fv,top =�

0

yy
(2250) = [(1 − �)�s + ��fl]

g(y − D0) = −29.50e6 Pa,

(4)fv,bot = −�0
yy
(−2250) = 135.7e6 Pa,

(5)
fh(y) = −�0

xx
(y) = −

{
K0[�0

yy
(y) + �p0(y)] − �p0(y)

}
,

Fig. 2  Identical to Fig.  1 but now with load configuration 
and mechanical boundary conditions to simulate incremen-
tal stresses. The figure also shows a line through the center at 
an angle of � = 70 degrees with respect to horizontal, with an 
associated rotated x̂ − ŷ coordinate system
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at the top and bottom of the simulation domain are 
given by

where p0
0
 is the initial reservoir pressure at depth D0 , 

the values of fh at the top and bottom of the domain 
follow as

where the positive values of fh imply that they act in 
the positive x direction, i.e., to the right, as indicated 
at the left boundary in Fig. 1. A distributed load −fh , 
with an identical magnitude but acting in the negative 
x direction, is applied at the right boundary. The cor-
responding initial stress and pressure fields are given 
by

(6)
p0(2250) = p0

0
− �fl g y = 12.49e6 Pa,

p0(−2250) = 57.51e6 Pa,

(7)
fh(2250) = 20.37e6 Pa, fh(−2250) = 93.73e6 Pa,

(8)

�0
xx
(y) = −57.05e6 + 16.30e3 × y Pa,

�0
yy
(y) = −82.60e6 + 23.60e3 × y Pa,

p0(y) = 35.00e6 − 10.06e3 × y Pa.

Note that the initial shear stresses �0
xy

 are zero by 
design.

2.3  Incremental stresses

After computation of the initial stresses, removal of 
the three constrained displacements, and fixing of 
horizontal displacements at the vertical boundaries 
and vertical displacements at the bottom, depletion 
can be simulated by adding a (negative) incremental 
pressure p to the cells in the reservoir. As indicated in 
Table 2, the standard depletion in our series of exam-
ples is −25e6 Pa.

2.4  Results

The application of distributed loads fv,top , fv,bot and 
±fh to the boundaries, in order to compute the ini-
tial stress field, leads to initial vertical and horizon-
tal displacements u0

y
(x, y) and u0

x
(x, y) . We can use the 

constitutive equations for poroelastic plane strain to 
approximately compute u0

y
(y) , i.e., independent of x, 

Table 2  Reservoir 
properties, fault geometry 
and simulation domain

The initial vertical stress, initial pressure and initial effective normal stress have been computed as: 
𝜎0
yy
(y) = [(1 − 𝜙)𝜌s + 𝜙𝜌fl]g(y − D0), where 𝜎

0
v
< 0 , p0(y) = p0

0
− �fl g y , ��0

⟂
(y) = �0

⟂
(y) + �p0(y).

Symbol Property Value Units

a See Figs. 1 and 2 112.5 or 75 m
b " 112.5 or 150 m
D

0
Depth at reservoir center ( y = 0) 3500 m

g Acceleration of gravity 9.81 m/s2

G Shear modulus 6500 MPa
H Height of simulation domain 4500 m
K0 Ratio of initial effective horizontal to vertical stresses 0.5 –
p Incremental reservoir pressure −25 MPa
p0
0

Initial reservoir pressure at reservoir center 35 MPa
W Width of simulation domain 4500 m
� Biot coefficient 0.9 −
� Effective stress coefficient for fault friction 0.9 −
� Dip angle 90 or 70 deg
� Cohesion 0 MPa
� friction coefficient 0.52 −
� Poisson’s coefficient 0.15 −
�fl Fluid density 1020 kg/m3

�s Solid density 2650 kg/m3

� Porosity 0.15 −
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at the top boundary (Wang 2000, Eq. 7.3). Assuming 
that the reference level of zero vertical displacements 
has been relocated to the bottom of the simulation 
domain (at y = −2250 m) this results in

where H is the height of the simulation domain 
and E is Young’s modulus which is computed 
from the shear modulus G and Poisson’s ratio � as 
E = 2G(1 + �) = 15.0e9  Pa. We note that this large 
vertical displacement is due to vertical stresses 
caused by gravity forces, including those in the over-
burden. The corresponding vertical strain in the res-
ervoir is less than 0.005 which is a reasonable value. 
The approximate initial horizontal displacements at 
the top left and bottom left of the simulation domain 
follow as (Wang 2000, Eq. 7.2)

where we used

and where W is the width of the simulation domain. 
Identical displacements, but in opposite direction 
occur at the right boundary. The true displacement 
field will show small deviations from these approxi-
mate values because of contraction effects due to 
non-isotropic compression of the simulation domain 
as a result of the nonuniform initial distributed loads. 
However, the initial displacement field is not rel-
evant for the subsequent steps in the comparison, as 
opposed to the initial stress field which is important 
because it determines the initial Coulomb stresses at 
the faults which will be considered later on.

(9)

u0
y
(2250) = ∫

H

2

−
H

2

�0
yy
dy

=
1

E ∫
H

2

−
H

2

(
(1 − �2)�0

yy
(y) − �(1 + �)�0

xx
(y)

+ �(1 + �)(1 − 2�)p0(y)
)
dy = −13.66 m,

(10)

u0
x
(−2250, 2250) = −∫

0

−
W

2

�0
xx
(2250) dx

= −
W

2
�0
xx
(2250) = 0.87 m,

u0
x
(−2250,−2250) = 3.98 m,

(11)
�0
xx
(y) = −

W

2E
[(1 − �2)�0

xx
(y) − �(1 + �)�0

yy
(y)

+ �(1 + �)(1 − 2�)p0(y)],

As a reference for a future inclined fault configu-
ration, consider a line through the center at an angle 
� = 70 deg. with respect to horizontal, see Fig.  2. 
The normal and shear stresses along this line can be 
computed as (Jansen and Meulenbroek 2022, Eqs. 2 
and 3)

where x̂ and ŷ are co-rotated coordinates. The sign 
convention of the shear stresses �∥ has been chosen 
such that positive shear stresses indicate a normal 
faulting tendency, i.e. tendency for the right block to 
shift upward with respect to the left block.

Figure  3 displays the initial normal stresses and 
shear stresses along the inclined line for the two simula-
tion codes and the analytical solution. Both codes pro-
duce a fully satisfactory match although the DARTS 
results for the shear stresses display small irregularities 
resulting from the use of an unstructured grid.

After changing the boundary conditions to fix the 
initial stress field, reservoir depletion will result in uni-
form vertical compression. The combined vertical total 
stress Σyy will remain equal to the initial vertical total 
stress �0

yy
 because the weight of the overburden remains 

the same (no arching occurs for an infinitely wide reser-
voir). The incremental vertical total stress �yy will there-
fore be zero and the incremental pressure will result in 
an incremental effective vertical stress with magnitude 
��
yy
= �p . The uniaxial vertical stiffness is given by the 

uniaxial compaction modulus (Wang 2000, Eq. 6.5)

such that with a depletion of −25e6 Pa, we expect a 
reservoir compaction, i.e. a negative change Δh of 
the reservoir height h (where h = a + b ; see Fig. 1), 
according to

The incremental horizontal strain �xx remains equal to 
zero, because of the infinite horizontal extent of the 

(12)

𝜎0

⟂
(y) = 𝜎0

ŷŷ
(y) = 𝜎0

xx
(y) sin2 𝜃 + 𝜎0

yy
(y) cos2 𝜃

= −60.04e6 + 17.15e3 × y Pa,

𝜎0

∥
(y) = −𝜎0

x̂ŷ
(y) = (𝜎0

xx
(y) − 𝜎0

yy
(y)) sin 𝜃 cos 𝜃

= 8.21e6 − 2.35e3 × y Pa,

(13)Kv = 2G
1 − �

1 − 2�
= 15.79e9 Pa,

(14)Δh = h�yy = h
��
yy

Kv

= h
�p

Kv

= −0.32 m.
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reservoir, while the incremental horizontal effective 
stress is equal to (Wang 2000, Eq. 6.4)

such that the incremental total horizontal stress 
becomes

For this simple case of a reservoir without faults no 
incremental shear stresses �xy develop, and because 
there were no initial shear stresses �0

xy
 it follows that 

also the combined shear stresses Σxy vanish. How-
ever, for the line at an angle � = 70 deg. that was 
considered earlier in Fig. 3, the incremental horizon-
tal stresses �xx have an effect on both the incremen-
tal normal and shear stresses �

⟂
 and �∥ , and therefore 

also on the combined normal and shear stresses Σ
⟂
 

and Σ∥.
Figure 4 displays the (near-)reservoir details of Σ

⟂
 

and Σ∥ along the inclined line for the two simulation 
codes and the analytical solution. Both codes pro-
duce a fully satisfactory match. We note that DARTS 
demonstrates a somewhat higher relative accuracy for 
normal stresses than for shear, especially in Fig. 3, a 

(15)��

xx
=

�

1 − �
��

yy
=

�

1 − �
�p = −3.97e6 Pa,

(16)�xx = ��

xx
− �p = 18.53e6 Pa.

feature that is explained by the higher magnitude of 
the normal stress.

3  Depletion in a reservoir with a vertical fault 
with offset and no friction

Consider the same reservoir as before while introduc-
ing a displaced vertical fault at the center of the res-
ervoir by choosing a = 75m and b = 150m such that 
the reservoir has the same height h = a + b = 225m 
as before but now contains a fault with an offset (also 
known as fault throw) tf = b − a = 75m , see Fig. 5. 
As a first step, we don’t allow for fault slip in the sim-
ulation and perform the same steps as in the previous 
example to generate the initial and incremental stress 
fields.

The combined pre-slip Coulomb stress ΣC , i.e. the 
pre-slip Coulomb stress resulting from the sum of ini-
tial and incremental stresses is defined for an arbitrarily 
oriented fault with friction coefficient � as

For the particular case of a positive shear stress in a 
vertical fault without friction, i.e. with � = 90 degrees 

(17)ΣC = |Σ∥| + �Σ
⟂
.

Fig. 3  Initial normal 
stresses (left) and initial 
shear stresses (right) along 
a line through the center of 
the reservoir at an angle of 
70 deg. with horizontal
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and � = 0 , and an incremental pressure of p = −25 
MPa this reduces to (Jansen and Meulenbroek 2022, 
Eqs. 8 and 9)

where C is given by

Next, we allow for slip in the fault over the entire sim-
ulation domain, i.e. from −2250 to 2250 m. The pres-
sure in the fault is equal to the initial pressure p0(y) 
except for the reservoir section −150m ≥ y ≥ 150m 
where it is equal to the combined pressure 
P = p0(y) − 25e6 Pa. The analytical solution for the 
fault slip is given by Jansen and Meulenbroek (2022, 
Eqs. (25) and (35))

where

(18)ΣC = −𝜎x̂ŷ = 𝜎xy =
C

2
ln

(y − a)2(y + a)2

(y − b)2(y + b)2
,

(19)C =
(1 − 2�)�p

2�(1 − �)
= −2.95e6 Pa.

(20)𝛿(y) =
C

A
×

⎧
⎪⎪⎨⎪⎪⎩

0 if y ≤ −b,

−(y + b) if − b < y ≤ −a,

(a − b) if − a < y < a,

(y − b) if a ≤ y < b,

0 if b ≤ y,

Fig. 4  Combined normal 
stresses (left) and combined 
shear stresses (right) along 
a line through the center of 
the reservoir at an angle of 
70 deg. with horizontal

Fig. 5  Simulation set-up for a reservoir with a vertical dis-
placed fault (not to scale)
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such that we obtain

with all distances expressed in meters. Figure  6 
(right) displays this slip distribution over the height 
of the reservoir, and Fig. 6 (left) displays the pre-slip 
Coulomb stress.

The correspondence between the DARTS results 
and the semi-analytical results is excellent. The 
sEFVM results are slightly in error. This is because 
the sEFVM calculates the slip by enriching the dis-
placement field with one additional degree of free-
dom per matrix grid node. This is as opposed to other 
embedded methods such as XFEM, where in 2D each 
node that is enriched with the jump function is given 
two degrees of freedom. For fault tip enrichment, 
there are four extra degrees of freedom. This means 

(21)A =
G

2�(1 − �)
= 1.2171e09 Pa,

(22)

𝛿(y) = −0.0024 ×

⎧
⎪⎪⎨⎪⎪⎩

0 if y ≤ −150,

−(y + 150) if − 150 < y ≤ −75,

(75 − 150) if − 75 < y < 75,

(y − 150) if 75 ≤ y < 150,

0 if 150 ≤ y,

the sEFVM is much faster in terms of CPU time, 
but the predictions are usually less accurate (Li et al. 
2020; Xu et al. 2021).

Fig. 6  Left: pre-slip 
Coulomb stresses ΣC in a 
frictionless vertical fault 
with offset (which, for this 
particular case, just equals 
the incremental shear 
stress �∥ ). Right: the result-
ing slip �

Fig. 7  Simulation set-up for a reservoir with an inclined dis-
placed fault (not to scale)
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4  Depletion in a reservoir with an inclined fault 
with offset and friction

4.1  Constant friction

Consider the same reservoir as in the previous step 
but now with a normal fault at 70 deg. with respect to 
horizontal; see Fig. 7.

Figure 8 (left) displays the pre-slip shear stresses 
Σ∥ and the slip threshold Σsl = −�Σ�

⟂
 for an incremen-

tal pressure p = −25 MPa, and Fig.  8 (right) shows 
the corresponding pre-slip Coulomb stresses.

Again, the DARTS results closely resemble the 
semi-analytical ones, while the sEFVM results dis-
play small deviations, especially near the stress peaks 
at y = ±75 m and y = ±150 m. As shown in Fig. 15, 
the sEFVM uses a Cartesian grid with embedded 
faults to model the system. As a consequence, oscil-
lations in the stress profiles can arise when the fault 
is misaligned with the grid. A smoothing step in the 
sEFVM addresses these oscillations for improved 
estimation of slip. However, this smoothing also flat-
tens the peaks at y = ±75 m and y = ±150 m.

Figure  9 displays the post-slip Coulomb stresses 
(left) and fault slip (right) for p = −25 MPa. At this 
depletion level, the slip occurs in the form of two 

separate slip patches. For increasing depletion, the 
patches will merge as shown in the same figure with 
results for p = −27 MPa. Somewhat surprisingly the 
DARTS results now show a discrepancy with the 
semi-analytical ones, especially for the merged slip 
patch. Further comparisons revealed that this dis-
crepancy disappears if the width W of the simula-
tion domain is increased. Figure 10 displays the same 
results but now for a simulation with W = 18,000 m, 
i.e. four times as wide as the original simulation 
domain. Apparently, the strongly nonlinear mechan-
ics involved in fault slip leads to strong sensitivities 
of the slip patch size to the boundary conditions at 
the edges of the reservoir. This finding suggests that 
in reality there will also be a large sensitivity to the 
boundary conditions of the reservoir and probably 
also a significant interaction effect of neighboring 
faults. Figure 11 displays the reservoir and the simu-
lation domain, with increased width, to scale.

Figure  12 displays the location of the four slip 
patch boundaries (two for each of the two patches) as 
a function of incremental pressure. Merging occurs 
when the pressure has dropped to p = −26.9 MPa and 
the DARTS results (computed with W = 18,000  m) 
match the semi-analytical ones. The sFEVM results 
for Figs. 9, 10, 11 and 12 did not fully converge for 

Fig. 8  Left: pre-slip shear 
stresses Σ∥ and slip thresh-
old Σsl in an inclined fault 
with offset and constant 
friction. Right: the corre-
sponding pre-slip Coulomb 
stresses ΣC . Simulation 
domain width W = 4500 m
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these test cases and displayed significant deviations 
from the semi-analytical results. We conclude that the 
characteristics of our embedded fault implementation, 

as were discussed at the end of in Sect. 3, hamper an 
accurate simulation of induced slip in this displaced 
fault configuration with friction.

Fig. 9  Left: post-slip Cou-
lomb stresses Σ̆C . Right: 
the corresponding slip � . 
Simulation domain width 
W = 4500 m

Fig. 10  Left: post-slip 
Coulomb stresses Σ̆C . 
Right: the corresponding 
slip � . Simulation domain 
width W = 18,000 m
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4.2  Slip-weakening friction

In the case of slip-weakening, friction decreases 
as slip increases in absolute value. We use a linear 
slip-weakening friction law which implies a linear 
decrease of the friction coefficient from a static value 
�s to a dynamic one �d over a critical slip distance �c:

Note that the friction value remains equal to �d for 
absolute values of slip larger than  �c , as shown in 
Fig. 13 for positive values of �.

(23)

𝜇(y) =

{
𝜇st − (𝜇st − 𝜇dyn)

|𝛿(y)|
𝛿c

if |𝛿(y)| ≤ 𝛿c

𝜇dyn if |𝛿(y)| > 𝛿c

.

Fig. 11  Simulation set-
up, with increased width 
W = 18,000 m, to scale

Fig. 12  Slip patch 
boundaries as a function of 
depletion pressure p. The 
vertical dotted line indicates 
the merging pressure. 
Simulation domain width 
W = 18,000 m

Fig. 13  Slip-weakening friction law illustrated for positive 
values of �
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An increase in fault slip will result in a reduction 
in ’carrying capacity’ of the fault, and may lead to 
nucleation of a seismic event once a fault slip pattern 
has been reached in which equilibrium of shear forces 
is no longer possible. The corresponding deple-
tion pressure is known as the nucleation pressure p∗ 
(Uenishi and Rice 2003). We note that more com-
plex friction models are required to accurately model 
seismic slip, such as velocity-weakening or ’rate and 
state’ models. However slip-weakening friction is 
often used as a representative, albeit simple, model 
to describe aseismic fault slip prior to the onset of 
seismicity in geological formations (Ohnaka 2013). 
A semi-analytical approach to determine p∗ , using an 
eigenvalue/eigenvector computation, was presented 
by Uenishi and Rice (2003) for a situation with a 
peaked shear stress and a constant normal stress along 
the fault. A slightly modified approach, to cope with a 
non-constant normal stress as in the current example, 
was presented by Jansen and Meulenbroek (2022).

Figure 14 illustrates the comparison of semi-ana-
lytical and numerical results for the post-slip Cou-
lomb stresses and the slip pattern in the upper slip 
patch for values of the depletion pressure p just before 
reaching the nucleation pressure p∗ . For (negative) 

values of p below p∗ , equilibrium can no longer be 
computed in a quasi-static simulation, which implies 
that a seismic event will occur. As an aside, we note 
that ’run-away’ rupture propagation is expected 
because the dynamic shear capacity utilization for 
�dyn = 0.20 is above unity for the current fault con-
figuration (Jansen et  al. 2019). With parameter val-
ues �s = 0.52,�d = 0.20 and �c = 0.02m , the semi-
analytical approach predicts p∗ = −17.41MPa while 
DARTS arrives at p∗ = −17.27MPa . The small dif-
ferences in slip profiles and nucleation pressures 
can be explained by discretization errors inherent in 
numerical approximation and the effects of a finite 
domain width discussed in Sect. 4.1.

5  Conclusions

The study reported in this paper involved benchmark-
ing of two recently-developed numerical methods 
for the simulation of induced fault slip in poroelastic 
reservoirs against recently-developed semi-analytical 
results, using test cases of increasing complexity. 
These concerned an unfaulted reservoir, a reservoir 
with a vertical frictionless displaced fault (i.e. a fault 

Fig. 14  Semi-analytical 
results (red) and numerical 
results (blue) for slip-weak-
ening friction. Post-slip 
Coulomb stress (left) and 
fault slip (right) for the 
upper slip patch at a deple-
tion pressure just before 
reaching the nucleation 
pressure p∗ . A slip-weaken-
ing friction law is used with 
�s = 0.52,�d = 0.20, �c = 0.02m . 
The analytical estimate 
for the nucleation pres-
sure is p∗ = −17.41MPa , 
the numerical one is 
p∗ = −17.27MPa
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with non-zero offset), and reservoirs with inclined 
displaced faults governed by static and slip-weaken-
ing friction laws.

Both numerical simulators are based on the finite 
volume (FV) method. The first one (DARTS) uses 
a FV collocated scheme with unstructured grids 
and conformal mesh, and applies a discrete fracture 
model (DFM). It provided a good match to the semi-
analytical solutions for all test cases, including the 
one with a slip-weakening friction law. The second 
one, the smoothed embedded FV method (sEFVM), 
applies an embedded discrete fault model. It was 
found to be reasonably accurate for test cases without 
a fault and with a frictionless vertical displaced fault. 
However, for the case with an inclined displaced fault 
with constant friction, the sEFVM provided accurate 
results only for pre-slip state while it did not converge 
for the post-slip phase. Also, for the pre-slip state of 
the inclined fault, the sEFVM results were slightly 
less accurate than those obtained by DARTS.

The sEFVM applies Cartesian structured grids on 
the faulted system, with independent grids for faults 
and rock matrix. The current version of the method 
applies a FV discretization scheme which is enriched 
by only one degree-of-freedom per fault element. 
While this features makes it computationally attrac-
tive for field-scale applications, it appears to hamper 
accurate simulation of the slip behavior of displaced 
faults. Future research needs to be done to either 
enhance the enrichment functions within the sEFVM, 
or to include more enrichment points, in order to suc-
cessfully capture the contact behavior of displaced 
faults.

In conclusion, the DFM is found to be the method 
of choice when accurate simulation of displaced faults 
is required. Its use as local solver for a global sEFVM 
is a possible direction for future investigations.
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Appendix 1: Collocated FVM with DFM

In this appendix we briefly describe the collocated 
finite volume method (FVM) with a discrete fracture 
model (DFM). For a more detailed description; see 
Novikov et  al. (2022b). The system of single-phase 
fluid mass balance and static momentum balance 
equations for porous media can be written as

subjected to the constitutive relations (Coussy 2004)

where Σ is a rank-two total stress tensor, � is poros-
ity, �fl, �s are fluid and matrix densities, p is pore pres-
sure, g is accelleration of gravity, y is depth, K is a 
rank-two permeability tensor, �f  is fluid viscosity, 
r is a source of mass, C is a rank-four drained stiff-
ness tensor for the rock matrix, ∇s is the symmetric 
gradient operator, u is a vector of displacements, B is 
a rank-two tensor of Biot coefficients, subscript ”0“ 
denotes the initial value of a variable, tr(B) is the 
trace of B , and Kr is the bulk modulus of the solid 
phase. Equations (24), (25) are subject to correspond-
ing boundary and initial conditions.

At the fault interfaces, we consider a gap vector 
g that is equal to the jump of displacements over the 
contact g = u+ − u− , where the + and − signs denote 
a particular side of the fault. The contact conditions 
following Simo and Laursen (1992) read

(24)− ∇ ⋅ Σ = (��f + (1 − �)�s)g∇y,

(25)
�

�t

(
��f

)
− ∇ ⋅

(
�f K

�f

(
∇p − �f g∇y

))
= r,

(26)Σ = C ∶ ∇s
(
u − u0

)
− pB,

(27)� = �0 +
tr(B) ∕ 3 − �0

Kr

(p − p0) + B ∶ ∇su,
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where f = −Σ ⋅ n is the total traction vector, 
f � = −(Σ + pB) ⋅ n is the effective (Biot) traction vec-
tor, f �

N
= nTf � and f �

T
= (I − nnT )f � are the scalar nor-

mal and vectorial tangential projections of f ′ on the 
fault; gN and gT are the equivalent normal and tangen-
tial projections of g on the fault; ġ stands for the time 
derivative of the gap vector and Φ =

|||f �T
||| − �f �

N
 is the 

Coulomb friction function with � the friction coeffi-
cient. Equation (28) represents a non-penetration con-
dition, Eq. (29) governs relaxation of tangential trac-
tion once slip occurs, and Eq. (30) sets the change of 
the tangential gap (i.e. the slip) to zero if the slip cri-
terion is not exceeded.

In the case of a collocated arrangement of 
unknown displacements and pore pressure, we can 
formulate discrete balance equations in a unified 
way. We use the cell-centered Finite Volume Method 
(FVM) to discretize Eqs. (24) and (25) (Novikov et al. 
2022b, a). They can be written in cell i in the follow-
ing vector form

where subscript j denotes the neighbors of cell i, 
Δt is the time step size, Vi is the volume of cell i, �ij 
denotes the area of the connection between cells i and 
j, superscripts n, and n + 1 denote the variables taken 
from the current and next time step, respectively, 
while �̃� and q̃ij are defined as

(28)gN ≤0,

(29)f �
T
− 𝜇f �

N

ġT
||ġT ||

=0, Φ = 0, ||ġT || ≠ 0, (slip),

(30)ġT =0, Φ < 0, (stick),

(31)

Vi

(
Δt𝜌n+1

t,i
g∇y(

�̃�𝜌f
)|||

i,n+1

i,n
+ Δtrn+1

i

)

+
∑
j∈𝜕Vi

𝛿ij

(
Δtf n+1

ij

𝜌f iq̃f ,ij
|||
n+1

n
+ Δt(𝜌f qf∕𝜇f )

n+1
ij

)
= 0,

(32)�̃� = 𝜙0 +
tr(B) ∕ 3 − 𝜙0

Ks

(p − p0),

(33)q̃f ,ij =
(
u − u0

)|||
ij

i
⋅ (Bn)ij,

where the last term is approximated using Gauss’ 
formula as a sum of fluxes q̃f ,ij over cell interfaces. 
The term 

(
�f∕�f

)
ij
 is calculated using an upwind 

approximation.
We use a gradient-based coupled multi-point stress 

and multi-point flux approximation for fij, qf ,ij and q̃f ,ij 
(Novikov et al. 2022b, a).

To satisfy Eqs. (28)–(30), we use a penalty regu-
larization (Simo and Laursen 1992; Yastrebov 2013) 
which leads to a return-mapping algorithm according 
to

where f̃ ′
T
 denotes a trial traction, which represents 

the penalized effective tangential traction (Simo and 
Laursen 1992). Penalty parameters 𝜀N , 𝜀T ≫ 1 are 
calculated as �N = fscaleE�∕V , �T = fscaleG�∕V  where 
fscale is an empirical scaling factor, � denotes the 
area of the contact interface, V stands for the mean 
volume of two neighboring matrix cells, while E and 
G denote the mean Young’s and shear moduli of two 
neighboring matrix cells (Cardiff et al. 2017). Moreo-
ver, the Coulomb friction function Φ used as a slip-
ping criterion is evaluated at the trial state Φ̃ = Φ(̃f �) 
that accounts for the change of slip gT over the time 
step. Macaulay brackets are used to indicate that ⟨a⟩ is 
equal to a if a ≥ 0 and otherwise equal to zero. Thus, 
in the slip state Φ̃ = 0 , Eq.  (36) requires contact to 
remain at the slipping surface defined by Φ = 0 where 
the direction of forces is defined by the trial traction. 
Contact reaches the stick state once the slip incre-
ment in Eq.  (35) becomes negligible compared to 
the previous traction ( ġT = 0 ). In this case, Eq.  (36) 
claims the traction to be equal to the trial one. In our 
experience, the return-mapping algorithm described 
in Eqs. (35)–(36) does not exhibit significant conver-
gence problems, except for cases with severe inf-sup 
instability (pressure oscillations) and when the slip 
direction reverses. We may also expect convergence 
issues in the presence of intersecting faults or in the 

(34)f �n+1
N

− �N⟨gn+1N
⟩ = 0,

(35)
f̃ �
T
= f �n

T
+ �T (g

n+1
T

− gn
T
), Φ̃ =

|||f̃
�

T

||| − �n+1f �n+1
N

,

(36)f �n+1
T

− f̃ �
T
+ ⟨Φ̃⟩ f̃ �

T

���f̃ �T
���
= 0,
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case of a hydraulically active fault when its volume 
and transmissibilities depend on the aperture gN.

Note that we treat displacements over the 
lower-dimensional fault interface as discontinuous 
whereas pressure remains continuous there accord-
ing to the assumptions of the equidimensional DFM 
approach. Sometimes this combination is called the 
mixed-dimensional fault model (Boon and Nordbot-
ten 2022).

Appendix 2: Smoothed enhanced finite volume 
method

The smooth enhanced finite volume method (sEFVM) 
(Shokrollahzadeh Behbahani et  al. 2022) uses the 
finite volume method (FVM) for both mechanics and 
flow. The mass conservation equations for a single 
phase, slightly-compressible flow inside a poroelas-
tic domain with conductive faults using the embed-
ded discrete fracture modeling (EDFM) method read 
(Hajibeygi et al. 2011; Li and Lee 2008),

and

where p is pressure, t is time, M is the Biot modu-
lus, Ψ is the net flux between the fault and matrix and 
a is aperture of the fault. Ef  is the fault accumula-
tion which is negligible if fault porosity is constant 
(McClure and Horne 2011). Subscripts f and m indi-
cate the fault and matrix, respectively.

The linear momentum balance for a faulted 
poroelastic medium can be expressed as

where �̃ is the effective stress, f⃗  is the body force 
per unit volume and Ĩ  is the identity matrix (Wang 
2000, Eq. 4.10). Assuming linear elastic deformation, 
the stress reads

(37)

𝛼
𝜕∇ ⋅ u⃗

𝜕t
+

1

M

𝜕pm

𝜕t
+ ∇ ⋅

(
−

Kf

𝜇f

⋅ ∇pm

)
+ Ψm→f = Qm,

(38)
�Ef

�t
+ ∇ ⋅

(
−

aKf

�f

⋅ ∇pf

)
+ Ψf→m = Qf ,

(39)∇ ⋅ (�𝜎 − 𝛼p�I) + f⃗ = 0,

(40)�𝜎 = �C ∶ ∇su⃗,

where C̃ is the elasticity tensor (Wang 
2000, Eq. 2.42).

The sEFVM determines a nonzero value for the 
fault slip whenever the Coulomb stresses on a fault 
node become positive. Further details on the gov-
erning equations and initial and boundary condi-
tions are described in Shokrollahzadeh Behbahani 
et al. (2022).

The computational domain of the sEFVM is 
shown in Fig.  15. It shows the control volumes 
for mechanics ( Ωu ) and flow ( Ωp ) for the matrix. 
Faults are represented in an embedded manner with 
unknowns (slip and fault pressure) placed at the 
location of the fault.

In the sEFVM, a jump is appended to the estima-
tion of the displacement field inside a matrix grid 
(Simo et al. 1993). The displacement reads

where N are basis functions that interpolate displace-
ment within the cartesian control volume of Fig. 15. 
For cells intersected by faults, the latter term in 
Eq. (41) is included. It contains the directional com-
ponent of the unit tangent vector to the fault ( ⃗t  ). W is 
defined as

(41)u⃗ ≈

4∑
i=1

Niu⃗i +

ns∑
i=1

siWit⃗i,

Fig. 15  Representation of the control volumes for the sEFMV 
method
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where f(x, y) is the signed distance to the fault and H 
is a modified Heaviside function defined as

The sEFVM numerically solves the momentum bal-
ance for the matrix, the friction law for the faults, and 
the mass balance equations for matrix and faults in a 
fully-implicit fully-coupled manner.

Appendix 3: Grids used in calculations

The DFM concept implies a computational grid to 
be conformal with faults. We use unstructured trian-
gular grids shown in the left column in Fig. 16. Grid 
refinement helps to resolve discontinuities along the 
fault. Characteristic grid sizes used in calculations 
are listed in Table. 3. The sEFVM uses a Cartesian 
grid for the matrix and the fault is embedded over it 
as shown in the right column in Fig. 16. All sEFVM 
runs were performed for a cell size of 8.3m.

Appendix 4: Semi‑analytical techniques

Details of the semi-analytical techniques used to gen-
erate the results in this paper have been reported in 
Jansen et al. (2019), Jansen and Meulenbroek (2022), 
Cornelissen et  al. (2024) and Meulenbroek and 
Jansen (2024). Here we give a brief overview of these 
methods.

4.1 Inclusion theory

Linear elastic displacements, strains and stresses 
inside and outside a reservoir undergoing injection 
or production can be determined with the ‘theory 
of inclusions’ as introduced by Eshelby (1957). 
Identical expressions can be obtained from poten-
tial theory and the related ’nucleus of strain con-
cept’ (Goodier 1937; Timoshenko and Goodier 
1970; Geertsma 1973; Rudnicki 2002; Lehner et al. 
2005). Inclusion theory and the nucleus of strain 

(42)

W(x, y) =

4∑
i=1

Ni(x, y)

[
H
(
f (x, y)

)
− H

(
f
(
xi, yi

))]
,

(43)H(𝜁) =

{
−1 𝜁 ≤ 0

+1 𝜁 > 0
.

concept have been applied to compute subsidence 
(Geertsma 1966, 1973), and stress fields around 
producing reservoirs to establish the risk on reac-
tivation of nearby (nondisplaced) faults (Segall 
1985, 1989; Segall and Fitzgerald 1998; Soltanza-
deh and Hawkes 2008). For in-depth derivations, 
see Mura (1987) and Rudnicki (2011).

The remainder of this subsection is largely iden-
tical to the description in Cornelissen et  al. (2024) 
which, in turn is based on the Supplementary Infor-
mation belonging to Jansen et  al. (2019). Consider 
a homogeneous porous and permeable inclusion 
undergoing an increase of pore pressure inside a 
homogeneous infinite domain with the same elastic 
proper- ties as the inclusion. Flow to or from the outer 
domain is not possible. An increase in pore pressure 
in the inclusion causes a reduction in effective stress 
in its matrix and consequently an elastic expansion of 
the inclusion. Figure 17 depicts a series of imaginary 
steps that allow for computing the displacements in 
and around the expanding inclusion as first described 
by Eshelby (1957): 

1. Remove the inclusion from its surroundings.
2. Allow the inclusion to expand freely in response 

to a change in pore pressure.
3. Restore the inclusion to its original shape by 

applying distributed forces at its boundaries.
4. Re-attach the inclusion to its surroundings and 

remove the forces (i.e., apply the forces in oppo-
site direction to the entire infinite solid).

If the inclusion would be allowed to expand stress-
free, as in step 2 above, it would experience a uniform 
dilational deformation. The corresponding strain ten-
sor is often referred to as the transformation strain, 
stress-free strain, or eigenstrain, has components 
(Wang 2000, p. 38)

where � = 1 − cs∕cm is Biot’s coefficient, with cs 
the compressibility of the solid phase and cm the 
drained compressibility of the porous medium, K is 
the drained pore bulk modulus, �ij is the regular Kro-
necker delta, and �Ω is a modified Kronecker delta 
that equals 1 inside the inclusion and 0 outside. No 
strains would develop outside the inclusion as a result 
of step 2.

(44)�∗
ij
=

�p

3K
�ij�Ω,
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Fig. 16  Computational 
grids used in calculations. 
The grids in the left column 
(a, c, e) were used by the 
collocated FV with DFM 
(DARTS) while the grids 
from the right column were 
used by the sEFVM. The 
collocated FV with DFM 
(DARTS) uses adaptive 
triangular grids. The grid 
size is scaled for convenient 
representation, the real grid 
size is listed in Table 3. In 
the initial stage, the grid is 
adaptively refined towards 
the reservoir, in the pres-
ence of a fault—towards 
the fault. The sEFVM uses 
Cartesian grids with embed-
ded faults. The grid size is 
also scaled for convenient 
representation
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The inclusion can be brought back to its original 
shape and size by applying surface tractions with mag-
nitude −�∗

ij
nj to the boundary of the inclusion, where �∗

ij
 

is obtained from the transformation strain via Hooke’s 
law

where � and � are Lamé’s first and second parameter, 
respectively, repeated indices imply summation, and 
ni denotes the i-component of the outward normal 
vector of the inclusion boundary. The stress tensor �∗

ij
 

is generally referred to as the eigenstress (not to be 
confused with the principal stresses, which are com-
puted from the eigenvalues of the stress tensor). At 
the end of step 3, the strain equals zero everywhere, 
while the stress inside the inclusion equals �∗

ij
 and 

vanishes outside of the inclusion.
Next, we reconnect the inclusion to the surrounding 

material and remove the distributed forces by applying 
their negatives. The resulting displacement field can be 
computed from

(45)�∗

ij
= −(��ij�

∗

kk
+ 2��∗

ij
) = −�p�ij�Ω,

(46)ui(x) = �p∫
Γ

gijnj dΓ,

where ui is the displacement in the i-direction and gij 
are Green’s functions, which denote the displacement 
in the i-direction at point x due to an applied force in 
the j-direction at point x′ Love (1927). Applying the 
divergence theorem allows us to transform the surface 
integral in Eq. (46) into a volume integral

where a comma is used to indicate differentiation. 
The displacement field described by Eq. (47) is due 
to a distribution of centers of dilatation (i.e., double 
forces without moment in all perpendicular direc-
tions), also referred to as nuclei of strain.

Once the displacement field is known from Eq. 
(47), the total strains �ij can be obtained from the 
compatibility equation

The stresses can be obtained from the strains by 
Hooke’s law. However, for points inside the inclusion 
Ω it is necessary to add the eigenstress defined in Eq. 
(45) (Mura 1987). The stresses are then given by

which is equivalent to the poroelastic form of Hooke’s 
law (Wang 2000).

Jansen et  al. (2019) used this method to derive 
2D closed-form expressions for the depletion-
induced or injection-induced stresses in an inclined 
displaced fault, i.e. a fault with a nonzero offset. 
Similar expressions were published concurrently 
by Lehner (2019) and later by Wu et  al. (2021), 
while further results and an analysis of some 

(47)ui(x) = �p∫
Ω

gij,j(x, x
�) dΩ,

(48)�ij =
1

2

(
uj,i + ui,j

)
.

(49)�ij = ��ij�kk + 2��ij − �p�ij�Ω,

Table 3  The cell size of adaptive grids shown in the left col-
umn in Fig. 16

Case Boundary cell size, m Refined 
cell size, 
m

Without fault 50 20
With fault 100 2

Fig. 17  Imaginary steps 
involved in computing 
the displacements in and 
around an expanding inclu-
sion in an infinite solid
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mathematical aspects were recently published by 
Cornelissen et al. (2024).

4.2 Cauchy integrals and Chebyshev polynomials

Inclusion theory (or, alternatively, numerical 
techniques) can be used to compute the injection-
induced or depletion-induced pre-slip Coulomb 
stress in a fault, defined as

where Σ∥ is the shear stress, Σsl the slip threshold, Σ�
⟂
 

the effective normal stress and � the friction coeffi-
cient. Note that we use a sign convention where posi-
tive stresses correspond to tension.

In case of depletion, the sharp ‘internal’ and 
‘external’ reservoir-fault corners in the reservoir 
models displayed in Figs.  5 and 7 result in posi-
tive-valued peaks in the pre-slip Coulomb stress at 
y = ±a and negative-valued peaks at y = ±b , see 
Figs.  6 and 8. These peaks are, mathematically, of 
infinite magnitude. In reality, physical effects such 
as more rounded corners, a finite fault width and 
pore pressure diffusion between the reservoir and 
the surrounding rock will somewhat smoothen the 
stress profile. However, peaks in the pre-slip Cou-
lomb stress profile remain a typical characteris-
tic of displaced faults that experience depletion or 
injection where it should be noted that as opposed 
to the peak configuration during depletion, injec-
tion results in positive peaks at the external corners 
and negative peaks at the internal ones (Jansen et al. 
2019).

In areas where the pre-slip Coulomb stress 
is positive, fault slip will occur. However, once 
slip occurs the stress field in and around the fault 
changes. In particular, slip-induced shear stresses in 
the fault occur, which can be shown to have magni-
tude (Bilby and Eshelby 1968)

where, for plane-strain conditions,

(50)ΣC = Σ∥ − Σsl = Σ∥ + �Σ�

⟂
,

(51)
�̆�∥(y) = −ΣC(y) = A∫

∞

−∞

∇𝛿(𝜉)

𝜉 − y
d𝜉

= A

(
∫

ỹ2

ỹ1

∇𝛿(𝜉)

𝜉 − y
d𝜉 + ∫

ỹ4

ỹ3

∇𝛿(𝜉)

𝜉 − y
d𝜉

)
,

with G representing the shear modulus and � Pois-
son’s ratio, and

with � representing the slip and ∇�(y) the slip gradi-
ent along the fault. The variables ỹi, i = 1, ..., 4 , in Eq. 
(51) are horizontal projections on the y axis of the 
lower and upper slip patch boundaries.

The integrands in Eq. (51) become singular when 
� = y . The integrals are therefore Cauchy-type singu-
lar integrals which implies that they have to be inter-
preted in a principal value sense.

For a known pre-slip Coulomb stress distribu-
tion ΣC , both the slip gradient ∇�(y) and the patch 
boundaries ỹi are unknowns that have to be deter-
mined from the inverse of Eq. (51) and additional 
conditions. Muskhelishvili (1953) proved that an 
analytical inversion of singular integral equations can 
be obtained provided the known function in the inte-
grand is Hölder continuous, which is a stricter form 
of continuity than regular continuity as applied in 
mathematical analysis. The closed-form expressions 
for induced pre-slip Coulomb stresses in a displaced 
fault contain jump discontinuities at coordinate values 
y = {−b, −a, a, b} in addition to singularities in the 
form of infinite stress peaks. The jump discontinuities 
clearly violate the regular and Hölder continuity con-
ditions. An effective way to overcome this difficulty is 
to regularize the expressions for the shear and normal 
stresses in the fault, an approach that was followed by 
Jansen and Meulenbroek (2022).

Cauchy integrals and their corresponding inverse 
expressions can often be manipulated efficiently with 
the aid of Chebyshev polynomials (Mason and Hand-
scomb 2003). Applications in aerodynamics, contact 
mechanics and fracture mechanics involve both semi-
analytical approaches, and numerical methods that 
strongly rely on the underlying analytical properties 
of Chebyshev polynomials. Semi-analytical solutions 
have been applied to model fault slip by Uenishi and 
Rice (2003); Segall (2010); Van Wees et  al. (2019) 
and Jansen and Meulenbroek (2022).

Using these semi-analytical techniques the devel-
opment of fault slip can be determined as a function 

(52)A =
G

2�(1 − �)
,

(53)∇�(�) =
��(y)

�y

||||y=� ,
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of increasing injection or depletion. Fault slip, which 
initiates around the peaks in the pre-slip Coulomb 
stresses, may trigger seismicity in a critically stressed 
fault, but may also be aseismic, a situation corre-
sponding to the patch growth in Fig. 12. Depending 
on the friction characteristics of the fault, continuing 
depletion may result in a gradual aseismic growth 
of the two slip patches possibly leading to merging. 
Alternatively, increasing depletion may lead to an 
unstable situation resulting in a seismic event, see, 
e.g. Van den Bogert (2015, 2018); Buijze et al. (2017, 
2019) and Van Wees et  al. (2017) who performed 
numerical studies into depletion-induced seismicity 
in displaced faults. A detailed semi-analytical treat-
ment of this phenomenon was reported by Jansen and 
Meulenbroek (2022). At large depletion values, when 
the stress peaks approach each other, their mutual 
interaction can no longer be neglected. A detailed 
analysis of this coupling effect is presented in Meu-
lenbroek and Jansen (2024).

The semi-analytical benchmark data used to gener-
ate the figures in this paper are available in the form 
of an Excel file uploaded to the 4TU Data Repository: 
https:// doi. org/ 10. 4121/ d77f1 a2c- 29ea- 4572- ad72- 
e33ed 8dc8d 22.
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