
A Lagrangian passive scalar
solver for mass transport in
electrolytes and coupling to the
particle-resolved Bluebottle

Code Development, Testing & Validation

S.S. Hemamalini

A Lagrangian passive scalar
solver for mass transport in

electrolytes and coupling to the
particle-resolved Bluebottle

Code Development, Testing & Validation

by

S.S. Hemamalini

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Monday, December 13, 2021 at 14:15.

Student number: 5071984
Project duration: February 1, 2021 – December 13, 2021
Thesis committee: Dr. Lorenzo Botto, TU Delft, supervisor

Dr. Johan Padding, TU Delft
Dr. Rene Pecnik, TU Delft
Dr. Luis Portela, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Acknowledgements

Introspectively, I have always known that a logical problem excites me unlike anything else so much
so that I would consider solving Project Euler problems and writing code as one of my good hobbies.
To be able to visualise fluid dynamics on a computer is a roller coaster you have to ride to under-
stand. From understanding the phenomena in a mathematical form through intuitive yet complex
equations, to replicating our understanding as a code, and at the end finding out some small piece
of the puzzle is still missing — it is perhaps, I would say, the hardest logical problem, maybe even a
never-ending problem. And so lies my affinity to coding and CFD. This thesis is me doing what I do
best and what I like best. If something can come out of it, I couldn’t be happier.

I would like to thank my thesis supervisor Dr. Lorenzo Botto for giving me an opportunity to work
on what I would consider the perfect project — fundamental code development for a complex prob-
lem. I really enjoyed the journey from the start to end of my thesis. I have learned a lot from his
expertise on understanding the physics and his grasp on the mathematics behind a physical phe-
nomena.

I would also like to thank Dr. Luis Portela for his guidance on the course Computational Multiphase
Flow. It was the first time I had written a fully working code from scratch and his lessons honed my
skills in the field and served as an excellent booster to my thesis and my future.

Next, I would like to thank my friends at the Delft University of Technology — Aswin, Ravi and
Venkat. I will always miss the days when we solved coursework assignments in Roland Holstlaan
193 together, and the group cooking, and the cycling to new places. I would also like to thank Sneha
for being a constant companion in my Masters journey. Without them, the topsy-turvy world of
COVID lockdowns wouldn’t have been as colorful.

I would also like to thank Lily for providing me an opportunity to be a TA and to teach Python. I am
grateful for her hospitality and support.

Next, I would like to thank Dr. Madhu Ganesh and Dr. Krishnan back home who laid the early
stones in my path and were instrumental in shaping me for my Masters. I still remember those early
days of learning CFD and running Ansys Fluent non-stop. I am also thankful to my friends back
home (Arrvind, Subhash, Nived) who have been there for me right from the start of my career.

Finally, I would like to thank my Amma for her emotion and care. All of my achievements will bear
your name, Amma, (I am literally called Mr. Hemamalini here) and what you have given me cannot
be quantified. I am also indebted to my family back home — my Thatha, my Paati, Ganesh Mama
& Ramesh Mama — they will always be with me, mentally if not physically, and I know that I will
always be with them likewise.

S.S. Hemamalini
Delft, December 2021

i

And we count these moments. These moments when we dare to aim higher, to break barriers, to reach
for the stars, to make the unknown known. We count these moments as our proudest achievements.

But we lost all that. Or perhaps we’ve just forgotten that we are still pioneers. And we’ve barely
begun. And that our greatest accomplishments cannot be behind us, that our destiny lies above us.

- Cooper, Interstellar (2014)

Abstract

Water electrolysis is a popular energy storage technique used in tandem with many renewable sources
to convert the generated energy into storeable hydrogen. The efficiency of water electrolyzers is
greatly affected by overpotential losses. Bubble evolution is a unique characteristic of flows in wa-
ter electrolysis. The evolution of bubbles alter electrokinetics close to the electrodes and vary ionic
mass transport. The localized flow features close to a bubble are often attributed to the variation in
the current density and subsequently, the electrolyzer efficiency. For the purpose of modelling flows
close to a bubble better, a Lagrangian method for the simulation of passive tracers is developed and
programmed to be coupled to the flow field of Bluebottle, an open-source particulate multiphase
flow solver that uses the PHYSALIS algorithm.

The dynamics of the tracers are modelled using a simplified Langevin equation. In the present work,
the migration flux is omitted and priority is given to convection and diffusion with the objective of
establishing a foundation for the simulation of ionic mass transport. Brownian motion is described
using a random displacement term. The coupling with the flow field is achieved using trilinear in-
terpolation. The domain boundaries in regards to tracer dynamics are modelled as either a rigid
wall pair or as a periodic boundary pair. Specular reflection is programmed for the former ensuring
elastic collision of a tracer with the domain boundary. For the latter, the tracer position is altered
so as to place the tracer in the opposite side of the domain in the axis of intrusion. Particles are as-
sumed to be non-penetrative and hence, specular reflection is implemented at the surface of each
particle. Since the tracer module is coupled one-way with the flow field and executed after a Blue-
bottle time-step, a subroutine is developed to push the tracers out of a particle radially if a tracer is
located inside a particle after a Bluebottle time-step. To ensure particle interaction is ensured across
periodic boundaries, a subroutine is developed that places the particle in an apparent location that
enables particle-tracer interaction.

The module execution time is found to be linearly proportional to the number of particles and the
number of tracers and consumes roughly 10% of a Bluebottle iteration execution time in nominal
tests. The module is tested to ensure the Brownian displacement term obeys diffusion statistics
and also to ensure that the trilinear interpolation works as intended. The numerically enforced no-
penetration boundary at particle surfaces is also tested and observed to prevent intrusion of tracers.

The tracer module is then used to stochastically simulate mass transport across a particulate sus-
pension in a stagnant and a sheared flow field. The Sherwood number Sh determined from the
tracer module is found to agree well with the expected experimental and numerical results of Wang
et al. (2009). The tracer module is also compared to a scalar field solver of Bluebottle. The tracer
module is observed to capture features of the flow field quite well. However, the transient tracer
positions upon conversion to a transient continuous concentration field exhibits noise due to the
discrete nature of the tracers. Hence, transient comparisons with a continuous field in terms of
absolute magnitude requires a large number of tracers.

Recommendations for improvement of the code is provided. The present work is intended to be fol-
lowed up with the addition of migration flux to the equations of motion for the tracers through the
solution of an additional equation for velocity of the tracer using a force equivalence of Coulomb’s
law and Stokes’ drag law. Future challenges that will be encountered in the development of an ac-
curate ionic mass transport solver is briefly discussed.

iii

Contents

1 Introduction 1

1.1 Literature Review . 2

1.1.1 Effect of bubbles on electrochemical processes 2

1.1.2 Flows near gas-evolving electrodes . 3

1.1.3 Ionic mass transport in electrolytic flows . 5

1.2 Stochastic modelling of mass transport . 6

1.3 The Physalis algorithm . 8

1.3.1 Steps of the algorithm . 8

1.3.2 Advantages over conventional methods . 9

1.3.3 Motivation for use . 9

1.4 Objectives and Scope . 10

2 Bluebottle 11

2.1 Installation of Bluebottle . 11

2.2 Validation of Bluebottle installation . 13

3 Development of a fluid-phase tracer model 15

3.1 The tracer data type . 15

3.2 The Langevin equation . 15

3.2.1 Interpolation in 3D space . 16

3.2.2 The Brownian motion term . 17

3.3 Interaction with particles and domain . 17

3.3.1 Interaction with particles . 17

3.3.2 Interaction with periodic boundaries . 20

3.3.3 Interaction with domain boundaries . 21

3.4 Initialisation conditions . 22

3.5 Additional boundary conditions . 22

3.6 Flow of control . 23

3.7 Integration with Bluebottle . 23

3.7.1 One-way coupling . 24

3.7.2 Input & Output . 24

iv

Contents v

4 Testing & Validation of tracer implementation in Bluebottle 25

4.1 Pure diffusion in 3D space . 25

4.2 Streamlines in 2D flow about a cylinder . 26

4.3 Validation of non-penetration boundary at particle surfaces 27

4.3.1 Motion of a sphere through a wall of tracers . 28

4.3.2 Head-on collision of two spheres . 28

4.4 Effect on Bluebottle runtime . 29

5 Simulations of heat & mass transfer 33

5.1 Estimation of Sherwood number for particulate suspensions 33

5.1.1 Mass transport in stagnant suspensions . 35

5.1.2 Mass transport in sheared suspensions . 36

5.2 Comparison with an Eulerian convection-diffusion solver 37

6 Summary & Conclusions 40

6.1 Installation of Bluebottle and the tracer module . 40

6.2 Summary of the tracer module code . 40

6.3 Summary of code validation. 41

6.3.1 Scope for improvement of current code . 42

6.4 Scope for future work . 42

Bibliography 44

A Appendix-A 49

A.1 Header file . 49

A.2 Initialisation and finalisation of tracer simulation . 50

A.3 Initialisation of individual tracer . 52

A.4 Tracer boundary conditions . 53

A.5 Addition & Deletion of tracer from tracer array . 53

A.6 Calculating the Brownian term . 54

A.7 Calculating distance between two points. 54

A.8 Checking tracer proximity to walls and particles. 54

A.9 Location of bounding box node . 56

A.10 Checking tracer exclusion from cell-centered grid. 56

A.11 Specular reflection of tracers at walls . 57

A.12 Allowing interaction with particles across periodic boundaries 58

A.13 Spatial interpolation of velocity fields . 59

Contents vi

A.14 Specular reflection of tracer on particle surface . 61

A.15 Pushing tracers out of a particle. 64

A.16 Main function . 65

A.17 Exporting tracer & particle positions . 68

B Appendix-B 70

B.1 Case setup - Stagnant suspensions . 70

B.2 Case setup - Sheared suspensions . 71

B.3 Estimation of Sherwood number . 72

B.4 Determination of tracer concentration field . 73

C Appendix-C 75

C.1 Convergence of Sherwood number in sheared suspensions 75

C.2 Time evolution of scalar field and tracer concentration field 75

C.2.1 Collision of a spherical particle on a wall of tracers and scalar field 75

C.2.2 Collision of two spherical particles on wall of tracers and a scalar field 77

1
Introduction

The world at present is facing an energy crisis fueled by a growing threat of climate change. The
use of non-renewable resources such as petroleum and natural gas is slowly waning and allowing
sustainable, renewable resources to become the primary source of energy [28]. As a result, the re-
search into renewable energy production and sustainable alternatives to non-renewable energy is
the highest it has ever been. Major renewable resources, though, are at a disadvantage compared
to non-renewable resources that the availability of resources is highly seasonal and fluctuating. Re-
sources such as solar energy fluctuate on a daily timescale whereas resources such as wind energy
fluctuate on a seasonal timescale [39]. This fluctuation requires a method for mitigation without any
major losses to the harvested energy. A simple way of distributing the fluctuating energy input into
a constant stable output is using energy storage systems as buffer to receive surplus energy and to
provide energy during deficit [25, 27]. Several storage systems are already used both at the location
of the energy production such as wind farms and nuclear power plants, and also at the domestic
level.

In the industry, there are several methods to achieve energy conversion and subsequent storage. A
relatively new method that is used at present at the location of energy generation is water electrol-
ysis [9, 36]. The energy harvested from the renewable energy sources are fed to a water electrolyzer
that splits water into oxygen and hydrogen. Therefore, the harvested energy is stored in the form of
chemical bonds of oxygen and hydrogen. This stored energy is regenerated through combustion of
hydrogen and oxygen and electricity is generated. Water electrolysis is advantageous compared to
other energy storage methods that it is a fully clean and green method of energy storage [36]. Water
electrolysis does not involve harmful pollutants and only requires water as an input resource. The
hydrogen produced has a deep impact in several sectors other than energy storage. As the com-
bustion of hydrogen leaves no residue, the mainstream use of hydrogen is highly impactful in the
decarbonisation of the industry [29]. However, the addition of a water electrolyzer and a regenera-
tor brings forth an additional component in the energy loop which might potentially decrease the
efficiency of energy generation [3]. There are a multitude of advanced research foci to improve this
efficiency, thereby increasing the energy throughput.

Water electrolyzers commonly used in the industry are generally of two types – alkaline water elec-
trolyzer and Polymer-Electrolyte-Membrane (PEM) water electrolyzer. Alkaline water electrolyzers
contain an alkaline solution of potassium hydroxide or sodium hydroxide as the electrolyte. PEM
electrolyzers contain a Solid-Polymer-Electrolyte (SPE) that conducts hydrogen ions (protons) from
one electrode to the other. Commercially, alkaline electrolyers are used in stacks of several hun-
dreds of electrodes placed in orders of hundreds of micrometers apart [44]. One of the primary foci

1

1.1. Literature Review 2

of the research community is the study of ionic mass transport across the two electrodes of the al-
kaline water electrolyzer [2, 4, 10, 14, 52]. Heat and overpotential losses are some of the major losses
affecting an alkaline water electrolyzer and these are dependent on the flow of the ions through the
electrolyte [3]. In a conventional electrolyzer, ions are accelerated through the electrolyte solution
through diffusive, convective and migrative fluxes. However, in the case of a water electrolyzer, the
motion is complex as the production of hydrogen and oxygen gases in the form of bubbles impede
this motion in remarkable ways. The presence of bubbles add an additional convective element
to the mass transport of the ions but hinder their motion by acting as obstacles [3, 14, 17, 18]. A
deeper look into the effect of bubbles on water electrolysis and gas-evolving electrodes is provided
and discussed in the following section.

1.1. Literature Review

1.1.1. Effect of bubbles on electrochemical processes

The production of bubbles at the electrodes has been extensively studied and a theoretical model
highlighting the dependencies and the implications of bubble evolution was developed by Vogt [56].
Dukovic and Tobias qualitatively distinguished the effects of bubble evolution on the various poten-
tial losses seen in electrolytic processes [17]. The total potential loss ∆UL can be described as the
sum of different overpotentials as:

∆UL = ηac +ηohm +ηconc (1.1)

The formation of bubbles have been described to have complex relationships with all of the over-
potentials stated in Equation 1.1.

Activation overpotentials (ηac) denote the energy required to transfer charges from the electrode to
the electrolyte at the surface of the electrode. Bubbles typically attach to the surface of the electrode
and detach only upon reaching a critical radius [20]. This results in bubbles covering the electrode
and reducing the electrocatalytic area. Since the area of contact between the electrode and the
electrolyte is decreased, more energy is required to transfer the same charges from the electrode
to the electrolyte. This results in an increase in activation overpotential of the respective electrode.
Dukovic and Tobias devised a relation between the activation overpotential and the bubble coverage
[17].

Concentration overpotential (ηconc) denotes the resistance to the electrochemical reaction taking
place at the electrode surface due to the saturation level of the products close to the electrode sur-
face. Upon supersaturation of the products, the reaction thermodynamically reverses and favors the
formation of the reactants from the products. This is typically seen in reactions with stagnant elec-
trolytes where the ionic mass transfer is purely diffusion-driven. Bubbles cause turbulent mixing
close to the electrode and aid in the motion of ions. Hence, bubbles are known to reduce potential
losses through concentration overpotential. In cases of low current densities (< 100mA/cm2) where
concentration overpotential dominates the potential losses, formation of bubbles reduce the losses
and improves current density at the electrode [19].

Ohmic losses (ηohm) denote the potential drop due to the resistance faced by an ion while moving
from one electrode to the other. The electrolyte contributes the most to the Ohmic resistance and
the potential drop often follows the Ohm’s law with the current density and the conductivity of the
electrolyte. However, the presence of bubbles reduce the conductivity of the electrolyte since they
effectively act as obstacles for the flow of ions. Due to the localisation of the bubbles in the elec-
trolyte, the effect of bubbles on Ohmic overpotential is only known empirically. Ohmic losses due
to bubbles dominate the potential losses at higher current densities [3]. Most industrial processes

1.1. Literature Review 3

are carried out at very high current densities. Hence, in many such industrial cases, Ohmic losses
are the primary cause of loss in potential and thereby, loss in input energy. Ohmic overpotentials
have been reported to be avoided by using a forced flow of the electrolyte over the electrode surface,
reducing the average void fraction close to the electrode surface and inducing turbulent mixing [7].

Studies have shown that forced flow of electrolyte over the surface of the electrode vastly improve
the potential losses by minimising the bubble diameter, decreasing the bubble coverage and reduc-
ing high temperature gradients [7, 24]. Several unconventional techniques exist, such as ultrasonic
bubble removal, magnetic field-driven convection, to either impede the formation of bubbles or
decrease the critical diameter for bubble detachment, thereby improving electrochemical efficiency
[30, 32, 34].

Since the effect of bubbles on electrolytic processes is highly complex, an understanding of the flow
near a gas-evolving electrode is essential.

1.1.2. Flows near gas-evolving electrodes

The presence of bubbles alter the dynamics of flow close to the electrode. The volume close to
the electrode can be represented by different zones of relevance to the current work as the growth
window, the diffusion zone and the clear electrolyte, figuratively presented in Figure 1.1 [53].

Figure 1.1: Description of flows near gas-evolving electrode

The formation of bubbles depends on the level of supersaturation of the gas dissolved in the elec-
trolytic medium. Following Henry’s law, thermodynamic inequilibrium at supersaturation zones
allow for nucleation of bubbles at nucleation sites such as sharp edges on the surface of the elec-
trode, or impurities suspended on the solution.

Bubbles attached to the surface of the electrode detach once they reach a critical size. Considerable
research has been done to empirically correlate the critical diameter of a bubble to the current den-
sity at the electrode [16, 20, 33]. Bubbles continue to grow as long as they are close to the electrode,
where the level of supersaturation allows for bubble growth [6]. Chandran et al. [11] presented
their findings on the growth window of bubbles for an horizontally oriented electrode and found a
bimodal distribution of bubble diameter on account of a balance between buoyant force and diffu-
sive growth in the time spent by the bubble in the growth window.

1.1. Literature Review 4

The high concentration of bubbles in the growth window pushes some of the bubbles away from
the electrode through lateral migration. The region adjacent to the growth window where the void
fraction gradually reduces with distance from the electrode is termed as the diffusion zone. Due to
the presence of bubbles, the flow does not follow a typical shear flow but is impeded by the presence
of bubbles into following a flow profile similar to a Poiseuille flow close to the electrode as seen in
Figure 1.2. When the gap between the electrodes is sufficiently small, the velocity profile resembles
more closely to a Poiseuille profile [35]. This was also seen in the results of Dahlkild [14].

Figure 1.2: Expected velocity profile for the continuous phase

Very few bubbles migrate far into the bulk of the electrolyte. This region is typically driven by the
background flow of the electrolyte. If there is no forced flow of the electrolyte, the time-averaged
continuous phase velocity in the bulk of the electrolyte can be assumed a value of zero. If the elec-
trolysis process takes place in a closed container, circulation zones can be seen in the bulk [24].

Generally, flows near gas-evolving electrodes are considered to be two-phase, with the liquid being
the continuous phase and the gas being the dispersed phase. Depending on the type of modelling
used for the dispersed phase, modelling of such flows can be of two types — Euler-Euler and Euler-
Lagrange. Sufficient numerical studies have been done using both the methods. Many of the studies
involving the Euler-Euler method are modelled using the mixture method which requires closure for
the effective diffusivity of the mixture. Dahlkild [14] used empirical correlations in his model. Al-
das et al. [2] assumed a laminar model in his numerical simulation and found that bubbles exhibit a
localized turbulence in their wake that must be taken into account. Bideau et al. [4] modelled an ad-
ditional dispersion force to the Euler-Euler model and found good agreement with the experimental
results. Mandin et al. [35] modelled the flow near a vertical gas-evolving electrode using an Euler-
Lagrange approach by considering bubbles as particules. They made two assumptions for treating
bubbles as rigid spheres — the bubble diameter is very small (dp ≈ 10−4 m) so that deformative
stresses can be neglected and, the void fraction close to a gas-evolving electrode is sufficiently small
so that coalescence of bubbles is rare. Following these assumptions, Mandin et al. [35] proceeded
with a Langrangian simulation of bubbly flows with an horizontal force term for the dispersion of
the bubbles along the vertical axis and obtained comparable qualitative results. Aldas et al. [2] used
a laminar Euler-Euler model and reported an underestimation in the results with the hypothesis of
localized bubble turbulence. This was also observed by Boissoneau et al. [6] in their experiments.
Mat [37] included local turbulence in their two-fluid model and obtained agreeable results with ex-
periments. Mandin et al. [35] concluded that a Computational Fluid Dynamic (CFD) model for the
accurate representation of localized bubble turbulence needs to be developed.

1.1. Literature Review 5

Abdelouahed et al. [1] conducted experimental studies on vertically-oriented gas-evolving elec-
trodes and found that the bubble diameter increases as a function of the height from the bottom
of the electrode. This may be attributed to the fact that bubbles close to the electrode may grow in
size due to the supersaturation levels of gas close to the electrode. They also reported a bubble size
distribution with a mean size of 120µm and a maximum velocity of 20mm/s for a current density of
200mA/cm2. These values of bubble diameter and velocity have been used in further studies. It was
also reported that the growth of the bubbles was not due to coalescence but predominantly due to
diffusion [51].

From the perspective of gas-evolving electrolytic flows, the primary research objective can be thus
stated:

Objective 1: Develop a numerical code that can be utilized for fully-resolved ionic mass transport
simulations at the gas-evolving electrodes in the future, with an emphasis on localized bubble-
induced flow.

1.1.3. Ionic mass transport in electrolytic flows

It is also prudent to know about the modelling of ionic mass transport and the current density in
flows near gas-evolving electrodes. Classically, the current density j is solved as a vector field using
the Ohm’s law:

j = κE =−κ ∇φ (1.2)

and the conservation of current equation:

∇· j = 0 (1.3)

where E denotes the electric field vector space, φ the electric potential field and κ the electrical
conductivity. In a homogeneous electrolyte solution, the value ofκ can be assumed to be a constant.
However, in the presence of bubbles, κ varies depending on the local void fraction. Computational
simulations of gas-evolving electrodes that model the gaseous phase as a continuous phase (Euler-
Euler methods) employ empirical relations that estimate the effective conductivity as a function of
void fraction [7, 48]. The Bruggeman’s relation:

κ= κ0 (1−ε)3/2 (1.4)

is used frequently for flows with a maximum void fraction of 0.12 having close agreement to experi-
mental results [8]. The boundary conditions for the current density at the electrode surface is given
by the decomposition of voltage:

∆U = E0 +ηac +ηohm +ηconc (1.5)

with E0 denoting the equilibrium potential for the chemical reaction in the electrolyzer. The primary
current distribution is given by the equilibrium potential and the ohmic potential loss ηohm which is
adequate for reproducing current distribution across the bulk of the electrolyte [35]. However, for a
better modelling of the current density field close to the electrode, the activation overpotential ηac

is modelled using the Butler-Volmer relation. The activation overpotential ηac contributes to the
secondary current distribution. The concentration overpotential ηconc contributes to the ternary
current distribution close to the electrode and is difficult to model without considering the transport
phenomena of the ions close to the electrode. The coupling of the current density and the ionic
concentration field is nonlinear.

1.2. Stochastic modelling of mass transport 6

The transport phenomena of an ionic specie i is modelled by the Nernst-Planck equation:

Ni =Ci v−Di∇Ci − Zi F Di

RT
Ci∇φ

∂Ci

∂t
+∇·Ni = 0

(1.6)

where the terms in the right-hand-side of the first equation indicate advective, diffusive and migra-
tive flux respectively. Here, the concentration Ci is assumed as a scalar field and solved numerically.
In electrolyzers with very close gap between the electrodes, the migrative flux is estimated to be ap-
proximately twice as strong as the diffusive flux, thereby increasing the ionic current [22]. Suzuki
et al. showed that the migrative flux is powerful up to a length scale termed as Debye length [49].
The Debye length is inversely proportional to the ionic concentration close to the electrodes and
hence, a higher concentration potential would mean a smaller Debye length. At lengths larger than
the Debye length, the gradient in electric potential drops to zero and the flow is purely convection-
and diffusion-driven [58]. For this reason, most industrial water electrolyzers have a very small gap
between the electrodes that increase the effect of migrative flux. Flows close to gas-evolving elec-
trodes are also particularly unique with the fact that bubble entrainment and dispersion close to the
electrodes provide an additional convective flux close to the electrodes that increases the mass flux
of the ions. Forced convection of the electrolytic medium further increases the convective flux and
increases the efficiency of the electrolytic process [40].

In the presence of a background flow, the convective flux may dominate the diffusive flux and the
mass transport varies drastically. Wang et al. conducted an experimental and a numerical study on
mass transfer in a sheared flow of suspensions of monodisperse neutrally-buoyant spheres [57]. At
moderately high shear rates given by the Péclet number Pe, mass transfer was observed to improve
with increasing particle volume fraction. This is attributed to the enhanced mixing effects provided
by the particulate phase. They used a limiting current technique to measure the mass transport
between two cylindrical electrodes with a weak electrolyte. This measurement technique is a stan-
dard technique to quantify convective-diffusive mass transport. At limiting current, the effect of
migrative flux is negligible and the mass transport is dominated purely by convection and diffusion
[57].

1.2. Stochastic modelling of mass transport

For the construction of a simple model, the migrative flux term of the ionic mass transport is cur-
rently ignored. The resulting dynamics would be convective-diffusive and would resemble ionic
mass transport in a limiting current electrolyte bulk [57]. Diffusive mass transport can be modelled
using two approaches — a continuous Eulerian approach and a discrete stochastic Lagrangian ap-
proach. The former is enabled by the Fick’s law of diffusion:

dC

dt
= D∇2C (1.7)

where D is the diffusivity of the medium. In the presence of a flow field u, the Fick’s law can be
generalised to a convection-diffusion equation for concentration c as:

dC

dt
= D∇2C +u ·∇C (1.8)

The above equation is the same as the Nernst-Planck equation (Equation 1.6) without the migrative
flux term. Stochastic modelling is advantageous over the assumption of a continuous field for rea-
sons such as discrete modelling of fluxes and a better representation of the randomness of the mi-
croscale. Stochastic models of concentration simulates each molecule individually using Langevin

1.2. Stochastic modelling of mass transport 7

dynamics. In many cases where the medium is a fluid, the molecules are assumed to be indepen-
dent of each other. The interactions between molecules that create Brownian motion are modelled
probabilistically as a Boltzmann distribution as a function of fluid temperature, despite the fact that
they are deterministic in nature. Stochastic modelling of mass transport can be used to statistically
visualise mass transport in large as well as small scales [43]. The Langevin equation:

m
∂v(x, t)

∂t
= F(x, t)+ξv(t)

v = ∂x(t)

∂t

(1.9)

where m is the mass of the molecule, v(x, t) the velocity of the molecule at an instant in time t and
x(t) the position of the molecule in space at time t , described by Paul Langevin in 1908 [31], provides
a mathematical framework for the stochastic modelling of dynamics of molecules in a fluid, partic-
ularly Brownian motion — the random motion of a molecule in a fluid through collisions with other
molecules. The terms on the right side of the first equation in Equation 1.9 indicate the forces on the
molecule, F (x, t), the force on the molecule by virtue of its position x and time t , and a random force
ξ(t) (with the subscript denoting the equation). The force on the molecule F(x.t) is determined from
the flow field and it is deterministic from the flow parameters. The random force ξ(t) is stochastic
and non-deterministic.

In the case of fluid molecules, the Langevin equation can be simplified using Stokes drag as the
primary force on the molecules to:

dx(t)

dt
= v+ξx(t) (1.10)

Equation 1.10 can be used to describe transient convection-diffusion in a large time-scale [43].
Equation 1.10 can be discretised to form an explicit Euler model for the dynamics of a tracer molecule
as:

∆x = v∆t +ξx(∆t) (1.11)

with ∆t representing the time-step. The magnitude of the random motion term to describe Brow-
nian motion of the molecules is related to the diffusivity of the fluid through the Stokes-Einstein
result: ∣∣ξx(∆t)

∣∣=p
6D∆t

D = kT

6πµa

(1.12)

where k is the Boltzmann constant, T the temperature of the fluid, µ the viscosity of the fluid and a
the radii of the molecules. Equation 1.12 also satisfies the result for the mean squared displacement
for Brownian motion in 3 dimensions [43].

Thus, the second research objective can be stated as:

Objective 2: Compare a stochastic Lagrangian simulation of mass transport with an Eulerian ap-
proach and list the benefits and drawbacks of a stochastic mass transport model.

In the presence of a second medium, the diffusive mass transport exhibits a similarity to electrical
conductance [38]. The effective diffusivity of a two-phase fluid mixture can be expressed by an
analogy to the dielectric constant of a capacitor with a dielectric medium. Maxwell developed the
mathematical relation for the effective dielectric constant in the case where the dielectric medium
is made up of a dispersion of spheres with a different dielectric constant than the fluid [38]. Deen
provided a heat transfer analog of Maxwell’s relation and hence, the effective conductivity kmi x of a
mixture of dispersed spherical particles is given as Equation 1.13 [15].

kmix

k
= 1−3φ

1−γ
2+γ (1.13)

1.3. The Physalis algorithm 8

where φ indicates the volume fraction of the spherical particles in the fluid, γ the ratio of thermal
conductivities of the sphere compared to the fluid. The mass transfer analog used by Wang et al.
[57] is:

Deff = 1−3φ
1−α
2+α (1.14)

where α = Dp M/D , Dp being the diffusivity of tracers in the spheres, D the diffusivity of tracers in
the fluid and M the solubility ratio of tracers in the sphere in regards to the fluid. A forced back-
ground flow such as a shear flow may increase the effective diffusivity with increasing shear rates.
In a forced flow setting, the convective mass flux dominates the diffusive mass flux and contributes
to the increased mass transfer rates. However, the mass transfer rate in the presence of a shear
also increases with increasing particle volume fraction as observed by Wang et al. [57]. This is hy-
pothesized to be the effect of localized particle-induced turbulence that causes an increased mass
transport.

For the validation of the constructed model, the third research objective can thus be stated as:

Objective 3: Reproduce the mass transfer results of Wang et al. [57] for both a stagnant and a
sheared suspension of particles using the constructed stochastic mass transport model.

1.3. The PHYSALIS algorithm

Prosperetti et al. developed a relatively new method for simulating particulate flows termed as
PHYSALIS [42]. The PHYSALIS algorithm considers a coupling of a finite-difference Navier-Stokes
solver and a spectral solver of spherical harmonics close to each particle. This algorithm is restricted
to the simulation of spherical particles owing to its usage of spherical harmonics. Furthermore, it
has strict restrictions that the particles do not coalesce or grow in size. Hence, PHYSALIS is well
suited for simulations of sedimentation. PHYSALIS has been developed over the years to include
simultaneous simulations of a scalar field [47].

The actual PHYSALIS algorithm and its advantages will be only briefly discussed since the algorithm
itself is not the focus of the present work. However, the assumptions involved that make PHYSALIS

well suited for simulations of bubbly flows are discussed in detail.

1.3.1. Steps of the algorithm

The crux of PHYSALIS lies in the creation of boundary conditions for the flow variables of velocity,
pressure, viscosity and vorticity at the vicinity of the particles to be coupled with the flow solver.
As stated before, PHYSALIS relies on spherical harmonic coefficients of any order, termed as Lamb
coefficients, to deduce a solution close to the analytical solution. This is done without the need for
mesh motion or high mesh resolutions at the interface. The steps involved in the algorithm are as
follows:

1. A cage is created on the fluid mesh around each particle for all the flow variables. This is
figuratively seen in Figure 1.3.

2. The hydrodynamic force on the particle is computed from the Stokes solution using spherical
harmonics of the analytical Stokes solution at the particle surface.

3. The position, velocity and the rotation of the particle is updated from the computed forces.

4. The boundary conditions for the fluid solver at the cage are determined from the analytical
Stokes solution for the relative flow at the surface of the particle using the analytical Stokes
solution.

1.3. The Physalis algorithm 9

5. The Navier-Stokes equations are then solved for the domain with the enforced boundary con-
ditions at the particle surface. These are typically executed with pressure-Poission solvers.

6. The velocity and pressure field adjacent to a particle is checked for convergence. If the resid-
ual is higher than the set convergence criteria, the updated boundary conditions are used for
the next iteration. These iterations are termed as Lamb iterations.

7. Once convergence is attained, the flow field and the particles are updated.

Figure 1.3: Cage around a sphere for various flow variables (� - vorticity, + - pressure, → - horizontal velocity, ↑ - vertical
velocity component [59])

1.3.2. Advantages over conventional methods

PHYSALIS poses several advantages over conventional particle-laden flow solvers. PHYSALIS negates
the need for a high mesh resolution and mesh motion to obtain an accurate solution. The forces
and the torque on the particles are computed with analytical precision without the need for higher
order extrapolation techniques.

The need for the simulation of the second dispersed phase is also removed since in essence, only
the computation of the spherical harmonic coefficients are done. This vastly reduces the number
of equations to be solved by the fluid solver on comparison to other Euler-Lagrange models that
rely on immersed boundaries and mesh motion. The number of simultaneous equations is also less
than what is seen in Euler-Euler mixture or two-fluid models.

1.3.3. Motivation for use

There are certain limitations to using PHYSALIS, certain requirements that have to be met. The fore-
most limitation is that PHYSALIS is capable of simulating particle shapes for which Stokes solution
exists. This restricts the particles to be either spheres (3D) or cylinders (2D). Following the values
of bubble diameter and velocity given by Abdelouahed et al. [1], the Eötvös number of the bubbly
flow can be estimated. An order of magnitude analysis shows that under such conditions, Eo ¿ 1.
The particulate Reynolds number (Rep) can also be estimated to be in the range (1,100). Accord-
ing to Clift et al. [12], the corresponding values of Reynolds number and Eötvös number places the
bubbles purely in the spherical regime with no surface deformation.

1.4. Objectives and Scope 10

Another limitation that follows is the assumption that the particles are rigid spheres with a no-slip
boundary at the surface. Bubbles typically posses a slip boundary condition at the surface due to the
dispersed phase being a gas rather a rigid sphere. Clift et al. show that at low values of particulate
Reynolds number (Re < 100), the Marangoni flow inside the bubble volume is very weak to enforce
the slip boundary condition and the bubble behaves as a rigid sphere. At such cases, the dynamics
of the bubble is assumed similar to that of a rigid sphere. Furthermore, the presence of impurities in
the continuous phase, acting as surfactants, might transform the fluid boundary of the bubble into
a rigid one. This might not always be the case at higher Reynolds numbers but this is an assumption
that has been made in the present work.

The final limitation is that the particles do not coalesce and form a larger particle. According to
Tanaka et al. [51], bubbles close to gas-evolving electrodes rarely coalesce due to the supersatu-
ration of dissolved gases in the continuous phase. A lot of models [1, 26] have assumed this and
obtained agreeable results. Hence, the coalescence of the bubbles have been neglected.

Hence, the fourth and fifth research objectives can be stated as:

Objective 4: Construct a stochastic "tracer" model and couple with the flow field and particles
from Bluebottle.

Objective 5: Test and validate the Bluebottle-coupled tracer model with the flow field from Blue-
bottle.

The model thus constructed is referred to as the tracer model as the present work focusses on the
convective and diffusive fluxes, thus implying that the molecules that are simulated stochastically
are fluid-phase and would be indistinguishable from the flow field.

1.4. Objectives and Scope

The thesis aims to build a foundation for a stochastic mass transport model for the simulation of
ionic mass transport near gas-evolving electrodes. The primary research objectives is compiled and
presented below:

1. Develop a numerical code that can be utilized for fully-resolved ionic mass transport simu-
lations at the gas-evolving electrodes in the future, with an emphasis on localized bubble-
induced flow.

2. Compare a stochastic Lagrangian simulation of mass transport with an Eulerian approach
and list the benefits and drawbacks of a stochastic mass transport model.

3. Reproduce the mass transfer results of Wang et al. [57] for both a stagnant and a sheared
suspension of particles using the constructed stochastic mass transport model.

4. Construct a stochastic "tracer" model and couple with the flow field and particles from Blue-
bottle.

5. Test and validate the Bluebottle-coupled tracer model with the flow field from Bluebottle.

The immediate scope of the project lies in the development of a modular simulation tool for de-
termining ionic mass transport statistics in water electrolysis. Furthermore, the developed code is
intended to be extended to a stochastic model for the simulation of mass transport in any particu-
late multiphase setting.

2
Bluebottle

Bluebottle is a GPU implementation of the PHYSALIS algorithm. Bluebottle is written in CUDA and
C to be run on computers with CUDA-compatible Nvidia GPUs. Bluebottle is open-source and
the source tree can be found in Github (https://github.com/groundcherry/bluebottle-3.0).
Bluebottle and the code for the simulation of tracers is executed in two GPU-enabled nodes of the
Reynolds cluster at Delft University of Technology. Each node has 28 cores with 2 Intel®Xeon®E5-
2680 v4 processors running at 2.4GHz with 64GB RAM and 125GB SSD storage. Each node also has
connected a Nvidia Tesla K40m GPU coupled with 12GB DDR5 RAM. The Tesla K40m is CUDA-
compatible. CUDA version 9.1 (v9.1.85) is installed in both the nodes. Ubuntu 16.04.7 LTS is in-
stalled on the cluster for operation via the Command-Line-Interface (CLI). The version of Blue-
bottle with the tracer implementation can be found in Github (https://github.com/shyam97/
bluebottle3).

2.1. Installation of Bluebottle

Bluebottle relies on the dependencies CMake, CUDA, OpenMPI, HDF5 and CGNS. CMake is typi-
cally installed in many Linux distrubutions by default and enables the compiling of C scripts into
executable object files with the command make. CUDA is a programming platform developed by
Nvidia that is intended to make use of Graphical Processing Units (GPUs) for general purpose com-
puting on GPUs (GPGPU). Processing on GPUs is faster than CPUs considering the massive paral-
lelization capabilities of the GPUs [41]. OpenMPI is an open-source Message Passing Interface (MPI)
that enables parallelization between different CPU and GPU processors. OpenMPI is generally used
for CPU parallelization but the installation of OpenMPI can be mapped with a CUDA installation to
be CUDA-aware. This enables parallelization and scaling of CUDA processes across multiple GPUs.
HDF5 and CGNS are CFD-oriented data storage packages. HDF5 is an Hierarchical Data Format
(HDF) is a data storage library that provides fast I/O processing and a compact, flexible data stor-
age file format. As HDF5 is hierarchical, multiple parameters of the flow such as velocity, pressure
and density can be stored as multi-dimensional arrays in a single file together. This allows easier
file transfers and importing. CGNS (CFD General Notation System) is an industrial standard for the
storage and importing of CFD data, approved by the American Institute of Aeronautics and Astro-
nautics (AIAA). The file format .cgns is supported by many CFD tools such as Fluent, OpenFOAM
and ParaView for importing and post-processing of CFD data.

With CMake and CUDA pre-installed in the GPU-enabled nodes of the cluster, OpenMPI, HDF5 and
CGNS are installed locally in the user folder with CUDA support. The installation instructions for

11

https://github.com/groundcherry/bluebottle-3.0
https://github.com/shyam97/bluebottle3
https://github.com/shyam97/bluebottle3

2.1. Installation of Bluebottle 12

the dependencies can be found at https://github.com/groundcherry/bluebottle-3.0/blob/
master/INSTALL. The installation of Bluebottle is restricted by the constraints of the dependency
versions as specified in the installation instructions file. For the sake of simplifying and automating
the installation of Bluebottle, a shell script was written. The shell script can be found at https:
//github.com/shyam97/bluebottle3/blob/master/install.sh. The shell script requires that
CMake and CUDA are pre-installed and prompts the user for the location of the CUDA folder. When
all the dependencies are installed, the shell script automatically executes the Makefile in the root
folder of Bluebottle. The Makefile contains compilation instructions for the source C and CUDA
header and execution files of Bluebottle under the src/ folder. Before the execution of make, the
appropriate compute architecture for the GPU should be specified in the Makefile with the flag
arch. The Bluebottle executable file is created upon succesful compilation in the sim/ folder of the
Bluebottle root folder.

Bluebottle has the directory tree structure as below.

base folder
src

bluebottle.c

bluebottle.h

bluebottle.cu
...

sim

bluebottle (executable)

input

flow.config

part.config

decomp.config

record.config

output

The input folder of Bluebottle contains the configuration files for the case setup of a simulation. The
flow parameters such as the values of physical parameters of density and viscosity, flow boundary
conditions of pressure and velocity, initial parameter values in the domain, turbulence properties
and the solver settings are specified in the flow.config file. The particle parameters such as the
particle radius, initial position and velocity, density, material properties and type of motion (transla-
tion and rotation) can be specified in the part.config file. The domain extents and the mesh reso-
lution and decomposition information is specified in the decomp.config file. The record.config
is used to control the output of the flow parameters and particle information at specified intervals
of flow time. Additionally, the configuration file required to restart the simulation from a point in
time can be enabled in record.config. This is helpful when simulations are restricted by total
computational time in the cluster.

https://github.com/groundcherry/bluebottle-3.0/blob/master/INSTALL
https://github.com/groundcherry/bluebottle-3.0/blob/master/INSTALL
https://github.com/shyam97/bluebottle3/blob/master/install.sh
https://github.com/shyam97/bluebottle3/blob/master/install.sh

2.2. Validation of Bluebottle installation 13

2.2. Validation of Bluebottle installation

Bluebottle has already been validated using numerous rigorous particle simulation cases [5, 50, 59,
60]. In the current project, the installation of Bluebottle was validated with a simulation of sed-
imentation of a single sphere. The case setups are similar to the experiments and spectral CFD
simulations given by ten Cate et al. [54]. The validation case was chosen for the following reasons
— the results by ten Cate et al. [54] are highly accurate, the case setup is simple (single sphere sedi-
mentation in a quiescent flow background), adding to the list of cases to be validated by Bluebottle.

A rectangular domain of length, breadth and height 100mm, 100mm and 160mm, respectively, is
considered. This domain was discretised using a uniform Cartesian mesh of resolution 120x120x192
in the X-, Y- and Z- directions respectively. A single spherical particle of diameter 15mm is placed at
a distance of 120mm from the bottom of the domain. The bottom wall of the domain is assumed a
no-slip wall with a zero Dirichlet condition for velocity and a zero Neumann condition for pressure.
The top boundary is modelled with zero Neumann conditions for velocity and pressure. Periodic
boundary conditions are used for the lateral walls. The CFL criterion in Bluebottle is defined as

∆t = CFL∑
i

ui ,max

∆xi
+ ν

∆x2
i

(2.1)

where i indicates the three axes, ui ,max indicates the maximum velocity component of flow in the i
axis and ν the kinematic viscosity of the fluid. In the laminar flow regime, the contribution of the
viscous dissipation is smaller and hence, the formula for the time-step size reduces to the simple
CFL criterion. The CFL value is set at 0.75 for the validation cases. The pressure convergence value
is set at the default value of 1e−6 pressure units. The convergence criteria for the Lamb iterations is
also set at the default value of 1e−2. No relaxation is specified for the flow variables. Gravitational
acceleration of 9.81m/s2 is specified in the -Z direction. The background flow is initialised in a qui-
escent state and and the initial particle velocity is set at zero. The particle is specified a density of
1120kg/m3, according to the reference simulations by ten Cate et al [54]. The particle is allowed to
translate but not rotate since the flow is axisymmetric and not expected to create torque. The fluid
is specified with densities and viscosities matching the four reference cases for Reynolds numbers
Re = (1.5,4.1,11.6,31.9) as per the reference cases by ten Cate et al. [54]. On execution, the different
cases ran at a time-step proportional to the Reynolds number assigned, according to the CFL con-
dition. Simulations of higher Reynolds number completed in several hours while simulations of low
Reynolds numbers took approximately two days to finish. The results of the particle position and
velocity were stored in steps of 1e−2s. The velocity of the particle for each of the case against the
progression of time is given in Figure 2.1. It can be seen that Bluebottle predicts the sedimentation
velocity accurately for all the Reynolds numbers considered. The flow contour for Re = 31.9 at a
time instant of t = 0.6s compared with the spectral results from ten Cate et al. is given in Figure 2.2.
Hence, Bluebottle matches the experimental results of terminal velocity accurately despite having a
coarser mesh and faster computation time. However, there is a certain discrepancy in the trajectory
of the particle at the end of the simulation with Bluebottle predicting an earlier deceleration of the
particle on reaching the bottom of the domain. A similar early deceleration is observed in all the
cases and hence, the error is hypothesised to be a result of a coarser mesh for the domain and a
coarser discretised cage for the particle.

2.2. Validation of Bluebottle installation 14

Figure 2.1: Velocity of sedimenting particle vs. time at different Reynolds numbers; solid lines - Bluebottle results,
symbols - experimental values from ten Cate et al. [54]

Figure 2.2: Flow contour for Re = 31.9 at t = 0.6s; left - Bluebottle result, right - spectral results by ten Cate et al.

3
Development of a fluid-phase tracer model

A fluid-phase tracer is an analog of a fluid molecule that undergoes advection with the flow and
also molecular diffusion owing to its molecular scale. The current modelling of fluid-phase tracers
is Lagrangian in nature and each tracer is modelled separately in its own frame of reference with
no interaction from other tracers. Since fluid-phase tracers are also by definition a molecule of the
continuous phase, they are not subjected to hydrodynamic forces acted upon by the continuous
phase such as drag forces. Hence, a passive tracer "copies" the flow field at its location exactly with
no relative velocity. However, at the scale of the tracer, Brownian motion also comes into play.

3.1. The tracer data type

Since the tracers are not individual particles but assumed to be molecules of the fluid-phase, only
the positions of the tracers are stored. Any other properties pertaining to the fluid such as the ve-
locity field, density and viscosity can be found by interpolation. Additionally, the array index of the
tracer is stored for the purpose of debugging. Finally, for the implementation of a tracer distribution
similar to Wang et al. [57], an additional variable named tracertype is used. This could be of use
while simulating ionic flows where the cations and anions need to be differentiated. The definition
of the tracer data type in C is presented in Appendix A.1.

3.2. The Langevin equation

The motion of the fluid-phase tracers is modelled using the following discretised Langevin equation
for position:

r̄(tn) = r̄(tn−1)+ v̄ (r̄(tn−1) ·∆t + ξ̄
[p

6D∆t
]

(3.1)

The Langevin equation, the explicit Euler scheme form presented in Equation 3.1, is generally an
equation tracing the path taken by a Brownian particle. The first term on the right hand side of the
equation is the original position r̄ of the particle. The second term denotes the advective displace-
ment of the particle by the flow field v̄. The third term denotes the effect of Brownian force on the
particle given by the fluid diffusivity D and the time-step (∆t) for the time integration.

The numerical implementation of the Langevin equation can be isolated into modules based on

15

3.2. The Langevin equation 16

each term of the equation:

r̄(tn) = r̄(tn−1)︸ ︷︷ ︸
1

+ v̄ [r̄(tn−1] ·∆t︸ ︷︷ ︸
2

+ ξ̄
[p

6D∆t
]

︸ ︷︷ ︸
3

(3.2)

The first term 1 is straightforward and does not require computation since the location of the

tracers are stored in a numerical array at all time-steps. The second term 2 can be calculated
from the velocity field of the flow at the location of the tracer. Since the fluid domain is discretised,
interpolation is required to compute the fluid velocity at the precise location of the tracer. The
algorithm used for this purpose is discussed in detail in Section 3.2.1. The third term 3 is modelled
considering the magnitude of Brownian motion and a random unit vector. The algorithm used for
the calculation of the term is discussed in Section 3.2.2.

3.2.1. Interpolation in 3D space

The velocity field at the position of the tracer is calculated using trilinear interpolation. Trilinear
interpolation is a first-order approximation method but is conveniently fast and easy to implement.
Consider the tracer at location (x, y, z), in the bounding box given by the extents [x0, x1], [y0, y1] and
[z0, z1] bounded by eight mesh nodes, Cz y x in the X-, Y- and Z-directions in reverse. Equation 3.3 is
used to determine the weights for the interpolation across the different axes. The value of the field
at the location of the tracer can be deduced by progressive interpolation in X-, Y- and Z- axes as in
Equations 3.4. The C code for the mathematical formulation, the interpolator function, is given
in Appendix A.13.

wx = x −x0

x1 −x0
; wy = y − y0

y1 − y0
; wz = z − z0

z1 − z0
(3.3)

C00 =C000(1−wx)+C100xd

C01 =C001(1−wx)+C101xd

C10 =C010(1−wx)+C110xd

C11 =C011(1−wx)+C111xd (3.4)

C0 =C00(1−wy)+C10 yd

C1 =C01(1−wy)+C11 yd

C =C0(1−wz)+C1zd

The trilinear interpolation relies on a bounding box of six nodal points. Bluebottle represents the
three-dimensional grid in a one-dimensional form. Hence, the flattened array index of the corner
of the bounding box containing the tracer is first determined using the index_finder function. The
index determined, represented in code as foundindex is then used to find the Cartesian coordinate
location of the bounding box nodes using the grid_finder function. The grid_finder function
relies on the fact that a cell-centred grid is offset from the domain mesh grid by exactly half a cell
width in each direction. The foundindex variable is also used to fetch values from the velocity field.
These functions are presented in Appendix A.9.

If the tracer is located close to a wall such that the bounding box cannot be made of nodal points
from the domain but using ghost cells and the boundaries, trilinear interpolation is not used. In-
stead, a simple previous node interpolation is used on all three axes. The domain_checker function,

3.3. Interaction with particles and domain 17

presented in Appendix A.10, is used to determine the proximity of the tracer to the three axes of the
rectangular domain and representing it using a single value. A prime number is assigned to each of
the three axes – 2 for the X-axis, 3 for the Y-axis and 5 for the Z-axis in this case. The product of the
prime numbers associated with each axis can be used to represent the proximity to all the domain
extents in a single variable. For example, a value for the flag variable of 6 would mean that the tracer
is close to the X- and Y-axes. Depending on the proximity to the domain extents, different methods
of interpolation are followed. The previous node interpolation for a coarse grid is a severe drawback
to the current implementation of flow field interpolation. A follow-up to the current project would
include a higher order of interpolation in the domain and close to the domain boundaries.

The PHYSALIS algorithm does not exclude the mesh inside the particle cage from the fluid mesh.
Instead, specific boundary conditions are applied in the cage. These boundary conditions are de-
termined from the Stokes solution of flow close to a spherical surface. Hence, the flow field interpo-
lation close to particle surfaces is proceeded as like any other region of the domain and the presence
of a particle does not alter the interpolation method used in the current work. However, since the
mesh near the particle surface is coarse than a mesh used in conventional multiphase modelling
techniques like immersed boundary methods, accurate interpolation of the flow field may be com-
promised. Another follow-up to the current work would be to change the interpolation method for
locations close to particle surfaces by incorporating the Stokes solution of the flow field at the tracer
location and overriding trilinear interpolation.

3.2.2. The Brownian motion term

The magnitude of the Brownian displacement term is given by
p

6D∆t with a random direction in
3D space. This can be easily implemented using spherical coordinates (r,θ,φ) and converted to
Cartesian coordinates. The 3D direction components of the spherical coordinates – θ and φ – are
randomized based on a uniform distribution in the interval [0,2π) and converted using the trans-
formation:

ξ̄=
x

y
z

=
p

6D∆t ·
cos(θ)sin

(
φ

)
sin(θ)sin

(
φ

)
cos

(
φ

)
 (3.5)

The randgen function generates a random number in the range [-1,1]. The value from the randgen
function is then used by the randomizer function in calculating a random displacement for each
tracer using the mathematical formulation in Equation 3.5. The C code of the Brownian motion
term is presented in Appendix A.6.

3.3. Interaction with particles and domain

With the Langevin equation for the motion of the tracers modelled, it is necessary to implement
further algorithms to enable the interaction of the tracers with the spherical surfaces of the particles
and with the domain boundaries.

3.3.1. Interaction with particles

Since the tracers are assumed to be fluid-phase, the particle surface is assumed to be impenetrable
with a Neumann boundary of tracer concentration with value zero at the surface of the particle. The
non-penetration boundary condition is enforced by assuming the particle surface to be rigid, and
all collisions of the tracers with the particle to be elastic. Hence, tracers colliding with particles are
assumed to be reflected in a specular fashion from the surface. The direction of the reflected ray is

3.3. Interaction with particles and domain 18

given by the vector formulation of specular reflection from optics [13]:

d̂s = d̂i −2(d̂n · d̂i)d̂n (3.6)

where d̂s denotes the direction of the reflected ray, d̂i the direction of the incident ray and d̂n the
direction of the normal at the point of incidence. The sign conventions of the vectors d̂i , d̂s and
d̂n are given in 2D form in Figure 3.1. Point C denotes the center of the spherical particle x̄p (tn+1),

di

ds

dnX

A

BB′

C

Figure 3.1: 2D illustration of vector formulation of specular reflection of tracers on particle surface

point A denotes the location of the tracer before displacement r̄(tn), point B denotes the location of
the tracer after displacement r̄(tn+1), point B′ indicates the location of the tracer after displacement
if the particle was absent.

First, a check is made to determine if a tracer is inside a particle after displacement i.e., if the dis-
tance between a particle center x̄p (tn+1) and the tracer location r̄(tn+1) is less than the particle radius
a. If true, the specular reflection module is executed. A ray-marching algorithm described as follows
is used to determine the point of incidence X of the particle at the surface of the sphere.

1. Divide the tracer displacement AB′ into 10 equal parts.

2. Iterate over the parts and check if the point is inside the particle.

3. If the point is within the particle, go to the previous point. Divide the distance between the
two points into 10 equal parts and repeat.

4. Continue until sufficient precision is attained.

Once the point of incidence (X in Figure 3.1) is known, the incident ray unit vector d̂i is known from
the vector given by the incident point X and the tracer location A as:

d̂i = AX

|AX|
(3.7)

The normal vector d̂n is given by the vector connecting the point of incidence X and the center of
the particle C as:

d̂n = CX

|CX|
(3.8)

3.3. Interaction with particles and domain 19

The direction of the reflected ray d̂s is determined from Equation 3.6 and the magnitude of displace-
ment along the reflected ray is determined from the relation |XB| = |AB′|−|AX|. Finally, the reflected
location B of the tracer is given by:

B = X+|XB| · d̂s (3.9)

The code implementation, the particlereflector function, is presented in Appendix A.14.

When two particles are in close proximity, a single reflection step might place the tracer inside the
adjacent particle. To solve this, the reflection subroutine is repeated until the tracer is not inside any
particle. For the successive reflection steps, the point of incidence of the tracer with the particle X
is taken as the initial location of the tracer and the position after reflection from the previous step is
taken as the final location. For this reason, the function intersector presented in Appendix A.14
is used to determine the point of incidence of the tracer at the particle surface.

As the simulation of tracers is a one-way coupling with the PHYSALIS solver, there is a possibility
that a tracer will be placed inside a particle after a PHYSALIS solution and before the tracer iteration
i.e, the tracer location r̄(tn) might be within the surface of a particle with center x̄p (tn +1). This is
shown in Figure 3.2. The point P indicates the location of the tracer before the start of the tracer

P
Q

C0 C1

Figure 3.2: 2D illustration of pushing of tracer before the start of tracer simulation

simulation r̄(tn). Point C0 indicates the location of the particle at the previous time-step x̄p (tn) and
C1 indicates the location of the particle at the current time-step x̄p (tn + 1). Hence, a subroutine,
presented in Appendix A.15, is written to ensure that the tracers are pushed out of the spherical
particle before the start of the tracer iteration.

A check is first made to determine if a tracer is inside a particle before the tracer iteration i.e., if
the distance between a particle center x̄p (tn+1) and the tracer location r̄(tn) is less than the particle
radius a. If true, the tracer pushing algorithm is executed. The vector PC1 is computed and the unit
vector in the direction ˆPC1 is also computed. The updated location of the tracer Q is determined as:

Q = P +2 ·
(
a −|PC1|

)
· ˆPC1 (3.10)

The algorithm is added to mitigate the errors due to one-way coupling where the tracer can passively
get inside a particle through the motion of the particle. The magnitude of displacement through the
subroutine is expected to be an order of magnitude smaller than the particle radius since the CFL
criteria restricts displacement of the particle per time-step to a maximum of a grid cell length.

3.3. Interaction with particles and domain 20

3.3.2. Interaction with periodic boundaries

In the case of periodic boundaries, a particle might have a part of its volume on one side of the
domain with the rest of the volume on the opposite side. In this case, the algorithms for the tracer
to interact with the particles may fail since the particle center might not be completely indicative of
its volume. This is portrayed in Figure 3.3. In this case, even though the center of the particle (point
C in Figure 3.3) is on the right side of the domain, the presence of a periodic boundary places a part
of the volume of the spherical particle on the left side. This part volume has an apparent center
C′. If the tracer displacement places the tracer at an updated position of B′, checking the distance
of B′ from the actual particle center C will infer that the tracer is not inside the particle. Hence,
the specular reflection module will not be executed. The error thus caused has been observed in
domains where the ratio of axes length and particle radii are small. Hence, to mitigate this error and
to ensure correct interaction with particles, a function named periodic_maneuver given in A.12 is
developed.

Periodic boundaries

X

A

B
B′

C′ C

Figure 3.3: 2D illustration of interaction of particles across periodic boundaries

The function is appended at the start of all particle interaction functions including particle_checker,
particle_reflector, tracer_pusher and intersector. The function takes a location and a dis-
tance as arguments and modifies an array of three flags corresponding to each axis. A conditional
statement is used to detect if the location that is passed as the argument is within the distance that
is passed as an argument from each domain extent. Depending on the proximity, the flags are given
the values {−1,0,1}. The mathematical formulation for the condition, given location x = [x, y, z] and
distance d in the X-direction is:

flag[0] =

−1 if x < x0 +d

1 if x > x1 −d

0 otherwise

(3.11)

where x0 and x1 are the domain extents in the X-direction.

To give an example, if a particle of radius a is positioned close to the domain boundary in the +X
direction and if the distance of the particle center to the domain boundary is less than the particle
radius a (the case similar to Figure 3.3), the first flag value flag[0] is passed as 1. Similar checks are
done for the Y- and Z-axes. These flags are also generated for every tracer. If the flag values for the

3.3. Interaction with particles and domain 21

tracer and the particle are contradicting i.e, a product of -1, the particle center is relocated in that
particular axis. The apparent center C′ is given by:

C′ = C+flagtracer · [xl , yl , zl] (3.12)

where xl , yl and zl denotes the domain lengths in X-, Y- and Z-directions respectively.

In a case similar to Figure 3.3, the point B′ would result in a X-direction flag of -1 as it is close to the
-X domain boundary. Since the flag of tracer and the flag of the particle is contradicting, the particle
will be moved to an apparent center C′ as in Figure 3.3. Since each tracer and each particle has a
unique flag array combination, the repetitions of specular reflections are also accounted for.

3.3.3. Interaction with domain boundaries

The interaction of the tracers with domain external boundaries are modelled depending on the flow
boundary the tracer comes into contact with. For the simulation of fluid flow in Bluebottle, each
domain boundary pair can be treated as either solid walls or periodic boundaries.

In the case of solid walls, elastic collision of each tracer with the walls is assumed. Hence, the tracers
are reflected in a specular fashion upon crossing a wall. As the domain boundaries are aligned to the
axes, specular reflection is straightforward to implement. Consider specular reflection in the X-axis.
Assuming [x0, x1] as the extents of the domain in the X-direction and x as the X-coordinate of the
tracer after displacement, a simple check is made to determine if x ∈ [x0, x1]. If this condition is not
met, the conditional statement:

x ′ =
{

x0 + (x0 −x) if x < x0

x1 − (x −x1) if x > x1
(3.13)

specifies the new location x ′ after specular reflection at the wall. The same conditional statement
is repeated for the Y- and Z-axes boundaries. In the specific case where a tracer might be adjacent
to a corner of the cuboidal domain, displacement of the tracer might result in successive reflections
with two or three adjacent walls. For this reason, the specular reflection conditions are repeated
3 times to ensure that all the reflections are accurately captured and all the tracers stay within the
domain boundaries.

In the case of periodic boundaries, a tracer crossing a domain must exit out of the opposite bound-
ary. Proceeding similar to the case of solid walls, the mathematical formulation for the enforcement
of periodic boundaries at the walls of the domain in the X-direction is given by:

x ′ =
{

x1 − (x0 −x) if x < x0

x0 + (x −x1) if x > x1
(3.14)

with similar statements for the Y- and Z-directions. Similar to the solid walls, the condition is re-
peated thrice to ensure repeated entries are captured. The corresponding code, the wallreflector
function, is presented in Appendix A.11.

In the case of boundary conditions similar to Wang et al. [57] where two "types" of tracers are mod-
elled, a reflection off of one wall changes the tracers to the first type and reflections off of the oppo-
site wall changes the tracers to the second type, irrespective of the type of tracers before reflection.
A variable tracertype is used to denote the type of tracers - either "0" or "1". In the simulations,
the mass transport is monitored in the Y-direction. Hence, the boundary condition by Wang et al.
[57] is modelled as:

tracertype =
{

0 if y < y0

1 if y > y1
(3.15)

3.4. Initialisation conditions 22

where y denotes the Y-coordinate of the tracer position and [y0, y1] denotes the domain extents in
the Y-direction.

A proof of concept is established for deleting tracers upon crossing a wall instead of reflecting back
into the domain. Upon deletion, two subroutines are developed – one for idling the tracer at the
same position outside the domain boundary and the other for deleting the tracer from memory
altogether. The former is useful for tracking individual tracers and visualizing their path while the
latter is useful for statistical cases where the final location of the tracer is relevant and the path of an
individual tracer is of little use.

3.4. Initialisation conditions

The initialisation of the tracers is implemented so that tracers can be initialised depending on the
flow and the particle setups. The function tracerinit used for this purpose is presented in Ap-
pendix A.3. In the present work, three types of initialisations have been used.

• For the validation of the tracer motion with a 2D flow around a cylinder, tracers were ini-
tialised with a uniform planar distribution at one of the faces of the domain boundary.

• For the simulation of a motion of a sphere through a wall of tracers, collision of two spheres,
and comparison with the scalar solver of Bluebottle, tracers were initialised in a planar fashion
perpendicular to the direction of motion of the spherical particle. The tracers were randomly
distributed in a square-shaped subdomain of height and width a quarter of the domain size
at the center of the domain.

• For the validation of mass transfer in stagnant and sheared suspensions, tracers were ini-
tialised randomly at the two opposite XZ-planes, since the direction of measurement of mass
transfer is the Y-direction. Tracers were initialised at both the domain boundaries as two types
of tracers were considered.

The only criterion for the initialisation of the tracers is that the tracers are part of the fluid domain
and not the particle domain. Hence, a random distribution across the domain with particles is
physically invalid. However, the tracer-pushing subroutine discussed in Section 3.3.1 will push the
tracers out of a particle before commencing the tracer iterations.

3.5. Additional boundary conditions

The behavior of a tracer on collision with a wall is discussed in Section 3.3.3 to be of two types – a
symmetry boundary or a periodic boundary. However, the two boundary conditions do not influ-
ence the absolute number of tracers at a boundary. In regards to tracer concentration with respect
to electrokinetics, boundary conditions representing a constant number of tracers and a fixed rate
of production of tracers have also been implemented. The functions driving these boundary condi-
tions are presented in Appendix A.5.

The constant number of tracers boundary condition has been implemented by tracking the num-
ber of tracers within a user-defined distance threshold from a boundary. If this number of tracers
decreases below the threshold, a new tracer is added to the tracer array. This is implemented using
the function maintainer.

Implementing a fixed rate of production of tracers requires monitoring of the simulation time and
time-step. New tracers can be added in proportion to the simulation time-step so that the rate of
production of tracers can be kept constant. This is implemented using the function ratekeeper.

3.6. Flow of control 23

3.6. Flow of control

The flow of command for the tracer module is given in Figure 3.4.

A

B

Pull flow data from
CUDA Device

Push tracers
inside particles

tracer_pusher()

Reflect particles
crossing domain

wall_reflector()

Get Gaussian
displacement

randomizer()

Get advective
displacement

interpolator()

Calculate new
tracer location

Is tracer
inside

particle?

Update tracer
location

intersector()

Reflect tracers
on particle surface

particle_reflector()

Apply boundary
 conditions at walls

rate_keeper()

Handle tracers
crossing domain

wall_reflector()

Export tracer
and time data

exporter()

1

2

3

4

5

Yes

No

A
Bluebottle main
execution loop

B 0

Figure 3.4: Schematic of tracer code and flow of control; circled numbers represent a submodule that can be combined
in a representative fashion.

In the Figure 3.4, 0 represents operations outside the tracer module i.e, the Bluebottle main ex-

ecution loop, 1 represents importing and clean-up of flow and particle data from the Bluebottle

solution, 2 represents determination of displacement through advection and random motion, 3

represents interaction of tracers with particles, 4 represents interaction of tracers with domain

boundaries, 5 represents export of tracer locations and transfer of command to Bluebottle.

An orderly fashion of execution results in high modularity of code where any submodule can be
updated without affecting the execution of the other submodules.

3.7. Integration with Bluebottle

The C file tracer.c with the corresponding header file tracer.h is saved in the source folder src
in the Bluebottle root directory. The tracer header file is linked in the main header bluebottle.h.
The files are added to the Makefile to be compiled with the other source files with make. The
tracer simulation initialisation function tracer_start, presented in Appendix A.2, is added to the
PHYSALIS time integration loop at the end of the first time-step with a flag in place to prevent re-

3.7. Integration with Bluebottle 24

initialisation in the successive time-steps. The main tracer execution function tracer_execute,
presented in Appendix A.16, is placed after the flow field and the particle positions are updated by
Bluebottle. The time-step dt is passed as an argument to the function.

3.7.1. One-way coupling

The tracer simulation is connected to the particulate flow simulation through the velocity field
and the particle positions. These are, by default, global variables accessible to all files linked to
bluebottle.h. For the simulation of tracers where the background flow and the particle positions
are time invariant, the flow field needs to be accessed only once during the tracer simulation initial-
isation. Whereas, in the case of time varying flow field and moving particles, the flow field and the
particle positions are accessed every time the tracer simulation is executed.

The velocity field array is stored with the ghost cells in a staggered grid arrangement in the GPU
memory. Hence, the velocity field is pulled from the GPU to the host and converted into a cell-
centered arrangement without the ghost cells before the start of the tracer simulation.

3.7.2. Input & Output

In the present work, the input variables such as the number of tracers, initial positions of the tracers,
molecular diffusivity and the boundary conditions are input in the tracer.c file itself. Modifica-
tions to the code can be made to add the input parameters to a separate config file similar to the
input parameters of the main particulate simulation.

The tracer locations and the type of tracer, in case of a boundary condition similar to Wang et al.
[57], are exported in CSV format in the output folder of the simulation directory. The particle po-
sitions are also exported for post-processing. Additionally, the time-step number, the simulation
time, the time-step and the number of particles in the domain are also saved for keeping a log of the
number of exports and the timestamp of the exports. During initialisation of the tracer simulation,
the domain extents in all the three axes are also saved for post-processing purposes.

In the event where the simulation has to be stopped and restarted from a certain time-step, the ini-
tialisation function tracer_start is provided with a Boolean flag variable termed readfile which
if true, would load the tracer positions from an output file.

4
Testing & Validation of tracer

implementation in Bluebottle

The tracer module developed consists of sub-modules that can be simulated individually as a spe-
cific case. To elaborate, if the flow field is quiescent, the resulting simulation would be that of molec-
ular diffusion. On the other hand, if the diffusivity is assumed to be zero, the modelling of tracers
must accurately represent streaklines of the flow. In the case of a steady flow field, the streaklines
can be equated to streamlines of the flow.

In an Eulerian simulation, the phase field is used to distinguish the continuous phase from the dis-
crete phase. The phase field is simultaneously solved with the flow equation with its own set of
boundary conditions. However, in a Lagrangian setting, this boundary condition cannot be applied
directly and hence, is numerically enforced using a set of algorithms to ensure the repulsion of trac-
ers from the surface of the particle. Hence, the non-penetration boundary condition at the particle
surface is to be tested.

4.1. Pure diffusion in 3D space

In order to test the diffusion term, the mean-squared-displacement (MSD) was determined for pure
diffusion in 3D space with the background flow being quiescent and without the presence of parti-
cles. The MSD is given by:

MSD(t) = 〈|r(t)− r0|2〉 (4.1)

where r is the location of a tracer at time t and r0 is its initial location. In a three-dimensional
Cartesian space, the mean-squared-displacement is statistically:

MSD(t) = 6Dt (4.2)

where D is the diffusivity of the particles. For the test simulation, 10000 tracers with a diffusivity
of D = 1e−4 m2/s are simulated. A domain size of 2× 2× 2 m is used with a resolution of 128×
128×128 cells in the three directions. Since this test does not require the flow field nor interaction
with particles, the interpolator module and the particlereflector functions are turned off.
The time-step for the simulations is fixed at an arbitrary value of dt= 1e−3 sec and the simulation
time at 100 seconds, well below the average time of 1666.6 seconds required for a tracer to cross the
extents of the domain.

25

4.2. Streamlines in 2D flow about a cylinder 26

(a) Mean squared displacement – Simulation vs. Predicted (b) Percentage error in MSD estimation

Figure 4.1: Comparison of mean squared displacement from simulation of tracers with predicted value

From Figure 4.1a, a close adherence to the predicted value of MSD can be seen. From Figure 4.1b,
the percentage error of the value from the simulation is limited to <5%. Repeated simulations show
varying error distribution versus time indicating that the error obtained can be attributed to statis-
tical noise.

4.2. Streamlines in 2D flow about a cylinder

To test the interpolation term – the effect of flow on the tracers, the path of the tracers advected by
a 2D flow about a cylinder is determined. Since a 2D domain cannot be directly simulated using
Bluebottle, periodic boundary conditions are used in the Z-axis and the motion of the tracers is re-
stricted to the XY-plane through the center of the particle. The particle was kept stationary and a
flow of Re= 1 was simulated with a Dirichlet boundary for velocity and a Neumann boundary for
pressure at the inlet and the outlet. The flow domain, with extents [-1,1] in all directions and a res-
olution of 128× 128× 128 cells, was initialised with a channel flow field values. The tracers were
initialised with zero diffusivity, after the background flow had reached a steady state, with equal
spacing about the x-axis at y = 0 with a span of half of the domain. The simulation was carried out
until all of the tracers reached the domain exit. Figure 4.2 shows a comparison between the stream-
lines of the flow as simulated by Bluebottle and the path traced by the tracers. The streamlines are
plotted in such a way that they are displayed in between two tracer paths. The tracer module accu-
rately follows the streamlines of the background flow. To test interpolation close to the surface of
the particle, 200 tracers were simulated with the same domain resolution of Bluebottle. The tracers
attach to the surface of the particle and do not adhere to the boundary layer on post-processing the
path taken by the tracers. However, this error is caused by the coarser resolution of the Bluebottle
mesh resulting in erroneous interpolation. Higher order methods of interpolation or the imple-
mentation of Stokes solution to determine the flow field close to the surface of the particle may
overcome this error. However, in the current work, this is not implemented since a higher mesh
resolution can easily mitigate the magnitude of such errors. The comparison between tracer path-
lines and streamlines close to the surface of the particle is presented in Figure 4.3. The similarities
between the streamlines and the tracer pathlines close to the surface of the particle are to be noted.

4.3. Validation of non-penetration boundary at particle surfaces 27

Figure 4.2: Streamlines from flow computed by Bluebottle vs. path traced by tracers for flow about a cylinder at Re = 1

Figure 4.3: Tracer pathlines (left) vs. flow streamlines (right) close to the surface of the particle

4.3. Validation of non-penetration boundary at particle surfaces

The non-penetration boundary at the particle surface is numerically implemented using forced
specular reflection and pushing of tracers. In order to test the implementation, the collision of
particles with a wall of tracers with relative motion is simulated. In these cases, both the Brown-
ian motion term and the interpolation term is used to determine tracer displacement. The tracers
are initialised in a plane perpendicular to the direction of relative motion of the particle, with span
of the initialisation region being half the domain length.

4.3. Validation of non-penetration boundary at particle surfaces 28

4.3.1. Motion of a sphere through a wall of tracers

In the first test case, a single moving particle of radius a = 0.1m is passed through a stationary wall of
2000 tracers with a Reynolds number of 10. The diffusivity of the tracers is set at D = 1e−3m2/s. Fig-
ure 4.4 visualises the motion of the particle and the tracers. As the particle collides with the diffusing

Figure 4.4: Visualisation of motion of a spherical particle through a wall of tracers at Rep = 10 and tracer diffusivity

D = 1e−3 m2/s

tracer wall, some tracers directly in the line of motion of the particle end up inside the particle after
displacement. The specular reflection module is used to reflect the tracers out of the surface of the
particle. This can be confirmed by monitoring the number of reflections a tracer undergoes every
time-step. To ensure that the non-penetration boundary condition is not violated, the presence of
a tracer inside the particle is also checked. In this case, no tracer intrusion is observed.

4.3.2. Head-on collision of two spheres

An extreme case for testing tracer intrusion is the simulation of collision of two particles with a wall
of tracers located exactly at the plane of collision. This is significant since the specular reflection of
a tracer on the surface of one particle could place the tracer inside the other particle. Although this
scenario is rare in many simulations, it is an important test case to test the non-penetration bound-
ary at particle surface. This test case served as a motivation for the implementation of successive
reflection steps during the development of code as reported in Section 3.3.1.

Similar to the previous test case, the particles are of radii a = 0.1m and possess a Reynolds number
of 10 with respect to the continuous phase. The particles are positioned symmetrically opposite

4.4. Effect on Bluebottle runtime 29

from the plane of collision and are given symmetrically opposing velocities at t = 0 so as to collide
exactly at the center of the domain. The tracers are initialised similar to the previous case. The
visualisation of the tracers and the particles is shown in Figure 4.5.

Figure 4.5: Visualisation of head-on collision of two spherical particles with Rep =10 on a wall of tracers with tracer

diffusivity D = 1e−2 m2/s

The tracer implementation, along with Bluebottle, is written in C and the output is exported as CSV
files and post-processed with Python v3.7.12 and Matplotlib v3.2.2. During the post-processing
of initial runs, several tracers were found to intrude the particle with the intrusion being in the
order of magnitude of 1e−6 m. On debugging and inspection, this order of magnitude was found
to be related to the order of precision of the exported tracer location. When the tracer location was
imported as a default float variable, 6 decimal places are exported, which directly corresponds to
the encountered order of magnitude of intrusion. Upon increasing the export precision to 9 decimal
places, the frequency of intrusion drastically reduces. Figure 4.6 shows the reducing frequency of
particle surface intrusion upon exporting tracer and particle locations with precisions 6, 7 and 8
decimal places. With a precision of export of 9 decimal places, no intrusion was observed.

4.4. Effect on Bluebottle runtime

The addition of the tracer module to Bluebottle adds to the computational time of Bluebottle. The
execution time of the tracer module is tested for varying number of particles and tracers using sim-
ple simulations of diffusion through a stagnant suspension. In these cases, the criteria that the
suspension is stagnant is utilised and hence, the flow field is imported only once at the start of the

4.4. Effect on Bluebottle runtime 30

Figure 4.6: Intrusion of tracers inside particle surface with export precision of 6 decimal places (top), 7 decimal places
(middle) and 8 decimal places (bottom); each red dot represents intrusion of tracer with the x-coordinate representing

time of intrusion and y-coordinate representing distance of intrusion normal from particle surface

simulation. The Lamb iterations are stopped and only the tracers are simulated. For the compari-
son of the tracer execution time versus the number of particles, the number of tracers is kept fixed
at 2000. Whereas, for the comparison of the tracer execution time versus the number of tracers, the
number of particles is kept fixed at 15.

Figure 4.7 exhibits a linear relationship of the tracer module execution time with both the number
of particles and number of tracers. However, the execution time has a stronger relationship with the
number of particles with a factor of 3.793e−4 compared to a factor of 2.017e−5 for the number of
tracers.

In the case where the flow field is imported every time-step, the relationship between the tracer ex-
ecution time and the number of tracers varies. A sheared suspension of 15 particles is simulated for
this case. Since the flow field is also varying, it is imported to the tracer module for flow interpo-
lation every time iteration. Figure 4.8 showing the comparison between the tracer execution time
and the number of tracers again exhibits a linear relationship of the tracer execution time against
the number of tracers. However, a constant time of 0.1028s is present in the average execution time.

4.4. Effect on Bluebottle runtime 31

Figure 4.7: Variation in tracer module execution time vs. number of particles (left), number of tracers (right)

This corresponds to the time consumed in the importing of flow fields from CUDA device to host.

Figure 4.8: Variation in tracer module execution time vs. number of tracers

The tracer module execution time is then compared with the average time per Lamb iteration of
Bluebottle. A simulation of sheared suspension with 15 particles and 2000 tracers is executed and
the execution time is monitored. Figure 4.9 shows the comparison of execution time for a single
Lamb iteration and the total tracer module. It can be seen that the time taken for the execution
of the tracer module is approximately an order of magnitude lower than the execution time for a
Lamb iteration. Also can be seen are the fluctuations in the time taken for the execution of the
tracer module. This can be attributed to variations in the number of tracers that undergo specular
reflection at the walls and particle surface.

4.4. Effect on Bluebottle runtime 32

Figure 4.9: Variation in execution time for Lamb iteration and tracer module

5
Simulations of heat & mass transfer

One of the primary objective of the development of a tracer module is to test if a scalar field like the
temperature field or concentration field can be accurately monitored and simulated in a stochastic
manner. Hence, for this purpose, the tracer module is used to simulate passive fluid-phase tracers
and convective-diffusive heat diffusion.

5.1. Estimation of Sherwood number for particulate suspensions

The simulation of particulate suspensions was executed using Bluebottle with a case setup similar
to the simulations performed by Wang et al. [57]. A domain of size 0.8×1×0.8 m was used with a
mesh resolution of 100×125×100 cells in the X-, Y- and Z-directions respectively. Mass transport
was monitored in the Y-direction with the XZ-planes serving as solid walls. Hence, the length of the
domain in the mass transport direction H = 1 m. The remaining boundaries were set as periodic
boundaries for the flow. The spherical particles simulated are of uniform radii of a = 0.1 m. This
results in an aspect ratio H/a = 10. The spherical particles are dispersed uniformly throughout the
domain using the seeder utility of Bluebottle. In all the simulations, the default residual threshold
values for the Lamb iterations of Bluebottle are used.

A two-tracer method similar to the implementation by Wang et al. [57] is used. The tracers are
assumed to be of two "types" "0" and "1". The XZ-plane in the -Y direction (named the south plane)
is assumed to be the plane of production of type "0" tracers and the XZ-plane in the +Y direction
(named the north plane), type "1" tracers. Hence, any tracer of type "1" crossing the south plane is
converted to a type "0" tracer and vice versa. This method of employing two "types" of tracers has
the advantage that new tracers need not be created and tracers crossing a boundary can be reused.
Mathematically, the condition can be represented as:

c0(−y) = 1; c0(+y) = 0

c1(−y) = 0; c1(+y) = 1
(5.1)

where c0 and c1 represents the concentration of specie "0" and "1" respectively, normalized with
the maximum concentration in the domain . −y and +y represents the domain boundaries in the
y-direction.

In the absence of spherical particles, the time evolution of concentration follows Fick’s law of diffu-
sion:

∂C

∂t
= D

∂2C

∂y2 (5.2)

33

5.1. Estimation of Sherwood number for particulate suspensions 34

which is similar to the Laplace equation for 1D heat diffusion at steady state. Hence, the time evo-
lution of concentration is assumed to follow the same solution as the heat diffusion equation. At
steady state, the profile for the concentration is expected to be the same as the temperature profile
in 1D conduction:

dC

dy
= constant (5.3)

Substituting the Dirichlet boundary conditions, we obtain:

C (y) =C (y =−y)+ C (y =+y)−C (y =−y)

H
· y (5.4)

Simplifying further using normalized concentration c for the two species "0" and "1" in the place of
concentration C , we get:

c0(y) = 1− y

H

c1(y) = y

H

(5.5)

Pure diffusion with no background flow and no spherical particles was simulated using the tracer
module. The histogram of tracers was obtained for an interval of 50000 iterations after the comple-
tion of 200,000 iterations. The histogram for the tracer specie "0" and "1" is shown in the Figure 5.1.

Figure 5.1: Histogram of normalized tracer concentration c0 (left) and c1 (right) for tracer specie "0" and "1" respectively;
black bars indicate tracer module result as a histogram, red line indicates analytical solution given in Equation 5.5.

The rate of mass transport is given by the Sherwood number Sh and can be estimated using the
following definition:

Sh = hH

D
(5.6)

where H = 1 m is the domain size in the direction of monitoring mass transport, D is the diffusivity
of the tracers which is modified depending on the Péclet number Pe of the flow given as:

Pe = Γa2

D
(5.7)

5.1. Estimation of Sherwood number for particulate suspensions 35

where Γ is the shear rate of the walls. h is the mass transfer coefficient and is calculated as:

h = 〈Q〉
Ac0

(5.8)

For the estimation of 〈Q〉, the number of tracers that change from type "0" to type "1" and the op-
posite is monitored to represent the number of tracers crossing the boundary. A is the area of the
plane perpendicular to the mass transport direction. For the given domain size, A = 0.64 m2. The
concentration driving force c0 is then evaluated as n/V with n = 2000 being the number of trac-
ers in the domain and V = 0.64 m3 being the domain volume. The Python implementation for the
calculation of Sh is presented in Appendix B.3.

5.1.1. Mass transport in stagnant suspensions

A stagnant suspension is expected to reduce the mass transfer of the tracers as the spherical particles
will act as obstacles for the motion of the tracers. The theoretical model of the mass transfer rate
given the volume fraction of the spherical particles is given by Deen [15] as an analog to Maxwell’s
relation of an effective dielectric constant as:

Sh = 1+3φ
α−1

α+2
(5.9)

where α = Dp M/D , Dp and D being the diffusivities of the tracers in the dispersed phase and the
continuous phase respectively and M the solubility ratio of tracer concentration in the dispersed
and the continuous phase. In the case of passive fluid-phase tracers, Dp = 0, M = 0 owing to the
no-flux boundary at the particle surface. Hence, Equation 5.9 simplifies to:

Sh = 1− 3φ

2
(5.10)

Three values of volume fraction φ= {0,0.1,0.2} are simulated. The domain is initialised with a qui-
escent state and the particles are dispersed as per the required volume fraction. Since Bluebottle
iterations consume 90% of the computation time, the domain is initialised and only the tracer mod-
ule is executed until the simulation endtime. The flow field and the particles are imported from
Bluebottle only once at the start of the simulation as the flow field is quiescent and steady. This
conserves even more computational time.

The tracer module was simulated from a total simulation time of 5 times the time scale required
for the bulk of tracers to cross the domain. This is estimated from the diffusivity D and the domain
length H as H 2/D . The time-step for the simulation is user-defined since there is no coupling with
Bluebottle other than the particle locations. The time-step is chosen in such a way that the magni-
tude of Brownian displacement

p
6D∆T equates to a tenth of the particle radius i.e., ∆t = a2/600D .

This assumption is used to ensure that the tracer_pusher subroutine does not result in non-
physical dynamics of the tracers at the particle surface. Further case setup information is presented
in Appendix B.1.

Initially, the tracer module was simulated without the periodic_maneuver subroutine and an offset
in the results was observed. The offset decreased with increase in domain size from which discrep-
ancies in wall effects were inferred. Then, the periodic_maneuver subroutine was devised and was
used in all the forthcoming simulations.

Figure 5.2 shows the results of the simulation against the theoretical model described in Equation
5.10. In the three simulations executed, an approximately constant positive offset in Sh of 0.03 is
observed. The error in the resulting values for the three values of particle volume fraction φ is con-
stant. Moreover, the error persists for a particle volume fraction φ= 0. Thus, it can be inferred that

5.1. Estimation of Sherwood number for particulate suspensions 36

0.00 0.05 0.10 0.15 0.20 0.25 0.30
ϕ [-]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sh
 [-
]

Theoretical Model
Simulation Result

Figure 5.2: Simulation & Theoretical Sherwood number (Sh) vs. particle volume fraction (φ) for a stagnant suspension

the cause of the error is not particle interaction effects. The contribution of the interpolation term
can also be neglected since the current simulation does not utilise interpolation functions. The sim-
ulations were run for varying diffusivity values and similar results were observed, thus ruling out the
possibility that the Brownian term is the cause of the error. Hence, in the current work, the origin of
the constant error is unknown and a better evaluation of the case is recommended as a follow-up.

5.1.2. Mass transport in sheared suspensions

A sheared suspension is expected to increase mass transfer of the tracers owing to the convective
mass transport of the tracers with the flow field. The Péclet number defines the rate of shear with
regards to molecular diffusion of the fluid. It is given by Equation 5.7. The north and south planes
of the domain are given a uniform velocity of ±ΓH/2, H being the domain size in the Y-direction.

For the simulations of sheared suspensions, the tracer module is coupled with the flow field com-
puted by Bluebottle. Hence, the time-step for the tracer module is the same as the time-step used
by Bluebottle. The CFL number for the Bluebottle simulation was fixed at 0.5 as it was found to offer
better simulation time by providing a good balance of time-step and number of iterations per time-
step. The Bluebottle simulation was initialised with a flow profile resembling shear across the two
solid walls.

Wang et al. [57] recommended a simulation until a total strain Γt of 850 to achieve a steady state
of flow field and mass transport. An equivalent simulation in Bluebottle would consume a large
computational time. Hence, for the purpose of speed, the tracers were initialised by running a sim-
ulation of a stagnant suspension with the generated particle location, with a simulation time similar
to Section 5.1.1. The final location of the tracers were then used as the initial location for the simula-
tion of sheared suspensions. This is performed since the distribution of tracers after the simulation
of a stagnant suspension (see Figure 5.1) is closer to the expected steady state distribution of trac-
ers in a sheared suspension [57] than a random distribution. This method of initialisation cuts the
required simulation runtime short by approximately ten times and a comparable value of Sh is ob-
tained after approximately 75000 timesteps for the simulations discussed.

5.2. Comparison with an Eulerian convection-diffusion solver 37

Since each simulation took approximately two weeks to be completed, only a specific case for vali-
dation with results from Wang et al. are considered - the particle Reynolds number is fixed at Re = 4
and the Péclet number is varied as Pe = {100,200,300}. Convergence in Sh is not checked simulta-
neously during the simulation and is only verified during post-processing (see Appendix C.1). The
Sherwood number Sh is computed similar to Section 5.1.1 and the results are presented in Figure
5.3. The first 10000 timesteps are not considered for the estimation of Sh as a buffer to let the con-
centration distribution align with the shear flow profile. The results are compared with the empirical
model proposed by Wang et al. [57] and also their numerical data. The results of Sh vs. Pe show a
good agreement with the trend in the theoretical model. However, an underestimation in Sh of 14%,
12.2% and 1.4% for Pe= {100,200,300} respectively is observed. The error in the estimation of Sh can
be attributed to a shorter time interval considered for the estimation of Sh i.e, the simulation could
have been carried out longer for more precise results.

Figure 5.3: Simulation & Theoretical Sherwood number (Sh) vs. Péclet number (Pe) for sheared suspensions

Hence, with the simulations of stagnant and sheared suspensions, the tracer module is validated for
the simulation of stochastic mass transport with the inclusion of convective and diffusive flux.

5.2. Comparison with an Eulerian convection-diffusion solver

Bluebottle also has an inbuilt scalar solver that solves the convection-diffusion equation for any
scalar simultaneously with the multiphase flow equations. The scalar solver is an Eulerian solver
that computes on the same grid as that of the fluid mesh. The Langevin equation used for the sim-
ulation of tracers is a stochastic analog of the convection-diffusion equation and hence, the scalar
solver of Bluebottle can be compared with the statistical results of the tracer module.

A simulation with the same premise as that in Section 4.3.1 is used to visualise the behavior of the
scalar field in comparison with the concentration field from tracer statistics – collision of a spherical
particle with a wall of tracers and head-on collision of two spherical particles. Periodic boundary
conditions were applied to all the faces of the domain for the scalar field and the field was initialised
with a value of 1 in the same region as the initialisation of tracers - a plane in y z-direction of length
and width equal to quarter of the domain size situated at the center of the domain in the x-direction,
with the rest of the region being initialised with value 0. The particles are initialised with a value

5.2. Comparison with an Eulerian convection-diffusion solver 38

of 0 for the scalar. The no-flux boundary at the particle surface for the scalar can be enforced by
assuming Cp,p ¿ Cp, f where Cp,p is the specific heat analog for the particle and Cp, f for the fluid.
However, it was observed that very low values of Cp,p results in lower stability of the scalar solver.
Hence, Cp,p was chosen such that Cp, f = 1000Cp,p . Figure 5.4 shows the comparison between the
locations of the tracers and the scalar field. The time evolution of the simulation is presented in
Appendix C.2.1. It is observed that the tracers accurately capture the profile of the scalar field. It
is also noted that the scalar solver of Bluebottle has certain artefacts in the solution which result in
alternating values on the wake of the particle. The tracer module is free from such artefacts.

Figure 5.4: Comparison of tracer locations (red dots) and scalar field solution (blue contour) at t = 0.02s (left) and
t = 0.05s (right) with D = 1e−4 m2/s.

The estimation of a scalar field from the tracer locations is executed using binning of tracer locations
into a grid similar to the mesh used for the scalar field solution. The Python implementation for the
determination of the tracer concentration field from the tracer locations is presented in Appendix
B.4. In this case, the number of tracers greatly influence the quality of results. This can be seen
in Figure 5.5. Here, two spherical particles undergo a head-on collision with a wall of tracers and
the scalar field at the point of collision. The simulation parameters are set similar to Section 4.3.2.
The locations of the tracers are binned into a grid of the same size as that of the mesh used for the
scalar field. The concentration field for the tracers is averaged from 20 grid nodes about the center
of the domain in the Z-direction and are visualised in the XY-plane. Similar averaging is applied
to the scalar field. It is observed that the concentration field from the averaging of tracer locations
contains noise. Despite the noise, the profile resembles the scalar field and weak structures like
adhesion of the scalar field to the particle surface is also captured quite well. The full time evolution
of the scalar field and the tracer concentration field is presented in Appendix C.2.2.

Finally, the tracer module is compared to the scalar solver in terms of execution time. This com-
parison is presented in Figure 5.6. For the comparison, the simulation of sheared suspensions with
15 particles as in Section 5.3 is considered. The scalar field is initialised with opposing Dirichlet
boundary conditions for the scalar on the rigid walls where mass transport is monitored. It can be
seen that the computation time per iteration of the scalar solver is smaller than the time required
to simulate one time-step for 2000 tracers. However, considering the scalar solution requires, on
average, more than one iteration per time-step, the total execution time for the scalar solver is of
approximately the same order of magnitude as the time consumed for a tracer iteration.

5.2. Comparison with an Eulerian convection-diffusion solver 39

Figure 5.5: Scalar field (left) vs. tracer concentration field (right) at t = 0.09s, D = 1e−2 m2/s; outlines of particles of
a = 0.1m are shown in black dotted lines

Figure 5.6: Variation in execution time per iteration for Lamb iteration vs. tracer execution vs. scalar solver iteration

Figure 5.7: Variation in total execution time for Lamb iterations vs. tracer execution vs. scalar solver iterations

6
Summary & Conclusions

6.1. Installation of Bluebottle and the tracer module

The fork of Bluebottle containing the tracer module can be found at https://github.com/shyam97/
bluebottle3. The install.sh file in the root directory is a shell script that can be used to install
Bluebottle with the prerequisites being an installation of CUDA (>=9.0), CMake and a network con-
nection. The flow field variables can be controlled using the .config files in the /sim/input/
directory of Bluebottle. The parameters for the tracer module can be controlled from the function
tracerstart in the file /src/tracer.c. Changes to the file tracer.c require that the Bluebot-
tle executable is refreshed with the make command. The output files can be found in the directory
/sim/output/ and the post-processing tools can be found in the directory /tools/python/. The
tracer module can be also be used coupled with other flow solvers provided that the flow field cou-
pling and the tracer execution is handled properly.

6.2. Summary of the tracer module code

A Lagrangian method for simulation of mass transport via convective and diffusive motion of fluid-
phase tracers is developed. This method is developed as a one-way coupling to Bluebottle, a par-
ticulate multiphase flow solver that uses the PHYSALIS algorithm. The tracers are simulated using
a simplified form of the Langevin equation. The dynamics of a tracer can be isolated into diffu-
sive and convective displacement, and interaction with the domain boundaries and particles. The
different modules in code execution are summarised as follows.

• The diffusive term of the tracer displacement is calculated using a Gaussian random displace-
ment with magnitude

p
6∆t .

• The convective displacement is modelled using a simple one-way coupling with the flow field
at the present time-step for the tracers. The flow field solution is imported from Bluebottle
and interpolated in a trilinear fashion to determine the field values at the location of each
tracer.

• The domain boundaries are modelled either as solid walls that provide specular reflection
upon collision of a tracer or as periodic boundaries that redirect the tracers to the opposite
side of the domain upon intrusion. Boundary conditions that resemble the conventional Eu-
lerian boundary conditions such as constant value (Dirichlet) and constant flux (Neumann)

40

https://github.com/shyam97/bluebottle3
https://github.com/shyam97/bluebottle3

6.3. Summary of code validation 41

boundary conditions are also developed to be used close to boundaries. Furthermore, a
boundary condition similar to the one developed by Wang et al. where two "types"of trac-
ers are used to estimate bidirectional mass flux is also implemented.

• The no penetration boundary at the particle surface is numerically implemented. Specular
reflection algorithms are used to enfore this boundary condition if the tracer displacement
leads to a possible intrusion of the particle surface. In the event where the particle displace-
ment engulfs a tracer, a fail-safe method to push the tracers out of the particle is devised and
implemented.

• To preserve particle interactions close to periodic boundaries, an algorithm to temporarily
place the particle so as to be detected by the particle interaction algorithms is developed and
implemented. This algorithm computes a set of flags depending on the proximity to domain
boundaries that are unique to every tracer-particle pair.

• The code is developed to run immediately after every flow field solution step of Bluebottle. In
cases where the flow field is expected to be quiescent or steady state, the tracer module can
also be programmed to run for the whole simulation without the execution of the Bluebottle
solver.

• The tracer locations are exported and imported as .CSV files. Post-processing of exported data
is executed using Python and Matplotlib.

The runtime for the tracer module within Bluebottle is tested. The computation time for the tracer
module is observed to be an order of magnitude smaller compared to the flow field iterations of
Bluebottle. A large part of the tracer computation time is estimated to be from the flow field inter-
polation. Furthermore, the computational time of the tracer module is

• independent of the mesh size and resolution for the dynamics of the tracers. However, the
interpolation subroutine is dependent on the mesh resolution.

• independent of the time-step size. However, forcing a larger time-step would result in the
violation of the enforced no-flux boundary at the particle surface and would result in non-
physical dynamics of the tracers.

• directly proportional to the number of particles with a linear proportionality.

• directly proportional to the number of tracers with a linear proportionality.

6.3. Summary of code validation

The individual modules of the tracer module were validated. The results are summarised as below.

• The mean-squared-displacement statistics of pure diffusion indicate agreement with the the-
oretical model.

• The coupling to the flow field is tested with a simple 2D flow about a cylinder. The pathlines
generated by tracers distributed equally about the diametrical axis of the cylinder in the flow
direction matches the streamlines of the flow accurately.

• The no penetration boundary is tested with a simulation of a spherical particle colliding with
a wall of tracers and a head-on collision of two spherical particles with a wall of tracers at
the point of collision. No intrusions were observed in the former case. In the latter case,
intrusions corresponding to the export precision of tracer locations were observed.

6.4. Scope for future work 42

The tracer module is validated with simulations of mass transport across stagnant and sheared sus-
pensions. These simulations served as feedback for the implementation of several subroutines to
improve the precision in capturing particle and domain extent interactions. The estimated Sher-
wood number matches the expected results well.

The tracer module is also compared with an Eulerian scalar solver that is inbuilt in Bluebottle. The
tracer module captures flow profiles and features accurately. However, the statistical noise present
in the stochastic simulation greatly affects space- and time-averaged results. This noise can only be
controlled by a very high number of tracers.

6.3.1. Scope for improvement of current code

The following modifications can be performed to the present code.

• The current tracer module is executed fully on the CPU without the use of CUDA. This means
that the flow field needs to be imported from CUDA device every time-step for the execution
of the tracer module. This import step takes approximately 0.1 seconds per time-step in the
execution of the tracer module. To minimise this time consumption, the tracer module can
be formatted to run on the CUDA device. This will not only erase the computation time for
the flow field import but also increase the speed of tracer module execution.

• The interpolation of the flow field close to the walls can be modified to enable a higher order
method of interpolation.

• Stokes equations for flow around a sphere can be used to improve the interpolation of the flow
field close to the surface of a particle.

• The input and output parameters to the tracer module can be merged with the config files of
Bluebottle to ensure a cleaner method of execution.

• The discrepancy in the value of Sh for stagnant particulate suspensions discussed in Section
5.1.1 needs to be addressed.

6.4. Scope for future work

The current work aims to develop a computational tool for the simulation of passive tracers. The
dynamics of the tracers are modelled using the Langevin equation for position (Equation 3.1). In the
current work, the diffusive and the convective fluxes are modelled. Good agreement was obtained
with prior experimental and numerical results for convection-diffusion. The tracer module finds its
use as is in the following applications.

1. The tracers are assumed to have no relative velocity with the fluid. Hence, the tracers can be
used as fluid-phase tracers in simulations of convective-diffusive mass transport in particu-
late suspensions.

2. The tracer module can be used to simulate scalar fields in particulate flows stochastically us-
ing a Lagrangian approach. A validation case for the simulation of tracers to represent a scalar
field is presented and the tracers are observed to capture structures and profiles of the scalar
field quite well. The flux of a scalar field can also be captured discretely and cumulatively
time-averaged to determine the average flux. As simulations in Bluebottle are restricted to
simulations of particulate multiphase flows with spherical particles, a specific use case for the
tracer module is the simulation of a scalar field in fluidized beds or packed beds of spheres.

6.4. Scope for future work 43

3. The good agreement of experimental results of Wang et al. [57] provides a proof of concept for
the simulation of mass transport of weak electrolytes in electrolytic processes. The limiting
current measurement technique [21, 45, 46] is a standard mass transfer measurement tech-
nique where a weak electrolyte is used to measure mass transport with an electrolytic solution
that is saturated with a strong electrolyte. The strong electrolyte screens the electric field in
the bulk of the electrolyte, thereby reducing the migrative flux of the weak electrolyte [45].
However, the same technique cannot be applied for water electrolyzers directly as Haverkort
et al. [22] showed the migration contribution to the total flux of ions in a water electrolyzer to
be stronger than the diffusive flux. The contribution of the electric potential varies depend-
ing on the distance of the ion from the electrode [49] and at larger distances, the electrostatic
force decreases drastically. The Debye length provides a length scale above which the migra-
tion effects reduces considerably [58]. In macroscale systems with electrode gap considerably
larger than the Debye length of the electrolyte, the migration flux is restricted to a thin space
near the electrode and the primary flux of the ions through the bulk is diffusion [58]. In these
specific cases, the tracer module can be used as is with the assumption that the contribution
of migrative flux on the motion of ions is negligible.

To simulate ionic mass transport close to the electrode, the migration flux needs to be modelled.
This can be done using an electric field-mediated force that requires the knowledge of either the
electric field or the potential gradient at individual locations in the domain. Coulomb’s force equiv-
alence

Fc = Eq (6.1)

can then be used with the Stokes drag

Fd =−ζ|u−v| · v̂ (6.2)

to estimate the net force on the ion as

m
∂v

∂t
= Eq −ζ|u−v| · v̂ (6.3)

relative to the fluid phase. Here, E represents the electric field, q the charge of the ion, m the mass
of the ion, u the velocity of the fluid phase at the location of the ion, v the velocity of the ion and v̂
the unit vector in the direction of v. ζ is the Stokes drag coefficient of an ion given by

ζ= 6πµr (6.4)

where µ is the dynamic visocity of the fluid phase and r is the radius of the ion assumed to be
spherical.

In this case, two equations - the velocity equation given by Equation 6.3 and the displacement equa-
tion given by Equation 3.1 - needs to be modelled. Hence, the velocity of the ions should be stored
as an array in the tracer datatype. Modelling of electrostatic force and an addition of an electrostatic
force term to the Langevin equation makes the equation a stochastic analog of the Nernst-Planck
equation 1.6. Hence, upon addition of the electrostatic force term, the scalar field associated with
the tracers in the presence of an electric field can be validated by simulations of the Nernst-Planck
equation. The concentration of ions at the surface of a bubble can be assumed to be the saturation
concentration [23]. This requires the development of relevant boundary conditions for tracer con-
centration at the surface of the bubble. In this case, not all ions would be reflected in a specular
fashion at the bubble surface. An increase in the concentration of ions close to a bubble will re-
sult in supersaturation at the bubble surface and subsequently, growth of the bubble [3, 55]. As the
diameter of particles simulated by Bluebottle cannot be changed during the simulations, diffusive
growth of bubbles cannot be modelled using this method.

Bibliography

[1] Lokmane Abdelouahed, Rainier Hreiz, Souhila Poncin, Gérard Valentin, and Francois
Lapicque. Hydrodynamics of gas bubbles in the gap of lantern blade electrodes without forced
flow of electrolyte: Experiments and CFD modelling. Chemical Engineering Science, 111:255–
265, may 2014. doi: 10.1016/j.ces.2014.01.028.

[2] K. Aldas, N. Pehlivanoglu, and M. Mat. Numerical and experimental investigation of two-phase
flow in an electrochemical cell. International Journal of Hydrogen Energy, 33(14):3668–3675, jul
2008. doi: 10.1016/j.ijhydene.2008.04.047.

[3] Andrea Angulo, Peter van der Linde, Han Gardeniers, Miguel Modestino, and David Fernández
Rivas. Influence of bubbles on the energy conversion efficiency of electrochemical reactors.
Joule, 4(3):555–579, mar 2020. doi: 10.1016/j.joule.2020.01.005.

[4] Damien Le Bideau, Philippe Mandin, Mohamed Benbouzid, Myeongsub Kim, Mathieu Sellier,
Fabrizio Ganci, and Rosalinda Inguanta. Eulerian two-fluid model of alkaline water electrolysis
for hydrogen production. Energies, 13(13):3394, jul 2020. doi: 10.3390/en13133394.

[5] J. J. Bluemink, D. Lohse, A. Prosperetti, and L. Van Wijngaarden. A sphere in a uniformly ro-
tating or shearing flow. Journal of Fluid Mechanics, 600:201–233, mar 2008. doi: 10.1017/
s0022112008000438.

[6] P. Boissonneau and P. Byrne. An experimental investigation of bubble-induced free convection
in a small electrochemical cell. Journal of Applied Electrochemistry, 30(7):767–775, 2000. doi:
10.1023/a:1004034807331.

[7] B. E. Bongenaar-Schlenter, L. J. J. Janssen, S. J. D. Van Stralen, and E. Barendrecht. The effect of
the gas void distribution on the ohmic resistance during water electrolytes. Journal of Applied
Electrochemistry, 15(4):537–548, jul 1985. doi: 10.1007/bf01059295.

[8] D. A. G. Bruggeman. Berechnung verschiedener physikalischer konstanten von heteroge-
nen substanzen. i. dielektrizitätskonstanten und leitfähigkeiten der mischkörper aus isotropen
substanzen. Annalen der Physik, 416(7):636–664, 1935. doi: 10.1002/andp.19354160705.

[9] Alexander Buttler and Hartmut Spliethoff. Current status of water electrolysis for energy stor-
age, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review. Re-
newable and Sustainable Energy Reviews, 82:2440–2454, 2018.

[10] Barbaros Cetin and Dongqing Li. Effect of joule heating on electrokinetic transport. ELEC-
TROPHORESIS, 29(5):994–1005, mar 2008. doi: 10.1002/elps.200700601.

[11] Prasad Chandran, Shamit Bakshi, and Dhiman Chatterjee. Study on the characteristics of hy-
drogen bubble formation and its transport during electrolysis of water. Chemical Engineering
Science, 138:99–109, dec 2015. doi: 10.1016/j.ces.2015.07.041.

[12] Roland Clift, John R Grace, and Martin E Weber. Bubbles, drops, and particles. 2005.

44

Bibliography 45

[13] Peter Comninos. Mathematical and computer programming techniques for computer graphics.
Springer Science & Business Media, 2010.

[14] Anders A. Dahlkild. Modelling the two-phase flow and current distribution along a vertical
gas-evolving electrode. Journal of Fluid Mechanics, 428:249–272, feb 2001. doi: 10.1017/
s0022112000002639.

[15] William Murray Deen. Analysis of Transport Phenomena, volume 2. Oxford University Press
New York, 1998.

[16] Géraldine Duhar and Catherine Colin. Dynamics of bubble growth and detachment in a vis-
cous shear flow. Physics of Fluids, 18(7):077101, jul 2006. doi: 10.1063/1.2213638.

[17] John Dukovic and Charles W. Tobias. The influence of attached bubbles on potential drop and
current distribution at gas-evolving electrodes. Journal of The Electrochemical Society, 134(2):
331–343, feb 1987. doi: 10.1149/1.2100456.

[18] J. Eigeldinger and H. Vogt. The bubble coverage of gas-evolving electrodes in a flowing elec-
trolyte. Electrochimica Acta, 45(27):4449–4456, sep 2000. doi: 10.1016/s0013-4686(00)00513-2.

[19] C. Gabrielli, F. Huet, and R.P. Nogueira. Fluctuations of concentration overpotential generated
at gas-evolving electrodes. Electrochimica Acta, 50(18):3726–3736, jun 2005. doi: 10.1016/j.
electacta.2005.01.019.

[20] Sean R. German, Martin A. Edwards, Qianjin Chen, Yuwen Liu, Long Luo, and Henry S. White.
Electrochemistry of single nanobubbles. estimating the critical size of bubble-forming nuclei
for gas-evolving electrode reactions. Faraday Discussions, 193:223–240, 2016. doi: 10.1039/
c6fd00099a.

[21] DW Gibbons, RH Muller, and CW Tobias. Mass transport to cylindrical electrodes rotating in
suspensions of inert microspheres. Journal of the Electrochemical Society, 138(11):3255, 1991.

[22] J.W. Haverkort and H. Rajaei. Electro-osmotic flow and the limiting current in alkaline water
electrolysis. Journal of Power Sources Advances, 6:100034, dec 2020. doi: 10.1016/j.powera.
2020.100034.

[23] F.J. Higuera. A model of the growth of hydrogen bubbles in the electrolysis of water. Journal of
Fluid Mechanics, 927, sep 2021. doi: 10.1017/jfm.2021.778.

[24] Fumio Hine and Koichi Murakami. Bubble effects on the solution IR drop in a vertical elec-
trolyzer under free and forced convection. Journal of The Electrochemical Society, 127(2):292–
297, feb 1980. doi: 10.1149/1.2129658.

[25] SR Holm, H Polinder, JA Ferreira, P Van Gelder, and R Dill. A comparison of energy storage
technologies as energy buffer in renewable energy sources with respect to power capability. In
IEEE young researchers symposium in electrical power engineering, 2002.

[26] Rainier Hreiz, Lokmane Abdelouahed, Denis Fünfschilling, and François Lapicque. Electro-
generated bubbles induced convection in narrow vertical cells: PIV measurements and eu-
ler–lagrange CFD simulation. Chemical Engineering Science, 134:138–152, sep 2015. doi:
10.1016/j.ces.2015.04.041.

[27] Hussein Ibrahim, Adrian Ilinca, and Jean Perron. Energy storage systems—characteristics and
comparisons. Renewable and sustainable energy reviews, 12(5):1221–1250, 2008.

Bibliography 46

[28] IEA. Global energy review 2021. IEA (2021), 2021.

[29] Hydrogen Irena. A renewable energy perspective. IRENA, Abu Dhabi, 2019.

[30] Md H. Islam, Odne S. Burheim, and Bruno G. Pollet. Sonochemical and sonoelectrochemical
production of hydrogen. Ultrasonics Sonochemistry, 51:533–555, mar 2019. doi: 10.1016/j.
ultsonch.2018.08.024.

[31] Paul Langevin. Sur la théorie du mouvement brownien. Compt. Rendus 146, pages 530–533,
1908.

[32] Sheng-De Li, Cheng-Chien Wang, and Chuh-Yung Chen. Water electrolysis in the presence of
an ultrasonic field. Electrochimica Acta, 54(15):3877–3883, jun 2009. doi: 10.1016/j.electacta.
2009.01.087.

[33] Yifan Li, Gaoqiang Yang, Shule Yu, Zhenye Kang, Jingke Mo, Bo Han, Derrick A. Talley, and
Feng-Yuan Zhang. In-situ investigation and modeling of electrochemical reactions with si-
multaneous oxygen and hydrogen microbubble evolutions in water electrolysis. International
Journal of Hydrogen Energy, 44(52):28283–28293, oct 2019. doi: 10.1016/j.ijhydene.2019.09.044.

[34] Ming-Yuan Lin, Lih-Wu Hourng, and Chan-Wei Kuo. The effect of magnetic force on hydrogen
production efficiency in water electrolysis. International Journal of Hydrogen Energy, 37(2):
1311–1320, jan 2012. doi: 10.1016/j.ijhydene.2011.10.024.

[35] Philippe Mandin, Jérôme Hamburger, Sebastien Bessou, and Gérard Picard. Modelling and cal-
culation of the current density distribution evolution at vertical gas-evolving electrodes. Elec-
trochimica Acta, 51(6):1140–1156, nov 2005. doi: 10.1016/j.electacta.2005.06.007.

[36] Radenka Maric and Haoran Yu. Proton exchange membrane water electrolysis as a promising
technology for hydrogen production and energy storage. Nanostructures in energy generation,
transmission and storage, page 13, 2019.

[37] M Mat. A two-phase flow model for hydrogen evolution in an electrochemical cell. Interna-
tional Journal of Hydrogen Energy, 29(10):1015–1023, aug 2004. doi: 10.1016/j.ijhydene.2003.
11.007.

[38] James Clerk Maxwell. A treatise on electricity and magnetism, volume 1. Oxford: Clarendon
Press, 1873.

[39] F. M. Mulder. Implications of diurnal and seasonal variations in renewable energy generation
for large scale energy storage. Journal of Renewable and Sustainable Energy, 6(3):033105, may
2014. doi: 10.1063/1.4874845.

[40] Niro Nagai, Masanori Takeuchi, and Tetsuya Furuta. Effects of bubbles between electrodes on
alkaline water electrolysis efficiency under forced convection of electrolyte. In Proceedings of
16th world hydrogen energy conference, Lyon, pages 1–10, 2006.

[41] Nvidia. Cuda c++ programming guide, 2021. URL https://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html.

[42] A. Prosperetti and H.N. Ogũz. Physalis: A new o(n) method for the numerical simulation of
disperse systems: Potential flow of spheres. Journal of Computational Physics, 167(1):196–216,
feb 2001. doi: 10.1006/jcph.2000.6667.

[43] WB Russel, DA Saville, and WR Schowalter. Colloidal dispersions cambridge univ, 1989.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Bibliography 47

[44] Maximilian Schalenbach, Geert Tjarks, Marcelo Carmo, Wiebke Lueke, Martin Mueller, and
Detlef Stolten. Acidic or alkaline? towards a new perspective on the efficiency of water elec-
trolysis. Journal of The Electrochemical Society, 163(11):F3197–F3208, 2016. doi: 10.1149/2.
0271611jes.

[45] J Robert Selman and Charles W Tobias. Mass-transfer measurements by the limiting-current
technique. In Advances in chemical engineering, volume 10, pages 211–318. Elsevier, 1978.

[46] JR Selman and JC McClure. Limiting current to a vertical rotating rod electrode. Journal of
Electroanalytical Chemistry and Interfacial Electrochemistry, 110(1-3):79–92, 1980.

[47] Adam J Sierakowski and Andrea Prosperetti. Resolved-particle simulation by the physalis
method: Enhancements and new capabilities. Journal of computational physics, 309:164–184,
2016.

[48] L. Sigrist, O. Dossenbach, and N. Ibl. On the conductivity and void fraction of gas dispersions
in electrolyte solutions. Journal of Applied Electrochemistry, 10(2):223–228, mar 1980. doi:
10.1007/bf00726089.

[49] Yohichi Suzuki and Kazuhiko Seki. Possible influence of the kuramoto length in a photo-
catalytic water splitting reaction revealed by poisson–nernst–planck equations involving ion-
ization in a weak electrolyte. Chemical Physics, 502:39–49, mar 2018. doi: 10.1016/j.chemphys.
2018.01.006.

[50] S Takagi, H.N Ogũz, Z Zhang, and A Prosperetti. PHYSALIS: a new method for particle
simulation. Journal of Computational Physics, 187(2):371–390, may 2003. doi: 10.1016/
s0021-9991(03)00077-9.

[51] Yoshinori Tanaka, Kenji Kikuchi, Yasuhiro Saihara, and Zempachi Ogumi. Bubble visualization
and electrolyte dependency of dissolving hydrogen in electrolyzed water using solid-polymer-
electrolyte. Electrochimica acta, 50(25-26):5229–5236, sep 2005. doi: https://doi.org/10.1016/
j.electacta.2005.01.062.

[52] G. Y. Tang, C. Yang, C. J. Chai, and H. Q. Gong. Modeling of electroosmotic flow and capillary
electrophoresis with the joule heating effect: the nernst-planck equation versus the boltzmann
distribution. Langmuir, 19(26):10975–10984, dec 2003. doi: 10.1021/la0301994.

[53] Amir Taqieddin, Roya Nazari, Ljiljana Rajic, and Akram Alshawabkeh. Re-
view—physicochemical hydrodynamics of gas bubbles in two phase electrochemical systems.
Journal of The Electrochemical Society, 164(13):E448–E459, 2017. doi: 10.1149/2.1161713jes.

[54] A. ten Cate, C. H. Nieuwstad, J. J. Derksen, and H. E. A. Van den Akker. Particle imaging ve-
locimetry experiments and lattice-boltzmann simulations on a single sphere settling under
gravity. Physics of Fluids, 14(11):4012–4025, nov 2002. doi: 10.1063/1.1512918.

[55] Peter van der Linde, Álvaro Moreno Soto, Pablo Peñas-López, Javier Rodríguez-Rodríguez,
Detlef Lohse, Han Gardeniers, Devaraj van der Meer, and David Fernández Rivas. Electrolysis-
driven and pressure-controlled diffusive growth of successive bubbles on microstructured sur-
faces. Langmuir, 33(45):12873–12886, oct 2017. doi: 10.1021/acs.langmuir.7b02978.

[56] H. Vogt. The rate of gas evolution of electrodes—i. an estimate of the efficiency of gas evolution
from the supersaturation of electrolyte adjacent to a gas-evolving electrode. Electrochimica
Acta, 29(2):167–173, feb 1984. doi: 10.1016/0013-4686(84)87043-7.

Bibliography 48

[57] Luying Wang, Donald L Koch, Xiaolong Yin, and Claude Cohen. Hydrodynamic diffusion and
mass transfer across a sheared suspension of neutrally buoyant spheres. Physics of Fluids, 21
(3):033303, mar 2009. doi: https://doi.org/10.1063/1.3098446.

[58] Yifei Wang, S. R. Narayanan, and Wei Wu. Field-assisted splitting of pure water based on deep-
sub-debye-length nanogap electrochemical cells. ACS Nano, 11(8):8421–8428, jul 2017. doi:
10.1021/acsnano.7b04038.

[59] Z. Zhang and A. Prosperetti. A second-order method for three-dimensional particle simulation.
Journal of Computational Physics, 210(1):292–324, nov 2005. doi: 10.1016/j.jcp.2005.04.009.

[60] Z. Z. Zhang, L. Botto, and A. Prosperetti. Microstructural effects in a fully-resolved simulation
of 1,024 sedimenting spheres. In Fluid Mechanics and Its Applications, pages 197–206. Springer
Netherlands. doi: 10.1007/1-4020-4977-3_20.

A
C code for tracer simulation

The following are the functions and files used in the tracer module. The latest version of the code,
if updated, can be found in https://github.com/shyam97/bluebottle3/tree/master/src as
tracer.c and tracer.h.

A.1. Header file
1 #include "bluebottle.h"
2 #include <sys/stat.h>
3 // #include <float.h>
4 // #include <math.h>
5 // #include <stdio.h>
6 // #include <stdlib.h>
7 // #include <stddef.h>
8 // #include <string.h>
9 // #include <time.h>

10 // #include <mpi.h>
11 // #include <sys/time.h>
12

13 #ifndef _TRACER_H
14 #define _TRACER_H
15

16 #define TRACER_DIR "tracer"
17 #define DEBUG_DIR "debug"
18 #define PARTICLEINFO_DIR "particleinfo"
19

20 void tracer_start(void);
21 void tracer_execute(double dt);
22 void tracer_exit(void);
23

24 void tracer_init(int i);
25 double randgen(void);
26 double *randomizer(double *randvec, double diffusivity, double tstep);
27 double distance(double *loc, double x, double y, double z);
28 double *tracer_pusher(double *loc, double x, double y, double z, double r, int *flags);
29 int wall_checker(double *loc);
30 int domain_checker(double *loc);
31 double *wall_reflector(int i, double *loc);
32 int particle_checker(double *loc, int *flags);
33 void periodic_maneuver(double *loc, int *flags, int max_a);
34 double *reflector(double *loc1, double *loc2, double x,

49

https://github.com/shyam97/bluebottle3/tree/master/src

A.2. Initialisation and finalisation of tracer simulation 50

35 double y, double z, double r, int *flags);
36 double *intersector(double *loc1, double *loc2, double x,
37 double y, double z, double r, int *flags);
38 double index_finder(double *loc);
39 double grid_finder(double index, int axis, double gridloc);
40 double *interpolator(double *loc, double *uout, double *vout, double *wout);
41 void exporter(void);
42 void tracer_delete(int deleteid);
43 void tracer_add(void);
44 void ratekeeper(void);
45 void maintainer(void);
46

47 typedef struct tracer {
48 int tracerid;
49 double pos[3];
50 int tracertype;
51 } tracer;
52

53 extern tracer *tracer_array;
54 extern real *ucc;
55 extern real *vcc;
56 extern real *wcc;
57 extern long int tracercheck;
58 extern double diffusivity;
59 extern double tstep;
60 extern int foundindex;
61 extern double interpvel[3];
62 extern int tracernum;
63 extern double locx[3];
64 extern int flags[3];
65 extern double dist_temp;
66 extern int idflag;
67 extern int farwalltreatment;
68 extern int fixednumber;
69 extern float fixedrate;
70 extern float timecheck;
71 extern int tracertreatment;
72 extern int tracerdebug;
73 extern int exportfreq;
74 extern int exportcount;
75 extern int readfile;
76 extern double max_radius;
77 extern int steady_flag[2];
78

79 #endif

A.2. Initialisation and finalisation of tracer simulation
1 /*---*/
2 /* Initialize tracer simulation and arrays */
3 /*---*/
4

5 void tracer_start(void)
6 {
7 printf("\nInitializing tracer arrays... ");
8 readfile = 0;
9 tracercheck = 0;

10 exportfreq = 10000;
11 exportcount = 0;
12 diffusivity = 1E-4;

A.2. Initialisation and finalisation of tracer simulation 51

13 farwalltreatment = 0; //0 for continuing motion, 1 for delete, 2 for stopping at end
14 tracertreatment = 0; // 0 for 2type, 1 for fixednumber, 2 for fixedrate
15 int steady_flag[] = {0,0}; // 0,0 for steady, 0,1 for shear
16

17 fixednumber = 500;
18

19 fixedrate = 0;
20 fixedrate2 = 5;
21 timecheck = ttime + fixedrate;
22

23 srand((unsigned int)time(NULL));
24

25 tracernum = 2000;
26 tracer_array = (tracer*) malloc(tracernum * sizeof(tracer));
27

28 if (tracertreatment==2 && fixedrate2>0) {
29 tracernum = 0;
30 }
31

32 max_radius = -1;
33 for (int i=0; i<NPARTS; i++) {
34 if (parts[i].r > max_radius) { max_radius = parts[i].r; }
35 }
36 //printf("%f", max_radius);
37

38 if (readfile == 0){
39 for (int i=0; i<tracernum; i++) {
40 tracer_init(i);
41 }
42 }
43 else if (readfile ==1){
44 char fname[30];
45 FILE * fp;
46 sprintf(fname, "%s/%s/tracer.csv", ROOT_DIR, INPUT_DIR);
47 fp = fopen (fname, "r");
48

49 for (int i=0;i<tracernum;i++){
50 fscanf(fp, "%d, %lf, %lf, %lf, %d", &tracer_array[i].tracerid,
51 &tracer_array[i].pos[0], &tracer_array[i].pos[1], &tracer_array[i].pos[2],
52 &tracer_array[i].tracertype);
53 }
54 fclose(fp);
55 printf("\nTracer locations imported successfully.\n");
56 }
57

58 struct stat st = {0};
59 char buf[CHAR_BUF_SIZE];
60 sprintf(buf, "%s/%s/%s", ROOT_DIR, OUTPUT_DIR, TRACER_DIR);
61 if (stat(buf, &st) == -1) {
62 mkdir(buf, 0700);
63 }
64

65 sprintf(buf, "%s/%s/%s", ROOT_DIR, OUTPUT_DIR, PARTICLEINFO_DIR);
66 if (stat(buf, &st) == -1) {
67 mkdir(buf, 0700);
68 }
69

70 // sprintf(buf, "%s/%s/%s", ROOT_DIR, OUTPUT_DIR, DEBUG_DIR);
71 // if (stat(buf, &st) == -1) {
72 // mkdir(buf, 0700);
73 // }

A.3. Initialisation of individual tracer 52

74

75 FILE *rundata;
76 char rundataname[100];
77 sprintf(rundataname, "%s/%s/domaindata.csv",ROOT_DIR, OUTPUT_DIR);
78 rundata = fopen(rundataname,"w+");
79 fprintf(rundata,"%f,%f,%f,%f,%f,%f\n", dom[rank].xs, dom[rank].xe, dom[rank].ys,
80 dom[rank].ye, dom[rank].zs, dom[rank].ze);
81 fclose(rundata);
82

83 exporter();
84 printf("done.\n");
85

86 }
87

88 /*---*/
89 /* Remove tracer array from memory */
90 /*---*/
91

92 void tracer_exit(void)
93 {
94 free(tracer_array);
95 if (steady_flag[1]==0) {
96 free(ucc);
97 free(vcc);
98 free(wcc);
99 }

100 }

A.3. Initialisation of individual tracer
1 /*---*/
2 /* Initialise each tracer*/
3 /*---*/
4

5 void tracer_init(int i)
6 {
7

8 tracer_array[i].tracerid = i;
9

10 tracer_array[i].pos[0] = dom[rank].xs + dom[rank].xl/2 + dom[rank].xl*randgen()/2;
11 //tracer_array[i].pos[0] = dom[rank].xs + (i%2)*(dom[rank].xe - dom[rank].xs);
12 // tracer_array[i].pos[0] = dom[rank].xs + 2*dom[rank].dx;
13 // tracer_array[i].pos[0] = xlocation[i];
14

15 // tracer_array[i].pos[1] = dom[rank].ys + (dom[rank].yl/2) + (i-9.5)*(dom[rank].yl/40);
16 //tracer_array[i].pos[1] = dom[rank].ys + (i%2)*(dom[rank].ye - dom[rank].ys);
17 tracer_array[i].pos[1] = dom[rank].ys + dom[rank].yl*(1+randgen())/2;
18 // tracer_array[i].pos[1] = ylocation[i];
19

20 tracer_array[i].pos[2] = dom[rank].zs + dom[rank].zl*(1+randgen())/2;
21 // tracer_array[i].pos[2] = dom[rank].zs;
22 // tracer_array[i].pos[2] = zlocation[i];
23

24 tracer_array[i].tracertype = i%2;
25 }

A.4. Tracer boundary conditions 53

A.4. Tracer boundary conditions
1 /*---*/
2 /* Maintain number of particles close to inlet */
3 /*---*/
4 void maintainer(void)
5 {
6 int tracercount = 0;
7 float safespace = dom[rank].dx;
8

9 for (int a=0; a<tracernum; a++) {
10 if (tracer_array[a].pos[0] < dom[rank].xs + safespace) {
11 tracercount += 1;
12 }
13 }
14

15 if (tracercount < fixednumber) {
16 tracer_add();
17 }
18 }
19

20 /*---*/
21 /* Keep on adding tracers at fixed rate */
22 /*---*/
23 void ratekeeper(void)
24 {
25 if (ttime >= timecheck) {
26 tracer_add();
27 timecheck += fixedrate;
28 }
29 }

A.5. Addition & Deletion of tracer from tracer array
1 /*---*/
2 /* Delete a tracer from current use */
3 /*---*/
4

5 void tracer_delete(int deleteid)
6 {
7 for (int d=deleteid; d<tracernum-1; d++) {
8 tracer_array[d].tracerid = tracer_array[d+1].tracerid;
9 tracer_array[d].tracertype = tracer_array[d+1].tracertype;

10

11 for (int e=0; e<3; e++) {
12 tracer_array[d].pos[e] = tracer_array[d+1].pos[e];
13 }
14 }
15

16 tracernum -= 1;
17 }
18

19 /*---*/
20 /* Add new tracer to the simulation */
21 /*---*/
22

23 void tracer_add(void)
24 {
25 tracer_init(tracernum);
26 tracernum+=1;

A.6. Calculating the Brownian term 54

27 }

A.6. Calculating the Brownian term
1 /*---*/
2 /* Generate random number from -1 to 1 */
3 /*---*/
4

5 double randgen(void)
6 {
7 double randomnum = rand();
8 randomnum = fmod(randomnum,1e6);
9 randomnum = randomnum/5e5;

10 randomnum = randomnum - 1;
11 return randomnum;
12 }
13

14 /*---*/
15 /* Generate the Brownian motion term */
16 /*---*/
17

18 double *randomizer(double *randvec, double diffusivity, double tstep)
19 {
20 double magnitude = pow((6*diffusivity*tstep),0.5);
21 double angle1, angle2;
22 angle1 = PI * randgen();
23 angle2 = PI * randgen();
24

25 double randx = magnitude * cos(angle1) * sin(angle2);
26 double randy = magnitude * sin(angle1) * sin(angle2);
27 double randz = magnitude * cos(angle2);
28

29 randvec[0] = randx;
30 randvec[1] = randy;
31 randvec[2] = randz;
32

33 return randvec;
34 }

A.7. Calculating distance between two points
1 /*---*/
2 /* Calculate distance between two points */
3 /*---*/
4

5 double distance(double *loc, double x, double y, double z)
6 {
7 dist_temp = pow((loc[0] - x),2) + pow((loc[1]-y),2) + pow((loc[2]-z),2);
8 dist_temp = pow(dist_temp,0.5);
9 return dist_temp;

10 }

A.8. Checking tracer proximity to walls and particles
1 /*---*/
2 /* Check if tracer is inside a particle */
3 /*---*/
4

A.8. Checking tracer proximity to walls and particles 55

5 int particle_checker(double *loc, int *flags) {
6 int flag=0;
7 for (int i=0;i<NPARTS;i++) {
8

9 int flagsp[3];
10 double locp[3];
11 locp[0] = parts[i].x;
12 locp[1] = parts[i].y;
13 locp[2] = parts[i].z;
14

15 periodic_maneuver(locp, flagsp, parts[i].r);
16

17 if (flags[0]*flagsp[0]==-1) {
18 locp[0] = flags[0]*dom[rank].xe + locp[0] - flags[0]*dom[rank].xs;
19 }
20

21 if (flags[1]*flagsp[1]==-1) {
22 locp[1] = flags[1]*dom[rank].ye + locp[1] - flags[1]*dom[rank].ys;
23 }
24

25 if (flags[2]*flagsp[2]==-1) {
26 locp[2] = flags[2]*dom[rank].ze + locp[2] - flags[2]*dom[rank].zs;
27 }
28

29 if (distance(loc, locp[0], locp[1], locp[2]) < parts[i].r) {
30 flag=1;
31 break;
32 }
33 }
34 return flag;
35 }
36

37 /*---*/
38 /* Check if tracer is close to a boundary */
39 /*---*/
40

41 int wall_checker(double *loc)
42 {
43 double min_bound, max_bound;
44 int count = 1;
45

46 min_bound = dom[rank].xs + dom[rank].xl/(2*dom[rank].xn);
47 max_bound = dom[rank].xe - dom[rank].xl/(2*dom[rank].xn);
48

49 if (loc[0] <= min_bound || loc[0] >= max_bound) {
50 count *= 2;
51 }
52

53 min_bound = dom[rank].ys + dom[rank].yl/(2*dom[rank].yn);
54 max_bound = dom[rank].ye - dom[rank].yl/(2*dom[rank].yn);
55

56 if (loc[1] <= min_bound || loc[1] >= max_bound) {
57 count *= 3;
58 }
59

60 min_bound = dom[rank].zs + dom[rank].zl/(2*dom[rank].zn);
61 max_bound = dom[rank].ze - dom[rank].zl/(2*dom[rank].zn);
62

63 if (loc[2] <= min_bound || loc[2] >= max_bound) {
64 count *= 5;
65 }

A.9. Location of bounding box node 56

66

67 return count;
68 }

A.9. Location of bounding box node
1 /*---*/
2 /* Find the 1D index of the cell-centered grid given tracer location */
3 /*---*/
4

5 double index_finder(double *loc) {
6 double xi, yi, zi;
7 xi = floor((loc[0] - dom[rank].xs - dom[rank].dx/2)/dom[rank].dx);
8 yi = floor((loc[1] - dom[rank].ys - dom[rank].dy/2)/dom[rank].dy);
9 zi = floor((loc[2] - dom[rank].zs - dom[rank].dz/2)/dom[rank].dz);

10 if (xi<0) { xi =0; }
11 if (yi<0) { yi =0; }
12 if (zi<0) { zi =0; }
13 foundindex = xi + yi * dom[rank].xn
14 + zi * dom[rank].xn * dom[rank].yn;
15 return foundindex;
16 }
17

18 /*---*/
19 /* Find the location of the cell-centered grid given the 1D index */
20 /*---*/
21

22 double grid_finder(double index, int axis, double gridloc) {
23

24 double xxi = fmod(index , (double) dom[rank].xn);
25 double yyi = fmod(((index - xxi)/dom[rank].xn) , (double) (dom[rank].yn));
26 double zzi = ((index - xxi - yyi*dom[rank].xn))/(dom[rank].xn*dom[rank].yn);
27

28 if (axis==0) {
29 gridloc = (xxi+0.5)*dom[rank].dx + dom[rank].xs;
30 return gridloc;
31 }
32

33 else if (axis==1) {
34 gridloc = (yyi+0.5)*dom[rank].dy + dom[rank].ys;
35 return gridloc;
36 }
37

38 else if (axis==2) {
39 gridloc = (zzi+0.5)*dom[rank].dz + dom[rank].zs;
40 return gridloc;
41 }
42

43 else {
44 return 0;
45 }
46 }

A.10. Checking tracer exclusion from cell-centered grid
1 /*---*/
2 /* Check if tracer is out of a boundary */
3 /*---*/
4

A.11. Specular reflection of tracers at walls 57

5 int domain_checker(double *loc)
6 {
7 double min_bound, max_bound;
8 int count = 1;
9

10 min_bound = dom[rank].xs;
11 max_bound = dom[rank].xe;
12

13 if (loc[0] < min_bound || loc[0] > max_bound) {
14 count *= 2;
15 }
16

17 min_bound = dom[rank].ys;
18 max_bound = dom[rank].ye;
19

20 if (loc[1] < min_bound || loc[1] > max_bound) {
21 count *= 3;
22 }
23

24 min_bound = dom[rank].zs;
25 max_bound = dom[rank].ze;
26

27 if (loc[2] < min_bound || loc[2] > max_bound) {
28 count *= 5;
29 }
30

31 return count;
32 }

A.11. Specular reflection of tracers at walls
1 /*---*/
2 /* Move a tracer if it crosses a wall */
3 /*---*/
4

5 double *wall_reflector(int i, double *loc)
6 {
7 double x = loc[0];
8 double y = loc[1];
9 double z = loc[2];

10

11 if (x < dom[rank].xs) {
12 //x = 2*dom[rank].xs - x;
13 x = dom[rank].xe - (dom[rank].xs - x);
14 // tracer_array[i].tracertype = 0;
15 // printf("Tracer %d reflected xs.\n", i);
16 }
17

18 if (x > dom[rank].xe) {
19

20 if (farwalltreatment==0){
21 // x = 2*dom[rank].xe - x;
22 x = dom[rank].xs + (x - dom[rank].xe);
23 // tracer_array[i].tracertype = 1;
24 // tracer_array[i].tracertype = 1;
25 }
26 if (farwalltreatment==1) {
27 exporter();
28 tracer_delete(i);
29 }

A.12. Allowing interaction with particles across periodic boundaries 58

30

31 if (farwalltreatment==2) {
32 tracer_array[i].tracertype = 1;
33 }
34

35 // printf("Tracer %d reflected xe.\n", i);
36 }
37

38 if (y < dom[rank].ys) {
39 y = 2*dom[rank].ys - y;
40 //y = dom[rank].ye - (dom[rank].ys - y);
41 tracer_array[i].tracertype = 0;
42 // printf("Tracer %d reflected ys.\n", i);
43 }
44

45 if (y > dom[rank].ye) {
46 y = 2*dom[rank].ye - y;
47 //y = dom[rank].ys + (y - dom[rank].ye);
48 tracer_array[i].tracertype = 1;
49 // printf("Tracer %d reflected ye.\n", i);
50 }
51

52 if (z < dom[rank].zs) {
53 // z = 2*dom[rank].zs - z;
54 z = dom[rank].ze - (dom[rank].zs - z);
55 // printf("Tracer %d reflected zs.\n", i);
56 }
57

58 if (z > dom[rank].ze) {
59 // z = 2*dom[rank].ze - z;
60 z = dom[rank].zs + (z - dom[rank].ze);
61 // printf("Tracer %d reflected ze.\n", i);
62 }
63

64 loc[0] = x;
65 loc[1] = y;
66 loc[2] = z;
67

68 return loc;
69 }

A.12. Allowing interaction with particles across periodic boundaries
1 /*---*/
2 /* Flag particles and tracers that are close to a boundary */
3 /*---*/
4

5 void periodic_maneuver(double *loc, int *flags, double max_a) {
6

7 if (loc[0] < dom[rank].xs + max_a){ flags[0] = -1; }
8 else if (loc[0] > dom[rank].xe - max_a) { flags[0] = 1; }
9 else { flags[0] = 0;}

10

11 if (loc[1] < dom[rank].ys + max_a){ flags[1] = -1; }
12 else if (loc[1] > dom[rank].ye - max_a) { flags[1] = 1; }
13 else { flags[1] = 0;}
14

15 if (loc[2] < dom[rank].zs + max_a){ flags[2] = -1; }
16 else if (loc[2] > dom[rank].ze - max_a) { flags[2] = 1; }
17 else { flags[2] = 0;}

A.13. Spatial interpolation of velocity fields 59

18

19 }

A.13. Spatial interpolation of velocity fields
1 /*---*/
2 /* Find the velocity of the fluid at the position of the tracer */
3 /*---*/
4

5 double *interpolator(double *loc, double *ucc, double *vcc, double *wcc) {
6

7 double min_bound, max_bound;
8 double gridloc=0;
9

10 switch (wall_checker(loc)) {
11 case 1:
12 foundindex = index_finder(loc);
13 double c000, c001, c010, c011, c100, c101, c110, c111, cx, cy, cz;
14

15 cx = (loc[0] - grid_finder(foundindex,0, gridloc))/dom[rank].dx;
16 cy = (loc[1] - grid_finder(foundindex,1, gridloc))/dom[rank].dy;
17 cz = (loc[2] - grid_finder(foundindex,2, gridloc))/dom[rank].dz;
18

19 c000 = ucc[foundindex];
20 c001 = ucc[foundindex + 1];
21 c010 = ucc[foundindex + dom[rank].xn];
22 c011 = ucc[foundindex + dom[rank].xn + 1];
23 c100 = ucc[foundindex + dom[rank].xn*dom[rank].yn];
24 c101 = ucc[foundindex + dom[rank].xn*dom[rank].yn + 1];
25 c110 = ucc[foundindex + dom[rank].xn*dom[rank].yn + dom[rank].xn];
26 c111 = ucc[foundindex + dom[rank].xn*dom[rank].yn + dom[rank].xn + 1];
27

28 double tempx1 = (1-cx)*c000 + cx*c001;
29 double tempx2 = (1-cx)*c010 + cx*c011;
30 double tempx3 = (1-cx)*c100 + cx*c101;
31 double tempx4 = (1-cx)*c110 + cx*c111;
32 double tempy1 = (1-cy)*tempx1 + cy*tempx2;
33 double tempy2 = (1-cy)*tempx3 + cy*tempx4;
34 interpvel[0] = (1-cz)*tempy1 + cz*tempy2;
35

36 c000 = vcc[foundindex];
37 c001 = vcc[foundindex + 1];
38 c010 = vcc[foundindex + dom[rank].xn];
39 c011 = vcc[foundindex + dom[rank].xn + 1];
40 c100 = vcc[foundindex + dom[rank].xn*dom[rank].yn];
41 c101 = vcc[foundindex + dom[rank].xn*dom[rank].yn + 1];
42 c110 = vcc[foundindex + dom[rank].xn*dom[rank].yn + dom[rank].xn];
43 c111 = vcc[foundindex + dom[rank].xn*dom[rank].yn + dom[rank].xn + 1];
44

45 tempx1 = (1-cx)*c000 + cx*c001;
46 tempx2 = (1-cx)*c010 + cx*c011;
47 tempx3 = (1-cx)*c100 + cx*c101;
48 tempx4 = (1-cx)*c110 + cx*c111;
49 tempy1 = (1-cy)*tempx1 + cy*tempx2;
50 tempy2 = (1-cy)*tempx3 + cy*tempx4;
51 interpvel[1] = (1-cz)*tempy1 + cz*tempy2;
52

53 c000 = wcc[foundindex];
54 c001 = wcc[foundindex + 1];
55 c010 = wcc[foundindex + dom[rank].xn];

A.13. Spatial interpolation of velocity fields 60

56 c011 = wcc[foundindex + dom[rank].xn + 1];
57 c100 = wcc[foundindex + dom[rank].xn*dom[rank].yn];
58 c101 = wcc[foundindex + dom[rank].xn*dom[rank].yn + 1];
59 c110 = wcc[foundindex + dom[rank].xn*dom[rank].yn + dom[rank].xn];
60 c111 = wcc[foundindex + dom[rank].xn*dom[rank].yn + dom[rank].xn + 1];
61

62 tempx1 = (1-cx)*c000 + cx*c001;
63 tempx2 = (1-cx)*c010 + cx*c011;
64 tempx3 = (1-cx)*c100 + cx*c101;
65 tempx4 = (1-cx)*c110 + cx*c111;
66 tempy1 = (1-cy)*tempx1 + cy*tempx2;
67 tempy2 = (1-cy)*tempx3 + cy*tempx4;
68 interpvel[2] = (1-cz)*tempy1 + cz*tempy2;
69

70 break;
71

72 case 2:
73

74 min_bound = dom[rank].xs + dom[rank].xl/(2*dom[rank].xn);
75 max_bound = dom[rank].xe - dom[rank].xl/(2*dom[rank].xn);
76

77 if (loc[0] <= min_bound) {
78 foundindex = index_finder(loc);
79 interpvel[0] = ucc[foundindex];
80 interpvel[1] = vcc[foundindex];
81 interpvel[2] = wcc[foundindex];
82 }
83

84 if(loc[0] >= max_bound) {
85 foundindex = index_finder(loc);
86 interpvel[0] = ucc[foundindex];
87 interpvel[1] = vcc[foundindex];
88 interpvel[2] = wcc[foundindex];
89 }
90 break;
91

92 case 3:
93

94 min_bound = dom[rank].ys + dom[rank].yl/(2*dom[rank].yn);
95 max_bound = dom[rank].ye - dom[rank].yl/(2*dom[rank].yn);
96

97 if (loc[0] <= min_bound) {
98 foundindex = index_finder(loc);
99 interpvel[0] = ucc[foundindex];

100 interpvel[1] = vcc[foundindex];
101 interpvel[2] = wcc[foundindex];
102 }
103

104 if(loc[0] >= max_bound) {
105 foundindex = index_finder(loc);
106 interpvel[0] = ucc[foundindex];
107 interpvel[1] = vcc[foundindex];
108 interpvel[2] = wcc[foundindex];
109 }
110 break;
111

112 case 5:
113

114 min_bound = dom[rank].zs + dom[rank].zl/(2*dom[rank].zn);
115 max_bound = dom[rank].ze - dom[rank].zl/(2*dom[rank].zn);
116

A.14. Specular reflection of tracer on particle surface 61

117 if (loc[0] <= min_bound) {
118 foundindex = index_finder(loc);
119 interpvel[0] = ucc[foundindex];
120 interpvel[1] = vcc[foundindex];
121 interpvel[2] = wcc[foundindex];
122 }
123

124 if(loc[0] >= max_bound) {
125 foundindex = index_finder(loc);
126 interpvel[0] = ucc[foundindex];
127 interpvel[1] = vcc[foundindex];
128 interpvel[2] = wcc[foundindex];
129 }
130 break;
131

132 case 6:
133 case 10:
134 case 15:
135 case 30:
136 foundindex = index_finder(loc);
137 interpvel[0] = ucc[foundindex];
138 interpvel[1] = vcc[foundindex];
139 interpvel[2] = wcc[foundindex];
140 break;
141 }
142

143 return interpvel;
144 }

A.14. Specular reflection of tracer on particle surface
1 /*---*/
2 /* Reflect a tracer on the surface of a particle */
3 /*---*/
4

5 double *reflector(double *loc1, double *loc2, double x,
6 double y, double z, double r, int *flags)
7 {
8

9 int flagsp[3];
10 double locp[3];
11 locp[0] = x;
12 locp[1] = y;
13 locp[2] = z;
14

15 periodic_maneuver(locp, flagsp, r);
16

17 if (flags[0]*flagsp[0]==-1) {
18 x = flags[0]*dom[rank].xe + x - flags[0]*dom[rank].xs;
19 }
20

21 if (flags[1]*flagsp[1]==-1) {
22 y = flags[1]*dom[rank].ye + y - flags[1]*dom[rank].ys;
23 }
24

25 if (flags[2]*flagsp[2]==-1) {
26 z = flags[2]*dom[rank].ze + z - flags[2]*dom[rank].zs;
27 }
28

29 if (distance(loc2, x, y, z) >= r) {

A.14. Specular reflection of tracer on particle surface 62

30 return loc2;
31 }
32

33 else {
34

35 double deltax = loc2[0] - loc1[0];
36 double deltay = loc2[1] - loc1[1];
37 double deltaz = loc2[2] - loc1[2];
38

39 double delta = 10;
40

41 double lucy[3];
42 double lucy_copy[3];
43 lucy[0] = loc1[0];
44 lucy[1] = loc1[1];
45 lucy[2] = loc1[2];
46

47 while (delta<100000){
48

49 lucy_copy[0] = lucy[0];
50 lucy_copy[1] = lucy[1];
51 lucy_copy[2] = lucy[2];
52

53 lucy[0] += deltax/delta;
54 lucy[1] += deltay/delta;
55 lucy[2] += deltaz/delta;
56

57 if (distance(lucy, x, y, z) <= r) {
58 lucy[0] = lucy_copy[0];
59 lucy[1] = lucy_copy[1];
60 lucy[2] = lucy_copy[2];
61 delta *= 10;
62 }
63 }
64

65 double dsmag = distance(loc2, lucy[0],lucy[1],lucy[2]);
66 double dnmag = distance(lucy, x, y, z);
67

68 double locp[3];
69 locp[0] = x;
70 locp[1] = y;
71 locp[2] = z;
72

73 double di[3], dn[3], dotvec;
74 dotvec = 0;
75

76 for (int i=0;i<3;i++) {
77 di[i] = (loc2[i] - lucy[i])/dsmag;
78 dn[i] = (lucy[i] - locp[i])/dnmag;
79 dotvec += di[i]*dn[i];
80 }
81

82 for (int i=0; i<3; i++) {
83 locx[i] = (di[i] - 2*dotvec*dn[i])*dsmag + lucy[i];
84 }
85

86 return locx;
87 }
88 }
89

90 double *intersector(double *loc1, double *loc2, double x,

A.14. Specular reflection of tracer on particle surface 63

91 double y, double z, double r, int *flags) {
92

93 int flagsp[3];
94 double locp[3];
95 locp[0] = x;
96 locp[1] = y;
97 locp[2] = z;
98

99 periodic_maneuver(locp, flagsp, r);
100

101 if (flags[0]*flagsp[0]==-1) {
102 x = flags[0]*dom[rank].xe + x - flags[0]*dom[rank].xs;
103 }
104

105 if (flags[1]*flagsp[1]==-1) {
106 y = flags[1]*dom[rank].ye + y - flags[1]*dom[rank].ys;
107 }
108

109 if (flags[2]*flagsp[2]==-1) {
110 z = flags[2]*dom[rank].ze + z - flags[2]*dom[rank].zs;
111 }
112

113 if (distance(loc2,x,y,z)>=r) {
114 return loc1;
115 }
116

117 else {
118

119 double deltax = loc2[0] - loc1[0];
120 double deltay = loc2[1] - loc1[1];
121 double deltaz = loc2[2] - loc1[2];
122

123 double delta = 10;
124

125 double lucy[3];
126 double lucy_copy[3];
127 lucy[0] = loc1[0];
128 lucy[1] = loc1[1];
129 lucy[2] = loc1[2];
130

131 while (delta<100000){
132

133 lucy_copy[0] = lucy[0];
134 lucy_copy[1] = lucy[1];
135 lucy_copy[2] = lucy[2];
136

137 lucy[0] += deltax/delta;
138 lucy[1] += deltay/delta;
139 lucy[2] += deltaz/delta;
140

141 if (distance(lucy, x, y, z) <= r) {
142 lucy[0] = lucy_copy[0];
143 lucy[1] = lucy_copy[1];
144 lucy[2] = lucy_copy[2];
145 delta *= 10;
146 }
147 }
148

149 locx[0] = lucy[0];
150 locx[1] = lucy[1];
151 locx[2] = lucy[2];

A.15. Pushing tracers out of a particle 64

152

153 return locx;
154 }
155 }

A.15. Pushing tracers out of a particle
1 /*---*/
2 /* Push tracer radially out of a particle before start */
3 /*---*/
4

5 double *tracer_pusher(double *loc, double x, double y, double z, double r, int *flags)
6 {
7 int flagsp[3];
8 double locp[3];
9 locp[0] = x;

10 locp[1] = y;
11 locp[2] = z;
12

13 periodic_maneuver(locp, flagsp, r);
14

15 if (flags[0]*flagsp[0]==-1) {
16 x = flags[0]*dom[rank].xe + x - flags[0]*dom[rank].xs;
17 }
18

19 if (flags[1]*flagsp[1]==-1) {
20 y = flags[1]*dom[rank].ye + y - flags[1]*dom[rank].ys;
21 }
22

23 if (flags[2]*flagsp[2]==-1) {
24 z = flags[2]*dom[rank].ze + z - flags[2]*dom[rank].zs;
25 }
26

27 if (distance(loc, x, y, z) >= r) {
28 return loc;
29 }
30 else {
31 // printf("Tracer is inside a particle.\n");
32 // printf("Location of particle = (%f, %f, %f).\n",x,y,z);
33 // printf("Location of tracer before = (%f, %f, %f).\n",loc[0],loc[1],loc[2]);
34 // printf("Distance = %f, r=%f.",distance(loc,x,y,z),r);
35

36 // for (int i=0; i<3; i++) {
37 // printf("%f, ", loc[i]);
38 // }
39

40 double locp[3];
41

42 locp[0] = x;
43 locp[1] = y;
44 locp[2] = z;
45

46 double dn[3];
47 double dnmag = distance(loc,x,y,z);
48

49 for (int i=0; i<3; i++) {
50 dn[i] = (loc[i] - locp[i])/dnmag;
51 locx[i] = loc[i] + 2*(r-dnmag)*dn[i];
52 }
53

A.16. Main function 65

54 // printf("Location of tracer after = (%f, %f, %f).\n",locx[0],locx[1],locx[2]);
55 // printf("Distance = %f, r=%f.",distance(loc,x,y,z),r);
56 if (distance(locx, x, y, z) < r) {
57 printf("Tracer is still inside a particle.\n");
58 }
59

60 return locx;
61 }
62 }

A.16. Main function
1 /*---*/
2 /* Main simulation */
3 /*---*/
4

5 void tracer_execute(double dt)
6 {
7

8 tracercheck++;
9

10 double randvec[3];
11 double *correction1;
12 double *correction2;
13 double *correction3;
14 double *correction4;
15 double *correction5;
16 double *correction6;
17 double correctionr[3];
18 double loc_t[3];
19 int flags[3];
20

21 if (steady_flag[0]==0 || steady_flag[1]!=0) {
22 steady_flag[0]=1;
23 cuda_dom_pull();
24 cuda_part_pull();
25

26 ucc = (real*) malloc(dom[rank].Gcc.s3 * sizeof(real));
27 vcc = (real*) malloc(dom[rank].Gcc.s3 * sizeof(real));
28 wcc = (real*) malloc(dom[rank].Gcc.s3 * sizeof(real));
29

30 for (int k = dom[rank].Gcc._ks; k <= dom[rank].Gcc._ke; k++) {
31 for (int j = dom[rank].Gcc._js; j <= dom[rank].Gcc._je; j++) {
32 for (int i = dom[rank].Gcc._is; i <= dom[rank].Gcc._ie; i++) {
33

34 int C = GCC_LOC(i - DOM_BUF, j - DOM_BUF, k - DOM_BUF,
35 dom[rank].Gcc.s1, dom[rank].Gcc.s2);
36

37 int Cfx_w = GFX_LOC(i - 1, j, k, dom[rank].Gfx.s1b, dom[rank].Gfx.s2b);
38 int Cfx = GFX_LOC(i, j, k, dom[rank].Gfx.s1b, dom[rank].Gfx.s2b);
39 int Cfx_e = GFX_LOC(i + 1, j, k, dom[rank].Gfx.s1b, dom[rank].Gfx.s2b);
40 int Cfx_ee = GFX_LOC(i + 2, j, k, dom[rank].Gfx.s1b, dom[rank].Gfx.s2b);
41

42 int Cfy_s = GFY_LOC(i, j - 1, k, dom[rank].Gfy.s1b, dom[rank].Gfy.s2b);
43 int Cfy = GFY_LOC(i, j, k, dom[rank].Gfy.s1b, dom[rank].Gfy.s2b);
44 int Cfy_n = GFY_LOC(i, j + 1, k, dom[rank].Gfy.s1b, dom[rank].Gfy.s2b);
45 int Cfy_nn = GFY_LOC(i, j + 2, k, dom[rank].Gfy.s1b, dom[rank].Gfy.s2b);
46

47 int Cfz_b = GFZ_LOC(i, j, k - 1, dom[rank].Gfz.s1b, dom[rank].Gfz.s2b);
48 int Cfz = GFZ_LOC(i, j, k, dom[rank].Gfz.s1b, dom[rank].Gfz.s2b);

A.16. Main function 66

49 int Cfz_t = GFZ_LOC(i, j, k + 1, dom[rank].Gfz.s1b, dom[rank].Gfz.s2b);
50 int Cfz_tt = GFZ_LOC(i, j, k + 2, dom[rank].Gfz.s1b, dom[rank].Gfz.s2b);
51

52 ucc[C] = -0.0625*u[Cfx_w] + 0.5625*u[Cfx] + 0.5625*u[Cfx_e]
53 -0.0625*u[Cfx_ee];
54 vcc[C] = -0.0625*v[Cfy_s] + 0.5625*v[Cfy] + 0.5625*v[Cfy_n]
55 -0.0625*v[Cfy_nn];
56 wcc[C] = -0.0625*w[Cfz_b] + 0.5625*w[Cfz] + 0.5625*w[Cfz_t]
57 -0.0625*w[Cfz_tt];
58 }
59 }
60 }
61 }
62

63 // FILE *debugcsv;
64 // char debugname[100];
65 // sprintf(debugname, "%s/%s/%s/tracer-%d.csv", ROOT_DIR, OUTPUT_DIR, DEBUG_DIR,
66 // exportcount);
67 // debugcsv = fopen(debugname,"w+");
68

69 for (int i=0; i<tracernum; i++) {
70

71 if (farwalltreatment<2 || tracer_array[i].tracertype==0) {
72

73 // fprintf(debugcsv, "%d, %f, %f, %f\n", i, tracer_array[i].pos[0],
74 // tracer_array[i].pos[1],tracer_array[i].pos[2]);
75

76

77 // 1. Tracer pusher
78

79 periodic_maneuver(tracer_array[i].pos, flags, max_radius);
80

81 while (particle_checker(tracer_array[i].pos, flags)==1) {
82 for (int j=0; j<NPARTS; j++) {
83 correction1 = tracer_pusher(tracer_array[i].pos,parts[j].x,
84 parts[j].y, parts[j].z, parts[j].r, flags);
85

86 for (int k=0; k<3; k++) {
87 tracer_array[i].pos[k] = correction1[k];
88 }
89 }
90

91 correction5 = wall_reflector(i,tracer_array[i].pos);
92

93 for (int j=0; j<3; j++) {
94 tracer_array[i].pos[j] = correction5[j];
95 }
96

97 }
98

99 // fprintf(debugcsv, "%f, %f, %f\n", tracer_array[i].pos[0],
100 // tracer_array[i].pos[1],tracer_array[i].pos[2]);
101

102 // 2. Randomizer
103 correction2 = randomizer(randvec, diffusivity, dt);
104

105 for (int j=0; j<3; j++) {
106 loc_t[j] = tracer_array[i].pos[j] + correction2[j];
107 }
108

109 // fprintf(debugcsv, "%f, %f, %f\n", loc_t[0], loc_t[1],loc_t[2]);

A.16. Main function 67

110

111 // 3. Interpolator
112 correction3 = interpolator(tracer_array[i].pos, ucc, vcc, wcc);
113

114 for (int j=0; j<3; j++) {
115 loc_t[j] += correction3[j]*dt;
116 }
117

118 // fprintf(debugcsv, "%f, %f, %f\n", loc_t[0], loc_t[1],loc_t[2]);
119

120

121 for (int k=0;k<3;k++) {
122 correctionr[k] = tracer_array[i].pos[k];
123 }
124

125 // 4. Sphere reflector
126

127 {
128

129 periodic_maneuver(loc_t, flags, max_radius);
130

131 int stepcount=0;
132

133 while(particle_checker(loc_t, flags)==1) {
134

135 stepcount++;
136

137 if (stepcount>50) {
138 break;
139 }
140

141 for (int j=0; j<NPARTS; j++) {
142

143 correction4 = reflector(correctionr, loc_t, parts[j].x, parts[j].y,
144 parts[j].z, parts[j].r, flags);
145

146 correction6 = intersector(correctionr,loc_t, parts[j].x, parts[j].y,
147 parts[j].z, parts[j].r, flags);
148

149 for (int k=0; k<3; k++) {
150 correctionr[k] = correction6[k];
151 loc_t[k] = correction4[k];
152 }
153 }
154 }
155

156 for (int j=0;j<3;j++) {
157 tracer_array[i].pos[j] = loc_t[j];
158 }
159

160 // fprintf(debugcsv, "%d, %d\n", i, stepcount);
161

162 }
163

164 // fprintf(debugcsv, "%f, %f, %f\n", tracer_array[i].pos[0],
165 // tracer_array[i].pos[1],tracer_array[i].pos[2]);
166

167 //5. Wall reflector
168 correction5 = wall_reflector(i,tracer_array[i].pos);
169

170 for (int j=0; j<3; j++) {

A.17. Exporting tracer & particle positions 68

171 tracer_array[i].pos[j] = correction5[j];
172 }
173

174 // fprintf(debugcsv, "%f, %f, %f\n\n", tracer_array[i].pos[0],
175 // tracer_array[i].pos[1],tracer_array[i].pos[2]);
176

177 }
178 }
179

180 if (tracertreatment==2) {
181 ratekeeper();
182 }
183

184 if (tracercheck%exportfreq==0 && ttime<1200) {
185 exportcount++;
186 exporter();
187 }
188

189 if (tracercheck%1==0 && ttime>=1200) {
190 exportcount++;
191 exporter();
192 printf("Time=%.2f, n=%ld.\n",ttime,tracercheck);
193 }
194

195 fclose(debugcsv);
196 // exporter();
197

198 if (steady_flag[1]!=0) {
199 free(ucc);
200 free(vcc);
201 free(wcc);
202 }
203 }

A.17. Exporting tracer & particle positions
1 /*---*/
2 /* Export tracer and particle data as csv */
3 /*---*/
4

5 void exporter(void)
6 {
7 FILE *tracercsv;
8 char filename[100];
9 sprintf(filename, "%s/%s/%s/tracer-%d.csv", ROOT_DIR, OUTPUT_DIR, TRACER_DIR,

10 exportcount);
11 tracercsv = fopen(filename,"w+");
12 for (int i=0; i<tracernum; i++) {
13 fprintf(tracercsv, "%d, %e, %e, %e, %d\n", tracer_array[i].tracerid,
14 tracer_array[i].pos[0], tracer_array[i].pos[1], tracer_array[i].pos[2],
15 tracer_array[i].tracertype);
16 }
17 fclose(tracercsv);
18

19 FILE *particleinfocsv;
20 char particlename[100];
21 sprintf(particlename, "%s/%s/%s/particle-%d.csv",ROOT_DIR, OUTPUT_DIR,
22 PARTICLEINFO_DIR, exportcount);
23 particleinfocsv = fopen(particlename,"w+");
24 for (int i=0; i<NPARTS; i++) {

A.17. Exporting tracer & particle positions 69

25 fprintf(particleinfocsv, "%d, %e, %e, %e, %e\n", parts[i].N, parts[i].x,
26 parts[i].y, parts[i].z, parts[i].r);
27 }
28 fclose(particleinfocsv);
29

30 FILE *runinfo;
31 char runname[100];
32 sprintf(runname, "%s/%s/tracerinfo.csv", ROOT_DIR, OUTPUT_DIR);
33 runinfo = fopen(runname,"a+");
34 fprintf(runinfo, "%d, %e, %e, %d\n", exportcount, ttime, dt, nparts);
35 fclose(runinfo);
36

37 }

B
Pre-processing & Post-processing

B.1. Case setup - Stagnant suspensions

For the case of stagnant suspensions, since the flow field is quiescent, the flow parameters can be
assumed to be arbitrary. The important parameters that are relevant to these cases are the domain
size, the number of particles, the total simulation time and the time-step size.

Four values of particle volume fraction are to be simulated:

φ= {0,0.1,0.2} (B.1)

The particle radius is assumed to be a = 0.1 m and the domain length is assumed to be 10a in
all directions. Thus, the domain size used in the simulations is 1× 1× 1 m. The mesh properties
are not relevant for this case as the tracer module does not require a Cartesian mesh if flow field
interpolation is not required.

The number of particles required for each value of φ are:

np =φ× Vd

Vp
(B.2)

where Vd is the domain volume and Vp is the particle volume. Substituting the values for the domain
volume and particle volume, we get:

np ≈ {0,24,48} particles (B.3)

where the brackets indicate the number of particles for the three values of φ respectively.

Two values of diffusivity are simulated for each value of φ:

D = {1e−4,1e−3} m2/s (B.4)

The total simulation time is assumed to be 5 times the time-scale required for the tracer to cross the
domain. Hence, the total simulation time is:

t = 5
H 2

D
= {50000,5000} s (B.5)

70

B.2. Case setup - Sheared suspensions 71

The time-step for these cases are determined by assuming the magnitude of the Brownian displace-
ment term

p
6D∆t to be a tenth of the particle radius a. Hence, we have the time-step size as:

∆t = ∆x2

6D
= a2

600D
= {0.1666,0.0166} (B.6)

The brackets in Equations B.5 and B.6 indicate the respective values for the two values of diffusivity
D .

B.2. Case setup - Sheared suspensions

For the case of sheared suspensions, the Sh vs. Pe at fixed Re by Wang et al. [57] is to be validated.
For this case, the Reynolds number is fixed at:

Re = 4 (B.7)

The Péclet number is varied as:
Pe = {100,200,300} (B.8)

Also given by Wang et al. is the ratio of domain size to the particle diameter:

H/a = 10 (B.9)

For the simulations, the particle is assumed to have a radii of a = 0.1m. Hence, we have the domain
size in the mass transport measurement direction (Y-direction) as H = 1m. The domain sizes in the
X- and Y-directions are defined to be 8 times the particle diameter. Hence, the domain size to be
used in the simulations is 0.8×1×0.8. The mesh in the Y-direction is assumed to have a resolution
of 125. A further assumption of a uniform mesh gives the mesh resolution as 100×125×100.

The diffusivity is user-defined as:
D = 1e−4 m2/s (B.10)

Hence, the shear Γ can be determined from Equation 5.7 as:

Γ= Pe D

a2 = {1,2,3} (B.11)

Thus, the value for the shear velocity of the -Y and +Y walls are given by:

u =

±
ΓH

2
0
0

=
± {0.5,1,1.5}

0
0

 (B.12)

The values for the kinematic viscosity of the fluid is given from the Reynolds number as:

ν= Γa2

Re
= {0.0025,0.005,0.0075} m2/s (B.13)

For the particular validation case, the particle volume fraction is fixed at:

φ= 0.1 (B.14)

B.3. Estimation of Sherwood number 72

Hence, we calculate the number of particles required as:

np =φ× Vd

Vp
(B.15)

where Vd is the domain volume and Vp is the particle volume. Substituting the values for the domain
volume and particle volume, we get:

np ≈ 15 particles (B.16)

The simulation time recommended by Wang et al. [57] is given by:

t = 850

Γ
= {850,425,283.33} s (B.17)

The values in the brackets in Equations B.11, B.12, B.13 and B.17 indicate the respective values for
Pe = {100,200,300}.

B.3. Estimation of Sherwood number

The Sherwood number Sh is calculated from Equation 5.6 cumulatively using the following Python
script.

1 import numpy as np
2 import pandas as pd
3 import matplotlib.pyplot as plt
4 import os, csv
5

6 dir_path = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
7 dir_path = dir_path + "/sim/output/"
8 img_dir = dir_path + 'images'
9 if not os.path.exists(img_dir):

10 os.makedirs(img_dir)
11

12 tracerpath = dir_path + "tracer/"
13 particlepath = dir_path + "particleinfo/"
14

15 ntracers = len(np.array(pd.read_csv(tracerpath + "tracer-0.csv",header=None)))
16

17 timedata = np.array(pd.read_csv(dir_path + "tracerinfo.csv",header=None))
18 n = len(timedata)
19

20 extents = np.array(pd.read_csv(dir_path+'domaindata.csv',header=None))[0]
21

22 wallarea = (extents[1]-extents[0])*(extents[5]-extents[4])
23 domvol = (extents[1]-extents[0])*(extents[3]-extents[2])*(extents[5]-extents[4])
24 concforc = ntracers/(domvol)
25 H = (extents[3]-extents[2])
26 D = 1e-4
27

28 sherwoodlog=[]
29 xcount = []
30 countcu = 0
31

32 for i in range(10000,n-1):
33 xcount.append(timedata[i,1])

B.4. Determination of tracer concentration field 73

34 data1 = np.array(pd.read_csv(tracerpath + "tracer-%d.csv" %i,header=None))
35 data2 = np.array(pd.read_csv(tracerpath + "tracer-%d.csv" %(i+1), header=None))
36

37 for j in range(ntracers):
38 type_now = data1[j,4]
39 type_nex = data2[j,4]
40

41 if type_now==0 and type_nex==1:
42 countcu += 0.5
43

44 if type_now==1 and type_nex==0:
45 countcu += 0.5
46

47 massflux = countcu/(xcount[-1] - xcount[0])
48 h = massflux/(wallarea*concforc)
49 sherwood = h*H/D
50

51 if i%100 == 0:
52 print(i,"/",n, "\tTime=%.4f" %timedata[i,1],"\tSh=%.4f" %sherwood,\
53 "\tCount=%d" %(countcu*2))
54

55 header = ["Cumulative Count", "Time of Count", "Mass Flux", "Wall Area",\
56 "Number of Tracers", "Domain Volume",
57 "Driving Force", "h", "H", "D", "Sherwood"]
58 data = [countcu, xcount[-1] - xcount[0], massflux, wallarea, ntracers, domvol, \
59 concforc, h, H, D, sherwood]
60

61 with open(img_dir+'/sherwood.csv', 'w', encoding='UTF8', newline='') as f:
62 writer = csv.writer(f)
63 writer.writerow(header)
64 writer.writerow(data)

B.4. Determination of tracer concentration field

The tracer concentration field is determined from the tracer locations through binning. The fol-
lowing Python code is used to generate a concentration field with the same mesh resolution as the
scalar field.

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import pandas as pd
4 import os,sys
5 from mpl_toolkits.axes_grid1 import make_axes_locatable
6

7 req = float(sys.argv[1])
8

9 dir_path = os.path.dirname(os.path.dirname(os.path.dirname(\
10 os.path.realpath(__file__))))
11 dir_path = dir_path + "/sim/output/"
12

13 img_dir = dir_path + 'images/'
14 if not os.path.exists(img_dir):
15 os.makedirs(img_dir)
16

17 tracerpath = dir_path + 'tracer/'

B.4. Determination of tracer concentration field 74

18 particlepath = dir_path + 'particleinfo/'
19

20 req = float(sys.argv[1])
21 tracerinfo = np.array(pd.read_csv(dir_path+'tracerinfo.csv',header=None))
22 times = tracerinfo[:,1]
23 timesclose = np.abs(times - req)
24 index = np.argmin(timesclose)
25

26 tracerarray = np.array(pd.read_csv(tracerpath+'tracer-%d.csv' %index, header=None))
27 tracernumbers = int(tracerarray[:,0][-1] + 1)
28 tracer_locx = tracerarray[:,1]
29 tracer_locy = tracerarray[:,2]
30 tracer_locz = tracerarray[:,3]
31 extents = np.array(pd.read_csv(dir_path+'domaindata.csv',header=None))[0]
32

33 particlearray = np.array(pd.read_csv(particlepath+'particle-%d.csv' %index, \
34 header=None))
35 p1x = particlearray[0,1]
36 p1y = particlearray[0,2]
37 p2x = particlearray[1,1]
38 p2y = particlearray[1,2]
39 c1x = 0.1*np.sin(np.linspace(0,2*np.pi,num=100)) + p1x
40 c1y = 0.1*np.cos(np.linspace(0,2*np.pi,num=100)) + p1y
41 c2x = 0.1*np.sin(np.linspace(0,2*np.pi,num=100)) + p2x
42 c2y = 0.1*np.cos(np.linspace(0,2*np.pi,num=100)) + p2y
43

44 n = 128
45 conc_array=np.zeros((n,n))
46 dx = 1/n
47

48 for i in range(tracernumbers):
49 if np.abs(tracer_locz[i])<64*dx:
50 xindex = int((tracer_locx[i] + 0.5)/dx)
51 yindex = int((tracer_locy[i] + 0.5)/dx)
52 conc_array[xindex,yindex] +=1
53

54 conc_array = conc_array.T
55 conc_array = conc_array / np.amax(conc_array)
56

57 plt.figure(num=1,figsize=(5,5),dpi=150)
58 ax=plt.gca()
59 im = ax.imshow(conc_array,cmap='Reds',vmin=0,extent=extents[:4], alpha=1)
60 plt.plot(c1x,c1y,'k--',c2x,c2y,'k--',linewidth=1)
61 plt.xlabel('X')
62 plt.ylabel('Y')
63 divider = make_axes_locatable(ax)
64 cax = divider.append_axes("right", size="5%", pad=0.05)
65 plt.colorbar(im, cax=cax)
66 plt.savefig(img_dir+'tracer-%.2f.png' %req)

C
Additional simulation results

C.1. Convergence of Sherwood number in sheared suspensions

The figure below show the convergence of Sherwood number Sh in simulations of sheared suspen-
sions at Pe = {100,200,300}. The dotted lines indicate the expected Sh number from the theoretical
model proposed by Wang et al. [57].

C.2. Time evolution of scalar field and tracer concentration field

C.2.1. Collision of a spherical particle on a wall of tracers and scalar field

The images below show the visualisation of the collision of a spherical particle on a wall of tracers
and a scalar field region of value 1. The scalar concentration field (non-smoothened) is shown in
blue and the tracer locations are shown in red. The tracers and the scalar field is filtered to show
values within 20 mesh cells from the center of the domain in the Z-direction. The scalar field is also
normalized with the maximum value in the filtered region. The colorbar is omitted from the plots
as the plots serve to validate the time evolution of tracers and the scalar field qualitatively.

Some of the remarkable observations in the following plots are:

• Numerical artefacts in the scalar field to the left of the initialisation region. This is hypothe-
sised to be caused by the sharp gradient in the value of the scalar and also the low diffusivity

75

C.2. Time evolution of scalar field and tracer concentration field 76

value preventing diffusion and subsequent reduction of the sharp gradient.

• The extents of the tracer locations matches the profile of the scalar field very accurately.

C.2. Time evolution of scalar field and tracer concentration field 77

C.2.2. Collision of two spherical particles on wall of tracers and a scalar field

The images below show the visualisation of collision of two spherical particles on a wall of tracers
and a scalar field region of value 1. The plots in left show the scalar field averaged and normalized

C.2. Time evolution of scalar field and tracer concentration field 78

across the domain in the Z-direction. The plots in right show the concentration field determined
from tracer location through binning to the same resolution as that of the scalar field. The particles
are shown as outlines in black. Both the fields are non-smoothened.

Some of the remarkable features observed in the following images are:

• The presence of noise in the tracer concentration field is to be noted. The noise can be miti-
gated either by time-averaging or through the simulation of a large number of tracers per unit
volume. In this case, time-averaging is not possible as the comparison is transient.

C.2. Time evolution of scalar field and tracer concentration field 79

C.2. Time evolution of scalar field and tracer concentration field 80

C.2. Time evolution of scalar field and tracer concentration field 81

	Introduction
	Literature Review
	Effect of bubbles on electrochemical processes
	Flows near gas-evolving electrodes
	Ionic mass transport in electrolytic flows

	Stochastic modelling of mass transport
	The Physalis algorithm
	Steps of the algorithm
	Advantages over conventional methods
	Motivation for use

	Objectives and Scope

	Bluebottle
	Installation of Bluebottle
	Validation of Bluebottle installation

	Development of a fluid-phase tracer model
	The tracer data type
	The Langevin equation
	Interpolation in 3D space
	The Brownian motion term

	Interaction with particles and domain
	Interaction with particles
	Interaction with periodic boundaries
	Interaction with domain boundaries

	Initialisation conditions
	Additional boundary conditions
	Flow of control
	Integration with Bluebottle
	One-way coupling
	Input & Output

	Testing & Validation of tracer implementation in Bluebottle
	Pure diffusion in 3D space
	Streamlines in 2D flow about a cylinder
	Validation of non-penetration boundary at particle surfaces
	Motion of a sphere through a wall of tracers
	Head-on collision of two spheres

	Effect on Bluebottle runtime

	Simulations of heat & mass transfer
	Estimation of Sherwood number for particulate suspensions
	Mass transport in stagnant suspensions
	Mass transport in sheared suspensions

	Comparison with an Eulerian convection-diffusion solver

	Summary & Conclusions
	Installation of Bluebottle and the tracer module
	Summary of the tracer module code
	Summary of code validation
	Scope for improvement of current code

	Scope for future work

	Bibliography
	Appendix-A
	Header file
	Initialisation and finalisation of tracer simulation
	Initialisation of individual tracer
	Tracer boundary conditions
	Addition & Deletion of tracer from tracer array
	Calculating the Brownian term
	Calculating distance between two points
	Checking tracer proximity to walls and particles
	Location of bounding box node
	Checking tracer exclusion from cell-centered grid
	Specular reflection of tracers at walls
	Allowing interaction with particles across periodic boundaries
	Spatial interpolation of velocity fields
	Specular reflection of tracer on particle surface
	Pushing tracers out of a particle
	Main function
	Exporting tracer & particle positions

	Appendix-B
	Case setup - Stagnant suspensions
	Case setup - Sheared suspensions
	Estimation of Sherwood number
	Determination of tracer concentration field

	Appendix-C
	Convergence of Sherwood number in sheared suspensions
	Time evolution of scalar field and tracer concentration field
	Collision of a spherical particle on a wall of tracers and scalar field
	Collision of two spherical particles on wall of tracers and a scalar field

