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Abstract: The use of low air quality networks has been increasing in recent years to study urban
pollution dynamics. Here we show the evaluation of the operational Aburrá Valley’s low-cost network
against the official monitoring network. The results show that the PM2.5 low-cost measurements
are very close to those observed by the official network. Additionally, the low-cost allows a higher
spatial representation of the concentrations across the valley. We integrate low-cost observations
with the chemical transport model Long Term Ozone Simulation-European Operational Smog
(LOTOS-EUROS) using data assimilation. Two different configurations of the low-cost network were
assimilated: using the whole low-cost network (255 sensors), and a high-quality selection using just
the sensors with a correlation factor greater than 0.8 with respect to the official network (115 sensors).
The official stations were also assimilated to compare the more dense low-cost network’s impact on
the model performance. Both simulations assimilating the low-cost model outperform the model
without assimilation and assimilating the official network. The capability to issue warnings for
pollution events is also improved by assimilating the low-cost network with respect to the other
simulations. Finally, the simulation using the high-quality configuration has lower error values than
using the complete low-cost network, showing that it is essential to consider the quality and location
and not just the total number of sensors. Our results suggest that with the current advance in low-cost
sensors, it is possible to improve model performance with low-cost network data assimilation.

Keywords: low-cost network; chemistry transport model; data assimilation; particulate matter;
citizen scientists

1. Introduction

Particulate matter (PM) is one of the most problematic pollutants in urban air [1].
The effects of PM on human health, associated especially with PM of ≤2.5 µm in diameter,
include asthma, lung cancer and cardiovascular disease [2]. Consequently, major urban
centers commonly monitor PM2.5 as part of their air quality management strategies.
There are several techniques to measure the PM concentration in the air, such as filter-based
gravimetric method (GMM), β-attenuation absorption method (BAM), and laser-based
optical method [3]. The filter-based GMM is the most accurate method but requires parallel
processing of blank and sample filter performed in laboratory conditions, and thus is
difficult for field application [4]. The BAM PM analyzers employ the absorption of beta
radiation by solid particles extracted from air flow [3]. These analyzers have gone through
strict field evaluations and demonstrated that they could provide concentration measures
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equivalent to the filter-based GMM, with the advantage of being usable for continuous PM
monitoring (generally with a temporal resolution of 1 h) [5]. Finally, the optical sensors mea-
sure particles’ size by light scattering, so the concentration of PM can be detected according
to the signal [3,6,7]. The optical sensor’s accuracy is affected by different factors, such
as aerosol characteristics, temperature, humidity, and even seasonal types [3]. PM based
optical sensors are preferred in large scale commercial sensors due to their affordable cost,
low power requirements, and fast response time [6,7].

Public air quality monitoring networks often consist of fixed measuring stations
equipped with BAM sensors, and are maintained under rigorous operational and cali-
bration regimes in order to provide high-quality data. The high costs associated with
establishing and maintaining such stations means that not all cities in developing countries
can afford monitoring networks of sufficient spatial coverage [8]. Even in large cities in
developed countries, the official air quality monitoring networks do not always provide
information at the spatial and temporal resolution required to assess the impact of pol-
lution sources on health [9], as the cost of the equipment makes the necessary density
prohibitive. This has motivated the expansion of low-cost systems and programs to mea-
sure PM [10]. The limited number of studies that have evaluated newer generations of
optical low-cost PM2.5 sensors have shown that the most widely used sensors attain high
accuracy when compared to standard monitoring stations (R2 value ranging from 0.93
to 0.95) [11]. The data provided by these sensors can complement those generated by
conventional systems, increasing the data resolution and allowing studies of exposure at
the human level [9,12].

The integration of observations from dense networks of low-cost sensors into math-
ematical models through techniques such as data fusion or data assimilation enables
a spatially continuous representation of concentration fields with significantly reduced
bias [13]. These techniques provide an added value to the sensor observations by spatially
interpolating between monitoring locations and at the same time adding value to the model
by constraining the model with observations. Both sources of information can thus be
combined in a mathematically objective manner with the goal of reducing the uncertainty
inherent to both sources [11,12,14]. Although data assimilation is a more complex family of
methods than data fusion or interpolation techniques, it is by far the most versatile and
robust of these approaches [13].

This work seeks to implement the data assimilation technique Ensemble Kalman Filter
(EnKF) [15] to integrate data from a hyper-dense, low-cost PM2.5 measuring network oper-
ated in Medellín (Colombia) and its neighboring municipalities of the Aburrá Valley [16]
into the Chemical Transport Model Long Term Ozone Simulation-European Operational
Smog (LOTOS-EUROS) [17]. Data generated by the robust, official network of air quality
monitoring stations in the Aburrá Valley were previously used for data assimilation in
LOTOS-EUROS for modelling and forecasting PM dynamics in the valley [18]. The goal
with using data from the low-cost sensor network is to evaluate the impact of hyper-dense
observations in the data assimilation approach and their viability as an alternative to
monitoring PM2.5 concentrations in developing countries. This study differs from previous
studies such as [9,12,14,19], in which a dispersion model was used to construct concen-
tration maps or to estimate emissions from the measured concentration fields, and the
integration of the model and observations was based on Kriging or other static approaches.
In this work a dynamic data assimilation method is implemented to guide the model’s
concentration fields using the observations.

The main contributions from this work are as follows: (1) an evaluation of the low-
cost sensor network against the official network; (2) the implementation of techniques for
the assimilation of low-cost high-density data, focusing on the impact on the assimilated
model results; and (3) a methodology for performing and evaluating PM forecasts with
assimilated data over 3-day windows, providing valuable information for decision makers.
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2. Materials and Methods

The period of interest for all data evaluations, simulations and data assimilation exper-
iments spans from 25 February to 15 March 2019. During these days, the PM concentrations
were higher than usual due to the Northbound transit of the Inter-Tropical Convergence
Zone.

2.1. Hyper-Dense Low-Cost Sensor Network

In Medellín and its greater metropolitan area inside the Aburrá Valley, the Sistema
de Alerta Temprana del Valle de Aburrá (SIATA) project operates the official high-end air
quality monitoring network (henceforth official network), and a hyper-dense, low-cost
air quality network developed within the Citizen Scientist program (henceforth low-cost
network).

The official network provides high quality measurements for different pollutants in
the atmosphere over the Aburrá Valley such as O3, SO2, PM10, PM2.5 and PM1. The official
network is distributed among the 10 municipalities of the valley, with the majority of the
stations located within the city of Medellín (Figure 1, panel a). The PM measurement
equipment consists of Met One Instruments BAM-1020 and BAM-1022 that produce av-
eraged hourly data [16]. The low-cost network was created with the aim of engaging the
community in issues surrounding air quality, and as an extension of the official network.
As of writing, the low-cost network consists of 255 real-time PM2.5 sensors across the
Aburrá Valley and its surrounding hills. The sensors are located in the premises of private
homes and public or private institutions (Figure 1, panel b). The measuring equipment
was developed by SIATA based on the well-known laser-based optical Shinyei PPD42NS,
NOVA SDS011, and Bjhike HK-A5 sensors [16]. The description of the network deploy-
ment is presented in [16]. Data were downloaded from SIATA’s data portal (available at
https://siata.gov.co/descarga_siata/index.php/index2/. Last accessed, December 2020).
Data from the official network for the corresponding dates were used for validation of
both the low-cost network and the model simulations before and after data assimilation.
Each station from the official network served as a reference point for all low-cost network
sensors within a 2-km radius of the former. Performance of the latter was evaluated using
as metrics the Mean Fractional Bias (MFB), the Root Mean Square Error (RMSE) and the
Pearson correlation coefficient (R) [20–22]. When a low-cost sensor had more than one
official station within a 2-km radius, the average value of the official measurements was
used.

(a) Official monitoring network (b) Low-cost network

Figure 1. Spatial distribution of the hyper-dense low-cost network Citizen Scientist and official monitoring air-quality
network for particulate matter (PM)2.5. The gray raster represent the Long Term Ozone Simulation-European Operational
Smog (LOTOS-EUROS) model grid, the black lines are the boundaries of the municipalities borders, and the numbers are
the official station numerations followed by SIATA.

https://siata.gov.co/descarga_siata/index.php/index2/
https://siata.gov.co/descarga_siata/index.php/index2/
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2.2. Particulate Matter Modelling
2.2.1. LOTOS-EUROS Model

Long Term Ozone Simulation-European Operational Smog model (LOTOS-EUROS) [23]
is a chemical transport model that simulates concentrations of gasses and aerosols in the
lower troposphere on a 3D grid. The simulated species include ozone, nitrogen oxides,
volatile organic compounds, secondary inorganic aerosols, dust, and sea-salt [24]. The dy-
namics are regulated by processes such as chemical reactions, diffusion, drag, dry and wet
deposition, emissions and advection [25].

Simulations were conducted using a one-way nested domain configuration as shown
in Figure 2 and detailed in Table 1. The innermost domain (D4), the focus of the present
study, covered the Aburrá Valley with a model resolution of 0.01° (about 1 × 1 km) as
shown in Figure 1. The anthropogenic emissions input for D4 was updated with a high-
resolution local emissions inventory constructed as described in Section 2.2.2. The model
setup is summarized in Table 2 (for details, see [18]).

Figure 2. Nested domain configuration for LOTOS-EUROS simulations. The detailed description of
the domains is shown in Table 1.

Table 1. One-way nested domain configuration used for simulations in LOTOS-EUROS. All data
assimilation experiments were conducted in D4.

Domain Longitude Latitude Cell Size

D1 84° W–60° W 8.5° S–18° N 0.27°× 0.27°

D2 80.5° W–70° W 2° N–11° N 0.09°× 0.09°

D3 77.2° W–73.9° W 5.2° N–8.9° N 0.03°× 0.03°

D4 76° W–75° W 5.7° N–6.8° N 0.01°× 0.01°
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Table 2. LOTOS-EUROS simulations setup. LOTOS-EUROS outputs were written hourly. Meteorological data had a
temporal resolution of 3 h.

D1 D2 D3 D4

Boundary conditions CAMS 1.4° × 1.4° D1 0.27° × 0.27° D2 0.09° × 0.09° D3 0.03° × 0.03°

Meteorology ECMWF 1.4◦ × 1.4◦ ECMWF 0.07◦ × 0.07◦

Anthropogenic emissions EDGAR V4.2 0.1° × 0.1° Local EI 0.01o × 0.01°

Biogenic emissions MEGAN 0.1° × 0.1°

Fire emissions CAMS GFAS 0.1° × 0.1°

Land use GLC2000 0.01° × 0.01°

Orography GMTED2010 0.002◦ × 0.002◦

2.2.2. Local Emissions Inventory

An anthropogenic urban emissions inventory for 2016 specific to Medellín and the
other nine municipalities of the Aburrá Valley was used for the simulations on the D4
domain. This inventory provides a complete set of emitted trace gases such as carbon
monoxide (CO), nitrogen oxides (NOx), sulphur oxides (SOx), and volatile organic com-
pounds (VOCs), as well as particulate matter with diameter less than 2.5 µm (PM2.5) or less
than 10 µm (PM10). The construction of the inventory followed a bottom-up methodology,
combining activity data (traffic intensities, industrial production) with emission factors.
Only traffic and industrial point sources were considered, without accounting for neither
household nor commercial emissions [26].

For integration into LOTOS-EUROS, the emission inventory was disaggregated over the
Aburrá Valley (76° W–75° W and 5.7° N–6.8° N) at a resolution of 0.01°× 0.01° (approximately
1 × 1 km), using a method based on road density as in [27]. The road network map was
obtained from the OpenStreetMap database [28], and simplified by removing residential
road segments as recommended in [29,30]. The simplification of the road network can
reduce errors in the spatial disaggregation since residential roads correspond to a high
portion of the road network length but carry a low percentage of total vehicular traffic.
For each grid cell j, the corresponding disaggregation factor DF was calculated as in [27].
Namely,

DFj =
∑I

i=0 Si,j

∑J
j=0 ∑I

i=0 Si,j
(1)

where Si,j is the length of road segment i in the grid cell j, I is the number of road segments
in cell j, and J is the total number of grid cells. The point-source emissions were distributed
on the grid using their known location, obtained from the official emissions inventory [26].
Figure 3 shows the resulting emissions maps for PM2.5 and PM10.

(a) PM2.5 (b) PM10

Figure 3. Local particulate matter emission inventories for the Aburrá Valley: (a) PM2.5, and (b) PM10. The values
correspond with the estimated annual emissions.
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2.3. Ensemble Kalman Filter

The Ensemble Kalman Filter (EnKF) is a Monte Carlo ensemble method, based on
the approximation of the state probability density through an ensemble of model realiza-
tions [15]. The EnKF is initialized by generating a random ensemble of model states that
represents the model’s uncertainty:

ξa
1, . . . , ξa

N (2)

Since emissions are a major source of uncertainty in air quality modelling, we gen-
erated the ensembles from perturbations in the emissions. Each ensemble member was
propagated in time by the model M to obtain a forecast ensemble:

ξ
f (i)
k = M(ξ

a(i)
k−1), (3)

where ξ
f (i)
k is the i-th member of the forecast ensemble at time k. The forecast ensemble

describes a stochastic distribution with mean and covariance available from:

x f
k =

1
N

N

∑
i=1

ξ
f (i)
k , (4)

P f
k =

[
L f

k

(
L f

k

)T
]

/(N − 1), (5)

with N being the number of ensemble members. The matrix L is formed by deviations of
the ensemble members from the mean:

L f
k =

[
ξ

f (1)
k − x f

k , . . . , ξ
f (N)
k − x f

k

]
. (6)

Most of the data assimilation applications do not calculate the matrix P f directly due
to its large size. Instead, a consistent square root formulation that only uses and stores
L f is computed [31] in the operational code. The EnKF uses observations yk to update
the forecast ensemble into a corrected or analysis ensemble. Observations collected in a
vector yk are represented as a linear mapping from the state vector plus an observation
representation error:

yk = Hk xk + vk, vk ∼ N(0, Rk). (7)

The observation operator H maps the state into the observations. In this application,
H selects the concentration in locations where the observations are available. The rep-
resentation error vk describes the difference between observation and simulation due to
both instrument and sampling errors. vk is defined as a Gaussian noise with mean 0 and
standard deviation depending on the measurement instrument. The analysis ensemble
members are calculated as follows:

ξ
a(i)
k = ξ

f (i)
k + Kk

[
yk − Hkξ

f (i)
k + v(i)

k

]
, (8)

with
Kk = P f

k HT
k [HkP f

k HT
k + Rk]

−1. (9)

The EnKF system in this application was configured to obtain estimates of both
concentrations and emissions. An augmented state vector was used combining the PM2.5
concentrations (c), propagated in time by LOTOS-EUROS, and the emission correction
factors (δe), propagated in time by a colored noise model [32]:[

ck
δek

]
=

[
MLE(ck−1, δek−1)

δek−1 · exp(−1/τ)

]
+

[
0

σ ·
√

1− α2

]
wk, (10)
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where MLE is the LOTOS-EUROS model, τ and σ are the correlation length and variance of
the stochastic process, and wk is a standard white noise sample. The emissions (ê) were
calculated as:

ê = e · δe, (11)

where e represents the nominal emissions from the emissions inventory. For all the simula-
tions we used a τ of 1 day and a σ of 0.5 following previous results [18]. Additionally, we
used a covariance localization scheme to reduce spurious correlations among distant states.
The covariance localization technique artificially reduces the covariance between states
that are separated by longer distances than a threshold radius ρ [33,34]. The parameter ρ
defines the area of influence of a given observation on the concentrations and emissions to
be estimated. We defined a localization radius ρ = 5 km for all the simulations. We used
an ensemble of N = 25 members. Additional experiments with larger ensembles were
performed without improvements in performance (not shown).

Two sets of low-cost sensors data were assembled: The first one included 255 sensors
from the low-cost network that had a station from the official network within a 2-km radius.
The second, higher quality one consisted of a subset of the previous set, including only
those sensors whose data showed an R value equal or greater than 0.8 when evaluated
against the official network.

We performed four different LOTOS-EUROS simulations:

1. a LOTOS-EUROS model simulation without data assimilation (henceforth LE);
2. a simulation with assimilation of data (observations) from the 14 stations of the official

network (henceforth LE-official);
3. a simulation with assimilation of the data from the entire low-cost network (henceforth

LE-lowcost)
4. a simulation with assimilation only of high-quality data from the low-cost network

(henceforth LE-lowcost-HQ).

The seven stations from the official network that were not used for data assimilation
were used as validation stations for all simulations.

2.4. Forecast Experiments

Data assimilation can improve forecast performance mainly for two reasons: First,
if the simulation is initialized with an assimilated field value, initial conditions at the start
of the forecast window may be a closer representation of reality than what the model alone
may provide; second, the emission correction factors that were included in the assimilation
state (10) can be applied to the model during the forecast window to adjust the emissions
in the same direction as during assimilation.

Forecasting experiments were conducted to evaluate the capabilities of the model with
data assimilation to forecast PM concentrations in the valley up to three days. Simulations
were carried out as above, with the assimilation schedule illustrated in Figure 4. Data
assimilation was conducted up to the indicated date, with the three subsequent days
representing the forecast window. The forecasting window started at 00:00 hours of the first
day after the end of data assimilation. To bring the information obtained in the assimilation
window into the forecast window, we used the hourly profile of the correction factor
calculated from the last 24 h of data assimilation. The experiments continued until all days
between 9 March and 13 March (inclusive) had predictions as the first, second and third day
of the forecast. The performance of the forecast was evaluated by calculating the Air Quality
Index (AQI) according to the ranges established by the Metropolitan Area (available in
Spanish https://www.metropol.gov.co/ambiental/calidad-del-aire/Documents/POECA/
Plan_de_Acci%C3%B3n_POECA_Metropolitano_2019.pdf. Last accessed, October 2020.)
illustrated in Table 3, and comparing it to the AQI observed for the corresponding day.
The comparison against the AQI rather than against plain PM concentrations facilitates the
interpretation of the model forecast performance by decision makers and the general public.

https://www.metropol.gov.co/ambiental/calidad-del-aire/Documents/POECA/Plan_de_Acci%C3%B3n_POECA_Metropolitano_2019.pdf
https://www.metropol.gov.co/ambiental/calidad-del-aire/Documents/POECA/Plan_de_Acci%C3%B3n_POECA_Metropolitano_2019.pdf
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Additionally, this representation affords evaluating the ability of the model to predict
warning-triggering episodes (AQI in orange, red or purple levels). Forecasts missing
warning-triggering episodes (false negatives) are especially problematic in air quality
management because the resulting inaction can lead to human exposure to dangerous
concentrations of pollutants.

Figure 4. Graphic explanation of the experimental forecast setup. The arrows represent the inher-
itance of the last correction factor 24-hourly profile into the forecast. All simulations start at 23
February 19:00 UTC-5. A spin-up period consisting of the 5 days prior to the start date was used for
each simulation.

Table 3. Air Quality Index (AQI) as defined for the Aburrá Valley with respect to PM2.5 concentrations.

Average Concentration (µg/m3)

No warning Warning
Pollutant Average time Green Yellow Orange Red Purple

PM2.5 24 h 0–12 13–37 38–55 56–150 ≥151

3. Results
3.1. Evaluation with Low-Cost Sensor Network

The performance of 145 sensors from the low-cost network was evaluated against data
from the official network. The remaining 110 sensors did not have an official monitoring
station within a 2-km radius. Figure 5 shows the histograms of the MFB, RMSE and R,
and the geographical distribution of the performance values. For the majority (67%) of
the low-cost sensors an MFB between −0.25 and 0.25 was obtained, with an average of
about 0.2. The average RMSE was close to 8 µg/m3, with most sensors presenting values
below 15 µg/m3. The majority (88%) of the sensors showed correlations with R values
above 0.7. Observed errors fell within acceptable ranges (as in [21,22]). Zonal differences
in measurement errors were observed. Locations in the South-central part of the city of
Medellín (green ellipse on Figure 5d–f) contained most of the sensors with a R values
lower than 0.5 and RMSE values grater than 15 µg/m3. Those sensors were located in a
dense urban area, while the closest monitoring station is located in the outskirts of the city.
Figure 6 shows the spatial distribution of the complete low-cost network and the subset of
115 low-cost sensors with the highest quality data (as defined in Section 2.3). The selection
of the low-cost high quality stations was based on the results shown in Figure 5b,e.
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(a) Mean Fractional Bias (MFB) histogram (b) RMSE histogram (c) R histogram

(d) MFB distribution map
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(e) Root Mean Square Error (RMSE) distri-
bution map
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(f) R distribution map
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Figure 5. Evaluation of low-costs network against the official monitoring network for the period between 25 February 2019
and 15 March 2019. Panels (a–c) show the histograms of the MFB, RMSE and R respectively. Panels (d–f) show the MFB,
RMSE and R values of each evaluated sensor.

(a) Location of all sensors.
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(b) Low-cost network with R values ≥0.8.
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Figure 6. Spatial distribution of the different sets of sensors (complete network (a) and high-quality
network (b) ) used for data assimilation and validation. Blue dots indicate the location of the low-cost
sensors. Red squares correspond to the locations of the official monitoring stations that were used for
data assimilation. Green stars indicate the stations from the official network whose data where used
for validation of all model simulations.

3.2. Evaluation of Data Assimilation Runs

The concentration fields generated by the model simulations with or without data
assimilation were compared to the observations from seven of the official monitoring
stations (validation stations, green stars in Figure 6) to evaluate the performance of the data
assimilation schemes. Figure 7 shows the temporal series for the simulated and observed
PM2.5 concentrations at four of the validation stations. The four selected stations represent
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downtown Medellín (station 25), residential areas (station 86), areas with high vehicular
flow (station 88), and a peri-urban area in the outskirts of the city (station 85). Those stations
summarize the behavior of all seven validation stations. The LE simulation consistently
underestimated the concentrations observed at stations 85 and 88. At stations 25 and 86,
the LE simulation results were close in magnitude between 24 February and 3 March and
10 March to 15 March; between 3 March and 10 March, the model presented values much
lower than those observed. The day-to-day variability was reduced for this same period,
as seen in stations 85 and 86. This inconsistent behavior suggests a poor representation
of the meteorological dynamics that governed the dispersion and accumulation of PM2.5
within the valley. Simulations using data assimilation showed noisier behaviors than the
LE simulation. This process is commonly observed when applying the EnKF and obeys the
stochastic nature and the handling of uncertainty inherent to the method [15]. However,
those simulations managed to correct the large discrepancies present in the LE simulation.
Both LE-official, LE-lowcost, and LE-lowcost-HQ represented more accurately the day-to-
day variability of the observations than LE. In general terms, there was no evidence of a
sizeable and persistent difference among the simulations with data assimilation throughout
the entire period. Nevertheless, the LE-lowcost-HQ simulation reproduced with greater
accuracy the concentrations observed in different periods, such as between 26 February
and 4 March in Station 25, between 9 March and 14 March in Stations 85 and 86.

(a) Concentrations at Station 25
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(b) Concentrations at Station 85
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(c) Concentrations at Station 86
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(d) Concentrations at Station 88

24-Feb 25-Feb 26-Feb 27-Feb 28-Feb 01-Mar 02-Mar 03-Mar 04-Mar 05-Mar 06-Mar 07-Mar 08-Mar 09-Mar 10-Mar 11-Mar 12-Mar 13-Mar 14-Mar
0

20

40

60

80

100

P
M

2
.5

 (
 g

/m
3
)

Figure 7. Temporal series of PM2.5 concentrations from selected validation stations of the official network (a–d), LOTOS-
EUROS without assimilation, LE-official, LE-lowcost and LE-lowcost-HQ. Time stamps are valid for local time (UTC-5).
A spin-up period consisting of the 5 days prior to the start date was used for each simulation.
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Figure 8 shows the diurnal cycles during the simulation period in the four selected
validations stations. The diurnal cycle of the LE simulation differed from the observations
in both magnitude and temporal behavior. The highest concentration peak that appeared
around 09:00 in all the stations is mainly due to traffic dynamics. In stations 25 and 88,
the LE morning peak corresponded in time but not in magnitude with the observations;
in stations 85 and 86, said peak appeared later in the simulations than in the observations.
This time lag suggests a poor spatial representation of mobile emissions by the emissions
inventory; or a deficiency it the wind fields in reproducing the valley dynamics, showing
a late transport of the particulate material to these areas. The LE simulation did not
capture the evening peak shown by the observations around 21:00 hours. The simulations
using data assimilation presented diurnal cycles closer to the observations than did the LE
simulation. The LE-official simulation captured the time and magnitude of the morning
peak in stations 85 and 86. In station 88, LE-official corrected the time lag in the morning
peak seen in LE, and improved the estimated magnitudes albeit still falling short of the
observed values. A different behavior was seen for station 25, where LE-official had low
diurnal variability, with a slight underestimation in the morning, and an overestimation in
the afternoon. The LE-lowcost and LE-lowcost-HQ simulations results resembled closely
the diurnal behavior of the observations, especially the temporal component. In all the
stations, both the morning and the evening peaks matched the observations. The observed
concentrations for stations 25 and 88 fell inside the standard deviation range for the LE-
lowcost simulation; the same simulation overestimated the concentrations between 11:00
and 19:00 for station 85, and underestimated the concentrations between 01:00 and 13:00 for
station 86. The LE-lowcost-HQ simulation results were overall the closest to observations.

(a) Diurnal cycle at Station 25. (b) Diurnal cycle at Station 85.

(c) Diurnal cycle at Station 86. (d) Diurnal cycle at Station 88.

Figure 8. Diurnal cycle of PM2.5 concentrations from selection stations of the official network (a)–(d), LOTOS-EUROS
without assimilation, LE-official, LE-lowcost and LE-lowcost-HQ. The bars and the shadows represent the standard
deviation over the simulation period. The time stamps are valid for local time (UTC-5).
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The averaged evaluation statistics among all the validation station are shown in
Table 4. The simulation results without data assimilation (LE) underestimated the ob-
served concentrations in all the validation stations. This was also seen in previous related
works [18,35]. The RMSE value reflected a low correspondence between the observed and
simulated concentrations when using the model without data assimilation. The correlation
coefficient was low, meaning that the model was not able to capture the variations in
diurnal and day-to-day concentrations. In contrast, the three simulations using data assim-
ilation had MFB values close to 0, without a significant difference among them. The data
assimilation was thus effective in reducing the difference between the model and reality.
The RMSE also decreased when using data assimilation, by 24.4% in the LE-official, 32.8%
in the LE-lowcost, and 36.2% in the LE-lowcost-HQ simulations relative to the RMSE of the
LE simulation. The R values were all above the criteria of good performance according
with [36] Table 2, and based in [21,37]. Assimilation of either data set from the low-cost
network resulted in improved error statistics when compared to the LE-official simulation.

Table 4. Mean Fractional Bias, Root Mean Square Error and Pearson Correlation Coefficient for
simulated PM2.5. Values are averaged over all the validation stations for the simulation period.

MFB RMSE R

LE −0.65 27.38 0.42

LE-official −0.07 20.69 0.64

LE-lowcost 0.08 18.39 0.76

LE-lowcost-HQ 0.06 17.46 0.82

3.3. Evaluation of Forecasts

Figure 9 shows a graphical evaluation of the model forecasts for 12 March as Day 1,
2 or 3 within the forecasting window. Forecasts for all other days within the forecasting
experiment behaved similarly. The observed AQIs and the values for the LE simulation
are the same in all the graphs since all graphs illustrate the same calendar day (12 March).
Similar to the results shown in Section 3.2, the LE simulation underestimated PM2.5 con-
centrations throughout the valley, yielding in most cases AQI lower than those reported.
The AQI forecasts of the three simulations with data assimilation were consistently more
accurate than the estimates from the simulation without assimilation (LE). There were
no significant differences in performance among the three data assimilation simulations
through the three forecast days. The forecast accuracy decreased as the forecasting window
advanced, as could be expected from the uncertainty inherent in the meteorological fields
and nominal emission factors. All three simulations with data assimilation had similar
spatial behavior, with a tendency to underestimate the AQI in the Northern and Eastern
areas of the valley.

For public information on air quality, it is essential that a forecast correctly warns
of a critical pollution event. Figure 10 shows the confusion matrix for LE-official, LE-
lowcost, and LE-lowcost-HQ simulations in the data assimilation and forecast windows.
The confusion matrix summarizes the percentage of true negatives, true positives, false
negatives, and false positives [38]. Data assimilation evaluation was performed just in the
seven validation stations shown in Figure 6. The LE simulation did not offer a warning in
any station in the assimilation nor in the forecast window; for that reason, its confusion
matrix is not presented. In the assimilation window, data assimilation simulations have a
percentage of true negatives and true positives higher than 80%, and even higher than 90%
in the case of the LE-lowcost-HQ. Both simulations using the low-cost network showed
lower false negative values than LE-official. The LE-lowcost-HQ had the highest accuracy
in reproducing the warning-triggering events within the data assimilation window. The
accuracy of the three simulations was lower in the forecast window than in the assimilation
window. The small percentage of false positives and high percentage of false negatives
suggests that even using the estimated emissions inventory, the simulations continue to
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underestimate the observations. As observed within the data assimilation window, the two
simulations assimilating data from the low-cost network (LE-lowcost and LE-lowcost-HQ)
had better warning forecast performance than the LE-official simulation.

(a) Data assimilation. (b) First day in the forecast.

(c) Second day in the forecast. (d) Third day in the forecast.

Figure 9. Evaluation of Air Quality Index (AQI) forecast capabilities of LOTOS-EUROS for the Aburrá Valley. All figures
represent the forecasts and analysis for 12 March when it corresponded to analysis day (a), the first (b), second (c) and
third (d) day within the forecasting window. The five-square markers are located at the geographical location of each of the
official stations used for comparisons. The upper-center square is the AQI calculated from the observed PM values, against
which all other values are compared; the middle-left inner square is the AQI predicted by the LE-official simulation; the
middle-right inner square is the AQI predicted by the model without assimilation; the bottom-left inner square the AQI
predicted by the LE-lowcost simulation; and the bottom-right inner square is the AQI predicted by the LE-lowcost-HQ
simulation. The AQI definition is as in Table 3.
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Figure 10. Comparison of the confusion matrices for the data assimilation (a) and forecast windows (b) depending on
warning or no warning per station. The values were calculated across all the days of the corresponding window. A value of
0 corresponds with no warning, while a value of 1 indicates a warning-triggering event. For the LE simulation, there were
warnings in neither the data assimilation window nor the forecast windows.

4. Discussion

The results presented herein support the feasibility of using networks of low-cost
measuring stations for monitoring air quality in cities such as Medellín. The high spatial
density of the low-cost network allowed for a much higher spatial resolution than that at-
tained with the official network. The errors in the low-cost sensors located within the green
ellipse in Figure 5d–f represented spatial outliers. The increased errors observed in this
sector of the valley may be attributed to specific factors such as maintenance, characteristics
of the infrastructure in which the sensors are located, differences in elevation relative to the
official station against which they were evaluated, or particular meteorological conditions
within the subregion of the valley that may yield local heterogeneity in PM concentrations.
Said green ellipse corresponds to a transition zone between peri-urban terrain and an
expanding horizon of high-density residential buildings. The low-cost sensors are located
in buildings, while the official monitoring station is located in a school surrounded by
forests. This may explain the apparent overestimation of the PM levels by the low-cost
sensors and the low correlation values of their data.

Our results displayed low correlation values and a marked tendency to underestimate
the observed concentrations by the LOTOS-EUROS model without assimilation. Similar
behaviors were observed in previous works [18,35]. In [35] the WRF-Chem model in a
sub-kilometer configuration was used to reproduce the CO dynamics in the valley. The
emission inventory was obtained from the AMVA Official Emission Inventory [26] follow-
ing a methodology similar to the presented in Section 2.2.2. Although the meteorological
fields showed a high similarity with observations, the model underestimated the CO con-
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centrations. The underestimation in both cases is attributed to mismatches in the official
emissions inventory and uncertainties generated by the simplifications of disaggregation
methodologies, such as the removal of residential road segments. Additionally, the of-
ficial emissions inventory does not include commercial sources, biogenic sources, and
resuspended dust, which can constitute a considerable part of particulate emissions [39].
However, data assimilation notably improved the ability of LOTOS-EUROS to represent the
magnitude and dynamics of PM2.5 within the Aburrá Valley. The assimilation of data from
the low-cost network improved the correlation between the observed and the simulated
concentrations to a greater extent than when data from the sparse official network was
assimilated, both in terms of the RMSE and the R values. The errors left in the simulated
concentrations after the assimilation of the low-cost network were within the performance
goals for PM2.5 representation formulated in [21,22,37,40]. The uncertainty present in the
model caused the percentage of predicted warning-triggering events related to high concen-
tration of PM2.5, to decrease to almost one half of the events observed within the forecasting
window (Figure 10). Our results highlight the persistent need to improve the inventories
of emissions, the meteorological data used as inputs, and to reduce other sources of un-
certainty in the model in order to increase forecasting capacity. Nevertheless, the model’s
forecasting capacity was increased when observations were assimilated. The greater spatial
coverage of the low-cost network contributed significantly to the improvements against the
simulations assimilating data from the official network. The higher density of observations
also allowed estimating emissions in more detail, as seen in Figure 8. The more detailed
emission estimations in turn allowed a better reproduction of the concentrations in the
forecast window even in the absence of data assimilation.

Although the LE-lowcost simulation used more observations than the LE-lowcost-
HQ simulation (255 and 115, respectively), the location and quality of the additional
observations played an important role. The LE-lowcost-HQ was defined using a high
similarity criterion to the official network, so it was not as affected by observations with
low quality as LE-lowcost. Comparisons between Figure 6a,b revealed that the additional
locations do not increase the spacial density considerably relative to the high-quality low-
cost subset. Our results suggest that while a high observation density is essential for
improving the performance of a model with data assimilation, it is crucial to consider other
factors such as the quality of the data and the location of the sensors. Different techniques
of observation localization allow optimizing the number of sensors to improve the data
assimilation or other data fusion techniques [41–44]. We highly recommend implementing
these techniques in the development of new low-cost monitoring networks. Apart from
minimizing the number of sensors and associated costs, the processing of a reduced number
of observations requires less computational resources. As an example, the LE-lowcost
simulation was 3.2 times slower than the LE-lowcost-HQ using the same computation
configuration. Optimization of computational and time resources are especially important
for operational systems.

Jointly with previous work [9,12,14,45–47], our results can support and motivate the
development of future low-cost networks and their integration in data fusion applica-
tions. According to the literature, North America, Europe, and China harbor most of the
current low-cost implementations, with experimental, citizen, and data dissemination
purposes [8,48]. In developing countries, a low-cost network, together with a CTM and
data assimilation can provide a valuable first approach to monitoring PM without the high
cost of an official air quality network.

5. Conclusions

We present the assimilation of data from a hyper-dense low-cost PM network into
the chemical transport model LOTOS-EUROS in a urban setting. The low-cost network
provided high quality data comparable to those provided by the official monitoring net-
work. The performance of the model with assimilation of the spatially-dense data from the
low-cost network improved both in terms of its representation of the observed dynamics,
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as well as in its forecast capabilities, highlighting its value as an air-quality management
tool. Our results support the idea than with the current advances in the low-cost sensors, it
is possible to use low-cost networks and data assimilation to model and predict air quality
in urban areas.

Although one of the main advantages of a low-cost networks is the possibility of
implementing hyper-dense networks at relatively low costs, it is recommended to prioritize
the quality of the data (sensor quality, calibration, maintenance) and the study of optimal
localization. High quality data, and the correct number and localization of sensors improves
the data assimilation process and minimizes operational and computational costs.
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