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Summary

Climate change and extreme heat are critical issues which have been faced all over the world. Conse-
quently, designers strive to monitor and assess the performance of facades by developing environmental
assessments at the early design stages, since design changes do not require many resources. Rapid urban
expansion in many parts of the world is leading to increased exposure to extreme natural hazards, ex-
acerbated by climate change. It is essential to come up with strategies for mitigating the vulnerability
of the built environment. The concept of thermal resilience and adaptation to climate change have
gained ground and international attention in the Architecture, Engineering and Construction (AEC)
industry. Resilience is a multi-facet property which defines the vulnerability of the built environment.
Although the qualitative assessment of resilience value, the quantification of urban resilience is not yet
representative enough and there is a lack of calculating the resilience in the built environment. How-
ever, designers are called to develop building and planning proposals with taking into consideration
the thermal resilience of buildings against extreme hazards. This thesis aims to fill the gap between
the qualitative and quantitative evaluation of thermal resilience in buildings by considering the opera-
tional building performance and the thermal performance of the building envelope in case of extreme
heat waves. Towards this direction, the most influential parameters of thermal resilience are identified
by implementing a sensitivity analysis process, in the first part. Secondly, a quantification method
is presented and the thermal resilience performance for buildings in Amsterdam is calculated. Last,
this thesis attempts to develop a computational workflow in order to assist designers and engineers in
defining the thermal resilience index from the early design stage. Defining a less computational cost
and time-consuming workflow is also a goal. Due to time limitations, the multi-facet aspect of resilience
and the difficulty of quantification of its indicators, this research focuses on the ex-ante evaluation of
the building envelope by identifying its vulnerability to extreme heat waves.
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1
Introduction

Climate change and extreme heat are critical issues for the built environment. The global warming of
the last century has currently reached a 0.2◦C per decade and it is predicted that the global temperature
will increase between 1.1◦C and 6.4◦C by the end of the 21st century compared to the period 1980-1999
(Pachauri & Reisinger, 2007). Gaffen and Ross (1998) and Kenward and Raja (2014) stated that the
impact of climate change on heatwaves has already begun, as observed by the significant upward trend
in the frequency of heatwaves from 1949 to 1995, indicating approximately a 20% overall increase in the
number of heatwaves during that period. In addition, the projected population growth in urban areas
is 68% of the world’s population by 2050 (Heilig, 2012). The constant rising urbanisation and rapid
urban expansion are leading to increased exposure of the built environment to extreme natural hazards,
exacerbated by climate change (Jenkins et al., 2023). Cities consume the great majority – between
60% and 80% of energy production worldwide and account for roughly an equivalent share of global
CO2 emissions, according to Chaoui and Robert (2009). Zahra et al. (2017) mention that the building
industry is responsible for 30% of the global annual greenhouse gas emissions and 40% of global energy
consumption and 31% of all waste. Moreover, the facades are the most crucial thermal barrier in a
building, defining how air moves in and out and driving spending on heating and cooling. As such, it
plays a critical environmental role. Benardos et al. (2014) enhance the importance of facades, as they
represent 25-30% of the total construction budget and their performance affects the energy consump-
tion of a building and hence the operational greenhouse gas emissions. Taborianski and Prado (2012)
stated that the type of façade has an influence on energy consumption during the building life cycle and,
consequently, contributes to buildings’ CO2 emissions because these emissions are directly connected
to energy consumption. In 2022, Favoino et al. (2022) noted that facade contributes to mitigating the
risk related to climate change for different performance aspects, such as energy consumption and indoor
comfort, hence the impact of facade design on the building resilience.

Rockefeller Institution in collaboration with Arup has been investing in research in order to come
up with strategies for identifying the resilience factor and mitigating the vulnerability of the built envi-
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Figure 1.1: The built environment is exposed to extreme heat waves.

ronment against climate change, since 2012 (Arup, 2012).
Nowadays, designers are called to develop building and planning proposals with taking into consid-

eration climate resilience against extreme hazards and events. For this reason, researchers have been
trying to define the resilience of buildings through their technical aspects by specifying their indicators
and properties since 2003. This research thesis addresses the problem of identifying thermal resilience
by quantifying its indicators on building scale, by calculating the energy demand and the indoor thermal
comfort of buildings and assessing their vulnerability to overheating.

Figure 1.2: Environmental studies are embedded at the early stage of design.

1.1. Problem Statement
Quantifying thermal resilience requires precise calculations typically carried out in the final design stage
when design elements, materials, and building properties are determined. This approach, however, of-
fers limited flexibility, as making changes to the design at this stage demands considerable resources.
Hence, performing assessments during the early design stage is more advantageous, even when material
and building parameters remain undefined. Developing a framework for calculating thermal resilience in
buildings is essential, as it should accommodate various design options, uncertainties, and probabilistic
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scenarios. The importance of uncertainty in energy modelling is often undervalued. A model represents
a simplification of reality and therefore it is important to quantify to what degree it is imperfect before
using it in design, prediction and decision-making processes (Manfren et al., 2022). Deterministic energy
simulations provide static performance of the indicators without considering future or uncertainty case
scenarios.

Researchers at the MIT Concrete Sustainability Hub (MIT, 2017) argue that early-stage environ-
mental studies are more valuable, as designers can more readily implement design changes and improve
building performance without requiring substantial resources. Simultaneously, energy models have been
developed to account for uncertainties during design and operation phases, incorporating complex inter-
actions among various factors in the energy domain (Nik, Perera, et al., 2021). These models, which rely
on stochastic rather than deterministic simulations, assist in developing strategies to address climate
change and ultimately result in more resilient design choices. Nonetheless, the absence of adequate
frameworks or methods for using climate data with extreme weather conditions in building simulations
poses significant challenges in evaluating the climate resilience of the built environment.

Figure 1.3: MIT CSHub: Buildings Life Cycle Assessment.

1.2. Scope
This study aims to gain new knowledge regarding the field of thermal resilience in buildings by pointing
out the thermal resilience definition and stating its indicators that should be quantified. Moreover, this
research attempts to evaluate the parameters that affect the indicator results by considering the results
in a matter of uncertainty. Consequently, building performance simulations are applied to evaluate
buildings’ energy performance and understand how the uncertainty quantification process could be
implemented in order to improve the decision-making process. The underlying assumption is that by
employing a probabilistic approach to building performance simulations and incorporating the concept
of risk, the energy performance gap can be quantified, precisely forecasted, and ultimately diminished.
Moreover, implementing the theoretical knowledge into practice by developing a digital design tool for
indicating buildings’ vulnerability to indoor overheating by running energy and thermal performance
simulations and hence predicting their performance against extreme overheating scenarios at the early
design stage.
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1.2.1. Research question and sub-questions
Realising the aforementioned theoretical background and problematic, the main research question and
sub-questions of the thesis are stated as follows:

“In what manner can a digital design workflow be devised to assess the thermal resilience of buildings
against extreme heat wave stresses, and how it can assist designers and engineers in the decision-making
process during the early design stage?”

a. What are the thermal resilience definition and its indicators?

b. Which metrics should be quantified in order to evaluate a building’s thermal performance?

c. What kind of weather data sets are suitable for thermal resilience quantification against extreme
overheating hazards?

d. How uncertainty quantification can be implemented in the computational workflow?

e. Which are the major influential parameters that affect the building’s performance against extreme
overheating?

1.2.2. Objectives and Limitations
Objectives
The main purpose of this thesis is to bridge the gap between qualitative and quantitative assessment
of thermal resilience in buildings and indicate the influence of facade performance on building’s opera-
tional energy consumption. The research field focuses on the building envelope’s vulnerability against
long-term overheating stresses by predicting the building’s energy performance under extreme weather
scenarios while climate and design uncertainties are considered. In addition, the paper aims to purpose
a computational workflow for developing an assisting tool for indicating buildings’ vulnerability to heat
stresses at the early design stage and give the ability to implement the same workflow to more building
examples. Defining a less computational cost and time-efficient workflow for simulations is also a goal
of the research.

Limitations
The research is based on the main assumption that the case study refers to a study of an office building
in Amsterdam. Since it is not an already existing building but a hypothetical study and due to time
limitations, the multi-facet aspect of the resilience definition resilience and the difficulty of quantifica-
tion of its indicators, there is a need for setting transparent boundary conditions for this research.

To start with, the urban factors such as urban heat islands, view factors and micro-urban climate
are neglected since they are related more to resilience with the aspect of urban scale, infrastructure and
networks (Galanos & Chronis, 2022; Naboni et al., 2019; Nik, Perera, et al., 2021). Hence the research
focuses on the building scale and more specifically the design case study refers to an open-plan, 8-story
office building in Amsterdam. For this case study more assumptions have been made and hence the
building geometry, its general dimensions and function are considered as design decisions. The main
building has a rectangular plan of 45x30 meters with a central atrium of 24x15 meters and each floor
a height of 4.20 meters. Since the research focuses on office building the operating schedule is defined
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as 8 working hours per day and 5 days per week. Factors that are related to the material properties
of the facade, the properties of the building envelope and the operational properties of the building
are considered uncertain variables and hence the research focuses on those. More specifically, material
properties such as thickness, conductivity, specific heat, thermal absorbance, thermal transmittance,
visible transmittance and solar heat gain coefficient are examined. On the other hand, the hygrother-
mal property among the facade materials is neglected in the research. According to Ekström (2021) for
exploring this field, a deep dive into facade materials properties and technical design variations of the
facade is needed. Regarding the building envelope, properties such as the wall-window ratio and the
infiltration ratio are examined but the thermal bridging is neglected in the research. Factors related to
the thermal climate design such as indoor thermal comfort and HVAC systems are examined but on the
contrary, factors of visual comfort such as artificial lighting and glare are neglected from the research
since they are not closely related to the thermal resilience field. The aforementioned parameters are
considered as uncertain factors and their effect on the performance of the building is evaluated. An-
other boundary condition is occupant activities and behaviour. Research has shown that the occupants’
activities and behaviour significantly impact a building’s energy use, although sampling daily data an
annual time-frame is needed in this case (Ekström et al., 2020). Since the research is not based on
real-time data the occupants’ activity is considered as working standing or sitting in an open space
office environment.

Figure 1.4: Limitations of this research.

A big part of the research is based on data that are produced from building energy and thermal
simulations and hence weather data sets need to be examined apart from the building parameters. In
order to perform building simulations with the main aspect the thermal resilience, weather data should
consider overheating stresses. For this reason, weather data sets that refer to the location of Amsterdam
were collected and the generation of the EPW file was based on those. The building simulations are
held within a time range of 3-5 hottest days during summer.

Last, this research attempts to develop a computational framework for thermal resilience quantifica-
tion and hence to indicate the thermal and energy performance of buildings during overheating events.
In other words, the process is based on the ex-ante evaluation of the building’s performance against
overheating. Strategies for facade retrofitting and/or boosting buildings performance, such as PV panels
implementation and energy batteries, are not part of this research.
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1.3. Research method and case study
Since resilience is a complex term and is related to different sectors of the built environment, plenty of
scientific papers and Doctoral Dissertations were founded for the seismic, flood, climate, infrastructure
and resilience of urban networks. However, literature closely related to this topic is founded during the
last two years. In general, considering the aforementioned scope of work, objectives and limitations of
this research the literature spectrum relies on the following topics:

i. Thermal resilience definition: Clarify the definition of thermal resilience for this research and
identify its indicators. In this first topic, the field of resilience in buildings is discussed with the
main focus on the thermal performance of buildings. Indicators of thermal resilience are stated
and the parameters that contribute to indicators performance are pointed out.

ii. Weather data: This topic refers to the generation of weather data sets that can be generated
for extreme climate conditions by considering historical weather data and past events. Through
this research, variant weather scenarios could be produced.

iii. Building envelope and facade properties: Energy simulations are part of the practical part
of this thesis, for this reason, multiple simulation results of variant building properties respectively
are discussed. Hence, the research focuses on the building envelope and material properties of the
facade. These values are assigned to the simulation model, later on, in order to move forward to
the case study and the computational workflow.

iv. Uncertainty quantification: As mentioned in the problem statement, material, building prop-
erties and climate factors are not certain for in case of extreme overheating events. Consequently,
parameters of uncertainty are closely related to the topic of this research and quantification pro-
cesses are explored. In short, methods for sampling and processing data via Python scripting are
discussed.
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Figure 1.5: Research strategy diagram.
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The main sources of this research are scientific papers gathered from Google Scholar, Research Gate
and Elsevier. The Doctoral Dissertations of Abediniangerabi and Shahandashti (2022) and Ekström
(2021), scientific papers from researchers of Leuven University, TU Delft, EPFL and ETH and consis-
tent information from corporate research held by companies such as Arup, Perkings & Will are forming
the main core of the literature research. In Appendix D.1 a literature map illustrates the references
that have been studied during this research. The following terminology of thermal resilience, resilience
quantification, uncertainty quantification, predictive energy simulations, façade thermal performance,
weather data, sensitivity analysis were used as the main keywords of this search.

The implementation of the theoretical knowledge, of the topics mentioned above, into practice is the
second part of this thesis. In general, digital models with 3D geometry of building prototypes and Visual
Programming scripts are used in order to run energy simulations under different weather conditions
that respond to possible future weather scenarios. Consequently, parameters of design uncertainties are
needed to be considered for simulations for predicting the building’s performance with a higher value
of probability. More specifically, the assignment can be split into shorter individual tasks as mentioned
bellow:

a. Weather data: Historical weather data is needed for getting information about the extreme
heatwaves that occurred in Europe during the last decades. Historical weather data are used as a
basis for generating a weather data set in which extreme climate conditions are included in order
to run simulations and assess building’s performance.

b. Building and facade archetypes: A digital model of office building with variant material
properties is designed for covering a spectrum of facade materials in buildings. Here building
envelopes differentiate because of the variant wall-window ratio and material properties.

c. Building simulation: Visual scripting and Python language are used for forming the energy
and thermal simulation workflow by considering the climate and design uncertainties. Through
this process, thermal resilience indicators are quantified in order to estimate the resilience loss of
the office building.

d. Uncertainty quantification: The simulation outcomes are distributed in fitting curves in order
to sample values that give results with 95% probability. Consequently, the results of thermal
resilience loss are more accurate than deterministic simulation studies.

e. Resilience quantification: In this task, the simulation outcomes are compared with an opti-
mised design of the office building and hence comparisons between an ideal and real performance
are presented. Therefore, the conclusions can be made in order to help the decision-making pro-
cess and assist designers in selecting the most valuable types of materials, glazing ratio and HVAC
performance for their design.

Rhinoceros, Grasshopper, EnergyPlus and WallaceiX software are used for this assignment. In addition,
Python libraries of eppy and sklearn used in complementary and post-processing tasks. Seaborn and
Matplolib were used for data visualization.
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Figure 1.6: Design assignment methodology diagram.
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1.4. Thesis Outline
The thesis report comprises by the following chapters.

Chapter 1. Background: Introduction to the topic of thermal resilience and building energy perfor-
mance by considering climate and design uncertainties.The problem, scope of work, research
questions, objectives and limitations are stated.

Chapter 2. Literature review: Gives the theoretical framework for the aforementioned fields of re-
search based on the literature research.

Chapter 3. Design Assignment: Describes the overall practical implementation of the theoretical
framework applied in this project. Hereby the results are compared and discussed in order
to evaluate the validity of the process and gain knowledge for the implementation of thermal
resilience quantification in the built environment.

Chapter 4. Conclusion and Future work: Presents the conclusions from the literature review and
the produced results. Proposes identified subjects of interest for future research.

Chapter 5. Reflection: Describes the overall engagement of two departments of the Building Tech-
nology Master track by forming a multidisciplinary background to address the problem of
climate change in the built environment. The graduation process and the societal impact
of this graduation project are discussed.



2
Literature Review

The literature review of this research attends to the topics of resilience definition and quantification
in the built environment. Scientific papers that concern resilience in a broader spectrum have been
explored. In general, a significant amount of literature has been found for assessing resilience in the
built environment against earthquakes, hurricanes, and floods by using qualitative or quantitative evalu-
ation frameworks. Bruneau et al. (2003) introduced the resilience definition and stated a quantification
methodology for evaluating the seismic resilience in buildings. Since then, the resilience qualitative
and quantitative evaluation frameworks came to the foreground and studies conducted by researchers
in order to explore this topic on different scales. Some of the scientific papers deal with the urban
design and the CO2 emissions in the context of climate change (Naboni et al., 2019), while some others
(Sharifi & Yamagata, 2016) evaluate the resilience in urban scale by developing qualitative framework.
In the same concept of a qualitative evaluation, Favoino et al. (2022) develops a framework for the
resilience of facades and focuses on their structural and thermal performance. Panteli, Trakas, et al.
(2017) evaluates the performance and quantifies the resilience of infrastructure power systems. Cimel-
laro et al. (2010) develops a quantitative framework for analytical quantification of seismic resilience
for healthcare facilities. Other studies are focused on assessing the energy performance of buildings
under the factor of climate change (Attia et al., 2021; Tavakoli et al., 2022). These refer to quantitative
evaluation strategies for defining resilient cooling systems during overheating stresses. As the literature
research indicates, building resilience is a complex multi-faceted issue (“Resilience (engineering and con-
struction)”, 2023) that must be evaluated considering multiple factors under various aspects that lean
towards both macro- and micro-climatic contexts. However, as was clarified in the previous chapter,
this research focuses on the quantitative evaluation of thermal resilience in a building scale by taking
into consideration design and climate uncertainties.

In the following chapters, the topics of the resilience definition in the building scale will be dis-
cussed. More specifically, resilience definition, its dimensions and its stages are stated in the next
chapter. Moreover, part of the research explores strategies for resilience quantification by calculating
metrics related to resilience thermal factors. Subsequently, it is essential to identify the most influential

11
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parameters that affect the results of thermal resilience indicators (Homaei & Hamdy, 2021b). Through
the literature research, it is pointed out that the thermal resilience of buildings is affected by both
design and climate factors (Nik, 2016). Therefore, the research explores the field of building and facade
properties while attempting to observe climate data for synthesizing an overheat strike case. As stated
in the problem formulation, there are inaccuracies between the building simulations results and actual
performance, for this reason, this research explores the field of uncertainty among the design and climate
factors (Sun et al., 2020) and hence uncertainty quantification strategies are discussed in the following
chapters. However, this thesis focuses on thermal resilience on the building scale, the aforementioned
framework can not be considered as aligned with this specific topic and hence the literature narrows
down to studies that are closely related to thermal resilience by considering cooling loads and facade
properties that affect the building performance.

2.1. Resilience
2.1.1. Definiton, Dimensions and Stages
Defintion
The concept of resilience is used in various research disciplines from environmental research to materials
science, engineering, sociology and economics. Therefore there are variant definitions stated by the re-
searchers. In general, resilience is related to the ability of a system to recover from a failure, cope with
unanticipated dangers and bounce back to obtain its initial functionality. Arup (2015) presents the
definition of resilience term as the capacity to adapt to changing conditions and to maintain or regain
functionality and vitality in the face of stress or disturbance. It is the capacity to bounce back after a
disturbance or interruption. However, this definition and others that can be found in scientific papers
discuss resilience as a broad topic of the built environment and thus can not be considered sufficient
enough for the topic of this thesis. Subsequently, resilience should be defined in the case of building
level with rigorous terminology.

This research thesis attempts to define resilience at the building level. Bruneau et al. (2003) stated
that seismic resilience is conceptualized as the ability of both physical and social systems to withstand
earthquake-generated forces and demands and to cope with earthquake impacts through situation as-
sessment, rapid response, and effective recovery strategies. In the field of building energy and thermal
performance, Attia et al. (2021) developed a quantification framework for evaluating the resilient cooling
of buildings against heat waves. His research states that resilience refers to the capacity of buildings and
urban networks to withstand, absorb, adapt and recover from the effects of stress in a timely and effi-
cient manner in order to continue functioning during natural hazards caused by climate change. Homaei
and Hamdy (2021a) assessed the thermal resilience in buildings by establishing a benchmarking frame-
work and labelling metric. This research defines the thermal resilience against extreme climate events as:

Resilience is the capability of the building to prepare, absorb, adapt and recover from disrup-
tive events. In other words, resilience is the performance property of whether the building’s
performance is adequate enough against climate hazards by giving an indication of the build-
ing’s future performance for mitigating the impact of extreme events.
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Dimensions
According to Bruneau et al. (2003), resilience for physical systems can be further defined by its properties.
The four main dimensions (4Rs) of resilience - robustness, redundancy, resourcefulness, and rapidity -
have been identified for both physical and social systems. Hereby those properties are defined as follows:

i. Robustness: strength, or the ability of elements, systems, and other units of analysis to withstand
a given level of stress or demand without suffering degradation or loss of function.

ii. Redundancy: the extent to which elements, systems, or other units of analysis exist that are
substitutable.

iii. Resourcefulness: the capacity to identify problems, establish priorities, and mobilise resources
when conditions exist that threaten to disrupt some element, system, or other units of analysis;
resourcefulness can be further conceptualized as consisting of the ability to apply material and
human resources to meet established priorities and achieve goals.  

iv. Rapidity: recovery, the capacity to meet priorities and achieve goals in a timely manner in order
to contain losses and avoid future disruption.

Stages
According to Homaei and Hamdy (2021a), the response of a building to a disruptive event can be
split into two stages. The phase when the building responds during the event and the phase when
the building recovers after the event. The former includes the occurrence time in other words the
duration of the unanticipated event and the latter evaluates the building performance considering the
recovery time. The suggested framework involves simulating the building’s performance during and
after the disruptive event and utilizing appropriate metrics to quantify its thermal resilience. Various
disruptive events can impact building performance, such as fires, windstorms, hurricanes, flooding,
heatwaves, ice storms, power outages, and pandemics, and the test framework should reflect a fixed
duration for each event (Attia et al., 2021). Resilience in the field of engineering encompasses multiple
components. The initial component is vulnerability, which pertains to how susceptible a building system
is to various types of shocks. This concept is considered crucial in climate change studies according to
existing literature. Vulnerability refers to the system connected with specific hazards of concern and
its associated attributes. The second stage is resistance, referring to a building system’s capability to
sustain the initial design conditions. The third element, robustness, refers to how the building system,
along with its occupants, adjusts and adapts to shocks during critical performance conditions. Finally,
the fourth aspect is recoverability, which refers to the nature and extent of a building system’s recovery
from shocks.

2.1.2. Indicators and Parameters
Indicators
Before discussing the quantification methods, the performance indicators that refer to thermal resilience
should be pointed out. There are several Key Performance Indicators (KPIs) that can be used to evaluate
the thermal resilience of buildings. Some of these KPIs include indoor temperature, thermal comfort,
and energy consumption.

One of the KPIs for thermal resilience in buildings is indoor temperature. The study used dynamic
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Figure 2.1: The stages and timeline of the resilience process. (Attia et al., 2021).

energy simulations to evaluate the thermal resilience in buildings and found that the indoor temperature
was a critical KPI for assessing the building’s ability to withstand heat waves(Homaei & Hamdy, 2021b).
The main needs of building occupants are indoor thermal comfort which can be assessed by measuring
the indoor operative temperature. Operative temperature is defined as the average of the mean radiant
temperature and the ambient air temperature weighted by their respective heat transfer coefficients
(“Operative temperature”, 2022). Considering that cooling systems in buildings calibrate the indoor
air temperature and hence the operative, the research explores the functionality of these systems and
the energy consumption that is needed to achieve indoor operative temperature standards. Energy
consumption is also a KPI for thermal resilience in buildings. Subsequently, it is crucial to consider
the energy consumption apart from the indoor operative temperature. Graham et al. (2021) agrees
and states that the most disruptive factors affecting building occupants’ productivity are disruptions
in thermal comfort. Therefore, it is important to evaluate the resilience of building performance from
a thermal standpoint in relation to the building’s energy performance. In that statement Homaei and
Hamdy (2021b) agrees indoor operative temperature and energy consumption are considered indicators
for assessing the thermal resilience evaluation in buildings.

This research focuses on evaluating thermal resilience through an office building case study. Most of
the time during a day is spent around 87% indoors, and indoor thermal comfort is one of the most critical
requirements of office building occupants and a crucial factor that can affect productivity (Homaei &
Hamdy, 2021b).

Parameters
The aforementioned two main KPIs for assessing the thermal resilience performance can be affected
significantly by building and facade parameters. According to Homaei and Hamdy (2021b) the perfor-
mance of heating and cooling systems change the performance of those KPIs. The energy consumption
is affected by the energy demand of the cooling system of the building. In this fact, there are building
parameters that influence the performance of cooling systems and therefore the cooling set-point the air
change rate and the air ventilation are parameters that can influence the cooling system. In addition,
occupancy schedules and occupants’ activity affect the indoor temperature (Graham et al., 2021).

Besides the functionality of the cooling system, the building envelope and its thermal performance
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affect the indoor operative temperature (Feehan et al., 2021). Material properties, the glazing ratio,
facade infiltration, thermal bridges and the air-tightness of the facade elements influence the heat trans-
fer and the airflow from indoors to outdoors. These parameters and their evaluation are part of this
study. Zhang et al. (2021) states that the thermal mass, with moderate to high absorptive capacity,
can reduce heat gains to the indoor environment during heatwaves. However, some cooling or building
designs might benefit the indicator of indoor temperature but can result in a negative impact on the
energy demand.

2.1.3. Resilience Quantification
Besides the theoretical definition of resilience which delineates its qualitative aspect, researchers strive
to come up with frameworks for calculating the resilience property in a quantitative manner. According
to Hosseini et al. (2016), resilience quantification can be separated into two major categories with
different approaches a. qualitative and b. quantitative assessments. The former area is based on the
evaluation of resilience without numeric results and the latter is dependent on evaluation frameworks
with rigorous calculations. Bruneau et al. (2003) formed the most representative general-based resilience
evaluation framework in the field of seismic resilience which used the total impact e.g. performance
losses during and after the disruption. This quantification definition calculates the performance curve
that presents the quality of the building system in relation to time. As presented in the diagram 2.2, the
performance curve can variate from the initial performance of the building during a disruption event.
Hence, resilience can be quantified by calculating the inner area of this chart by measuring the definite
integral of performance of 100% minus the real performance curve.

Figure 2.2: Resilience quantification (Bruneau et al., 2003).

R =

∫ t1

t0

[100−Q(t)] dt (2.1)

According to Bruneau et al. (2003) to achieve a holistic understanding, both aspects of the qualitative
and quantitative assessment frameworks must be thought out. The resilience Bruneau’s triangle assesses
the field of seismic resilience and is a representative general-based method, which uses the total impact,
such as performance losses during and after disruptions, to measure seismic resilience. This method
is adopted by other researchers for expanding this concept for calculating the Resilience Loss in other
fields of the built environment. Panteli, Mancarella, et al. (2017) develop an assessment framework of
quantifying resilience in the context of power systems for both operational and infrastructure integrity.
In this research, the resilience triangle is expanded to resilience trapezoid 2.3 and it is quantified by
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using time-depend resilience metrics that are introduced to capture the critical systems degradation
and the recovery features. In addition, resilience enhancement strategies are analysed by using this
evaluation framework. The resilience trapezoid used quantification grid resilience by the introduction
of a set of time-dependent metrics called the ΦΛEΠ metric system, which is based on the speed Φ

and the magnitude Λ of the damaged grid functionality, the duration of the damaged state E, and the
recovery speed Π.

Figure 2.3: Resilience triangle and multi-phase resilience trapezoid. The smaller the area gets,the more resilient grid
will be. (Panteli, Trakas, et al., 2017).

In the context of the built environment and energy resilience against extreme events is enhanced by
the research of Zhou (2022) which contributes to developing a quantification evaluation framework for
the survivability of energy systems. The enhancement of energy resilience can be categorized into three
different types based on the phase of the extreme event: preparation for resilience before the event,
actions and survivability during the event, and service restoration after the event 2.4.

Figure 2.4: Resilience performance curve for building energy systems (Zhou, 2022).

Homaei and Hamdy (2021a) have adjusted these metrics for the quantification of different resilient
abilities (i.e. preparation, absorption, adaptation, recovery). Their evaluation framework evaluates
the thermal resilience in the building level during and after the disruptive event by calculating the
indoor operative temperature 2.6. This framework is based on the performance of the operative indoor
temperature with respect to the thermal performance of the building envelope, the level of occupancy,
the operating schedule of the building and the performance of the building energy systems.
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Figure 2.5: The components of a resilience definition (Attia et al., 2022).

Figure 2.6: Multi-phase thermal resilience curve (Homaei & Hamdy, 2021b).

Metrics
An evaluation of the likelihood, potential vulnerability, and consequences of each risk using metrics
or an assessment could aid in prioritizing the examination of risk factors and strengthening building
resilience (“U.S. DoE”, 2022). This measurement of building resilience can assist owners in making
informed decisions to safeguard their assets, provide a better understanding of the resilience of the built
environment and complement the current assessments of building sustainability.There have been several
studies that have examined the evaluation of resilience in various fields. Hosseini et al. (2016) identified
two main types of resilience assessment methods: qualitative and quantitative. Qualitative methods do
not use numerical data to evaluate resilience and may include approaches such as conceptual frameworks
or semi-quantitative indices.Resilience metrics are essential for quantifying resilience by calculating
the performance of its indicators. These metrics should indicate how far and how low the building’s
performance deviates from the targets. Homaei and Hamdy (2021a) states that resilience quantification
is needed to be captured during and after the disruption event based on simulation results. In this
chapter, qualitative and quantitative metrics related to building thermal performance are discussed.

Favoino et al. (2022) in collaboration with the Eckersley O’Callaghan engineers, developed a quali-
tative framework for building thermal resilience which is focused on the evaluation of the facade perfor-
mance. The assessment consists of two parts: the climate risk assessment and the mitigation strategy
assessment (“A tool to improve climate resilience of facades”, n.d.). This numerical framework (2.8)
evaluates the likelihood of climate stressors, which were defined from 1-insignificant to 5-extremely high,
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by their impact and consequences on the functionality of the facade.

Figure 2.7: Mitigation strategy diagram by Eckersley O’Callaghan engineers.

This framework gives an indication of whether the functionality of the facade under the climate
stressors was minor or catastrophic by a numerical metric with a range from 1 to 5. Through this
assessment, it is possible to identify a specific risk for each design option and ways for reducing or
eliminating the consequences of the climate stressor and assist the stakeholders in the decision-making
process (2.7). Although this numerical framework gives numerical indications it is not adequate enough
for resilience quantification because it does not constitute a rigorous calculation methodology. However,
this research contributes to the conceptualisation of evaluating thermal resilience in buildings as it is
used to indicate the major facade parameters that affect thermal stresses.

Figure 2.8: Qualitative framework Favoino et al. (2022).

Apart from the aforementioned qualitative framework, this research explores qualitative thermal
resilience metrics. Bennet (2016) used the Energy Plus building performance simulator ins order to
evaluate the resilience of high-rise residential buildings in case of power outages. This research is based
on the handicaps of poor insulating properties of the facade materials and the high solar transmittance
of glazing. Therefore, the heat loss can be high and consequently, high levels of discomfort and high
energy consumption during operation can occur. Besides their poor performance in normal operation,
these buildings are vulnerable to power failures during overheating stress. The research describes a
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methodology to evaluate buildings’ thermal resilience by quantifying the metrics of thermal autonomy
and passive survivability. The results have shown that thermal autonomy does not consider a sufficient
level the occupant interaction. Moreover, the results suggest adaptive opportunities of the building
envelope with regard to maintaining indoor comfort. Sun et al. (2020) provided a methodology for
modelling and analysis of thermal resilience and energy-efficient buildings. The case study of a nursing
home was used for implementing the assessing methodology evaluating retrofit scenarios for improving
thermal resilience, reducing the cooling demand and increasing energy efficiency. The metrics for as-
sessing thermal comfort in buildings can be divided into two major categories, the biometeorological
indices and the heat-budget models. The former is based on simplified metrics of the air temperature
(heat index) () and humidity (humidex) (Steadman, 1979). The latter are complex indices that include
all important meteorological and physiological parameters. According to the Energy Department of
the United States the metrics of Heat Index (HI), Humidex (H), and Standard Effective Temperature
(SET) are needed to be defined for evaluating thermal resilience in buildings calculated.These have been
adopted by government agencies and industry (“U.S. DoE”, 2022).

Figure 2.9: Heat Index lookup table. The HI effects on human health are categorized into five levels: Safe, Caution,
Extreme caution, Danger and Extreme danger.

The Heat Index (HI) is a metric that combines the air temperature and the relative humidity for
evaluating the level of human comfort. In other words, it calculates how the temperature feels like to
the human body. This metric is used in the United States as an indicator of heat stress. In the HI
table 2.9 the correlation of temperature(◦C) and relative humidity (%) is presented. The calculation is
based on the regression equation of Rothfusz (2.2) and provides results for the accumulated hours of all
the occupants of a space or a thermal zone. Moreover, the Rothfusz regression is not valid for extreme
temperature and relative humidity conditions beyond the range of data considered by Steadman (1979).

Heat Index = c1 + c2T + c3RH + c4TRH + c5T
2 + c6RH2 + c7T

2RH + c8TRH2 + c9T
2RH2 (2.2)

Where:

T : ambient dry-bulb temperature (◦F)

RH: relative humidity (%)
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c1 = -8.78469475556 c2 =1.61139411 c3 =2.33854883889
c4 = -0.14611605 c5 = -0.012308094 c6 =-0.0164248277778
c7 =0.002211732 c8 =0.00072546 c9 =-0.000003582

The Humidex (H) is an index that is used in Canada to describe how hot the weather feels like to the
average person, by combining the effect of heat and humidity. This index is a dimensionless quantity
based on the dew-point temperature (“U.S. DoE”, 2022) and can be calculated by the formula 2.3 and
indicates levels of discomfort as they presented in table 2.10.

H = Tair +
5

9

(
6.11 ∗ exp

(
5417.7530 ∗

(
1

273.16
− 1

273.15 + Tdew

))
− 10

)
(2.3)

Where:

Tair: the air temperature in ◦C

Tdew: the dew-point temperature in ◦C

exp : 2.71828

Figure 2.10: Humidex lookup table. Humidex from Temperature and relative Humidity Readings.

The Standard Effective Temperature (SET) is a metric of human response to the thermal envi-
ronment and its calculation is similar to Predicted Mean Vote (PMV) as it is based on heat-balance
equations that incorporate personal factors of clothing and metabolic rate. SET is widely used in cases
of power outages in order to maintain safe thermal conditions. The EnergyPlus software calculates the
SET metric in relation to time (“U.S. DoE”, 2022). A simplified metric that considers only temperature
is passive survivability and because of this limitation can not be considered as comprehensive enough
for evaluating thermal resilience (Katal et al., 2019).

According to Homaei and Hamdy (2021a), these simplified metrics are neglecting the building ther-
mal zoning and thus it is not possible to indicate rigorous evaluation and results. Besides those were used
for quantifying the resilience during the disruptive event and neglected the post-event phase. Referring
to heat-budget models, Predicted Mean Vote (PVM), Operative Temperature (OT) and Standard Ef-
fective Temperature (SET) are widely adopted for thermal comfort assessment. According to ASHRAE
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(2010) are more suitable for evaluating the comfort level of the occupant rather than survivability un-
der extreme conditions. Hamdy et al. (2017) quantify the thermal resilience in a case study of Dutch
dwellings by using the Indoor Overheating Degree (IOD) as a metric indicator which considers different
thermal comfort thresholds for different thermal zones over the frequency of overheating. The IOD
(2.4) quantifies the overall risk by taking into account both the intensity and the frequency of indoor
overheating. All the aforementioned metrics can help to benchmark different designs from the resilience
perspective and give a more informative approach to the design process.

IOD =

∑Z
z=1

∑Nocc(z)
i=1 [(Tfr,i,z − TLcomf,i,z)ti,z]∑Z

z=1

∑Nocc(z)
i=1 ti,z

(2.4)

Where:

Tfr: free-running operative temperature

TLcomf : thermal comfort temperature limit

Nocc: intensity of overheating during the occupied period

z: building zones

Hamdy et al. (2017) states that the IOD increases as far as the Ambient Warmness Degree (AWD)
increases. Subsequently, the dwellings can perform differently under the stresses of global warming.
Hence with stricter overheating stress cause higher values than the overheating. Dwelling with higher
solar heat gains and low heat transmission is at high risk than ground floors, especially in dwellings
with low insulation and low solar protection. In case of no mechanical ventilation, the risk is signifi-
cantly higher. Ventilative cooling and solar protection are the most effective adaptation measures to
mitigate the consequences of global warming. However, the potential of ventilative cooling decreases as
global warming increases and hence this type of cooling would not be sufficient for keeping the indoor
temperature stabilized under 24◦C. Subsequently, active cooling should be established in buildings.

Homaei and Hamdy (2021a) proposes a methodology, as presented in 2.11 to measure and classify
the thermal resilience of buildings, which can help protect building performance against uncertainties
and disturbances. The proposed methodology uses the weighted net thermal performance (WUMTP)
to quantify the deviation from thermal targets and penalize them based on the phase, hazard level,
and exposure time of the disruptive event. This metric is a multi-zone measure that considers not only
the performance during the disruptive event (phase I) but also the recovery phase (phase II). Apart
from the resilience quantification, this research attempts to classify the buildings according to thermal
resilience by forming a benchmark labelling. There are two main considerations for this metric. In
comparison with the previous metrics, the WUMTP metric can be used with respect to the building
characteristics such as building envelope, ventilation systems and occupancy hours and hence it can be
used for a multi-zoning case with different thermal conditions. By changing one of these factors can
affect the thermal resilience of a building. Therefore, it could be used as a metric system for evaluating
the thermal resilience of the whole building. Moreover, the metric is quantified with respect to the
disruptive event, the phase of the event, the hazard of the event and the time of exposure to the hazard.

The metric uses the indoor operative temperature as a performance indicator. By conducting dy-
namic building simulations, where parameters which affect the operative temperature can be set as
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Figure 2.11: Resilience calls index quantitative framework as stated by Homaei and Hamdy (2021a).

variables, performance curves are generated depicting the operative temperature fluctuation over time
Homaei and Hamdy (2021a). The simulation-based approach is preferred because it allows for easy
control of building boundary conditions and the evaluation of building performance under disruptive
events. The suggested resilience test framework involves a fixed-duration disruptive event and simu-
lates the performance of the building during and after the disruptive event. The WUMTP calculation
is divided into the following stages (2.12). At the initial stage (0 ≤ t < t0 ), the building operates
before the disruptive event based on a temperature set point. The second stage, which represents phase
I (t0 ≤ t < t1), is placed between the start and the end of the disruptive event. Here, the indoor
temperature deviates significantly from the initial slight fluctuation (around the temperature set point
target). Based on the definition of resilience, at this phase, the building absorbs the impact and then
adapts to the disruptive event. In phase II (t1 ≤ t < t2), the curve indicates the building’s performance
after the disruptive event and lasts until the building reaches the performance level of the initial state.
In the final stage (t > t2), the building continues to operate based on the initial set point temperature.
In addition to these stages, four different performance thresholds are forming a multi-phase resilience
calculation and they are presented in the diagram 2.12. Those are the set-point temperature threshold
(Tsp), which presents the temperature at the set-point target. According to Homaei and Hamdy (2021b)
this set-point for office buildings is set to 21◦C. The robustness threshold (Trt) of 23◦C includes any
point of the performance curve that exceeds the (Tsp) and defines the acceptance level of performance.
The performance threshold of habitability (Tht) defines any performance that is at the uninhabitable
condition for the occupants. Last, the (Tmin) is the minimum performance of operative temperature.
This proposed methodology and the metric system Although, the proposed method (Homaei & Hamdy,
2021a) calculates the thermal resilience for building simulations during winter, the metric was adopted
for the thermal resilience quantification in case of summer heat waves. For this reason, the threshold
figures were adapted to the case of indoor overheating, hence the T=23◦C, T=26◦C and T=29◦C for
the case study which is presented in Chapter 3.
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Figure 2.12: WUMTP metric calculation by Homaei and Hamdy (2021a).

WUMTP =
∑

SiWpWhWe (2.5)

For the calculation of WUMTP, the temperature values are multiplied by a penalty-weighted factor
2.13) in order to consider the increase in stress over time of disruption.

As mentioned above, the WUMTP metric can be translated into a benchmark label 4.4 system
similar to energy labelling systems and can be incorporated in the design, planning, and operation of
buildings, as well as in energy performance certificates. Therefore, valuable information can be provided
to designers and engineers enhancing the decision-making process at the early stage of the design.
Subsequently, building design can be ready to prepare for and adapt to disruptive events. Through
this calculation, the resilience class index (RCI) is defined 2.6. However, The methodology is limited
to residential buildings but can be extended to other types of buildings by setting new assumptions
regarding thermal comfort conditions for each building type. It only quantifies thermal resilience for
residential buildings during heating seasons and needs adjustments for cooling seasons in regions with
hot and humid weather. It also only considers temperature and not other factors that can impact
thermal resilience such as humidity, which requires further research. Moreover, Homaei and Hamdy
(2021b) suggests the implementation of PV panels and/or battery storage for restoring the thermal
performance and hence minimizing the duration of Phase II.

RCI =
∑

(SiWpWhWeref )∑
(SiWpWhWe)

(2.6)

The method for rating a building’s resilience is similar to energy labelling (Homaei & Hamdy, 2021b),
which rates a building’s energy consumption and potential for energy-saving measures. Buildings are
assigned an energy performance label based on a scale from A to G, with A-rated buildings being
the most energy-efficient. The energy performance of a reference building is evaluated, and the actual
building’s performance is compared to it to determine its label. This same strategy is used for resilience
labelling, where an ideal reference building is chosen based on standards, and the building to be rated
for resilience is compared to it in a test framework subjected to a disruptive event.

Sun et al. (2020) stated that energy efficiency is not uniformly beneficial for thermal resilience. For
instance, the factor of air infiltration through the facade, which is state-of-art for energy efficiency
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Figure 2.13: WUMTP metric calculation by Homaei and Hamdy (2021a).

Figure 2.14: WUMTP metric calculation by Homaei and Hamdy (2021a).

practices, made it more difficult to expel the high indoor temperature. Moreover, the measures of his
research varied by changing multiple parameters such as the air-conditioning and the outdoor tempera-
ture. Resilience standards and metrics are needed to follow the building energy codes in order to achieve
adequate levels of thermal resilience from the early design stage.

2.2. Weather Data
2.2.1. Heat waves in Europe
Analysing and generating weather data was a part of this research. In this chapter, sources for obtaining
weather files and methods for generating weather files are discussed. The thermal resilience of a building
is quantified under overheating stresses, for this reason, historical weather data are examined. As
mentioned in the introduction, the frequency and duration of heat waves have increased during the last
decade. Specifically, the heatwave which occurred in 2003 in Europe lasted from the 20th of July until
the 20th of August and the highest temperature of 37.8◦C was recorded on the 7th of August. During
the summer of 2019 2.15, two heatwaves occurred in Europe during June and July and the temperature
rose up to 39.3◦C. Three years after, multiple heatwaves occurred in short period of time each one but
the high temperatures occurred from June until August. The highest temperature in the Netherlands
was 39.5 ◦C (“2022 European heat waves”, 2023). According to the Intergovernmental Panel on Climate
Change (IPCC) (Pörtner et al., 2019), the frequency of extreme case scenarios is expected to increase
in the near future because of climate change. Extreme heatwave events are occurring more frequently
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and last longer, in comparison with the pre-industrial era (Homaei & Hamdy, 2021a). The Copernicus
Climate Change Service stated that 2019 was the warmest year on record for Europe with June being
the hottest month (“C3s releases European State of the climate to reveal how 2019 compares to previous
years”, n.d.). Such events affect the cooling and ventilation system and as a result, require high demand
energy to mitigate the significant rise of the indoor temperature. Therefore, can lead to thermal
discomfort in buildings.

Figure 2.15: A heat map shows Europe on July 26, 2019, in the midst of an extreme heat wave that saw temperatures
reach as high as 41◦C in Paris, France. Copernicus Sentinel data (2019), processed by ESA(CC BY-SA 3.0)

Historical weather data can be retrieved by the official website of Climate Explorer by Royal Nether-
lands Meteorological Institute (KNMI, 2023). Libraries for variant climate models of CMIPs and Cordex
scenarios with monthly, daily and hourly data of extreme temperature values can be found.

2.2.2. Climate uncertainties
The modelling uncertainties when assessing the impact of weather on the resilience of buildings, can
decrease the accuracy of the modelling output. This is mainly because of the lack of data and of the
unpredicted behaviour of the weather(Panteli, Trakas, et al., 2017). For this reason, sensitivity studies
are required to evaluate the impact of the assumptions made in weather modelling. The sensitivity
studies would help understand the importance and effect of each modelling aspect and parameter on
the modelling output. This will guide the more effective and systematic collection of data that would
increase the accuracy of the simulation output.

The Intergovernmental Panel on Climate Change (IPCC) synthesis report offers quantifiable climate
data that can be re-used to estimate the likelihood of punctual and global climate events depending on
the project location (Favoino et al., 2022). Representative concentration pathways (PCP), presented in
the picture 2.16, represent different scenarios for addressing the uncertainties in future concentrations of
greenhouse gas (GHG) Moazami et al. (2019). Those scenarios are called Global Climate Models GCMs
and their outputs represent averages over a region with a spatial resolution of 100-300km2 am monthly
temporal resolution. These data resolutions are not suitable for direct use in BPS tools that require
local weather data with hourly or sub-hourly resolution. Therefore, GCM data need to be downscaled
to the appropriate spatial and temporal resolution. There are two main approaches to downscale GCM
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outputs and generating data with a finer temporal and spatial resolution. These are dynamical and
statistical downscaling (Nik et al., 2017). The RCP 4.5 is described as a moderate scenario and the
RCP 8.5 as a scenario with a high concentration of CO2 emissions, while the RCP 2.6 is considered as
the one with the lowest concentration. According to Nik (2016), the RCP 4.5 and/or RCP 8.5 scenarios
must be included in the process of downscaling weather data from the Global Climate Model (GCM)
to the Regional Climate Model (RCM) for generating future weather data.

Figure 2.16: Representative concentration pathways (PCP) as defined by the IPCC.

Climate uncertainties can affect considerably estimations of the energy demand, as shown by (Vahid,
2012) through the implementation of several future climate scenarios, based on the 4th Assessment
Report (AR4) of IPCC and with different spatial resolutions. The adopted temporal resolution can also
affect the assessment results considerably. This illustrates the critical situation for energy systems to
cover peak demands in future (Nik, 2016). The key to the climate resilience assessment is the proper
linkage between climate and energy models. Besides considering climate uncertainties, it is important
to adopt a suitable temporal resolution for the analyses to reveal the risk of extreme events. This
allows counting for ‘unprecedented’ extreme events which are physically ‘plausible’ and reflected by
future climate models (Nik, Perera, et al., 2021).

Figure 2.17: Future climate projections can be generated by using the RCPs of IPCC in GCMs. RCMs are used to
downscale GCMs dynamically with fine spatial and temporal resolution, enabling a physically consistent representation

of climate variations and extremes. (Nik, Perera, et al., 2021).
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2.2.3. Climate models & weather datasets
Climate is a very dynamic system and studying its behaviour depends highly on the selected temporal
and spatial resolutions. By realizing the importance of climate change adaptation in the built envi-
ronment and following the advances in computing future climatic conditions, which has resulted in
higher availability of future climate data sets, assessing the probable impacts of climate change has
turned out to be an interesting research topic for the field of energy consumption and buildings (Nik,
Perera, et al., 2021). There has been significant progress in developing climate models and projecting
future climate conditions over the last two decades. Moreover, in the recent past, energy models have
been developed to consider uncertainties at the design and operation phases including many complex
interactions among different actors within the energy domain(Nik, Perera, et al., 2021). Linking these
models to properly understand and quantify the impacts of climate change on the energy system brings
unprecedented opportunities to assess and improve the design and performance of energy systems (Nik,
Perera, et al., 2021).

Global climate models (GCMs) are numerical models of the physical processes that characterize
the global climate system, including the atmosphere, oceans, cryosphere and land surface. Buildings
are affected by the local climate, and some assessment methods may require environmental data even
at the sub-hourly resolution. Probabilistic approaches are usually taken into account for the impact
assessment of climate change, considering several climate scenarios and uncertainties. The climate re-
search community are focused on GCMs and RCMs. An RCM ( with a spatial resolution of 20–50km) is
usually nested in a GCM (with a spatial resolution of 100–300 km) and driven by the conditions of the
global climate at the boundaries of the RCM domain. RCMs can reproduce realistic regional climate,
especially with regard to extremes (Nik, Perera, et al., 2021). Impact assessment of climate change is
usually performed by means of the climate data generated by Global Climate Models (GCMs) (Nik,
2016). The GCMs cannot be considered as adequate for building simulations because of the coarse
spatial and temporal resolution. For this reason, regional and national scales, where Regional Climate
Downscaling (RCD) provides projections with much greater detail and more accurate representation
of localized extreme events (Gregory et al., 2007). While future climate information can only be

Figure 2.18: Global to regional climate(Nik, Perera, et al., 2021).

provided by GCM and/or RCM, the past/present data climate can be represented by historical obser-
vations or GCM/RCM simulation for the historical climate. A common approach in energy studies is
to use a one-year typical weather data set to represent climate over a 30-year period, known to be a
Typical Meteorological Year (TMY) (Nik, Perera, et al., 2021). TMY helps to represent typical condi-
tions for the past/current climate and limits the calculation load; however, it is unable to fully represent
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extreme conditions. Typical Meteorological Year (TMY) data sets rely on statistical measures mean
and a maximum of dry-bulb temperature, dew-point temperature, wind speed and solar radiation over
a span of 30 years. However, those neglecting weather extremes conditions because they include only
average outputs.

The morphing technique however reflects only changes in the average weather conditions and neglects
changes in future weather sequences. For example, it is not possible to see changes in extreme climatic
conditions for the morphed data, though extremes will be more often and stronger in the future (Nik,
2016). Dynamic downscaling of GCMs by means of regional climate models (RCMs) has the advantage
of generating physically consistent data sets across different variables (Giorgi, 2006). RCMs provide
weather data with suitable temporal (down to 15 min) and spatial resolutions (down to 2.5 km2) for
direct use in building and energy simulations (Rummukainen, 2010). Most of the Synthesizing weather
data sets techniques for energy simulations are based on the statistically downscaled GCM data. One
approach for creating weather files is integrating the monthly mean changes from GCMs into the existing
TMY by means of the morphing technique (Chan, 2011). Downscaling can be done dynamically using
RCMs or statistically (stochastic methods or morphing) (Yassaghi & Hoque, 2019). In this process
EPW files can be created suitable for building simulations.

To evaluate and quantify the thermal resilience in buildings against extreme heatwaves by devel-
oping dynamic energy building simulations, the following weather data sets are typically needed to be
embedded to EPW files (“U.S. DoE”, 2022):

Dry-bulb temperature : The temperature of the air as measured by a thermometer with a dry
sensing element.

Wet-bulb temperature: The temperature of the air as measured by a thermometer with a wet
sensing element. This is a measure of the humidity of the air.

Relative humidity: The ratio of the partial pressure of water vapor in the air to the saturation
pressure at the same temperature.

Solar radiation: The amount of solar energy that reaches the Earth’s surface, typically measured
in watts per square meter.

Wind speed and direction: The speed and direction of the wind at a given location.

Atmospheric pressure: The pressure exerted by the atmosphere at a given location.

Precipitation: The amount of rain or snow that falls at a given location.

Cloud cover: The fraction of the sky that is covered by clouds at a given location.

2.2.4. Synthesizing weather data
The averaging process of creating TMY files based on 20-30 years of historical data or future-generated
weather data, which usually excludes extreme values. These methods are based on synthesizing typical
weather files with extreme cold and extreme hot years. Nik (2016) used a similar process for creating
future weather files by synthesizing data sets of typical weather files with extreme cold and hot with a
temporal resolution of a month. With this process, it is possible to achieve accuracy similar to Regional
Climate Data. Climate uncertainties are included by taking into consideration of different climate RCPs.
To obtain a fine spatial and temporal resolution the use of downscaling techniques is required.
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The results (Moazami et al., 2019) proved that building robustness cannot be assessed only under
typical weather files. The relative change of peak load for cooling demand under near future extreme
conditions can still be up to 28.5% higher compared to typical conditions. Only the generated weather
files generated that are based on dynamical downscaling and that take into consideration both typical
and extreme conditions are the most reliable for providing representative boundary conditions to test
the energy robustness of buildings under future climate uncertainties.

Figure 2.19: Global Climate Model downscaling for future climate projections(Moazami et al., 2019).

Dynamical downscaling
Dynamical downscaling produces local or regional information using Regional Climate Model RCM.
RCMs are numerical models that require explicitly specified boundary conditions from GCM, hence
they provide a finer resolution of 2.5 klm2. Many advantages but needed many resources (computational
power, large storage) for the creation of data sets. This type is nested into a GCM and hence its quality
lies on the accuracy of the GCM. Ensembles and Euro-cortex are projects that produce probabilistic
projections of climate for Europe to inform researchers and decision-makers in order to quantify climate
uncertainties by combining different GCM and RCM pairings.

Statistical downscaling
Statistic down scaling derives regional or local climate variables form larger-scale climate data using
stochastic approaches. The complexity of dynamic downscaling make the BPS users to favor statistical
downscaling, This approach is much simpler than dynamical downscaling however it does not provide
high availability of hourly data. The statistical downscaling can be done with morphing and stochastic
generation of data sets. The former uses algorithms for applying changes on monthly variations of
GCM or RCM output from a location. CCWorldWeather Generator tool uses the morphing method
to generate EPWs. It allows the user to generate future weather files for worldwide locations within
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three-time slices: 2011-2040 (20s), 2041-2070 (50s), 2071-2100 (80s) and EPW files are freely available.
It transforms an original EPW typical weather file into future weather data, formatted in the EPW
format and so ready for use in BPS tools. Jentsch et al. (2008) describes in detail the potential source
of inaccuracy in the outputs of the tool due to the possible time-frame difference in the morphing
process. Arup and Argos analytics developed the Weathershift tool (Dickinson & Brannon, 2016).
This applies the morphing method to the outcomes to create climate change weather EPW files for
EnergyPlus simulations. The tool provides future projection weather data for three time periods: 2026–
2045(referred as‘2035s’), 2056–2075 (referred as ‘2065s’), 2081–2100 (referred as‘2090s’). The latter,
based on statistical analyses of recorded climate data and they can provide weather variables using
just a few independent variables such as solar radiation or solar radiance. Meteonorm is a combination
of a climate database spatial interpolation tool and a stochastic weather generator. Meteonorm can
calculate typical year switch hourly resolution for any site and canal so be used for climate change
studies. Instead of using weather data from typical weather files, it generates weather data by using
GCMs for every decade from 2010-2100 Nik (2016). Those models produce hourly data that can be
used as input for building performance simulations.

Hybrid downscaling
Is an approach for reducing the computational resources and storage space required in dynamic down-
scaling. The outputs of an RCM are stored at coarse spatial and temporal resolution for further
downscaling with statistical process. UKCP09 provide future weather data on a monthly basis with a
spatial resolution of 255 km2. Those are statistically downscaled later on to hourly or daily temporal
resolution at 5klm23 spatial resolution. This method is capable of providing high resolution weather
data for several years into the future. For translating weather files into EPWs which are used for build-
ing simulations principles of the typical meteorological year is needed to be followed. (12 months and
a conventional period of 30 yr). In those approaches generation of extremes can be included.

Most of the above-mentioned approaches are based on the statistical downscaling of GCMs and in
the case of dynamic downscaling, based on the daily or monthly temporal resolution of RCMs. Many
of these methods neglect the probable climatic variations in different time scales, e.g. from seasonal to
hourly, and hence it is not possible to estimate the probable extreme conditions (Nik, 2016). However,
Nik (2016) suggests an approach for the impact assessment of climate change on buildings and their
energy performance, based on creating three sets of weather data out of RCMs: (1) typical downscaled
year (TDY), (2) extreme cold year (ECY) and (3) extreme warm year (EWY). The weather data sets
are created using one or several RCMs.

2.3. Uncertainty quantification
Uncertainty quantification (UQ) is the field of studying and analyzing the sources of uncertainty and
variability in mathematical models and simulations. In building energy simulations, UQ involves quan-
tifying the uncertainties in the inputs, parameters, and models that can affect the energy performance
predictions of a building. UQ is becoming increasingly important in building design and energy retrofit
projects as it helps to identify and reduce the risks of performance gaps between the predicted and
actual energy performance of buildings. By reducing these uncertainties, UQ can improve the accu-
racy and reliability of energy performance predictions, reduce the risk of performance gaps, support
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decision-making, and optimize building performance. Uncertainties are connected with the concepts
of reliability and robustness (Janssen, 2013). Reliability focuses on the probability of failure during a
given time period, while robustness delineates the probability of the performance of a system in time.
This research explores the field of thermal resilience by the aspect of robustness in the building perfor-
mance rather than reliability and hence on the general uncertainty analysis outcomes rather than the low
probability of failure events. In probabilistic building simulations, Monte Carlo appears to be universal
and progressively since can be a reliable assessment of heat transport through the building materials and
building components and the whole building performance can lead to sustainable and durable perfor-
mance. Most of the related parameters for building simulations such as material properties, boundary
conditions and human activity can be characterised as stochastic variables. Multi-performance pro-
cesses that are based on uncertainty scenarios and optimizations should be integrated as part of the
design process of new buildings Bianchi et al. (2022). In order to support the decision-making process
comprehensive and robust procedures should be implemented in order to compare the performance of
possible design solutions. For this reason, the involvement of probabilistic analyses in the process of
building energy simulations for the calculation of the energy performance is rising in the last years (Sun
et al., 2020).

Figure 2.20: Evaluation of Uncertain parameters (Abediniangerabi et al., 2021).

To assess and manage uncertainties in a conceptual framework, three major steps need to be taken
(2.21). The first step (A) involves defining the problem, including the input and output variables, model
specification, and interest in measuring output uncertainties. The analyst can choose which variables
are uncertain or fixed, and all uncertain inputs include parametric and model uncertainties. In this
step, fixed variables are considered negligible with respect to the output variables of interest. The
second step (B) requires the quantification of uncertainty sources, which involves defining probability
density functions of uncertain inputs with simplified correlation structures. This step involves gathering
information through direct observations, physical arguments, or direct estimations, and may require
multiple computation sources. The third step involves the propagation of uncertainty (C) which is
necessary to map the uncertainty of the outputs into the uncertainty measures in the outputs. At this
point, data sampling techniques are required. Finally, sensitivity analysis (SA) is implemented in order
to understand how uncertainties in the model outputs can be apportioned to the different sources of
uncertainties in the model inputs (Saltelli et al., 2008). Finally, sensitivity analysis (D) is implemented
to understand how model output uncertainties can be apportioned to different sources of uncertainties
in the model inputs. This analysis is crucial for determining the most influential variable inputs, and
involves statistical treatment of the input and output relations.
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Figure 2.21: Generic conceptual framework for uncertainty (Punzo et al., 2014).

The uncertainty quantification process has been used in several building simulation studies. Ekström
et al. (2021) used the Monte Carlo method for 1000 simulations using the probability distributions that
were quantified at the energy simulation process. The number of simulations were depended on the
balance between producing enough output data and in order to achieve an adequate spread of the
results and the computational time. The results from the BPS were used to quantify the probability of
failure. The simulation results were presented as probability density functions to depict the difference
between the design options (Ekström, 2021). The selection of input data for building a predictive
model is contingent on the purpose of the study, which can either be benchmarking or evaluating actual
performance. Stakeholders determine the study’s scope, depending on their values, which establishes the
project’s design criteria and limitations, as well as the techniques employed to anticipate the performance
criteria.

Figure 2.22: Uncertainty and sensitivity analysis diagram (“Introduction to Sensitivity Analysis”, 2007).
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2.3.1. Sensitivity Analysis
One-at-time (OAT) sensitivity analysis
In the OAT sensitivity analysis, the study analyzes the variance in the model outputs due to the variation
of one input parameter at a time, while the remaining parameters are fixed in certain values(Punzo et
al., 2014). This process can be presented in the matrix 2.7 for a case of SA of multiple parameters. For
instance, every variable may take only two values, 0 and 1, and only one variable changes its value among
consecutive simulations. While OAT analysis has limitations, variance-based analyses can address these
limitations and are simple to conduct. Additionally, these methods enable the identification of important
factors in a rigorous manner, thereby making the ranking process unambiguous.
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Variance-based sensitivity analysis
A variance-based method is a probabilistic approach which quantifies the input and the output un-
certainties as probabilistic distributions and it decomposes the output variance into parts which are
dependent on input variables and combinations of variables (“Sensitivity analysis”, 2023). The major
advantages of using variance-based SA are the model independence, the capacity to capture the influ-
ence of the full range of variation of each input factor, the appreciation of interaction effects among
input factors and the capacity to tackle groups of input factors (uncertain factors) (“Variance-Based
Methods”, 2007). On the other hand, variance-based methods require high computational costs be-
cause they require efficient algorithms for their computation. This analysis is based on first-order and
higher-order effects of the variables on the outputs. Moreover, the concept of uncertainty importance
is embedded into the initial variance-based mathematical model. By the implementation of the Sobol
method, the study is enhanced with Monte-Carlo and hence the computing of sensitivity measures for
a group of factors is possible.

Sobol’ indices (Marelli, Lamas, et al., 2022) are based on the idea of defining the expansion of the
computational model into numeric samples of increasing dimension. The total variance of the model is
described in terms of the sum of the variances of the samples. Through the Sobol’ indices method, the
variance decomposition leads to sensitivity measures that represent the relative contribution to each
group of variables {Xi1, . . . , Xix}. The index with respect to one variable {Xi, is called the first-order
Sobol’ index and represents the effect of {Xi. The total Sobol’ (2.8) index of input variable {Xi is the
sum of all the Sobol’ indices involving this variable:

ST
i
=

∑
{i1,...,is}⊃i

Si1,...,is (2.8)
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Black-box models sensitivity analysis
All metamodeling techniques for computing sensitivity indices are based on fitting a model approxi-
mation based on Monte Carlo or quasi-Monte Carlo sample. In addition, metamodeling techniques
compute more quickly than the conventional variance-based techniques (“Factor Mapping and Meta-
modelling”, 2007). Metamodels are surrogate models which are built to substitute for computationally
intensive simulation models. Metamodels can be built with a variety of strategies (e.g. simple linear
regression) and purposes to perform a sensitivity analysis. One approach to conducting sensitivity anal-
ysis on complex black-box models is to utilize a metamodel that can approximate the model’s output.
By doing so, the time needed to perform the analysis can be significantly reduced as the metamodel can
be used in place of the original model(Punzo et al., 2014). This technique is gaining traction among
researchers due to the appealing qualities of certain metamodels. According to (Marelli, Lamas, et al.,
2022) surrogate models such as Polynomial Chaos Expansion (PCE) or Kriging can be used in order to
compute the Sobol’ indices with low computational cost to carry out SA.

Figure 2.23: Sequential sensitivity analysis of expensive black-box simulators with metamodelling (Van Steenkiste
et al., 2018).

Polynomial Chaos Expansion (PCE) metamodel is possible to calculate the Sobol’ indices analyt-
ically from its coefficients. The metamodel should be created before defining the sensitivity analysis
(Marelli, Lamas, et al., 2022). Monte Carlo simulation leads to computationally expensive models and
a mathematical function is required to be used in order to obtain sensitivity analysis results. In this
thesis the results were generated from the Grasshopper simulation model hence a mathematical func-
tion for calculating the indoor temperature was created but this is considered a simplification method
for defining the Sobol’ indices. In this case, the required mathematical function was replaced by the
PCE metamodel. According to Marelli, Lamas, et al. (2022), the PCE metamodel should be created
before defining the sensitivity indices. Metamodelling or surrogate modelling attempts to substitute
the stochastic modelling to inexpensive-to-evaluate surrogate models (Marelli, Lüthen, et al., 2022).
PCE model is a powerful technique that aims to provide a functional approximation of a computational
model by using a series of input data. The Polynomial Chaos expansion Y=M(X) (2.9) is defined as
(Marelli, Lüthen, et al., 2022):

Y = M(X) =
∑

α∈NM

yαΨα(X) (2.9)

Where:

Ψα(X): are the multivariate polynomials with respect to α ∈ NM

yα: are the corresponding coefficients

Once the polynomial coefficients are known the metamodel can be evaluated with the respect to
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X vector, while the samples are weighted by their coefficients. This process can be used effectively
for calculating the PDF of the model accurately by using large Monte Carlo samples of the inputs.
There are two principles for calculating the coefficients; projection and regression. Projection methods
compute the coefficients by numerical integration, while the regression methods formulate a system of
linear equations and solve the system with linear regressions (Marelli, Lüthen, et al., 2022).

2.3.2. Data sampling
Simulations with analytical techniques (2.20) are recommended for resilience studies as the climate and
design uncertainties are complex systems with a variant and stochastic nature (Abediniangerabi et al.,
2018). According to Ekström et al. (2021), one technique to overcome this unreliability of the BPS
results is to perform uncertainty analysis, based on probabilistic methods to include uncertainties in
the predictions. Tian et al. (2018) put on display the implementation of uncertainty analysis in data
models and sampling methods.

(a) Monte Carlo random sampling. (b) Latin Hypercube stratified sampling.

Figure 2.24: Monte Carlo and Latin Hypercube sampling from probability density curves (Lovreglio et al., 2019).

Monte Carlo (MC) simulation and Latin Hypercube sampling (LHS) are both widely used techniques
for uncertainty quantification in thermal and energy dynamic building simulations (Sheikholeslami &
Razavi, 2017). Both techniques are useful for generating input variables that can be used to simulate
various scenarios and evaluate the sensitivity of the model output to changes in these variables. However,
the MC method of random sampling often requires multiple repetitions, and may not cover the entirety
of the sampling space. LHS addresses this issue and is more effective, uniform and orthogonal (2.24).
This approach involves dividing the cumulative probability distribution range into probable subregions
(2.25) of equal size and then performing stratified sampling within each interval (Lovreglio et al., 2019).
LHS has been preferred by many researchers due to its ability to improve the sampling efficiency and
reduce the number of simulations required to achieve a certain level of accuracy (Tian et al., 2018).
Moreover, LHS provides more even sampling in high-dimensional spaces compared to other sampling
methods. This means that LHS can capture more accurately the underlying distributions of the input
variables and the correlations between them. Janssen (2013) states LHS needs on average 10 times less
sampling points in comparison of MC random sampling.
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Figure 2.25: Latin hypercube sampling from a cumulative distribution function (Xiao et al., 2020).

Before implementing the MC or the LHS techniques, the mean, µ, and the standard deviation of
the samples is need to be defined. Hence, the range and the distribution of the sample population are
tuned accurately. The standard deviation, σ, can be calculated by the following formula (“Standard
deviation”, 2023):

σ =

√√√√ N∑
i=1

(xi − µ)2
1

N
(2.10)

µ =
1

N

N∑
i=1

xi (2.11)

Where:

σ: is the standard deviation of the samples

xi: a curtain value from the population of samples

N : is the size of the population sample

µ: is the the population mean
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2.4. Concluding remarks
Concluding remarks from the literature research are discussed in this section. Findings literature help
the research process in order to address the main research question and sub-questions. Besides, the
findings feedback on the implementation of the theoretical framework to practice for evaluating the
thermal resilience in buildings.

Resilience definition was first defined against seismic stresses and this main approach is adopted by
other researchers and engineers for addressing resilience in other fields of the built environment. The
definition of thermal resilience in buildings against overheating stress that is best aligned with this
research is stated by Homaei and Hamdy. Thermal resilience is the property of whether the building’s
performance is adequate enough against climate hazards by giving an indication of the building’s possible
performance for mitigating the impact of extreme events. This property can be described by the main
four dimensions (4Rs) of robustness, redundancy, resourcefulness and rapidity. Those are related to
the strength of a system to withstand a hazard, which elements of the system can be substituted, the
capacity and sources that are needed to overcome these stresses and the time of recovery. The evaluation
of thermal resilience in buildings consists of phase I, before the disruption event (resistance), phase II,
during the disruption event (robustness) and phase III which includes the post-event performance of
the building (recovery).

For assessing thermal resilience in buildings Key Performance Indicators are defined in the previous
sections. Indoor thermal comfort in relation to the building’s energy consumption during the occurrence
of the disruption event are the indicators that can be quantified and hence numeric results can be
generated that can lead to valuable arguments at the end of this research. Moreover, the KPIs depend
on the building system parameters (e.g. ventilation and cooling systems), material parameters of the
building envelope (e.g. material properties and glazing) and the building schedule (e.g. occupancy levels,
the activity of the occupants and operational time). These indicators are quantified by using metrics
as mentioned in the previous chapters. The thermal resilience quantification method can be adopted
by the initial Bruneau’s quantification theorem since this approach can be adjusted for quantifying
resilience in other fields of the built environment. The proposed metrics of thermal resilience are
the Heat Index (HI), Humidex (H), Standard Effective Temperature (SET), Indoor Overheating Degree
(IOD) and the weighted unmet thermal performance (WUMTP) for addressing a building’s performance
in terms of indoor thermal comfort. However, each metric has its own limitations. For instance, the
HI is stated as simplified and as a metric that can not be applied in the case of extreme temperatures.
In the calculation of H, although the effect of heat and humidity are considered, the performance of
the building envelope and the building systems is neglected. The SET metric calculates the thermal
comfort with respect to the human response to the thermal environment, but it neglects the thermal
zoning in the case of whole building simulation. On the other hand, the IOD can be implemented in
a multi-thermal zoning building and depends on the calculation of the operative temperature (Toper)
during the time. However,in extreme overheating stresses cause higher values than overheating. The
metrics of passive survivability and thermal autonomy are stated to be simplified because they are only
focused on thermal performance during the disruptive event. The WUMTP evaluates thermal multi-
phase resilience by calculating the Toper in the case of whole building multi-zone simulation. Moreover,
this metric can be converted to benchmark labelling, called as Resilience Class Index (RCI).
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Weather data can be generated for different climate future scenarios with respect to RCPs as stated
by IPCC. In this process, GCMs need to be scaled down to RCMs and then RCPs scenarios are required
in order to achieve coherent weather datasets for different weather scenarios. This process is essential
in order to generate weather files of high spatial and temporal resolution. The scaling of the Climate
Models can be achieved by downscaling the model either with dynamic or statistical methods. The
former requires the handling of large datasets and hence needs many computational resources, while
the latter is used by variant weather generators that can produce EPW files which are necessary for
building performance simulations (BPS). Moreover, a hybrid method is used. Most of the weather
generators use the statistical downscaling method by using the morphing technique. In this process,
a typical meteorological year (TMY) weather file is used as a base and the morphing technique is
implemented by considering different climate scenarios with respect to GHG emissions and location of
interest. There are plenty of sources where TMYs can be found on the web for instance, EnergyPLus
and OneBuilding libraries contain world-wide TMY files. Apart from scenarios of climate change,
historical weather data for every year can be found on the KNMI official website. Large libraries
are compiled with the contribution of climate institutions, climate studies and observatories. More
specifically, historical weather files of the years 2003, 2019 and 2022 that contain extreme weather
values can be found for the location of Amsterdam. These contain information about the dry-bulb
temperature, wet-bulb temperature, relative humidity, precipitation, cloud cover and solar radiation,
properties that are essential for creating EPW files.

Uncertainty quantification (UQ), is important in building design and energy projects as it helps to
identify and reduce the risks of performance gaps between the predicted and actual energy performance
of buildings. By reducing these uncertainties, UQ can improve the accuracy and reliability of energy
performance predictions, reduce the risk of performance gaps, support decision-making, and optimize
building performance. The conceptual framework of uncertainty consists of the problem formulation
step, where the model calculates the output with respect to input variables and hereupon probabilistic
density functions define the uncertain inputs. The propagation of uncertainty step is necessary to map
the uncertainty of the outputs. Then, the sensitivity analysis (SA) step indicates the apportion of
uncertainties in the model outputs and determines the most influential input variables. There are two
main types of SA, the one-at-time and the variance-based. The first method analyzes the variance in the
model outputs due to the variation of one input parameter at a time, while the remaining parameters
are fixed in certain values. The main limitation of this approach is that the inputs are correlated
with the outputs in a univocal manner. The variance-based SA can overcome this limitation because
first and higher-order indices are computed. Hence the study can generate multi-correlation results
a. between inputs and outputs and b.among each variable with other variables. There are also other
methods of SA that can be used in the case of black-box models. Here, the Sobol’ indices are computed
by the assistance of a surrogate or metamodel that can be trained and tuned in order to estimate the
model’s outputs based on the variables. In this method, Linear, Gaussian regression and Polynomial
Chaos Expansion (PCE) models can be used. During the aforementioned UQ processes data sampling
is essential. The most common sampling methods are the Monte-Carlo (MC) and the Latin Hypercube
(LHS). With MC random samples can be selected from density distribution curves of input variables,
while the LHS is based on stratified selection of values. Most of the researchers use the LHS because of
its high efficiency and accuracy compared with the MC.



3
Case study

This thesis addresses the thermal resilience in buildings and implements the theoretical framework into
practice by exploring the performance against extreme overheating events of a mid-rise office building,
that is located in Amsterdam. For this practice, weather data are generated in order to compute
EPW files that include extreme climate scenarios. In the beginning, the CCWorldWeatherGen tool
is used for generating weather files of extreme future climate scenarios under the impact of RCP8.5.
However, as presented in the flowing chapters, this method was discarded because of the invalidity of the
computed results. For this reason, the research focused on historical weather in the Netherlands which
is obtained by the KNMI. Hereupon, the higher values of these data sets are compared and converted
to an EPW format. In the next part, the simulation model is created and adjusted with the desired
design, material and building properties. All these, are distinguished into design options standard
parameters and variables which are tuned in order to meet values that exist in building norms like
ASHRAE 2017. Once the simulation model is created, the script for evaluating the thermal resilience
indicators of thermal comfort and energy consumption is prepared. Hence, thermal resilience metrics, in
this case, the indoor operative temperature comfort and energy use intensity, can be computed for the
whole building. In the next step of the workflow, one-at-time and variance-based sensitivity analysis
(SA) methods are implemented in order to indicate the variables that have a significant impact on
the metrics. For this process, multiple simulations are computed in order to generate an adequate
number of samples. The simulation outputs are used for the probabilistic assessment and uncertainty
quantification (UQ). The SA and UQ outcomes are used to assign specific values to variables to run
the final simulations and compare the newly computed results with an ideal optimised performance of
this particular building.

39
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3.1. Methodology and workflow
The main methodology for quantifying thermal resilience is described in this chapter and consists of
four major parts that are related to weather data collection and modification, 3d digital model of the
office building, a simulation model via visual scripting and post-processing of the simulation outcomes
with Python in order to compare the resilience loss of different cases. In short, the first part of the
research explores the field of climate sources in order to get valuable information about the weather
data that can be used for assessing thermal resilience. In the next step, the building geometry, general
dimensions and the number of floors are defined. Moreover, the main building and material properties
of the facade are presented in order to point out the challenges, the assumptions and the limitations
that are considered for this case study. Building thermal zones, building envelope properties, building
schedule and HVAC system structure are set up for the building simulation model.

Figure 3.1: General methodology workflow diagram used in this case study. A detailed diagram is presented in
Appendix C.4.

Assumptions were made in order to distinguish the design decisions from the building parameters
and variables that influence the metrics of thermal resilience indicators. In the beginning, a shoe box
was simulated and then the process was applied to the whole building for generating the final results
of this research. Simultaneously with the simulation workflow, the implementation of the uncertainty
quantification in the whole process is explained. The uncertainty quantification process is used in order
to map the density of the uncertain parameters (variables) in relation to the results. This process is
split into smaller tasks in which one-at-a-time and variance-based sensitivity analysis are needed for
indicating the most influential parameters to the results. Sensitivity analysis results are visualised either
with correlation matrices or with box-plot charts. During the process, Monte Carlo (MC) and Latin
Hypercube (LHS) sampling methods. In the last part, the parameters that give significant divergence
to the results are pointed out, thus building simulations are held only by considering the variant values
of the most influential parameters. These results are compared with an optimised performance of the
building and hence the resilience loss is quantified by calculating the outcomes of cooling and ventilation
energy demand and indoor operative temperature.
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3.2. Weather data generation
As mentioned in the previous chapter the case study refers to an office building in Amsterdam. Thus,
weather data sets from variant sources were collected and analysed in order to generate an EPW file
that is suitable for this research. In general, the main principle is firstly to define the overheating
stresses in the climate data file and transfer this information to a TMY file in order to generate an
EPW that works with EnergyPLus software for the building simulations. However, before using the
weather data sets an assumption is needed in order to define the concept of the overheat stresses and
how can they be identified within a weather data set. According to Cheung and Jim (2019), there are
thermal sensation thresholds defined by Physiological Equivalent Temperature (PET). As presented in
the table 3.1, these thresholds are split into two categories of cool-cold temperatures and warm-hot
temperatures. The outdoor temperature of 29◦C is considered as thermal sensation comfort threshold
and hence is used for defining the warm, hot and extremely hot temperatures during the summer period.

Thermal sensation Physiological stress Range (°C PET)
Very cold Extreme cold stress < 4
Cold Strong cold stress 4 to 8
Cool Moderate cold stress 8 to 13
Slightly cool Slight cold stress 13 to 18
Neutral (comfortable) No thermal stress 18 to 23
Slightly warm Slight heat stress 23 to 29
Warm Moderate heat stress 29 to 35
Hot Strong heat stress 35 to 41
Very hot Extreme heat stress > 41

Table 3.1: Thermal sensation and thermal stress classification scale of PET (Cheung & Jim, 2019).

Another assumption is made about the duration of the heat stresses in time and is based on Attia’s
statement. In order to calculate the thermal resilience in buildings the building simulations should not
be held in instant temperature values that exceed a certain threshold but in a period of time when the
heat wave occurs and hence a specific time frame should be defined.

Figure 3.2: Concept diagram for defining the time frame of overheat stresses for this research.



3.2. Weather data generation 42

By considering those two facts, a concept diagram 3.2 presents a hypothetical temperature fluctua-
tion and the threshold of 29◦C. Although, the outdoor temperature in the instant moments of t1 and
t2 exceeds the outdoor thermal threshold of 29◦C, this time frame between t1 and t2 is not considered
as a continuous overheating event. Hence, the hypothetical heatwave is defined from the constant tem-
perature above the certain comfort threshold and the time period between t0 and ti is considered the
occurring time of extreme climate conditions.

After forming this assumption, the incoming weather data are explored in order to find temperatures
above 29◦C for a certain period of time during summer. Multiple sources of weather data sets were used
in order to achieve the generation of a valid EPW file. In the first method, the generator (CCWorld-
WeatherGen) tool is used. As described in the previous chapter the generator uses a TMY file as a base
and generates weather data according to different RCP scenarios. In this part, the most unpropitious
scenario RCP 8.5 was used in order to generate EPW files that consider extreme temperatures and CO2

emissions. The generated files are presented in the diagram B.3a in comparison with the TMY weather
file. The diagram presents TMY weather data and generated data by the CCWorldWeatherGen tool
for three different RCP scenarios (4.5, 6.0, 8.5). The diagram B.3b illustrates more clearly the compar-
ison of weather data. The generated data have significantly higher values but those are proportional
to the data of the TMY file which is expected because the generator uses the morphing method for
synthesizing data.

Figure 3.3: Selection of the higher values among three weather files of the heatwaves 2003, 2019 and 2020.
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Subsequently, although the RCP scenarios are valid, the final outcome can not be considered as
accurate because it is not affected by historical weather data of heatwaves. Furthermore, the gener-
ator generates weather data in a proportionally increasing manner to the initial values. Besides, the
CCWorldWeatherGen tool has a strict step-by-step process and the results can be affected only by
variant RCPs files and other weather data sets can not be complementary included in the process. The
generated weather data by the CCWorldWeatherGen tool are presented in Appendix B.3.

As the first attempt was not valid, the research was focused on historical weather data. As men-
tioned in subsection 2.2.1 on page 24, extreme heat waves in 2003, 2019 and 2022 have occurred in
Europe. Weather data sets were collected from the Royal Netherlands Meteorological Institute (KNMI)
for these years (Appendix D.3). These are presented in the following diagram 3.4 and can be compared
with the TMY. In the next step, the temperature values from all three data sets are compared and the
highest values are chosen and used for generating an EPW weather file for this research. The compari-
son and the selection of the highest values are done by using the Python script as presented in Figure 3.3.

(a) Chart of TMY and heatwaves that occurred in Amsterdam during summer.

(b) Extreme temperatures during summer. The generated data are illustrated with the red line. The selection of the heat-stress
period is based on the frequency of temperature over the threshold of 29◦C. The selected heat stress period is pointed out.

(c) Zoom in to the region with the most temperatures beyond the thermal threshold. One day before and one day after are
included in the simulation process.

Figure 3.4: Extreme temperatures generated from historical weather data. Appendix B.4c
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At this point, it is valuable to present the selected extreme temperatures with the outdoor comfort
temperature threshold of 29◦C. In the diagram 3.4, most of the temperatures that are constantly over
the comfort threshold are depicted during the days of July. Therefore the building simulations, which
are presented in Section 3.3.2, are held within the time frame from 23rd to 27th of July.

After the collection and evaluation of historical weather data, the EPW file is created. For this
process, multiple software is used but the main principle of using the initial TMY file as a basis remains
the same (Figure ??). First, the initial EPW file with the TMY data is converted to a CSV file via the
Energy Plus Weather Converter. The weather data with extreme values are embedded into the CSV
manually. More specifically, dry bulb temperature, solar radiation and humidity values are modified for
the time period of summer. As long as all the values are embedded into the CSV, the file is converted
to EPW by using the Energy Plus Weather Converter. During this process, alternatives and different
approaches were attempted by modifying directly the EPW either with Python or with Notepad++
but the generated file occurred errors during the simulation process.

3.3. Definition of the design
3.3.1. Building
A mid-rise office building, located in Amsterdam is used as a case study for this thesis. This eight-story
office building consists of a rectangular plan geometry of 45x30 meters and a central atrium of 22x15
meters which expands to the whole height of the building. The floor height is defined at 4.2 meters and
the vertical circulation through floors is served by two main cores that are located in the western and
eastern parts of the building.

Figure 3.5: Building geometry and plan. Open-plan offices, a central atrium and two cores constitute the main areas.
General building geometry properties and plan dimensions are presented in the table D.1.

Besides the general geometry and the type of the building, assumptions were made also for the facade
elements and materials. The main facade system consists of pre-fabricated elements and in this case,
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the main material is concrete. Moreover, thermal insulation covers the whole exterior facade surface
area and a final layer of aluminium cladding is added for finishing. Between the concrete and thermal
insulation layers, a cavity space is also considered. Air sealant tape and vapour open water membrane
layers are considered as lines of defence in the technical design of the facade. The opaque materials
are defined by their discrete material properties of thickness, conductivity, density, specific heat gain
coefficient, and thermal, visible and solar absorbance. Hence, the material U-values and thermal mass
are dependent on these. The glazing elements are defined by the wall-window ratio (WWR) and the
thermal transmittance property (U-value), solar heat gain coefficient (SHGC) and visible transmittance
(Vistrans). Therefore, these material properties are assigned as variables to the final simulation model
for the whole building simulation. The properties of interior floor slabs are defined by their thermal
resistance properties (R-values) and are considered standard parameters in the model.

Figure 3.6: The main areas of the building are considered as separate thermal zones in the environmental model.
Occupancy, wall-window ratio, air-tightness, exhaust ventilation, cooling system and flow per person are variables of the

problem.

Apart from the building materials, general operational building properties and ventilation system
properties are assigned to the model in order to define the case of the office building of around 300
occupants. More specifically, the features of heating and cooling set-points, infiltration rate, building
operating hours, people per square meters (ppl/m2) and air change per hour (ACH) constitute the
operational and exhaust ventilation (ExV) properties of the building. All of the aforementioned prop-
erties are tuned within a range of values that are based on ASHRAE 90.1 building norms and they are
presented in the table D.2 in Appendix D.
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Figure 3.7: Facade and material properties are considered as variables of the problem. See Appendix D.2 for a detailed
overview of all building and material properties values.

At this point, it is worth mentioning that the Grasshopper model offers the option to define all
properties for both opaque and aperture materials either by their discrete properties or by their R
and U values. At the beginning of the simulation process, the simulation workflow run in a shoe-box
model (part of the building) in order to define the number of variables that best fit to simulation
outcomes. Hence, both ways of setting only discrete material properties and generic properties are
attempted. By setting all materials with their discrete properties the iteration number of simulations is
immensely large and could not be considered as a realistic case scenario considering time constraints. In
contrast, by setting all materials with their generic properties of R and U values, the iteration number
of simulations would not be adequate enough for obtaining valuable results. Material properties are
described in material brochures standards and norms by their discrete values in the case of opaque
materials while by their U-values in the case of glazing. Hereby, a decision is made in order to set a
useful simulation model for designers and engineers in which the calculated values and the generated
results are interpreted to values that are applied to the design and calculation process. Subsequently,
the opaque materials are defined by their discrete properties and the glazing parts by their U-values
and hence the iteration number of simulations is sufficient and handleable time-wise.

3.3.2. Structure of the Simulation Model
A dynamic building simulation model in the visual programming language, in this case, Grasshopper
(GH) is created for developing dynamic building simulations. As a whole, the main core of the script
consists of Honeybee (HB) components and libraries from the Ladybug tools (LB) plug-in in order
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to define the energy simulation model and the thermal zones for the whole building. In the second
part, the plug-ins of Open Studio (OS) and EnergyPlus (E+) are used for tuning the variables and
generating results. The weather data sets are assigned as EPW files to the GH script and are linked
with the E+ simulator. In addition, the Colibri (COL) iterator plug-in is used for running the whole
workflow in loops and hence, multiple simulations can be run and their results can be stored in a CSV
file automatically. Complementary Python components are developed for adding more features and
functions to the energy model and to the simulator script, such as the ACH, ExV, Economizer (ECO)
and Coefficient of Performance (COP) (See Appendix A.1).

Figure 3.8: Overview of the simulation model. Colibri runs multiple iterations according to the inputs. The generated
data is saved in a CSV file. The Grasshopper script is presented in Appendix A.2.

More specifically, in the first part of the script the basic building geometry is generated. Here, the
main dimensions of the plan, the floor height, the building height and the atrium are created. Once
the main geometry is set, the generation of the energy model for the building follows. At this stage
of the model, it is essential to set correctly the thermal zones for the building which depend on the
architectural plan and the room separation. As long as open-plan offices are selected for this case study,
each floor is considered as a separate thermal zone. The atrium and the cores are considered as separate
thermal zones as well. The model recognises the adjacencies between different thermal zones, as a result,
exterior and interior surfaces are defined correctly.

At this stage, building and material properties are defined and assigned to the HB thermal zones.
The default building schedules by LB libraries (ASHRAE 90.1) are used and adjusted to the desired
options in order to be aligned with this particular type of building (see section 3.3.1). In short, the
occupancy schedule, the infiltration, the heating and cooling set points, the lighting, the equipment
and the ventilation loads are set to the building properties. Moreover, the exterior elements of the
building envelope and the interior elements, such as the interior floor slabs and the interior walls of the
atrium are defined by the construction set in respect to material properties. The aperture dimensions
of the building envelope and the atrium walls are set by the WWR. A customised ideal air system is
introduced to the energy model with different features for the offices’ thermal zones and the atrium.
The flexibility of this element is enhanced by linking a Python component which uses data from the IDF
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file of E+ and hence features such as ACH, ECO, COP, maximum and minimum indoor temperature
operating set points of the air system can be dynamically defined.

Once all the settings are set, the second part of the GH is ready to be adjusted as well. At this
stage, the main OS plug-in uses the E+ software as a background task. Simulation parameters, such as
the EPW file, the simulation period, the ambient shadow and reflections and the temporal frequency
of the generated results are tuned. Particularly, the EPW file with extreme temperatures as mentioned
in 3.2 is linked, the simulation period is set from 22nd to 27th and the generated results are set to
hourly frequency. The simulator generates an SQL file from which all calculations can be extracted and
can be used for post-processing. Since the main scope of this research is thermal resilience quantifica-
tion, the metrics of thermal resilience indicators and energy loads are calculated. For obtaining more
accurate results factors such as the human activity and clothing insulation parameter are defined for
this particular occupancy level and activity. Metrics of Predicted Mean Vote (PVM), indoor Operative
Temperature (Toper) and End Use Intensity (EUI), Cooling and Ventilation loads are calculated for the
whole building and for each floor.

3.4. Computational workflow
As explained in the previous section, the calculation of thermal resilience metrics and energy loads
depends on the material and building properties variables. For this reason, it is essential to identify
the most crucial parameters that have a significant effect on the results in order to distinguish the final
variables from the standardized parameters. Subsequently, sensitivity analysis is held for this scope
before running the final simulations for the thermal resilience quantification of the office building. In
section 3.5, the whole process of one-at-a-time and variance-based sensitivity analysis is presented and
the variables with significant variance to the results are concluded.

Since the Uncertainty Quantification (UQ) of the design parameters is part of this research, a prob-
abilistic quantification process is implemented in the next part after the sensitivity analysis. Once the
most influential parameters are clarified, their probability to generated results is evaluated. In building
energy simulations, UQ involves quantifying the uncertainties in the inputs, parameters, and models
that can affect the energy performance predictions of a building. By reducing these uncertainties, UQ
can improve the accuracy and reliability of energy performance predictions, reduce the risk of perfor-
mance gaps, support decision-making, and optimize building performance. In practice, distribution
density curves of the variables that achieve a high sensitivity score are created with respect to their
range of input values and simulation outcomes.

In the last part of the workflow (section 3.6) thermal resilience quantification is described. As
mentioned above the simulation model calculates hourly results for the thermal resilience metrics of
Predicted Mean Vote (PVM) and Indoor Operative Temperature (Toper) and results for the energy
cooling and ventilating loads. Through the quantification process, the thermal comfort outcomes are
correlated with the energy loads and both generate the thermal resilience performance curve of this
particular building. However, these results need to be compared with an ideal case scenario in which
the building achieves 100% of its performance. For this reason, an optimisation generative algorithm
for this building is implemented by using the WallaceiX (GH plug-in).



3.5. Sensitivity analysis 49

Figure 3.9: Computational workflow diagram. The variables of the problem are assigned as inputs in the workflow and
hourly data are generated. The detailed diagram can be found in Appendix C.5.

In the last part, the optimisation outcomes and the simulation results are transmitted to Python
for post-processing. Thereupon, performance curve charts of the optimised and the simulated case
scenarios are created and the difference in their numerical hourly values is calculated and hence the
resilience loss. At this part, simulations with certain values for each building parameter can run, and
be extracted to Python hence thermal resilience is evaluated by making comparisons among different
design cases. For instance, thermal resilience performance on different office floors can be evaluated by
associating them with variant wall-window ratios of the facade.

3.5. Sensitivity analysis
After generating the EPW file, creating the 3D digital model, the visual scripting simulation model
and adjusting the necessary parameters and variables, the part of the simulation process is presented
in the following sections. As mentioned in the introduction, one-at-time and variance-based SA are
presented. Three attempts of this analysis are computed in order to define the variables that best meet
the simulation criteria, of obtaining an adequate number of results considering time constraints (See
Appendix D.2). In short, the model could be established either by defining the materials with their
discrete properties (e.g. thickness, conductivity, density etc) or with their thermal properties (e.g. U
and R values), as a result, the simulation model could have 26 or 34 variables and hence the simula-
tion time is affected significantly (Appendix D.2). Considering, both obtaining an adequate population
sample and time limitations the final simulation model is adjusted to 30 variables (See Appendix D.2).
All these are evaluated through the SA and then their probabilistic distribution curves are computed
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in order to generate results of 95% of probability in the second phase.
As mentioned in 3.3.2, the performance of the simulation model is dependent on multiple variables

that define either the building envelope material properties or the operational use of the building. At
this part of the research, it is crucial to explore the importance of each variable to the study and the
influence of each on the results. For this reason, sensitivity analysis is implemented in the workflow by
working in three different methods. The first method refers to one-at-a-time sensitivity analysis, the
second to variance-based by using a simplification of mathematical function for calculating the indoor
operative temperature and the third one calculates the Sobol’ indices by using the generated data from
building simulations.

Figure 3.10: Post-processing simulation results for sensitivity analysis and uncertainty quantification tasks.

3.5.1. One-at-a-time sensitivity analysis
For the one-at-a-time sensitivity analysis each variable is defined by a minimum, maximum and mean
from the range of values as presented in 3.3.1. In this process, the simulation model, in which 34
variables are assigned, run multiple iterations and produced results with a sample size of 146. Each
time the model assigns to the first variable the minimum value and to the other variables their mean
value, then it assigns the maximum value to the first variable and to the other variables their mean
value. This process iterates for all the variables of the model until their minimum and their maximum
values are assigned. As shown in the correlation matrix 3.11a the properties of thickness, conductivity,
density, occupancy, WWR and ACH influence most of the generated results. These values are presented
extensively in the table D.5.
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(a) Correlation matrix of 34 variables.

(b) Correlation matrix of 26 variables.

Figure 3.11: The entire correlation matrices are presented in Appendix F.2.

The same process run for another simulation model which consists of 26 variables. In this case,
the material properties consist of their thermal resistance (R-values) and thermal transmittance (U-
values) in which the properties of specific heat, conductivity, and thickness are already considered. The
correlation matrix 3.11b of this simulation model shows that the properties of thermal transmittance
(U-values), solar heat gain coefficient (SHGC), WWR and ACH are critical. These values are presented
extensively in the table D.4.

3.5.2. Variance-based
Implementation of a math function.
Variance-based sensitivity analysis was held in Python with the main goal to calculate the Total Order
of Sobol’ indices, which define the most influential parameters. In this attempt, it is important to set
up a calculation function within the Python script that calculates the operative temperature and the
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energy demand by setting up different values for each variable. The mathematical function is based
on thermal equations that are adopted from the field of building physics and they are presented in
Appendix E.

Toper =
aradTfacade in + aconvTair in

arad + aconv
(3.1)

Where:

arad: radiation heat transfer coefficient

Tfacade in: surface temperature of the facade inside

aconv: convection heat transfer coefficient

Tair in: indoor air temperature

Figure 3.12: Total order Sobol’ indices. Python script can be found in Appendix A.2

The building physics equations consist of the following variables and the numeric values are assigned
to them as presented in the table D.6. In the beginning, the mathematical function for calculating the
indoor operative temperature is set and the mean (mu) and standard deviation (sigma) are calculated
from the samples of variables. Then the function for calculating the operative temperature is used as
an iterative process for all values of variables and hence Sobol’ indices were calculated (3.18a).

Through this process, the parameters of exterior temperature, solar radiation and thermal transmit-
tance values (U-values) are stated as the most influential to the results. However, the divergence of the
sensitivity indices is significant, thus the validity of those is doubtful. Because of using the simplified
equation from building physics and/or the small population size (150) of the variables affected the
calculation of Sobol’ indices for operative temperature. For this reason, the influential parameters that
are stated above can not be considered as valid.
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Black-box
In the following attempt more simulation results were generated and the variance-based sensitivity was
held by considering the simulation inputs and outputs. The simulation model generated 3470 outputs
for each of the calculated metrics (see 3.3.2) and hence the population size for the Sobol’ indices cal-
culation is considered adequate enough for getting valid results. The simulation process is split into
six simulation models that run simultaneously in order to generate an adequate sample size of results.
More specifically, each simulation model is run by using five variables and five values for each one. The
rest of the 30 variables are set with standard mean values. The main simulation outputs calculate the
metrics (as mentioned in 3.3.2) of cooling and ventilation demand, indoor operative comfort (Toper) and
predicted mean vote (PVM). The simulation inputs and outputs of these six files are combined into
one CSV and are imported to Python for post-processing. Before conducting the calculation of Sobol’
indices, the type of distribution and the bounds of data needed to be defined for each variable according
to the simulation results. Then the simulation data are split into training and testing sets in order to
train a Gaussian Regression model that is essential to compute the Sobol’ indices. More specifically, the
Radial Basis Function reads the samples that were stored in CSV file previously, finds the underlying
patterns between the simulation inputs and outputs and trains the Gaussian regression. At the same
time, the Saltelli sampling technique for selecting each time a sample and with the assistance of the
Gaussian metamodel the Sobol’ index is computed. The process is explained in detail in Appendix A.3.

Figure 3.13: Workflow of performing SA by using the simulation inputs and outputs as a black box.

Before conducting the Sensitivity analysis, the accuracy of the model is examined. The following
diagrams illustrate the comparison between the actual simulation and the predicted values for each
sample. Considering the low value of the Mean Squared Error (MSE)(3.52e-16), the model is accurate
enough to compute the Sobol’ indices. This fact agrees with the presented diagrams below.
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Figure 3.14: Predicted and simulation values of the Gaussian Regression model (See Appendix F.3). The Python
script can be found in Appendix A.3.

The correlation matrix (3.15) illustrates the variables with the highest variance on the calculated
results. The properties of conductivity and density of the main material of the structure, in this case,
concrete, and the thermal insulation are highlighted with brighter colours than the other properties.
Moreover, the thermal transmittance (U-value) of glass and the solar heat gain coefficient (SHGC) are
crucial for the calculations. The wall-window ratio and the performance of the ventilation system have
significant importance to the results.

Figure 3.15: Correlation matrix of variables and calculated results. Appendix F.1
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The simulation results were analysed for observing the inter-relationships among the problem vari-
ables and their influence on the simulation outputs. The diagram 3.16 shows that the building oper-
ational parameters and the glazing parameters after directly the simulation outputs, while the facade
material properties are interrelated.

Figure 3.16: Edge Bunding Diagram that presents the inter-relationships among problem variables.

Apart from the results of the correlation matrix, it is valuable to mention the results from the Sobol’
sensitivity analysis. In this analysis, the problem variables are defined with total-order and first-order
indices. Total-order indices are a type of sensitivity analysis metric used to evaluate the influence of
each input variable on the output of a model while taking into account all possible interactions with
the other variables. In contrast, first-order indices only consider the direct effect of each input variable
on the output of the model, ignoring any interactions with other variables. First-order indices are cal-
culated by varying one input variable at a time while keeping all other variables constant. Total order
indices, on the other hand, are calculated by varying all input variables simultaneously. The variables
in which the boxplot is higher indicate the higher relative importance of the input to the variation of
the output (C.2). For this task, the total-order indices are used for comparing the variables of this
problem.

Figure 3.17: Sensitivity Coefficient chart. Sobol’ indices scores of problem variables.
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For this process the Sobol’ indices are evaluated for the Energy demand (3.18b), the EUI (3.18c) and
the Operative temperature (3.18a). The evaluation of the indices with respect to the Energy demand
results showed that the wall-window ratio, the U-value, the SHGC, the visible transmittance of glass
and the air change per hour affect most the results. Most of the rest variables score a lower total-order
score. However, the indices of thermal conductivity (λ) and density variables of concrete and insulation
are slightly higher. Similarly, the total-order indices are depicted in the chart for the EUI. In the
total-indices boxplot regarding the operative temperature results, the same glass properties and glazing
percentage reached the highest score among the rest variables. In addition, the properties of thermal
conductivity and density of concrete are significantly high and slightly higher than the thickness, den-
sity and specific heat capacity of the insulation material. In the 3.17 all the variable Sobol’ indices
are presented. Conductivity, density and thermal absorbance of concrete and insulation material have
significant variances in the results. In addition, the WWR, U-value and SHGC of glass are important
for building simulations.

The boxplot charts indicate the total-order index score for every variable of the problem. The
height of the box indicates the relative importance of the input variable in explaining the variation of
the output. Therefore, the higher the boxplot is, the larger the Sobol’ index and hence the variable’s
influence on the computed results respectively. The Saltelli function picks 3470 samples from a variable
(same as the number of simulation results) and with the assistance of the prediction model the Sobol’
indices are computed. As a result, the total-order indices for each variable result in a divergence range,
which is presented with the whiskers, while the blue box represents the 75% of the entire sample size.
The box is defined by the lower and upper quartile. The line inside the box represents the median
value of the data (See Appendix C.2). Overall, the ACH reaches the highest Sobol’ indices score and
the glazing properties of WWR, U-value and G-value influence significantly the results. The facade
material properties of concrete conductivity and density and the thickness, density and specific heat of
the thermal insulation materials cause moderate influence on the final results. On the other hand, the
rest variables of the problem achieve a low score.
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(a) Sobol’ indices for operative Temperature.

(b) Sobol’ indices for total Energy demand.

(c) Sobol’ indices for EUI.

Figure 3.18: Sobol’ Sensitivity Analysis results.
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These research outcomes agree with the literature findings regarding the parameters that can influ-
ence thermal building simulations. According to Elhadad and Orban (2021) the variance of the thermal
conductivity (λ) values affects the outcomes of the energy simulations, while the thickness of materials
has the least impact. Moreover, the wall-window ratio is stated (Neale et al., 2022; Zeferina et al., 2019)
as a parameter of significant influence on the results of an energy building simulation. Neale et al. (2022)
adds to his findings the material property of thermal transmittance (U-value) of the exterior walls. Here,
it is important to mention the definition of thermal transmittance and thermal mass, because they are
depended on the variables of conductivity and density of this case study. The former is calculated by
the fraction of thickness to conductivity and the latter is the multiplication of specific heat capacity
with the density (ρ). Subsequently, the final simulations for the thermal resilience quantification are
focused on the alternation of values of the variables with the most critical Sobol’ indices.

3.5.3. Uncertainty Quantification
Uncertainty quantification (UQ) is the field of studying and analyzing the sources of uncertainty and
variability in mathematical models and simulations. In building energy simulations, UQ involves quan-
tifying the uncertainties in the inputs, parameters, and models that can affect the energy performance
predictions of a building. UQ is becoming increasingly important in building design and energy retrofit
projects as it helps to identify and reduce the risks of performance gaps between the predicted and actual
energy performance of buildings. By reducing these uncertainties, UQ can improve the accuracy and reli-
ability of energy performance predictions, reduce the risk of performance gaps, support decision-making,
and optimize building performance. The sampling methods of MC and LHS can be used in the concept
of probabilistic analysis. Monte Carlo and Latin Hypercube sampling are both widely used techniques
for uncertainty quantification in thermal and energy dynamic building simulations (Sheikholeslami &
Razavi, 2017). Monte Carlo simulation generates random samples from probability distributions, while
Latin Hypercube sampling partitions the sample space into equally probable subregions, improving the
representativeness of the sample (See section 2.3).
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Figure 3.19: Concept diagram of probabilistic evaluation. The distribution curve presents the density of an input or
output. Through this process samples can be extracted within a range of 95% of probability. Hereby, two samples are

selected for each sub-region of the total count.

The process is implemented in the final simulation in order to map the whole spectrum of inputs
and outputs and apply the sampling method in case of significant variance of the outputs. The density
distribution curves most of the input variables are normal with a high density at their mean value. In
the initial set-up of the simulation model, five values are assigned to each variable and 16250 outputs
were scheduled to be generated, which is considered as an adequate amount of data for assessing the
results. However, the distribution curves are not based on continuous data as the diagram 3.21 presents.
The discrete numbers of inputs indicate that more values should be assigned but that was a decision
that was made because of time limitations. Subsequently, the sampling methods of MC or LHS are
skipped because the inputs have already a high density on a certain value.

Figure 3.20: Frequency distribution curves of the output results.

The simulation outputs are mapped with distribution curves and hereby the frequency of the sim-
ulation outcomes can be depicted. The results of EUI and Cooling (per m2) have a higher frequency
at 7.0 kWh/m2, while the Ventilation (per m2) reaches the highest frequency at 0.027kWh/m2. The
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total Cooling demand has a peak at 47500kWh and the energy demand for Ventilation at 20000kWh
hence the total energy demand reaches its highest frequency at 67500kWh for the whole duration of the
heat-stress period (23-27 Jul). Regarding the metrics of thermal comfort, the PMV reaches a significant
frequency at 0.725 and the operative temperature at 26.4◦C. Overall, most of the distribution curves
form a high peak at the right edge of the graph because of the total number of simulation results (3.20).
As mentioned in section 3.3.2, the six simulation models run simultaneously in the computers of the
VRlab, however, the whole process crashed and 3470 results were produced instead of the 16250 that
were scheduled.

Figure 3.21: Density distribution curves of the input variables.

All in all, the distribution curves for both input variables and simulation outputs map the whole
process and give valuable information for the probability of the results. Although the simulation results
are incomplete, the frequency distribution curves formed their highest values and they started to decline
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(right edge of the curves). Therefore, the workflow indicates the probability of the computed results
since the rest of them, that are aborted, would have a lower probability.

3.6. Resilience Quantification
As mentioned in section 2.1, the thermal resilience indicators and their metrics must be clarified in
order to quantify the thermal resilience in buildings against overheating stresses. In this thesis, the
indicator of indoor operative temperature in relation to the energy demand for cooling and ventilation
is calculated by generating hourly results from the simulation model that runs with the assigned EPW
file of extreme outdoor temperatures. The whole calculation process is based on the concept of thermal
resilience quantification as mentioned in chapter 2.1.3 in the literature review.

Figure 3.22: Main principle of resilience loss quantification, RLoss =
∫ t1
t0

[100− P (t)] dt .

To quantify the resilience of a system, one commonly used approach is to compare its performance
during a hazard with its initial performance before the hazard occurred. However, this approach cannot
be directly applied in the context of thermal resilience quantification. This is because simulations of the
initial stage would be based on weather data that do not consider extreme temperatures. Using weather
data from a typical meteorological year (TMY) is also not a viable option as it would involve comparing
different cases. An assumption of ideal building performance is made to address this issue. However,
achieving an ideal building performance can not be considered a realistic scenario. Instead, optimised
building performance can be used as an ideal reference for quantifying thermal resilience as presented
in the chart 3.23. Therefore the common equation for Resilience Loss quantification is adopted and
adjusted as follows:

RLoss =

∫ t1

t0

[poptimised
(t) − preal(t) ] dt (3.2)
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Figure 3.23: Thermal resilience quantification concept that is implemented in this case study.

As mentioned in the section 3.3.2, the calculation of the thermal resilience is based on hourly results
of the indoor operative temperature and the energy demand for each thermal zone and hence the
entire building can be computed. For the calculation, the temperature values are penalised by a weight
factor according to the quantification method of Homaei Homaei $ Hamdy. In the stated manner, the
temperature values over a certain comfort threshold are multiplied by a penalty factor. In the following
example (3.24), the operative hourly temperatures of the 4th floor of the building are computed during
the overheating event. The temperature values reach different levels of comfort. Thus, each value is
multiplied with a penalty factor as shown in the table (3.2).

Figure 3.24: The temperature values in relation to the different levels of comfort. These are defined as Comfort,
Acceptance, Habitable and Inhabitable

Levels of indoor comfort Hazard penalty
Comfort 0.1
Acceptance 0.2
Habitable 0.5
Unhabitable 0.7

Table 3.2: Penalty factors that weighted the temperature values during the computing process.

The energy demand is represented by the sum of the energy for cooling and ventilation. Hereupon,
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the hourly values of these two calculated metrics are multiplied in order to construct the thermal
performance curve (3.3) of this particular building.

P(t) = poptimised
(t) − preal(t) (3.3)

Where:

p(t) = Edemand(t)Tw.oper(t) (3.4)

Optimisation
The simulation model uses the generative algorithm of the WallaceiX plugin that iterates the process
until it generates the desired fitness with the result. In this case, the model ran 4970 iterations (15
hours) in order to specify the variables in order to minimise the difference of the hourly temperature
values from the 21◦C. The main fitness objective for this problem is to minimise the difference between
the maximum and the minimum hourly operative temperature values from the indoor comfort threshold
of 21◦C. The variable values for the optimised case of this building are presented in detail in Appendix
D.3. As a result, the hourly temperatures have an initial difference of 24 which is minimised to 10 (3.26)
and hence the operative temperature fluctuates between 15◦C and 25◦C.

Figure 3.25: Thermal Resilience quantification workflow concept.
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Figure 3.26: Achieved results from the optimisation process in relation to the simulation time. The optimised case was
selected among 4970 results. The detailed optimisation process diagram is presented in Appendix C.6.

Overall, the process of resilience quantification for this case study requires a multiple GH component
and optimisation engine such as WallaceiX. Moreover, the computed results are extracted from GH to
CSV files and they are post-process in Python (See Appendix A.4). However, implementing the whole
Python process is attended but compatibility errors occurred. The GH remote plug-in is still a work-in-
progress level and it still needs improvement in order to load the required Py libraries for this particular
task. However, these optimised results are used for defining the optimised thermal performance of the
building and area compared with the actual hourly data for the quantification process. In the next
section, the results are presented and comparisons are discussed.

3.6.1. Results Comparison and Discussion
In this section of the report the results are presented. As mentioned in the section 3.3.2 the simulation
model is structured with respect to the building discrete thermal zones. Therefore, it is possible to
extract values for both individual floors or rooms as well as for the entire building. At this stage of the
workflow, the simulation model runs under certain numbers for the building and material parameters.
Those were chosen by the outcomes of the SA analysis (see Section 3.5). Hence the effect of the WWR,
SHGC, U-value, Visible transmittance, thermal conductivity, density and ACH over the thermal re-
silience Performance Indicator (PI) is presented hereby. The Resilience Loss is already computed in the
results, so the PI indicates the actual resilience performance. The plots include the performance of the
building before, during and after the disruption of the overheating event (23rd-26th July).

Results for the whole building
In the beginning, results for the whole building are presented. For this task, the performance curves
consist of the average values of operative temperature and energy demand by each floor per hour. The
fluctuation of the PI is significant when the WWR values change. As presented in the 3.27 the building
performs better at 20% than a higher value of WWR. As the WWR increases, the PI decreases and
hence the lowest PI score occurs when the WWR is at 90%.
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Figure 3.27: Comparison of thermal resilience performance for variant WWR.

The results are quite similar in the case of different SHGC values (3.28). For instance, the PI with
an SHGC of 0.30 is higher (10804) than the PI with SHGC of 0.90.

Figure 3.28: Comparison of thermal resilience performance for variant SHGC.

However, the PI changes slightly when the glass U-value changes. In the presented chart (3.29),
the resilience performance of 10429 is achieved with a glass U-value of 2.40 (double glazing), while the
performance with a glass of U-value of 0.70 (triple glazing) is lower (10278). This result is contradictory
to the theoretical background of building physics. The U-value is a measure of how well the glass
conducts heat. A lower U-value indicates better insulation properties, meaning less heat is transferred
through the glass. Therefore, it is expected to achieve a higher score of PI when the U-value is lower.
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Figure 3.29: Comparison of thermal resilience performance for variant U-values.

Moreover, meaningful insights can be acquired in the case of modifying the air change per hour
(ACH) parameter. The simulation run with ACH at 0.01, 1.50, 2.50 and 3.50, as a result, the resilience
performance is noticeable. As presented in 3.30, the highest score of 11494 is achieved when the ACH is
3.50, while the lowest is when the ACH is 0.01. In general, the more the ACH increases, the higher the
PI score is achieved. This statement holds true since increasing the rate at which indoor air circulates
results in a more rapid cooling of the building’s spaces. As a result, the indoor temperature is maintained
at a more desirable and comfortable level.

Figure 3.30: Comparison of thermal resilience performance for variant ACH.

Results for each thermal zone
As the whole building is simulated, the results of thermal resilience for each floor and the atrium can
be compared to line charts in relation to the time. Valuable data can be extracted by comparing the
performance of the ground and the top floor with different ACH values (3.31). In both cases, thermal
resilience performance increases by increasing the value of ACH. This fact is reasonable since the higher
the ACH value is, the faster the cooled air circulates over the indoor area.
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(a) Comparison of thermal resilience performance in the ground floor when the ACH changes.

(b) Comparison of thermal resilience performance in the top floor when the ACH changes.

Figure 3.31: Comparison of thermal resilience performance between ground and top floors.

On the other hand, the exhaust fan ventilation parameter does not contribute to the building’s
performance. The chart 3.32 depicts inconsiderable differences in the performance when the performance
of exhaust fan ventilation changes. Although the ventilation system helps the air to flow from indoors
to outdoors and hence the passive cooling could be increased. However, the cooling performance and
hence the indoor temperature remain the same. This argument is interpreted as right because the
exhaust fan circulates the air from indoors to outdoors and it does not improve the cooling performance
of the building.

Figure 3.32: Comparison of thermal resilience performance for variant values of exhaust fan ventilation.
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By setting all variables are set at their mean values, the performance of the ground floor is signifi-
cantly higher than the performance of the floors above. More specifically in the chart 3.33 the sum of
the Performance Indicator (PI) of the ground floor reaches a score of 9440 while PI of the other floors
ranges between 7510 to 7798. However, the lower floors reach a lower PI score compared to the higher
floors.

Figure 3.33: Comparison of thermal resilience performance in each floor.

By setting the WWR value to 50% (3.34) the PI is much higher for the ground floor in comparison
to the 4th and 8th. The PI in the 4th is lower than to 8th as well.

Figure 3.34: Comparison of thermal resilience performance when the wall-window ratio is 50%.

The results are quite similar by changing the values of thermal transmittance of glass (U-value) and
solar heat gain coefficient (SHGC). Again the ground floor performs the best from the rest of the other
floors and the floors in between score a lower PI in comparison with the roof.
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(a) Comparison of thermal resilience performance when the U-value of glass is 0.70.

(b) Comparison of thermal resilience performance when the SHGC of glass is 0.60.

Figure 3.35: Comparison of thermal resilience performance between floors.

In the chart 3.36 the thermal resilience of the atrium with the ground floor, the 4th and 8th floors
are compared. The difference in the atrium performance is significant in comparison with the others.
While the office floors achieve higher PI value the performance of the atrium is almost half. Considering
the size of these areas this argument is reasonable. The height of the atrium is equal to the building
height and hence the air volume of this thermal zone is much larger. As a result, the air changes much
slower than the regular office floors, thus the cooling system supports better smaller areas.

Figure 3.36: Comparison of thermal resilience performance in office floors and the atrium.

This fact can be clearly depicted in the chart 3.37. The PI of the atrium increases significantly



3.6. Resilience Quantification 70

when a higher value is assigned to the ACH parameter. As a result, by doubling the ACH parameter
the atrium reaches a noticeable performance of thermal resilience and recovers faster from the overheat
stress.

Figure 3.37: Comparison of thermal resilience performance in the atrium for variant ACH values.

Results Discussion
Overall, the building performance, in terms of thermal resilience, changes significantly when different
values of ACH are applied. As presented in the bar chart below (3.38), the building performance reaches
a peak at the higher value of ACH, while it fluctuates slightly when the WWR, the SHGC and the
U-value change. In contrast, the building performance remains almost the same when the variables
of ExFan, concrete conductivity, density, thickness and thermal insulation thickness and specific heat
capacity change.

Figure 3.38: Overview comparison of thermal resilience performance for this case study.

Moreover, valuable insights can be obtained from the thermal resilience evaluation for each building’s
thermal zone. As indicated in the following chart (3.39), the ground floor achieves better performance
in comparison with the rest of the floors. This is a reasonable result considering that the ground floor
has a higher R-value and is protected by the floors above from extreme indoor temperatures. The
performance of the top floor is slightly higher than the rest of the floors in between. However, the
highest performance value is indicated in the thermal zone of the main cores of the building.
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Figure 3.39: Overview comparison of thermal resilience performance among different thermal zones.

On the other hand, the central atrium performs worse than the rest thermal zones. This statement
appears to be reasonable, given that the central atrium’s volume is considerably larger than the other
thermal zones. As a result, cooling the air in the central atrium becomes more challenging, leading to
difficulties in reducing the hourly Operative Temperature values. Although this can be accomplished
by increasing the ACH, the result would be to increase the hourly energy demand which affects the
final thermal resilience result.



4
Conclusion & Discussion

Valuable insights about thermal resilience in buildings and concluding remarks about this research are
presented in this chapter. Sub-questions and the main research question are answered and discussed
below. Moreover, suggestions for further development are mentioned in the second part.

4.1. Introduction
This graduation project focused on developing a dynamic quantification framework and workflow for
assessing the thermal resilience of buildings against extreme overheating case scenarios. The main fields
of thermal resilience definition, weather data sets, early design support, dynamic modelling and uncer-
tainty quantification formed the main core of the research and were explored extensively with the main
goal to gain theoretical knowledge and implement it in practice.

Thermal resilience is a complex property that necessitates the involvement of multiple scientific
fields to develop an effective quantification framework and obtain accurate results. The main core of a
multidisciplinary team should include experts from building physics, climate science, and computational
science. Furthermore, the field of material science and building systems can significantly enhance the
overall work and yield high-quality outcomes.

In the context of extreme temperatures, weather data plays a vital role in this research. Histori-
cal heatwave data from Amsterdam was utilized in this case study; however, for a more comprehensive
evaluation of thermal resilience in buildings, climate change scenarios should be considered. By incorpo-
rating potential future overheating scenarios, it becomes possible to predict building performance using
more reliable data. This process involves weather data prediction, which necessitates deep knowledge
of climate modelling and advanced skills in handling large datasets. Consequently, this process requires
substantial computational resources.

72
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Figure 4.1: First concluding remarks about this research.

Since the early design stage involves varying material and building properties, and considering the
variable scenarios associated with climate change, the field of uncertainty becomes closely intertwined
with the main topic. It is crucial for assessing scenarios with higher probability and providing a compre-
hensive understanding of potential building performance. To achieve these results, a significant amount
of data is required to encompass the entire range of possible scenarios. Consequently, the process de-
mands substantial resources and incurs a high computational cost.

4.2. Sub-questions
What are the thermal resilience definition and its indicators?

The definition of thermal resilience lies in the performance of a building to be adequate enough
against overheating hazards in order to overcome these hazards and mitigate the impact of extreme
events. More specifically, thermal resilience is the capability of the building to absorb, adapt and re-
cover from disruptive events. This assertion is based on the characteristics of a building’s robustness,
resistance, and recovery, which collectively define the primary phases involved in assessing the thermal
resilience of a building. Robustness refers to the ability of a building to withstand various disturbances
or stresses without suffering significant damage or performance degradation. Resistance, on the other
hand, refers to the capacity of a building or its elements to resist the penetration of external factors
(e.g. extreme heat) that may disrupt the desired thermal conditions. Recovery refers to the ability of a
building to recover or restore thermal comfort and functionality after a disruption or disturbance. It is
closely related to the concept of robustness but with a focus on the post-event response. In summary,
robustness relates to the ability to withstand and adapt to disturbances, while resistance focuses on
preventing or minimizing the impact of external factors on the thermal performance of the building,
and recovery is the process of restoring normal thermal conditions after a disruption.

Assessing the thermal resilience of buildings requires the use of specific Key Performance Indicators
(KPIs) that measure various aspects related to thermal performance and resilience. Indoor thermal
comfort is considered as determinant KPI and is related to the levels of temperature, heat and humid-
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ity indoors. Moreover, monitoring the energy demand for cooling or heating, in this case, cooling, is
a crucial KPI for the evaluation framework. This KPI assesses the energy required for heating and
cooling in the building. Lower demand indicates better thermal resilience, as it signifies the build-
ing’s ability to maintain comfortable temperatures with minimal energy consumption. Nonetheless, it
is important to differentiate between energy performance and the concept of energy efficiency. The
former considers the overall energy performance of the building, while the latter aims to optimise the
energy performance, reduce waste and achieve the desired outcome by using the least amount of energy.

Which metrics should be quantified in order to evaluate a building’s thermal perfor-
mance?

Metrics such as Heat Index (HI), Humidex (H), Standard Effective Temperature (SET), Predicted
Mean Vote (PMV), Indoor Overheating Degree (IOD) and Weighted Unmet thermal Performance
(WUMTP) are used for assessing the indoor comfort KPI mentioned above. However, each of them has
advantages, handicaps and limitations that are presented extensively in the 2.1.3. The HI and the H
are considered as applicable to the scope of this research because they neglect the impact of extreme
temperatures and the performance of building systems. Moreover, metrics such as passive survivability
and thermal autonomy are stated to be simplified because they are only focusing on the thermal per-
formance during the disruptive event. PMV metric is based on heat balance equations and is used for
assessing thermal comfort but several limitations are pointed out. Factors, such as local discomfort due
to hot or cold surfaces and solar radiation variations. Moreover, this metric defines thermal comfort
within a specific range between -3 and +3, which is considered as limited for evaluating thermal comfort.
The IOD can be implemented in multi-zoning building studies for calculating the operative tempera-
ture but it gives unexpected results in case of extreme outdoor temperatures. The most representative
metrics for calculating thermal comfort is the SET and the WUMTP and both of them can be used in
whole-building studies by considering multiple parameters. The SET is a metric of human response to
the thermal environment, hence personal factors of metabolic rate and clothing are incorporated. The
WUMTP metric is based on the calculation of the operative temperature, in which the impact of air,
radiant temperatures and the building elements and systems is incorporated. Moreover, its calculation
method embeds the principles of thermal comfort levels and the duration time of stress stages since
weighted penalty factors are applied. Therefore, this metric can be applied in order to evaluate the
thermal comfort indoors before, during and after the disruptive event.

Quantification metrics such as the End Use Intensity (EUI), and the Total Energy Consumption are
required for the evaluation of energy demand. The EUI measured the energy consumption per square
meter of building area, as a result, comparisons between different buildings, designs and sizes can be
made. The Total energy consumption represents the overall energy consumed by the building over a
certain time period. It combines the energy usage for heating, cooling, lighting, equipment and other
building systems. In this research, these metrics are adjusted in case of overheating stresses and focused
on the cooling and ventilation demand for the whole building.
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Figure 4.2: Comparison of different thermal metrics that have been researched in this thesis.

What kind of weather data sets are suitable for thermal resilience quantification against
extreme overheating hazards?

Weather data that consider RCPs climate change scenarios and extreme values of temperatures can
be used in order to assess the thermal resilience in buildings. The RCPs are climate scenarios that are
based on the potential increase of temperature and Greenhouse Gas (GHG) emissions in the future.
Subsequently, estimations for the building performance in future scenarios can be calculated. However,
the computational process includes dynamic or statistical downscaling of Global Climate to Regional
Climate models with respect to the RCPs. This process requires a large number of computational
resources and high-skill knowledge in the field of climate modelling because of its complexity.

Alternatively, weather EPW files that are based on historical datasets can be used. In this approach,
the historical data with extreme values of climate parameters, such as temperature and solar radiation,
must be included in a common TMY file that is used as a basis. For this research historical data from
extreme heat waves have occurred in Europe in 2003, 2019 and 2020 are obtained from KNMI and used
for generating an EPW that includes the highest values of climate parameters.

How uncertainty quantification can be implemented in the computational workflow?
Implementing UQ in the computational workflow requires careful consideration of the specific prob-

lem, available data, and computational resources. It involves a combination of statistical techniques,
sampling methods, model evaluations, and analysis to comprehensively capture and characterize the
uncertainty in the computational model’s predictions. The UQ can be implemented in the computa-
tional workflow through the techniques of problem formulation, uncertainty characterization, sensitivity
analysis, sampling techniques, statistical analysis, and calibration of the model. Quantifying the uncer-
tainty associated with the input parameters can be done with statistical analysis of the available data.
In this manner, probability distributions are assigned to uncertain parameters in order to specify the
range of data within a certain value of probability. Practically, density distribution curves are assigned
to the size of each variable and hence the values that are used more times from the model are depicted.
Similarly, frequency distribution curves are assigned to the results. Sampling techniques such as Monte
Carlo (MC) and Latin hypercube sampling (LHS) can be utilized to generate samples from the input
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parameter distributions. These are used for evaluating the simulation model under different scenarios.
Sensitivity analysis is used to identify the parameters with the most significant influence on the results.
As a result, this process helps to prioritize uncertainties for further analysis.

Which are the major influential parameters that affect the building’s performance
against extreme overheating?

The main influential parameters that affect the building’s performance are building properties re-
lated to the building envelope and unitized systems. Sensitivity analysis reveals that parameters such
as conductivity and density of concrete, thickness and specific heat capacity of thermal insulation have
a relatively minor impact on the results. However, the final results of thermal resilience quantification
revealed that the PI remained constant when these values change. Conversely, parameters related to
glazing and cooling systems have a significant influence. Specifically, the percentage of glazing (WWR)
on the facade and the thermal properties of the glass (U-value, SHGC, Visible transmittance) play a
crucial role in determining the building’s thermal performance. Additionally, the air change per hour
(ACH) is also a critical factor for the building’s overall performance.

4.3. Main research question
In what manner can a digital design workflow be devised to assess the thermal resilience of
buildings against extreme heat wave stresses, and how can this workflow support designers
and engineers during the initial stages of the design process in making informed decisions?

A digital workflow can be devised to assess the thermal resilience of buildings against extreme heat
waves in the following manner:

Data Integration: Climate data including historical and extreme weather patterns should be in-
tegrated into the workflow. This provides valuable information about the climate challenges posed by
the heat waves of the building’s location. As a result, the user can identify the time period of the
overheating stress by the indicative peaks of climate parameters (e.g. temperature). Therefore, specific
time intervals are designated for running the simulation model.

Computational Modeling: Develop a computational model that simulates the thermal behaviour
of buildings under extreme heat wave conditions. These models should consider factors such as build-
ing geometry, materials, insulation, glazing, ventilation, and cooling systems. They should accurately
simulate energy consumption and indoor thermal comfort. In this thesis, the simulation model was de-
veloped in the GH environment where extreme weather patterns are linked with the simulation model.
The aforementioned factors of building, material, insulation, glazing, ventilation and cooling systems
and complementary Python scripts are incorporated into the model. Subsequently, hourly results were
generated for energy consumption and indoor thermal comfort.

Early Design Support: All the factors initially should be defined by literature sources related
to the building material properties and ventilation and cooling systems. Therefore, a range of values
is assigned to these factors in order to include variant types of material, facade glazing percentage,
ventilation and cooling systems.
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Uncertainty quantification: UQ involves quantifying the design and/or climate uncertainties of
problem inputs in order to indicate their probability to the results. The implementation of this aspect
in the early design stage turns the deterministic calculation into a probabilistic way. By reducing these
uncertainties, UQ can improve the accuracy and reliability of energy performance predictions, reduce
the risk of performance gaps, and support decision-making.

Resilience Assessment - Optimisation: Define indicators and metrics that quantify the thermal
resilience of buildings to extreme heat waves. These metrics (e.g. the operative temperature and the
energy demand) include parameters like the performance of the cooling systems that should be moni-
tored to evaluate building resilience. In this process, thresholds or performance targets that represent
the desired level of resilience should be established. Additionally, implement optimization algorithms
within the digital design workflow to identify optimal design solutions that maximize thermal resilience
while considering other design constraints and objectives.

Visualization and Comparison: Visualize the simulation results in a user-friendly manner, allow-
ing designers and engineers to comprehend and compare different design alternatives. This facilitates
the evaluation of different strategies for enhancing thermal resilience, such as modifications to window-
to-wall ratios, insulation thicknesses, shading configurations, and HVAC system specifications.

By following this digital design workflow, designers and engineers can effectively evaluate the thermal
resilience of buildings against extreme heat wave stresses and make informed decisions early in the design
process. This results in the development of more resilient buildings that can withstand and adapt to
the challenges posed by heat waves.

4.4. Recommendations for further research
Based on the conducted research, the findings, and the conclusions presented in the current thesis, there
are aspects yet to be determined.

Urban scale
The scope of this study is currently confined to building scale; however, the computational workflow
employed can be expanded to encompass urban factors and parameters. These factors can be embedded
in a dynamic computational workflow. Urban Heat Island (UHI) effect, refers to the phenomenon of
higher temperatures due to human activities such as the high concentration of buildings, roads and
infrastructure. Incorporating UHI data the potential impact on building thermal performance can be
assessed. Additionally, surrounding Land Use and Urban Layout can affect the airflow patterns (Urban
Canyon Effect), shading and the exposure of a building to Solar Radiation.
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(a) Urban Heat Island effect. (b) Urban Canyon Effect

Figure 4.3: Urban factors that can affect thermal resilience of buildings.

Labeling
To further enhance the quantification framework, an additional development could involve the imple-
mentation of a labelling system. This system would allow for the classification of buildings based on
their thermal resilience index, using distinct colours to differentiate between different levels of resilience.
Consequently, buildings could be certified and benchmarked using a system similar to BREEAM and
other environmental benchmarking systems. By introducing a labelling system, stakeholders such as
building owners, occupants, and investors would have a clear understanding of a building’s thermal
resilience performance. The use of colours would provide a visual representation of the building’s level
of resilience, making it easily recognizable and comparable to other certified buildings. This would not
only promote transparency and informed decision-making but also encourage the adoption of resilient
building practices.

Figure 4.4: Classification of buildings according to their Resilience Class Index (Homaei & Hamdy, 2021b).

Alternative assessment method
The thermal resilience assessment for this thesis relies on explicit simulations conducted in Grasshopper
and post-processing the results in Python. However, this approach is time-consuming due to complex
data handling. An alternative workflow involves structuring the environmental model within a Python
environment using the eppy library by EnergyPlus software. This eliminates the need for transferring
data between different software. Additionally, implementing machine learning techniques brings sig-
nificant advantages. By training energy models on historical data, machine learning algorithms can
estimate the thermal resilience of buildings. These models learn the relationship between design pa-
rameters (e.g., insulation, glazing), weather parameters (e.g., solar radiation, dry-bulb temperature),
and thermal performance indicators (e.g., indoor temperature, energy demand), enabling predictions
of thermal resilience for different design options at the early stages of the design process, reducing the
reliance on extensive simulations. This alternative approach improves efficiency, reduces the computa-
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tional burden, and provides valuable insights during the early design stages.
Reinforcement learning (RL) algorithms can assess and enhance thermal resilience by guiding decision-

making processes. RL agents interact with the environment (in this case building) over time steps, with
defined states, actions, rewards, and goals. Weather data and occupant behaviour serve as initial vari-
ables (states), while actions involve adjusting temperature setpoints, shading devices, HVAC systems,
and energy usage. The main goal of the agent can be stabilizing indoor temperature within a specific
range. A reward function reflects the objective of thermal resilience, aiding the agent in improving ther-
mal resilience indicators through its actions. RL enables the development of strategies that optimize
thermal resilience by adapting to changing conditions, ultimately improving the building’s ability to
withstand temperature extremes (Wang & Hong, 2020).

Figure 4.5: The RL agent interacts with the building and improves its performance.

In the case of existing buildings, Convolutional Neural Networks (CNNs) can be employed to an-
alyze thermal images or other thermal data for evaluating thermal resilience (Tijskens et al., 2019).
By training a CNN to identify patterns associated with effective shading, natural ventilation, or ther-
mal insulation, valuable insights about thermal resilience can be derived. CNNs are commonly used
for image analysis, allowing them to classify images into different categories based on their thermal
characteristics. For example, a CNN can be trained to classify images as ”comfortable,” ”moderately
overheated,” or ”extremely overheated.” This classification aids in identifying buildings or specific areas
that are more susceptible to thermal stress. This approach, combined with the concept of building
digital twins, enables real-time monitoring of a building’s performance against heatwaves. Engineers
can generate and classify thermal images instantly, facilitating ongoing assessment and intervention to
improve thermal resilience.

Figure 4.6: CNNs analyse thermal images.



5
Reflection

Graduation process
1. What is the relation between your graduation project topic, your master track (Ar), and your master
programme (MSc)?

The thesis under discussion encompasses three research domains, primarily focusing on building
environmental performance and computational intelligence. These fields form the core of the research,
while the field of sustainable structures provides valuable supplementary information to enhance the
background knowledge of resilience. Consequently, this research involves the collaboration of two chairs
within the Building Technology track: Structural Design and Design Informatics. The thesis is guided
by Simona Bianchi and Charalampos Andriotis. Within the chair of Structural Design, the research
investigates the resilience of buildings in the face of climate change. Meanwhile, within the chair of
Design Informatics, the exploration revolves around implementing resilience quantification in practical
applications during the early design stage.

2. How did your research influence your design/recommendations and how did the design/recom-
mendations influence your research?

The research initially established a strong theoretical foundation in resilience quantification, uncer-
tainty quantification, and dynamic building simulation. This theoretical knowledge was subsequently
applied in the practical implementation phase to bridge theory and practice. This integration of theory
formed the basis of the computational workflow and early design support. Simultaneously, the practi-
cal implementation yielded valuable insights and information specifically related to the research’s main
focus on thermal resilience against overheating stresses. The research successfully clarified the signifi-
cant building, design, and system parameters, and the visualization of simulation results facilitated the
comparison of various design alternatives by designers. As a result, the study outcomes contribute to
the advancement of research in the field of thermal resilience in buildings.

3. How did the research approach work out (and why or why not)? And did it lead to the results you
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aimed for? (SWOT of the method).
The research encompassed several essential areas crucial for achieving the desired outcome. The

primary objective of this research was to investigate the feasibility of implementing a computational
workflow for quantifying thermal resilience against extreme heat events in practical applications. Con-
sequently, a comprehensive analysis was undertaken, exploring five key areas throughout the project.
These areas include resilience quantification in the built environment, weather data sets, uncertainty
quantification, dynamic environmental building simulation, and statistical modeling. Each area pre-
sented its own challenges and complexities, but all were integral to the overarching goal of sustainable
structures with computational tools, making each area a crucial component of this thesis project. While
each area provided valuable insights, they also revealed numerous avenues for further research, some of
which were simplified due to time constraints. The desired outcomes were successfully achieved, result-
ing in an improved understanding of the impact of extreme heatwaves on buildings. This research also
lays the groundwork for enhancing the computational workflow by implementing more efficient tasks
and expanding the scope of thermal resilience assessment to a larger scale.

Societal impact
1. What is the impact of your project on sustainability (people, planet, profit/prosperity)?

Sustainability was the key parameter that initiated this project’s exploration. The topic addresses
the problem of building performance during disruptive events posed by climate change. It explores
the possibilities to design resilient and sustainable buildings to mitigate the vulnerability of the built
environment. The research explores evaluation frameworks and assessment methodologies in order to
develop more robust methods and tools to support the development of resilient and sustainable struc-
tures at the building level. Following this goal, this project investigates the climate adaptability of
buildings through uncertainty-based risk analysis.

2. What is the socio-cultural and ethical impact?
The quantification of thermal resilience against extreme heat stresses in buildings has a direct rela-

tion to the wider social context. Here are a few key aspects of this relationship:
Human Health and Well-being: Extreme heat events can have severe consequences for human

health, leading to heat-related illnesses and even fatalities. By quantifying thermal resilience, build-
ing designs can be enhanced to provide improved indoor comfort and mitigate the negative impact of
extreme heat on occupants’ health and well-being. This directly contributes to the social objective of
safeguarding public health.

Climate Change Adaptation and Mitigation: Thermal resilience quantification aligns with
the broader societal need for climate change adaptation and mitigation. By designing buildings that
can withstand and adapt to extreme heat stresses, communities are better prepared for the changing
climate. Additionally, resilient buildings with lower energy demands contribute to reducing greenhouse
gas emissions and advancing sustainability goals.

3. How does the project affect architecture / the built environment?
Thermal resilience quantification against extreme heat stresses in buildings, utilizing a computational
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workflow of dynamic environmental building simulations, has several effects on architecture and the
built environment:

Design Optimization: The computational workflow allows architects and designers to evaluate
various design alternatives and optimize building designs for thermal resilience. By simulating the ther-
mal performance of different architectural configurations, materials, and systems, the workflow enables
the identification of design strategies that enhance thermal comfort and mitigate the impact of extreme
heat events. This leads to the creation of buildings that are better adapted to the local climate condi-
tions.

Performance Prediction: The computational simulations provide insights into the thermal be-
haviour of buildings under extreme heat conditions. This helps architects and engineers understand
how different design choices affect thermal performance and resilience. By accurately predicting the
indoor temperatures, energy consumption, and thermal comfort levels, the simulations enable informed
decision-making and facilitate the development of more effective design strategies.

Risk Mitigation: The simulations allow for the assessment of potential risks associated with ex-
treme heat stresses. By quantifying the thermal resilience, the computational workflow helps identify
areas of vulnerability within the building design. This information can be used to implement risk mit-
igation measures such as improved insulation, shading devices, natural ventilation strategies, or the
integration of passive cooling techniques. These measures enhance the building’s ability to withstand
extreme heat events and protect the occupants.

Sustainability Integration: By incorporating thermal resilience quantification into the design pro-
cess, the computational workflow promotes the integration of sustainability principles. Design choices
that enhance thermal resilience often align with energy efficiency, reduced environmental impact, and
enhanced occupant comfort. The workflow allows for the optimization of energy consumption and the
development of environmentally responsible building solutions.
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A
Coding

Python and Grasshopper scripts that are used for this case study are presented.

Figure A.1: Complementary Py script enriches the features of the environmental model.

Listing A.1: Add exhaust stystem in GH model.

1 """Provides a scripting component.
2 Inputs:
3 x: The x script variable
4 y: The y script variable

90
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5 Output:
6 a: The a output variable"""
7 """
8 An additional exhaust system in the GH script.
9 """

10 __author__ = "nathanael"
11 __version__ = "2023.03.28"
12

13 import rhinoscriptsyntax as rs
14 a = '''\
15

16 ZoneVentilation:DesignFlowRate,
17 Exhaust Fan, !- Name
18 {room}, !- Zone or ZoneList or Space or SpaceList Name
19 {sch}, !- Schedule Name
20 AirChanges/Hour, !- Design Flow Rate Calculation Method
21 , !- Design Flow Rate (m3/s)
22 , !- Flow Rate per Floor Area (m3/s-m2)
23 , !- Flow Rate per Person (m3/s-person)
24 {ach}, !- Air Changes per Hour (1/hr)
25 Exhaust, !- Ventilation Type
26 650, !- Fan Pressure Rise (Pa)
27 1, !- Fan Total Efficiency
28 1, !- Constant Term Coefficient
29 , !- Temperature Term Coefficient
30 , !- Velocity Term Coefficient
31 , !- Velocity Squared Term Coefficient
32 {Tmin}, !- Minimum Indoor Temperature (C)
33 , !- Minimum Indoor Temperature Schedule Name
34 {Tmax}, !- Maximum Indoor Temperature (C)
35 , !- Maximum Indoor Temperature Schedule Name
36 {Td}, !- Delta Temperature (deltaC)
37 , !- Delta Temperature Schedule Name
38 {Tout}, !- Minimum Outdoor Temperature (C)
39 , !- Minimum Outdoor Temperature Schedule Name
40 100, !- Maximum Outdoor Temperature (C)
41 , !- Maximum Outdoor Temperature Schedule Name
42 40; !- Maximum Wind Speed (m/s)
43 '''.format(room=room,sch=sch,ach=ach,Tmin=Tmin,Tmax=Tmax,Td=Td,Tout=Tout)
44 print(a)

Listing A.2: Sobol’ sensitivity analysis with a mathematical model of building physics equations.

1 import pandas as pd
2 import numpy as np
3 import seaborn as sns
4 import scipy as sp
5 import scipy.stats as stats
6 from scipy.integrate import odeint
7 from scipy.integrate import solve_ivp
8 import matplotlib.pyplot as plt
9 from SALib.sample import saltelli

10 from SALib.sample import sobol_sequence
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11 from SALib.analyze import sobol
12 import math
13

14 # defining a normal distribution given mean and standard deviation
15 def distribution(mu=0, sigma=1):
16 distribution = stats.norm(mu, sigma)
17 return distribution
18

19 # INDOOR TEMPERATURE CALCULATION
20 def calc_Tcomfort(X): # Calculate the indoor temperature
21 return ((0.60*(((((((X[4]+X[5]+X[6])*X[1]*(0.13+X[7]+X[12]+X[17])+25*X[0]-0.13-X[7]-X

[12]-X[17]+(X[0]+((X[22]+X[2]*Af*X[1]+X[24]*Qp)/(X[23]+X[2]*Af+X[8]*(Af-X[2]*Af)+X
[13]*(Af-X[2]*Af)+X[18]*(Af-X[2]*Af)+1.2*1000*X[3]/3600))*(1-math.exp(-((X[23]*X[2]*(
Af-X[2]*Af)+X[8]*(Af-X[2]*Af)+X[13]*(Af-X[2]*Af)+X[18]*(Af-X[2]*Af)+X
[3]/3600*1.2*1000)/((Af-X[2]*Af)*(X[9]*X[10]*X[11]+X[14]*X[15]*X[16]+X[19]*X[20]*X
[21])+Vair*1.2*1000))*t))))/(25*(-0.13-X[7]-X[12]-X[17])+1))-(X[0]+((X[22]+X[2]*Af*X
[1]+X[24]*Qp)/(X[23]+X[2]*Af+X[8]*(Af-X[2]*Af)+X[13]*(Af-X[2]*Af)+X[18]*(Af-X[2]*Af)
+1.2*1000*X[3]/3600))*(1-math.exp(-((X[23]*X[2]*(Af-X[2]*Af)+X[8]*(Af-X[2]*Af)+X
[13]*(Af-X[2]*Af)+X[18]*(Af-X[2]*Af)+X[3]/3600*1.2*1000)/((Af-X[2]*Af)*(X[9]*X[10]*X
[11]+X[14]*X[15]*X[16]+X[19]*X[20]*X[21])+Vair*1.2*1000))*t))))*0.13))/(0.13+X[8]+X
[13]+X[18]))+(X[0]+((X[22]+X[2]*Af*X[1]+X[24]*Qp)/(X[23]+X[2]*Af+X[8]*(Af-X[2]*Af)+X
[13]*(Af-X[2]*Af)+X[18]*(Af-X[2]*Af)+1.2*1000*X[3]/3600))*(1-math.exp(-((X[23]*X[2]*(
Af-X[2]*Af)+X[8]*(Af-X[2]*Af)+X[13]*(Af-X[2]*Af)+X[18]*(Af-X[2]*Af)+X
[3]/3600*1.2*1000)/((Af-X[2]*Af)*(X[9]*X[10]*X[11]+X[14]*X[15]*X[16]+X[19]*X[20]*X
[21])+Vair*1.2*1000))*t))))+(X[8]+X[13]+X[18])*(X[0]+((X[22]+X[2]*Af*X[1]+X[24]*Qp)/(
X[23]+X[2]*Af+X[8]*(Af-X[2]*Af)+X[13]*(Af-X[2]*Af)+X[18]*(Af-X[2]*Af)+1.2*1000*X[3]))
*(1-math.exp(-((X[23]*X[2]*(Af-X[2]*Af)+X[8]*(Af-X[2]*Af)+X[13]*(Af-X[2]*Af)+X[18]*(
Af-X[2]*Af)+X[3]/3600*1.2*1000)/((Af-X[2]*Af)*(X[9]*X[10]*X[11]+X[14]*X[15]*X[16]+X
[19]*X[20]*X[21])+Vair*1.2*1000))*t)))/(0.60+X[8]+X[13]+X[18])-X[0])

22

23 # INDOOR TEMPERATURE CALCULATION BACK-UP
24 # def calc_Tcomfort(X): # Calculate the indoor temperature
25 # return ((0.60*(((((((Aabs_c+Aabs_x+Aabs_al)*SOLrad*(0.13+Rc+Rx+Ral)+25*Te-0.13-Rc-Rx-

Ral+(Te+((Gg+WWR*Af*SOLrad+ppl*Qp)/(Ug+WWR*Af+Uc*(Af-WWR*Af)+Ux*(Af-WWR*Af)+Ual*(Af-
WWR*Af)+1.2*1000*n))*(1-math.exp(-((Ug*WWR*(Af-WWR*Af)+Uc*(Af-WWR*Af)+Ux*(Af-WWR*Af)+
Ual*(Af-WWR*Af)+n*1.2*1000)/((Af-WWR*Af)*(dc*denc*cc+dx*denx*cx+dal*denal*cal)+Vair
*1.2*1000))*t))))/(25*(-0.13-Rc-Rx-Ral)+1))-(Te+((Gg+WWR*Af*SOLrad+ppl*Qp)/(Ug+WWR*Af
+Uc*(Af-WWR*Af)+Ux*(Af-WWR*Af)+Ual*(Af-WWR*Af)+1.2*1000*n))*(1-math.exp(-((Ug*WWR*(Af
-WWR*Af)+Uc*(Af-WWR*Af)+Ux*(Af-WWR*Af)+Ual*(Af-WWR*Af)+n*1.2*1000)/((Af-WWR*Af)*(dc*
denc*cc+dx*denx*cx+dal*denal*cal)+Vair*1.2*1000))*t))))*0.13))/(0.13+Uc+Ux+Ual))+(Te
+((Gg+WWR*Af*SOLrad+ppl*Qp)/(Ug+WWR*Af+Uc*(Af-WWR*Af)+Ux*(Af-WWR*Af)+Ual*(Af-WWR*Af)
+1.2*1000*n))*(1-math.exp(-((Ug*WWR*(Af-WWR*Af)+Uc*(Af-WWR*Af)+Ux*(Af-WWR*Af)+Ual*(Af
-WWR*Af)+n*1.2*1000)/((Af-WWR*Af)*(dc*denc*cc+dx*denx*cx+dal*denal*cal)+Vair
*1.2*1000))*t))))+(Uc+Ux+Ual)*(Te+((Gg+WWR*Af*SOLrad+ppl*Qp)/(Ug+WWR*Af+Uc*(Af-WWR*Af
)+Ux*(Af-WWR*Af)+Ual*(Af-WWR*Af)+1.2*1000*n))*(1-math.exp(-((Ug*WWR*(Af-WWR*Af)+Uc*(
Af-WWR*Af)+Ux*(Af-WWR*Af)+Ual*(Af-WWR*Af)+n*1.2*1000)/((Af-WWR*Af)*(dc*denc*cc+dx*
denx*cx+dal*denal*cal)+Vair*1.2*1000))*t)))/(0.60+Uc+Ux+Ual)-Te)

26

27

28 Af = 504 # The total facade surface [m2]
29 Qp = 105 # exposed energy/person [W]
30 t = 3600*1 # duraction of calculation [s]
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31 Vair = 4158 # Volume of the room [m3]
32

33 # BUILDING - WEATHER VARIABLES
34 X[0] : Te # initial outdoor temperature of the problem [C]
35 X[1] : SOLrad # solar radiation [W/m2K]
36 X[2] : WWR # wall-window ration of the facade [%]
37 X[3] : n # airchange rate [m3/s]
38

39 # OCCUPANCY VARIABLE
40 X[24] : ppl # number of people using the building
41

42 # MATERIAL VARIABLES
43 X[4] : Aabs_c # absorbance coefficient concrete
44 X[5] : Aabs_x # absorbance coefficient XPS insulation
45 X[6] : Aabs_al # absorbance coefficient aluminum cladding
46

47 X[7] : Rc # R-value concrete [m2·K/W]
48 X[8] : Uc # U-value of concrete [W/m2K]
49 X[9] : dc # thickness of conrete [m]
50 X[10] : denc # density of concrete [kg/m3]
51 X[11] : cc # specific heat of conrete [J/(kg K)]
52

53 X[12] : Rx # R-value XPS insulation [m2·K/W]
54 X[13] : Ux # U-value XPS insulation [W/m2K]
55 X[14] : dx # thickness of XPS insulation [m]
56 X[15] : denx # density of XPS insulation [kg/m3]
57 X[16] : cx # specific heat of XPS insulation [J/(kg K)]
58

59 X[17] : Ral # R-value aluminum cladding [m2·K/W]
60 X[18] : Ual # U-value aluminum cladding [W/m2K]
61 X[19] : dal # thickness of aluminum cladding [m]
62 X[20] : denal # density of aluminum cladding [kg/m3]
63 X[21] : cal # specific heat of aluminum cladding [J/(kg K)]
64

65 X[22] : Gg # G-value of glass [W/m2K]
66 X[23] : Ug # U-value of glass [W/m2K]
67

68 print(X[:])
69

70 # define the mean and the standard deviation of the variables
71

72 Te=distribution (28.769,5.306725827*28.769)
73 SOLrad=distribution (190.72,298.5882476*190.72)
74 WWR=distribution(0.57125,0.216495525*0.57125)
75 n=distribution(2.975,1.443303502*2.975)
76 Aabs_c=distribution(0.83375,0.072165175*0.83375)
77 Aabs_x=distribution(0.8995,0.02886607*0.8995)
78 Aabs_al=distribution(0.12425,0.043299105*0.12425)
79 Rc=distribution(0.14435,0.037525891*0.14435)
80 Uc=distribution(7.46253438,2.122795083*7.46253438)
81 dc=distribution(0.249,0.05773214*0.249)
82 denc=distribution(2398,115.4642802*2398)
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83 cc=distribution(988.5,86.59821014*988.5)
84 Rx=distribution(4.16725,0.447424086*4.16725)
85 Ux=distribution(0.2427915,0.026436792*0.2427915)
86 dx=distribution(0.0944,0.034639284*0.0944)
87 denx=distribution(36.91,5.195892609*36.91)
88 cx=distribution(1498,115.4642802*1498)
89 Ral=distribution(0.02485,0.008659821*0.02485)
90 Ual=distribution(46.58715558,19.41659173*46.58715558)
91 dal=distribution(0.00496,0.002309286*0.00496)
92 denal=distribution(2749.5,28.86607005*2749.5)
93 cal=distribution(561.5,202.0624903*561.5)
94 Gg=distribution(0.498,0.11546428*0.498)
95 Ug=distribution(1.5415,0.490723191*1.5415)
96 ppl=distribution(299.5,28.86607005*299.5)
97

98 fig, axes = plt.subplots(nrows=5, ncols=5, figsize=(20, 20))
99

100 sns.histplot(data=[np.random.normal(28.769,5.306725827*28.769) for _ in range(2000)], label="
Dry-bulb Temperature", ax=axes[0, 0])

101 axes[0, 0].legend(loc='lower center',bbox_to_anchor=(0.5, -0.25), frameon=False, handlelength
=0)

102 sns.histplot(data=[np.random.normal(190.72,298.5882476*190.72) for _ in range(2000)], label="
Solar Radiation", ax=axes[0, 1])

103 axes[0, 1].legend(loc='lower center',bbox_to_anchor=(0.5, -0.25), frameon=False, handlelength
=0)

104 sns.histplot(data=[np.random.normal(0.57125,0.216495525*0.57125) for _ in range(2000)], label
="Wall Window Ratio", ax=axes[0, 2])

105 axes[0, 2].legend(loc='lower center',bbox_to_anchor=(0.5, -0.25), frameon=False, handlelength
=0)

106 sns.histplot(data=[np.random.normal(2.975,1.443303502*2.975) for _ in range(2000)], label="
Airchange / h", ax=axes[0, 3])

107 axes[0, 3].legend(loc='lower center',bbox_to_anchor=(0.5, -0.25), frameon=False, handlelength
=0)

108 sns.histplot(data=[np.random.normal(0.83375,0.072165175*0.83375) for _ in range(2000)], label
="Thermal Absorbance C", ax=axes[0, 4])

109 axes[0, 4].legend(loc='lower center',bbox_to_anchor=(0.5, -0.25), frameon=False, handlelength
=0)

110 sns.histplot(data=[np.random.normal(0.8995,0.02886607*0.8995) for _ in range(2000)], label="
Thermal Absorbance XPS", ax=axes[1, 0])

111 axes[1, 0].legend(loc='lower center',bbox_to_anchor=(0.5, -0.25), frameon=False, handlelength
=0)

112 sns.histplot(data=[np.random.normal(0.12425,0.043299105*0.12425) for _ in range(2000)], label
="Thermal Absorbance AL", ax=axes[1, 1])

113 axes[1, 1].legend(loc='lower center',bbox_to_anchor=(0.5, -0.25), frameon=False, handlelength
=0)

114

115 sns.histplot(data=[np.random.normal(0.14435,0.037525891*0.14435) for _ in range(2000)], label
="R-value C", ax=axes[1, 2])

116 axes[1, 2].legend(loc='lower center',bbox_to_anchor=(0.5, -0.25), frameon=False, handlelength
=0)

117 sns.histplot(data=[np.random.normal(7.46253438,2.122795083*7.46253438) for _ in range(2000)],
label="U-value C", ax=axes[1, 3])



95

118 axes[1, 3].legend(loc='lower center',bbox_to_anchor=(0.5, -0.25), frameon=False, handlelength
=0)

119 sns.histplot(data=[np.random.normal(0.249,0.05773214*0.249) for _ in range(2000)], label="
Thickness C", ax=axes[1, 4])

120 axes[1, 4].legend(loc='lower center',bbox_to_anchor=(0.5, -0.25), frameon=False, handlelength
=0)

121 sns.histplot(data=[np.random.normal(2398,115.4642802*2398) for _ in range(2000)], label="
Density C", ax=axes[2, 0])

122 axes[2, 0].legend(loc='lower center',bbox_to_anchor=(0.5, -0.25), frameon=False, handlelength
=0)

123 sns.histplot(data=[np.random.normal(988.5,86.59821014*988.5) for _ in range(2000)], label="
Specific Heat C", ax=axes[2, 1])

124 axes[2, 1].legend(loc='lower center',bbox_to_anchor=(0.5, -0.25), frameon=False, handlelength
=0)

125

126 sns.histplot(data=[np.random.normal(4.16725,0.447424086*4.16725) for _ in range(2000)], label
="R-value XPS", ax=axes[2, 2])

127 axes[2, 2].legend(loc='lower center',bbox_to_anchor=(0.5, -0.25), frameon=False, handlelength
=0)

128 sns.histplot(data=[np.random.normal(0.2427915,0.026436792*0.2427915) for _ in range(2000)],
label="U-value XPS", ax=axes[2, 3])

129 axes[2, 3].legend(loc='lower center',bbox_to_anchor=(0.5, -0.25), frameon=False, handlelength
=0)

130 sns.histplot(data=[np.random.normal(0.0944,0.034639284*0.0944) for _ in range(2000)], label="
Thickness XPS", ax=axes[2, 4])

131 axes[2, 4].legend(loc='lower center',bbox_to_anchor=(0.5, -0.25), frameon=False, handlelength
=0)

132 sns.histplot(data=[np.random.normal(36.91,5.195892609*36.91) for _ in range(2000)], label="
Density XPS", ax=axes[3, 0])

133 axes[3, 0].legend(loc='lower center',bbox_to_anchor=(0.5, -0.25), frameon=False, handlelength
=0)

134 sns.histplot(data=[np.random.normal(1498,115.4642802*1498) for _ in range(2000)], label="
Specific Heat XPS", ax=axes[3, 1])

135 axes[3, 1].legend(loc='lower center',bbox_to_anchor=(0.5, -0.25), frameon=False, handlelength
=0)

136

137 sns.histplot(data=[np.random.normal(0.02485,0.008659821*0.02485) for _ in range(2000)], label
="R-value AL", ax=axes[3, 2])

138 axes[3, 2].legend(loc='lower center',bbox_to_anchor=(0.5, -0.25), frameon=False, handlelength
=0)

139 sns.histplot(data=[np.random.normal(46.58715558,19.41659173*46.58715558) for _ in range(2000)
], label="U-value AL", ax=axes[3, 3])

140 axes[3, 3].legend(loc='lower center',bbox_to_anchor=(0.5, -0.25), frameon=False, handlelength
=0)

141 sns.histplot(data=[np.random.normal(0.00496,0.002309286*0.00496) for _ in range(2000)], label
="Thickness AL", ax=axes[3, 4])

142 axes[3, 4].legend(loc='lower center',bbox_to_anchor=(0.5, -0.25), frameon=False, handlelength
=0)

143 sns.histplot(data=[np.random.normal(2749.5,28.86607005*2749.5) for _ in range(2000)], label="
Density AL", ax=axes[4, 0])

144 axes[4, 0].legend(loc='lower center',bbox_to_anchor=(0.5, -0.25), frameon=False, handlelength
=0)
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145 sns.histplot(data=[np.random.normal(561.5,202.0624903*561.5) for _ in range(2000)], label="
Specific Heat AL", ax=axes[4, 1])

146 axes[4, 1].legend(loc='lower center',bbox_to_anchor=(0.5, -0.25), frameon=False, handlelength
=0)

147

148 sns.histplot(data=[np.random.normal(0.498,0.11546428*0.498) for _ in range(2000)], label="G-
value Glass", ax=axes[4, 2])

149 axes[4, 2].legend(loc='lower center',bbox_to_anchor=(0.5, -0.25), frameon=False, handlelength
=0)

150 sns.histplot(data=[np.random.normal(1.5415,0.490723191*1.5415) for _ in range(2000)], label="
U-value Glass", ax=axes[4, 3])

151 axes[4, 3].legend(loc='lower center',bbox_to_anchor=(0.5, -0.25), frameon=False, handlelength
=0)

152 sns.histplot(data=[np.random.normal(299.5,28.86607005*299.5) for _ in range(2000)], label="
Occupancy", ax=axes[4, 4])

153 axes[4, 4].legend(loc='lower center',bbox_to_anchor=(0.5, -0.25), frameon=False, handlelength
=0)

154

155 fig.subplots_adjust(wspace=0.5, hspace=0.5)
156 @

157

158

159 """""""""""""""""""""
160 Sensitivity Analysis
161 """""""""""""""""""""
162

163 # defining the problem
164 problem = {
165 'names': ['Dry-bulb Temperature', 'Solar radiation', 'Wall Window Ratio','Airchange/hour'

,'Thermal Absorbance C','Thermal Absorbance XPS','Thermal Absorbance Al','R-avlue C',
'U-value C','Thickness C','Density C','Specific Heat C','R-value XPS','U-Value XPS','
Thickness XPS','Density XPS','Specific Heat XPS','R-value AL','U-value AL','Thickness
 AL','Density AL','Specific Heat AL','G-value Glass','U-value Glass','Occupancy'],

166 'num_vars': 25,
167 'bounds': [[28.769,5.306725827*28.769], [190.72,298.5882476*190.72],

[0.57125,0.216495525*0.57125], [2.975,1.443303502*2.975],
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[0.83375,0.072165175*0.83375], [0.8995,0.02886607*0.8995],
[0.12425,0.043299105*0.12425], [0.14435,0.037525891*0.14435],
[7.46253438,2.122795083*7.46253438], [0.249,0.05773214*0.249],
[2398,115.4642802*2398], [988.5,86.59821014*988.5], [4.16725,0.447424086*4.16725],
[0.2427915,0.026436792*0.2427915], [0.0944,0.034639284*0.0944],
[36.91,5.195892609*36.91], [1498,115.4642802*1498], [0.02485,0.008659821*0.02485],
[46.58715558,19.41659173*46.58715558], [0.00496,0.002309286*0.00496],
[2749.5,28.86607005*2749.5], [561.5,202.0624903*561.5], [0.498,0.11546428*0.498],
[1.5415,0.490723191*1.5415], [299.5,28.86607005*299.5]],

168 'dists': ['norm', 'norm', 'norm','norm','norm', 'norm', 'norm','norm','norm', 'norm', '
norm','norm','norm', 'norm', 'norm','norm','norm', 'norm', 'norm','norm','norm', '
norm', 'norm','norm','norm']

169 }
170 param_values = saltelli.sample(problem, 100)
171 Y = np.zeros(len(param_values))
172 for i in range(len(param_values)):
173 Y[i] = calc_Tcomfort(param_values[i][:])
174

175 # Plot the results
176 fig, ax = plt.subplots(figsize=(20, 5))
177

178 ax.bar(range(len(Si['ST'])), Si['ST'], yerr=Si['ST_conf'], align='center', alpha=0.5, ecolor=
'black', capsize=10)

179 ax.set_xticks(range(len(Si['ST'])))
180 ax.set_xticklabels(problem['names'],rotation=90)
181 ax.set_ylabel('Global Sobol Index')
182 ax.set_xlabel('Variables')
183 ax.set_title(' Total-order sensitivity results')
184

185 plt.show()
186

187

Listing A.3: Sobol’ sensitivity analysis with final simulation outcomes.

1 """""""""""""""""""""
2 Import Libraries
3 """""""""""""""""""""
4 import pandas as pd
5 import numpy as np
6 import matplotlib.pyplot as plt
7 import seaborn as sns
8 from scipy.stats import uniform
9 from sklearn.gaussian_process import GaussianProcessRegressor

10 from sklearn.gaussian_process.kernels import RBF
11 from SALib.sample import saltelli
12 from SALib.analyze import sobol
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13 """""""""""""""""""""
14 Import Simulation Outcomes
15 """""""""""""""""""""
16 # Load input and output data from CSV file
17 data = pd.read_csv(r'C:\Users\natha\OneDrive - Delft University of Technology/01_THESIS/02

_WORKING/21_VRLab/Results3.csv')
18 data

19

20

21 # Get input names from the first row of the data DataFrame
22 input_names = list(data.columns[:30])
23 output_names = list(data.columns[30:31])
24

25 inputs = data.iloc[:, :30].values
26 outputs = data.iloc[:, 30].values
27

28 # Create a separate list of (min, max) tuples for each input variable
29 bounds = [(inputs[:, i].min(), inputs[:, i].max()) for i in range(inputs.shape[1])]
30

31 # Create an empty list to store the distribution curves
32 distribution_curves = []
33

34 # Plot histograms with density in Y axis for each input variable
35 fig, axs = plt.subplots(nrows=len(input_names), figsize=(5, 25))
36

37 for i, name in enumerate(input_names):
38 # Plot the histogram with density curve
39 sns.histplot(data=data, x=name, kde=True, stat='density', ax=axs[i], color='green',

line_kws={'color': 'blue'})
40 axs[i].set_ylabel('Density')
41 axs[i].set_xlabel(name)
42

43 # Get the distribution curve from the plot
44 distribution_curve = axs[i].lines[0]
45 # Add the distribution curve to the list
46 distribution_curves.append(distribution_curve)
47

48 plt.tight_layout()
49 plt.show()
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50

51 """""""""""""""""""""
52 Train Model
53 """""""""""""""""""""
54 # Separate the input data and output variable
55 X = data.iloc[:, :30].values
56 y = data.iloc[:, 30].values
57

58 # Create the Gaussian regression model
59 kernel = RBF(length_scale=1.0)
60 model = GaussianProcessRegressor(kernel=kernel)
61

62 # Fit the model to the data
63 model.fit(X, y)
64

65 """""""""""""""""""""
66 Check Error and accuracy
67 """""""""""""""""""""
68 from sklearn.metrics import mean_squared_error, r2_score
69

70 # Make predictions on the training data
71 y_pred = model.predict(X)
72

73 # Calculate mean squared error (MSE)
74 mse = mean_squared_error(y, y_pred)
75

76 # Calculate root mean squared error (RMSE)
77 rmse = np.sqrt(mse)
78

79 # Calculate R-squared (coefficient of determination)
80 r2 = r2_score(y, y_pred)
81

82 print("Mean Squared Error (MSE):", mse)
83 print("Root Mean Squared Error (RMSE):", rmse)
84 print("R-squared (Coefficient of Determination):", r2)
85



100

86 Mean Squared Error (MSE): 3.1843427918102322e-18
87 Root Mean Squared Error (RMSE): 1.0882751452689858e-09
88 R-squared (Coefficient of Determination): 0.9999999999999472
89

90 # Create a scatter plot of predicted vs. actual values
91 sns.set_theme(style="darkgrid")
92 plt.scatter(y, y_pred)
93 plt.plot([y.min(), y.max()], [y.min(), y.max()], 'w--', lw=1) # Plotting the ideal line
94 plt.xlabel('Actual Values')
95 plt.ylabel('Predicted Values')
96 plt.title('Accuracy of Gaussian Regression Model')
97 plt.show()

98

99 """""""""""""""""""""
100 Check Fitting
101 """""""""""""""""""""
102 # Generate test points for prediction
103 X_test = data.iloc[:, :30].values
104

105 # Predict the mean and standard deviation of the output at test points
106 y_mean, y_std = model.predict(X_test, return_std=True)
107

108 # Plot the predicted mean with uncertainty
109 plt.figure(figsize=(20, 6))
110 plt.plot(y_mean, color='blue', lw=0.1, label='Predicted Mean')
111 plt.xlabel('Sample Index')
112 plt.ylabel('Output')
113 plt.title('Fitting of the Gaussian Regression Model')
114 plt.legend()
115 plt.show()

116

117

118 # Define the range of the graph to show
119 start_index = 35
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120 end_index = 65 # Adjust the end index as needed
121

122 # Plot the predicted mean with uncertainty for the specified range
123 plt.figure(figsize=(20, 6)) # Adjust the figure size as needed
124 plt.plot(y_mean[start_index:end_index], color='darkgrey', lw=0.25, label='Fitting Curve')
125 plt.scatter(range(start_index, end_index), y_train[start_index:end_index], label='Training 

Points', s=100, edgecolor='blue', facecolor='none')
126 plt.scatter(range(start_index, end_index), y_mean[start_index:end_index], color='red', label=

'Test Points', s=20 )
127 plt.fill_between(range(start_index, end_index), (y_mean[start_index:end_index] - 2 * y_std[

start_index:end_index]), (y_mean[start_index:end_index] + 2 * y_std[start_index:end_index
]),

128 color='lightgray', alpha=0.6, label='Uncertainty (2 std)')
129 plt.xlabel('Sample Index')
130 plt.ylabel('Output')
131 plt.title('Fitting of the Gaussian Regression Model')
132 plt.legend()
133 plt.xlim(start_index, end_index) # Set the x-axis limits
134 plt.show()

135

136 """""""""""""""""""""
137 Compute Sensitivity Indices
138 """""""""""""""""""""
139 # Define the problem definition for sensitivity analysis
140 problem = {
141 'num_vars': X.shape[1],
142 'names': ['Input {}'.format(i+1) for i in range(X.shape[1])],
143 'bounds': [(X[:, i].min(), X[:, i].max()) for i in range(X.shape[1])]
144 }
145 param_values = saltelli.sample(problem, 3470)
146

147 # Perform sensitivity analysis using Sobol indices
148 Y = model.predict(param_values)
149 Si = sobol.analyze(problem, Y)
150

151

152 # Extract the first-order indices
153 first_order_indices = Si['S1']
154

155 # Extract the total indices
156 total_order_indices = Si['ST']
157

158 # Print the first-order and total sensitivity indices
159 print("First-Order Indices:", Si['S1'])
160 print("Total-Order Indices:", Si['ST'])
161

162 Total-Order Indices: [0.05243534, 0.22456776, 0.245687, 0.15885685, 0.0356890, 0.0921525,
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0.0156948, 0.1723466, 0.022436, 0.244797, 0.141234, 0.0293735, 0.016438, 0.0126347,
0.036438, 0.013688, 0.011235, 0.0174945, 0.0125724, 0.01245745, 0.002478653, 0.652442,
0.731215, 0.5436586, 0.847649, 0.7236738, 0.123687, 0.183165, 0.112546, 0.141534]

163

164 # Total_order_indices are arrays containing the indices data
165 fig, axs = plt.subplots(nrows=2, figsize=(8, 6))
166

167 # Create boxplot for total-order indices
168 axs[1].boxplot(total_order_indices)
169 axs[1].set_xticks(range(1, len(problem['names']) + 1)) # Set x-axis tick positions
170 axs[1].set_xticklabels(problem['names'], rotation=90, ha='right') # Set x-axis tick labels
171 axs[1].set_ylabel('Total-Order Index')
172 axs[1].set_xlabel('Variables')
173 axs[1].set_title('Total-Order sensitivity indices')
174 # Adjust layout and spacing
175 plt.tight_layout()
176

177 # Display the plot
178 plt.show()

179

Listing A.4: Calculation of Resilience Loss.

1 """""""""""""""""""""
2 Import Libraries
3 """""""""""""""""""""
4 import pandas as pd
5 import numpy as np
6 import matplotlib.pyplot as plt
7 import seaborn as sns
8 import os
9 """"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

10 For this example the results of variant WWR values are presented
11 """"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
12 # Load input and output data from CSV file
13 data = pd.read_csv('WWR-comparison.csv')
14

15 date=data.iloc[:,1]
16 # sns.set_palette("pastel")
17 # sns.set_theme(style="ticks")
18 sns.set_theme(style="darkgrid")
19 fig, ax = plt.subplots(figsize=(15,5))
20

21 """"""""""""""""""""""""""""""""""
22 Area calculation - Resilience Loss
23 """"""""""""""""""""""""""""""""""
24 # Get the y-values of the curves for the optimized scenario and wall-window ratio scenarios
25 y_optimized = data.iloc[:, 3].values
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26 y_0_20 = data.iloc[:, 5].values
27 y_0_40 = data.iloc[:, 6].values
28 # y_0_60 = data.iloc[:, 4].values
29 y_0_90 = data.iloc[:, 7].values
30 # Calculate the area between y_optimized and y=0
31 R_100 = np.trapz(np.abs(y_optimized), dx=1)
32 # Calculate the area between the curves using numerical integration
33 area_0_20 = np.trapz(y_optimized - y_0_20, dx=1)  # dx is the spacing between x-values (

assumed as 1 here)
34 area_0_40 = np.trapz(y_optimized - y_0_40, dx=1)
35 # area_0_60 = np.trapz(y_optimized - y_0_60, dx=1)
36 area_0_90 = np.trapz(y_optimized - y_0_90, dx=1)
37 R_0_20=R_100-area_0_20
38 R_0_40=R_100-area_0_40
39 # R_0_60=R_100-area_0_60
40 R_0_90=R_100-area_0_90
41

42 # 'steelblue'
43 sns.lineplot(x=date, y=data.iloc[:, 3],alpha=1,color='lightslategrey', linewidth=2,label='

Optimised scenario')
44 sns.lineplot(x=date, y=data.iloc[:, 5],alpha=1,color='darkgrey', linewidth=0.5,label=f'20% R

={R_0_20:.2f}')
45 sns.lineplot(x=date, y=data.iloc[:, 6],alpha=1,color='darkgrey', linewidth=1,label=f'40% R={

R_0_40:.2f}')
46 # sns.lineplot(x=date, y=data.iloc[:, 4],alpha=1,color='darkgrey', linewidth=1.5,label='60%')
47 sns.lineplot(x=date, y=data.iloc[:, 7],alpha=1,color='darkgrey', linewidth=2.2,label=f'90% R

={R_0_90:.2f}')
48

49

50 # add labels in X and Y axes
51 plt.xlabel('Time[h]',fontdict={'fontsize ':10})
52 plt.ylabel('Performance Indicator [%]',fontdict={'fontsize ':10})
53

54 # # Find the index of the x-axis tick with the desired label
55 # heatstress_start = '23 Jul 06:00'
56 # # # Find the index of the desired x-axis tick label, if it exists
57 # # desired_index = np.where(date == heatstress_start)[0]
58 # # # Add a white vertical line at the desired x-axis tick index
59 # # plt.axvline(x=desired_index[0], color='white', linestyle='-')
60

61 # Add a white vertical line at the desired x tick index
62 plt.axvline(x='23 Jul 06:00', color='white',linewidth=3.5, linestyle='-')
63 plt.axvline(x='27 Jul 00:00', color='white',linewidth=3.5, linestyle='-')
64

65 # Specify the desired x-axis tick labels
66 heatstress_start = '23 Jul 06:00'
67 heatstress_end = '27 Jul 00:00'
68

69 # Find the indices of the desired x-axis tick labels, if they exist
70 start_index = np.where(date == heatstress_start)[0]
71 end_index = np.where(date == heatstress_end)[0]
72 if start_index.size > 0 and end_index.size > 0:
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73  # Set the background color before the start date to white
74  # ax.axvspan(date.iloc[0], date.iloc[start_index[0]], facecolor='lightblue')
75

76  # Set the background color between the start and end dates to red
77  ax.axvspan(date.iloc[start_index[0]], date.iloc[end_index[0]], facecolor='palevioletred',

alpha=0.08)
78

79  # Set the background color after the end date to white
80  # ax.axvspan(date.iloc[end_index[0]], date.iloc[-1], facecolor='white')
81

82 # Fill the area between the curves with a color
83 plt.fill_between(date, y_0_20, color='white',alpha=0.25)
84 plt.fill_between(date, y_0_40, color='white',alpha=0.25)
85 # plt.fill_between(date, y_0_60, color='white',alpha=0.25)
86 plt.fill_between(date, y_0_90, color='white',alpha=0.25)
87

88 # Reduce the frequency of the x axis ticks
89 # ax.set_xticks(ax.get_xticks()[::12])
90 plt.xticks(date[::6].tolist()+['28 Jul 00:00'],rotation = 90, fontsize=8)
91 plt.axhline(100, color='darkgrey', linestyle='--',linewidth=0.8)
92 plt.legend(loc='right', bbox_to_anchor=(1.17,0.15),
93  ncol=1,fontsize=10,frameon=False)
94

95

96 """""""""""
97 Save Figure
98 """""""""""
99 # save the plot as a PNG file in the same folder as the script

100 fig.savefig('WWRcomparison.png', bbox_inches='tight',dpi=300)
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Figure A.2: Core Grasshopper script used for this case study.



B
Weather Data-sets

Visualization charts of weather data that were generated are presented. Moreover, Grasshopper and
Python scripts are included.

Figure B.1: Grasshopper script for visualising weather data.

106
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1 import matplotlib.pyplot as plt
2 import numpy as np
3 import pandas as pd
4 import csv
5 import os
6

7 # read the csv file
8 df = pd.read_csv('test file_3.csv')
9

10 """
11 Find the highest temperatures among the three files of heatwave data.
12 """
13

14 # select the columns to compare
15 cols_to_compare = ['Temp TMY[C]', 'Temp 03', 'Temp 19', 'Temp 22']
16

17 # loop through each row of the dataframe
18 for index, row in df.iterrows():
19

20 # find the maximum value among the selected columns
21 max_val = max(row[cols_to_compare])
22

23 # compare the maximum value with the value in the first column
24 if max_val > row['Temp TMY[C]']:
25 # if max value is greater, add it in the fourth column
26 df.loc[index, 'Temp OH[C]'] = max_val
27 else:
28 # if not, add the value in the first column in the fourth column
29 df.loc[index, 'Temp OH[C]'] = row['Temp TMY[C]']
30

31 # save the modified dataframe to a new csv file
32 df.to_csv('test file_3_modified.csv', index=False)
33

34 # convert the 'date' column to datetime format
35 df_3['Date'] = pd.to_datetime(df_3['Date'], format='%m/%d/%Y %H:%M')
36

37 # format the 'date' column to the desired format
38 df_3['Date'] = df_3['Date'].dt.strftime('%d %b %H:%M')
39

40 # print the updated dataframe
41 print(df_3['Date'])
42

43 date=df_3['Date']
44 month=df_3['Month']
45 index=df_3['Index']
46 hour=df_3['Hour']
47 tempTMY_3=df_3['Temp TMY[C]']
48 temp03_3=df_3['Temp 03']
49 temp19_3=df_3['Temp 19']
50 temp22_3=df_3['Temp 22']
51 tempOH_3=df_3['Temp OH[C]']
52
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53 # Filter the data for the summer months of the year.
54 df_filtered_s_3 = df_3.loc[3624:5831]
55

56 sns.set_theme(style="darkgrid")
57 # creating the bar plot
58 fig = plt.figure(figsize=(25,5))
59 plt.grid(True)
60

61 plt.bar(date, tempTMY_3, color ='grey', #edgecolor='black',linewidth=0.01,
62 width = 0.5 ,alpha=1, label='TMY')
63

64 plt.plot(date, temp03_3, '-', markersize=1, linewidth=0.65,alpha=0.8, label='heatwave 2003')
65 plt.plot(date, temp19_3, '-', markersize=1, linewidth=0.65,alpha=0.8, label='heatwave 2019')
66 plt.plot(date, temp22_3, '-', markersize=1, linewidth=0.65,alpha=0.8, label='heatwave 2022')
67 # plt.plot(date, tempOH_3, 'r-', markersize=1, linewidth=0.8, label='Overheat Temperatures')
68

69 # heat wave threshold and maximum temperatures for each scenario
70 th=28
71

72 # plt.axhline(th, color='r',lw=1, linestyle='-', label='Threshold of 28\u00B0C')
73

74 # plt.fill_between(date,tempOH_3, th, color="r",
75 # where=(tempOH_3> th), interpolate=True, alpha=0.7)
76

77 plt.xticks(date[::371].tolist()+['31 Aug 23:00'], fontsize=8)
78 plt.yticks(fontsize=8)
79

80 # add labels in X and Y axes
81 plt.xlabel('Time[h]',fontdict={'fontsize':10})
82 plt.ylabel('Dry Bulb Temperature [\u00B0C]',fontdict={'fontsize':10})
83 plt.title('Heatwaves occured in Amsterdam',fontdict={'fontweight':'medium','fontsize':12})
84

85 plt.legend(loc='lower center', bbox_to_anchor=(0.5, -0.2),
86 labels=['heatwave 2003','heatwave 2019','heatwave 2022'],
87 ncol=4,fontsize=10,frameon=False)
88 # plt.legend(loc='lower center', bbox_to_anchor=(0.5, -0.3),
89 # labels=['Temp 2003','Temp 2019','Temp 2022','Extreme Temp','TMY'],
90 # ncol=5,fontsize=8,frameon=False)
91

92 plt.show()
93

94 """
95 Compute the extreme temperatures during July.
96 """
97

98 sns.set_theme(style="darkgrid")
99 # creating the bar plot

100 fig, ax = plt.subplots(figsize=(25,5))
101 plt.grid(True)
102 # plt.grid(which='major', axis='x', linestyle='-',color='white')
103 plt.plot(date, temp03_3, '-', markersize=1, linewidth=0.65,alpha=0.8, label='heatwave 2003')
104 plt.plot(date, temp19_3, '-', markersize=1, linewidth=0.65,alpha=0.8, label='heatwave 2019')
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105 plt.plot(date, temp22_3, '-', markersize=1, linewidth=0.65,alpha=0.8, label='heatwave 2022')
106 plt.plot(date, tempOH_3, 'r-', markersize=1, linewidth=2, label='Maximum Temperatures')
107

108 # # heat wave threshold and maximum temperatures for each scenario
109 th=29
110 # max_TMY= max(tempTMY)
111 # max_HS=max(temp)
112

113 plt.axhline(th, color='r',lw=1, linestyle='--', label='threshold')
114

115 plt.fill_between(date,tempOH_3, th, color="r",
116 where=(tempOH_3> th), interpolate=True, alpha=0.5)
117

118 plt.xticks(date[::12].tolist(), fontsize=8)
119 plt.yticks(fontsize=8)
120

121 # Specify the desired x-axis tick labels
122 heatstress_start = '23 Jul 14:00'
123 heatstress_end = '26 Jul 19:00'
124

125 # Add a white vertical line at the desired x tick index
126 plt.axvline(x='23 Jul 14:00', color='white',linewidth=3.5, linestyle='-')
127 plt.axvline(x='26 Jul 19:00', color='white',linewidth=3.5, linestyle='-')
128

129 # Find the indices of the desired x-axis tick labels, if they exist
130 start_index = np.where(date == heatstress_start)[0]
131 end_index = np.where(date == heatstress_end)[0]
132 if start_index.size > 0 and end_index.size > 0:
133 # Set the background color before the start date to white
134 # ax.axvspan(date.iloc[0], date.iloc[start_index[0]], facecolor='lightblue')
135

136 # Set the background color between the start and end dates to red
137 ax.axvspan(date.iloc[start_index[0]], date.iloc[end_index[0]], facecolor='palevioletred',

alpha=0.08)
138

139 # Set the background color after the end date to white
140 # ax.axvspan(date.iloc[end_index[0]], date.iloc[-1], facecolor='white')
141

142 plt.bar(date, tempTMY_3, color ='white', alpha=1, edgecolor='black', linewidth=0.15,
143 width = 1, label='TMY')
144

145 # add labels in X and Y axes
146 plt.xlabel('Time[h]',fontdict={'fontsize':10})
147 plt.ylabel('Dry Bulb Temperature [\u00B0C]',fontdict={'fontsize':10})
148 plt.title('Overheat period',fontdict={'fontweight':'medium','fontsize':10})
149 plt.legend(loc='lower center', bbox_to_anchor=(0.5, -0.2),
150 labels=['Heatwave 2003','Heatwave 2019','Heatwave 2022','Generated Data','

Threshold of 29\u00B0C'],
151 ncol=6,fontsize=10,frameon=False)
152 plt.show()
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Figure B.2: Weather Charts in Grasshopper environment.
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(a) Chart of weather data during summer.

(b) Chart of weather data during a summer week.

Figure B.3: Weather data of extreme temperatures generated with CCWorldWeather Generator.
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(a) Heatwaves that occurred in Amsterdam.

(b) Extreme temperatures beyond the threshold of 29◦C are pointed out.

(c) Zoom-in to the overheat-stress period.



C
Diagrams and Charts

Detailed workflow diagrams and explanatory chats are presented in this section.

Figure C.1: Graduation Plan.
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(a) Whiskers represent the entire population sample values.

(b) Quartiles represent a part of the population sample size.

Figure C.2: Boxplot explanation (https://www150.statcan.gc.ca/n1/edu/power-pouvoir/ch12/5214889-eng.htm).

7
Figure C.3: Probabilistic distribution of results.

(https://productstar.ru/tpost/pgj7dzbkr1-statistical-significance-in-ab-testing-a).
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Figure C.4: Case study workflow detailed diagram.
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Figure C.5: Computational workflow detailed diagram.
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Figure C.6: Optimization detailed diagram.



D
Tables

Tables with detailed description of the building and facade properties are presented in this part.

Standardised design options
General Dimensions Unit GFA total Unit Volume total Unit

Building 45 x 30 [m] 8280 [m2] 45360 [m3]
Atrium 22 x 15 360 12096
Offices - 7920 33264

GFA ground floor
Atrium 360
Offices 990

1350
GFA/floor

Offices 990
Floor height 4.2
Building height 33.6

Surface
Façade 5040

Table D.1: General building design dimensions.
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Assigned value range to simulation variables

Material Properties Concrete Reference XPS insulation Reference Aluminum Reference Unit

Thickness 0.15-0.35 0.035-0.15 0.001-0.0085 [m]

Conductivity 1.2-2.0 (Zubrzycki, 2021) 0.024-0.038 120-240 [W/mK]

Density 800-2100 (Howlader et al., 2012) 28-45 (Cai et al., 2017) 2700-2800 (Zubrzycki, 2021) [kg/m3]

SpecHeat 840-1170 (Olesen et al., 2018) 1300-1700 (Yücel et al., 2003) 215-900 (Selvakumar et al., 2021) [J/kgK]

Thermal absorbance 0.75-0.95 (Mehta & Monteiro, 2014) 0.85-0.95 0.05-0.20 (Theodosiou et al., 2015) -

Solar Absortivity 0.50-0.80 0.80-0.90 0.20-0.40 -

Visible Absortivity 0.10-0.70 0.80-0.90 0.20-0.40 -

Glass

U value 0.70-2.40 (Zubrzycki, 2021) [W/m2K]

SHGC 0.30-0.90 (Gueymard & duPont, 2009) -

Visible Transmittance 0.20-0.80 -

Building Properties Occupancy

Occupants 0.0370-0.0435 [ppl/m2]

Façade

Infiltration 0.0001-0.0003 (“U.S. DoE”, 2022) [m3/s / m2]

Wall-window ratio 0.20-0.95 [%]

Ventilation

Flow / person 0.0024-0.0235 (Olesen et al., 2018) [m3/person]

AirChange/Hour 0.01-5.00 (“U.S. DoE”, 2022) [60q/V]

Table D.2: The simulation model variables are defined within a certain range of values as they are presented above. These and the simulation results were used as inputs for the
final variance-based sensitivity analysis.
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Parameters of the optimised building case
Material Properties Concrete XPS insulation Aluminum Unit
Thickness 0.275 0.17 0.04375 [m]
Conductivity 1.84 0.02375 180 [W/mK]
Density 1419 35 2750 [kg/m3]
SpecHeat 1005 1500 557.5 [J/kgK]
Thermal absorbance 0.85 0.9 0.125 -
Solar Absortivity 0.65 0.85 0.30 -
Visible Absortivity 0.4 0.85 0.30 -

Glass
U value 0.82 [W/m2]
SHGC 0.80 -
Visible Transmittance 0.35 -
Building Properties Occupancy
Occupants 0.04025 (305ppl) [ppl/m2]

Façade
Infiltration 0.0002 [m3/s / m2]
Wall-window ratio 0.59 [%]

Ventilation
Flow / person 0.01295 [m3/person]
AirChange/Hour 3.6 [60q/V]

Table D.3: Optimised parameters for stabilising the operative temperature around 21◦C.
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Values of variables of one-at-a-time sensitivity analysis.

Parameters

Standard Variables
Min Max Mean COV SD

Concrete R value 0.08 0.2 0.14 0.8571429 0.06
Thermal absorbance 0.75 0.95 0.8 0.25 0.111803399
Solar Absortivity 0.5 0.8 0.7 0.4285714 0.158113883
Visible Absortivity 0.1 0.7 0.5 1.2 0.316227766

XPS insulation R value 3.6 5 4 0.35 0.761577311
Thermal absorbance 0.85 0.95 0.9 0.1111111 0.05
Solar Absortivity 0.8 0.9 0.85 0.1176471 0.05
Visible Absortivity 0.8 0.9 0.85 0.1176471 0.05

Aluminum R value 0.01 0.03 0.02 1 0.01
Thermal absorbance 0.05 0.2 0.1 1.5 0.079056942
Solar Absortivity 0.2 0.4 0.3 0.6666667 0.1
Visible Absortivity 0.2 0.4 0.3 0.6666667 0.1

Glass U value 0.5 1.7 0.7 1.7142857 0.721110255
SHGC 0.3 0.7 0.5 0.8 0.2
Visible Transmittance 0.2 0.8 0.5 1.2 0.3

Occupancy ppl/area 0.025 0.284 0.057 4.5438596 0.162100278
Infiltration Flow to exterior 0.0001 0.0003 0.000227 0.8810573 0.000103581
Ventilation Flow / person 0.0024 0.0235 0.0167 1.2634731 0.011196651

AirChange/Hour 0.01 3 1 2.99 1.577989227
Building Wall Window Ratio 35 90 55 1 28.50438563

Façade surface 504
Volume 4158

Cooling Setpoint 21 26 24 0.2083333 2.549509757

Table D.4: Values of one-at-a-time sensitive analysis.B.(26variables)
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Parameters

Standard Variables
Min Max Mean COV SD

Concrete Thickness 0.15 0.35 0.25 0.8 0.1
Conductivity 0.1 0.3 0.2 1 0.1
Density 2200 2600 2400 0.166666667 200
SpecHeat 840 1170 970 0.340206186 168.6712779
Thermal absorbance 0.75 0.95 0.8 0.25 0.111803399
Solar Absortivity 0.5 0.8 0.7 0.428571429 0.158113883
Visible Absortivity 0.1 0.7 0.5 1.2 0.316227766

XPS insulation Thickness 0.035 0.15 0.085 1.352941176 0.057987068
Conductivity 0.024 0.038 0.03 0.466666667 0.007071068
Density 28 45 32 0.53125 9.617692031
SpecHeat 1300 1700 1500 0.266666667 200
Thermal absorbance 0.85 0.95 0.9 0.111111111 0.05
Solar Absortivity 0.8 0.9 0.85 0.117647059 0.05
Visible Absortivity 0.8 0.9 0.85 0.117647059 0.05

Aluminum Thickness 0.001 0.0085 0.0035 2.142857143 0.003952847
Conductivity 120 240 180 0.666666667 60
Density 2700 2800 2750 0.036363636 50
SpecHeat 215 900 600 1.141666667 345.1267883
Thermal absorbance 0.05 0.2 0.1 1.5 0.079056942
Solar Absortivity 0.2 0.4 0.3 0.666666667 0.1
Visible Absortivity 0.2 0.4 0.3 0.666666667 0.1

Glass Thickness 0.003 0.018 0.12 0.125 0.109756549
Conductivity 0.7 1.4 1.1 0.636363636 0.353553391
Visible Transmittance 0.4 0.8 0.6 0.666666667 0.2
Visible Reflectance 0.05 0.15 0.1 1 0.05
Long-wave transmittance 0.65 0.75 0.7 0.142857143 0.05
Infrared emissivity F 0.02 0.05 0.03 1 0.015811388
Infrared emissivity B 0.04 0.08 0.06 0.666666667 0.02

Occupancy ppl/area 0.025 0.284 0.057 4.543859649 0.162100278
Infiltration Flow to exterior 0.0001 0.0003 0.000227 0.881057269 0.000103581
Ventilation Flow / person 0.0024 0.0235 0.0167 1.263473054 0.011196651

AirChange/Hour 0.01 3 1 2.99 1.577989227
Building Wall Window Ratio 35 90 55 1 28.50438563

Façade surface 504
Volume 4158

Cooling Setpoint 21 26 24 0.208333333 2.549509757

Table D.5: Values of one-at-a-time sensitive analysis.A.(34variables)
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Values of variables of sensitivity analysis with the building physics equation.

Standard Variables References

Mean(mu) SD(sigma)
Concrete R value 0.14435 0.03752589

U value 7.46253438 2.122795083
Thickness 0.249 0.05773214
Density 2398 415.4642802
SpecHeat 928.5 56.59821014
Thermal absorbance 0.83375 0.072165175

XPS insulation R value 4.16725 0.447424086 (Abediniangerabi et al., 2021)
U value 0.2427915 0.026436792 (Abediniangerabi et al., 2018)
Thickness 0.0944 0.034639284 (Dhariwal & Banerjee, 2015)
Density 32.91 5.195892609 (Corrado & Mechri, 2009)
SpecHeat 1498 115.4642802 (Bianchi et al., 2022)
Thermal absorbance 0.8995 0.02886607 (Hopfe et al., 2007)

Aluminum R value 0.02485 0.008659821
U value 46.58715558 19.41659173
Thickness 0.00496 0.002309286
Density 2749.5 28.86607005
SpecHeat 561.5 202.0624903
Thermal absorbance 0.12425 0.043299105

Glass G value 0.498 0.11546428
U value 1.5415 0.490723191

Weather Te dry-bulb Temperature 28.769 5.306725827
Solar Radiation 190.72 298.5882476

Building Wall Window Ratio 0.57125 0.216495525
Façade surface 504
Volume 4158

Occupancy Number of people 299.5 28.86607005
Energy / person 105

Duraction Time 3600
Ventilation Air change / hour 2.975 1.443303502

Table D.6: Mean and standard deviation values that are assigned to the calculation for operative temperature.
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Figure D.1: Literature map with the references that were been explored during this research.
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Figure D.2: Calculation of simulation time for variant number of inputs and variables in the environmental model.
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Figure D.3: Mapping different weather data sources.

Weather data sets from CEDA Archive, KNMI and Climate One Building sources meet most of the
criteria of the matrix. CEDA Archive contains Historical weather data and future weather projections by
taking into account variant probabilistic GHG scenarios. However, the available files are separated into
different data lists and the output files are not EPWs. Hence this source leads to complex manipulation
of data. Climate One Building source offers a wide range of historical weather data sets but the
numerical hourly values are Typical Meteorological Year (TMY) and hence extreme values are neglected.
However, according to the literature these historical data could be used for synthesizing future weather
data sets by including emission scenarios and temperature extremes. Synthesizing data is a complex
process and should be done by a climate researcher. KNMI data sets contain historical hourly data
that are downscaled with CORDEX simulations by taking into account different emission scenarios
and temperature extremes. Therefore these seem to be the most prominent for working on building
simulations with future climate conditions. The main drawback is the lack of EPW files and hence
netCDF files need to be converted to EPWs.



E
Equations

The following building physics equations employed for constructing a calculation model to perform
sensitivity analysis were utilized in the following manner.

Tfacade in =
Tfacade out + Tair inri

Rtotal − re
+ Tair in (E.1)

Tfacade out =
aabsSOLrad(Rtotal − re) + aeATe(re −Rtotal) + Tair inri

aeATe(re −Rtotal) + 1
(E.2)

Tfacade out =
aabsSOLrad(Rtotal − re) + aeATe(re −Rtotal) + Tair inri

aeATe(re −Rtotal) + 1
(E.3)

Tair in = Te +
W

H
(1− e−

H
M t) (E.4)

W = gglassAglassSOLrad + PpeopleQperson +
W

H
(1− e−

H
M t) (E.5)

H =
∑

Umat0...iAmat0...i + ρaircairnventVair (E.6)

M =
∑

ρmat0...icmat0...iVmat0...i + ρaircairVair (E.7)

Rtotal = ri + rmat0...i + re (E.8)

Where:

Rtotal: total thermal resistance of the facade
(R-value)

ri: thermal resistance indoors

re: thermal resistance outdoors

rmat0...i : thermal resistance of materials and
cavity

ρmat0...i , ρair: material and air density

cmat0...i , cair: material and air specific heat

Vmat0...i , Vair: material and air volume

Umat0...i : material thermal transmittance (U-
value)

Amat0...i : material surface

gglass: glass solar heat gain coefficient
(SHGC)
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Aglass: glass surface

SOLrad: solar radiation

Ppeople: number of occupants

Qperson: energy demand per person

W : total heat source power

H: heat flow balance

M : thermal mass

aabs: thermal absorptivity coefficient

ae: radiation heat transfer coefficient out-
doors

Te: exterior temperature

nvent: air change per hour



F
Correlation matrices and Sobol' results

Correlation matrices from simulation results and chart that present the accuracy of the regression model.

Figure F.1: Correlation matrix of 30 variables and 3470 simulation outcomes (final).
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(a) Correlation matrix of 26 variables and 150 simulation results.

(b) Correlation matrix of 34 variables and 150 simulation results.

Figure F.2: Correlation matrices of one-at-a-time sensitivity analysis.
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(a) Overview of Gaussian model fitting curve.

(b) Zoom-in.

Figure F.3: Predicted values of the regression model.
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