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Abstract 

Solar sailing is a spacecraft propulsion method relying solely on solar radiation pressure to provide thrust and is 

therefore propellantless by nature. Although it represents a practical and promising propulsion system particularly 

suited for heliocentric flight regimes, near-term sailcraft missions will remain Earth-bound due to the current 

technology readiness level. This paper aims to show the suitability of solar sailing for planetocentric applications for 

future Earth-bound solar-sail missions. In Earth orbit, the sailcraft is subjected to perturbations absent or negligible in 

heliocentric flight, including the effect of eclipses, non-spherical gravity and aerodynamic drag. The magnitude of 

these perturbations can be comparable to, or even exceed that of solar radiation pressure and their effect on the solar-

sail dynamics should be investigated to ensure the sailcraft’s transfer capabilities and controllability. This paper does 

so by including the gravitational and aerodynamic perturbations in the optimal control problem. From this formulation, 

steering laws can be derived to optimally change individual orbital elements. These newly derived steering laws form 

an extension to the laws found by McInnes for unperturbed solar-sail Earth-bound motion. By accounting for the 

perturbations in the derivation of the steering laws, their effect can be exploited by the sailcraft to achieve orbits 

otherwise unreachable. The improved maneuverability will be quantified based on the established increase of the 

targeted orbital element. A range of different starting orbits will be considered to characterize how the perturbations 

affect the solar-sail maneuvering capabilities in different orbital regimes. As demonstration of the real need for this 

investigation, NASA’s Advanced Composite Solar Sail System (ACS3) mission will be considered as real-case 

scenario. This mission is scheduled for launch in mid-2022 and may benefit from the steering laws derived in this 

paper to proof the maneuverability of solar sails in Earth orbit. 

Keywords: solar sail, trajectory optimization, steering law, Earth-bound, aerodynamic drag, ACS3 mission 

 

1. Introduction 

The usage of solar sails as main propulsion system for 

spaceflight applications is an idea that was first 

investigated at the beginning of the last century and has 

since drawn increasingly more attention worldwide [1]. 

The research interest in solar sailing, initially within the 

scientific community and later also within space 

agencies, is mainly driven by its propellantless nature. In 

the last decades many studies on solar sailing 

demonstrated its applicability to a wide variety of 

mission scenarios, ranging from interplanetary and inter-

stellar missions to planet-centered ones [2]. Analyses of 

solar-sail interplanetary and deep-space trajectories have 

clearly shown the mission-enabling potential of solar 

sails and, in particular, the promising thrusting 

capabilities when approaching the inner Solar System, 

where solar radiation pressure (SRP) is particularly 

strong and an improved sailcraft maneuverability is 

achieved [2,3]. While the majority of research works 

indeed focused on interplanetary solar-sail mission 

applications, most solar-sail missions launched to date 

have flown solely in low Earth orbit (LEO). Their 

purpose was to either show the feasibility of solar-sail de-

orbiting (e.g., NASA's NanoSail-D2 mission [4]), the 

successful control of SRP as propulsive means, or the 

advancements in sail manufacturing and deployment 

capabilities (e.g., The Planetary Society’s LightSail 1 and 

LightSail 2 [5,6]). In a similar fashion, other near-future 

solar-sail missions – such as NASA’s Advanced 

Composite Solar Sail System (ACS3) mission – are also 

expected to be launched in LEO and act as sail 

technology and orbit control demonstrators [7].  

Although solar-sail technology demonstrators have 

been flown mostly in LEO, thus far the research 

conducted on planetocentric solar-sail orbital dynamics 

is limited. Most of the studies on the topic are based on 

the solar-sail control laws first devised by McInnes [1], 

valid for simplistic, perfectly-reflecting solar sails with 

either unperturbed two-body problem (2BP) dynamics or 

gravitational perturbations only. Applications of such 

control laws range from the analysis of planetocentric 

solar-sail trajectories [8] to the study of Earth-escape 

strategies [9]. When considering also non-gravitational 

perturbations in the analysis of Earth-bound solar-sail 

trajectories an increased degree of complexity is 

achieved, which stems from the highly nonlinear 

dynamics to be considered. Indeed, perturbing 

accelerations such as the planetary radiation pressure and 

aerodynamic accelerations can achieve magnitudes 

comparable to – or even greater than – the SRP 

acceleration, therefore making the dynamics deviate 

substantially from the ones of the 2BP with ideal SRP 
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acceleration. As a consequence, results found with the 

latter dynamics have limited applicability in the analysis 

of high-fidelity solar-sail trajectories. In addition, the 

resulting highly nonlinear dynamical models considering  

the effects of planetary radiation pressure and/or 

aerodynamics significantly complicate the computation 

of optimal steering laws. Preliminary studies on 

perturbed, Earth-bound sailcraft trajectories have been 

proposed only in small numbers, with particular focus on 

the analysis of the coupled effects of SRP and planetary 

radiation pressure for Earth-centered orbits [10] and 

studies on SRP and aerodynamics-based optimal control 

laws for orbit raising and maneuvering [11,12,13]. 

However, due to the complexity of finding such steering 

laws in a highly perturbed environment, the methods and 

results proposed are valid only under simplifying 

assumptions (e.g., on the orbit shape and its orientation 

with respect to the Sun’s position) and for orbit raising 

and inclination change steering laws only.  

This paper proposes a novel technique to efficiently 

and accurately optimize Earth-bound solar-sail 

trajectories in the presence of SRP, gravitational 

perturbations, and aerodynamic drag. Unlike all other 

methods employed to date to solve this optimization 

problem, the one proposed here can be used for any 

steering law and applied to any orbital regime. This first-

of-its-kind technique is based on the idea of pre-solving 

the optimization problem for a wide set of conditions and 

to interpolate the optimal solutions found during the 

trajectory propagation. In this work, this optimization 

technique is described in its entirety, with focus on its 

accuracy and limited runtime. NASA's upcoming ACS3 

mission is taken as a specific and realistic test case. The 

ACS3 mission will be launched into a 715 km altitude 

Sun-synchronous orbit. The results in this paper will 

demonstrate the sailcraft's ability to change its orbital 

altitude and inclination. However, also more generic 

analyses on applicable steering laws and orbital altitudes 

are provided, though limited to Sun-synchronous orbits. 

This class of orbits is selected to reduce the design space, 

justified by the fact that this class is often used for Earth-

centered scientific missions. Nevertheless, the designed 

novel optimization method presented in this work is 

applicable to any steering law and orbital regime. Hence, 

this paper significantly contributes to the body of 

knowledge on optimal solar-sail controls laws in the 

near-Earth environment.  

 

2. Dynamical Model  

In this section the dynamical model used throughout 

this paper is presented. First, different reference frames 

and coordinate systems are defined and subsequently the 

sailcraft equations of motion (EoM) are given.  

 

2.1 Reference Frames and Coordinate Systems 

In the following sections, different reference frames 

and coordinate systems are presented to conveniently 

express the sailcraft dynamics and optimization problem 

under investigation. 

 

2.1.1 Earth-centered Inertial Reference Frame 

The Earth-centered inertial (ECI) reference frame is 

the frame in which the sailcraft EoM are propagated. This 

Cartesian frame is indicated by 𝑂𝐼(𝒙𝐼 , �̂�𝐼 , �̂�𝐼)  and is 

centered in the Earth’s center of mass, with the 𝒙𝐼-axis 

pointing towards the mean vernal equinox at January 1st, 

2000, the �̂�𝐼 -axis pointing perpendicular to the mean 

equatorial plane at January 1st, 2000 (towards the 

Northern hemisphere), and the �̂�𝐼 -axis completes the 

right-handed frame.  

 

2.1.2 Sunlight Reference Frame 

The sunlight reference frame is a sailcraft-centered 

frame indicated by 𝑂𝑆(𝒙𝑆, �̂�𝑆, �̂�𝑆) and illustrated in Fig. 

1. The 𝒙𝑆 -axis points in the Sun-to-sailcraft direction 

(i.e., parallel to the direction of sunlight), �̂�, �̂�𝑆 = �̂�𝐼 × �̂�, 

and the �̂�𝑆-axis completes the right-handed frame. Since 

a flat solar-sail model is considered in this work, the 

sailcraft orientation is uniquely determined by the sail 

normal direction, �̂�, which can be defined by two attitude 

angles: the cone angle 𝛼, defined as the angle between 

the direction of sunlight, �̂�, and the sail normal direction, 

�̂�, and the clock angle 𝛿, measured from the �̂�𝑆 direction 

to the projection of the sail normal onto the (�̂�𝑆, �̂�𝑆) plane 

(see Fig. 1). Commonly, only one side of the solar sail 

can be exposed to direct sunlight. Hence, in this paper it 

is assumed that the sail normal never has a component 

pointing towards the Sun’s hemisphere, i.e., 𝛼 ∈ [0, 𝜋/2] 
and 𝛿 ∈ [0,2𝜋]. The sail normal expressed in the sunlight 

frame, �̂�𝑆, is then found as: 

�̂�𝑆 = cos 𝛼 𝒙𝑆 + sin 𝛼 sin 𝛿 �̂�𝑆 + sin 𝛼 cos 𝛿 �̂�𝑆 (1) 
Fig. 1. Sailcraft normal direction and attitude angles in 

the sunlight reference frame. 
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2.1.3 Velocity Reference Frame 

The velocity reference frame 𝑂𝑉(𝒙𝑉 , �̂�𝑉 , �̂�𝑉) 
illustrated in Fig. 2 is centered in the sailcraft and has its 

𝒙𝑉 -axis pointing along the direction of the inertial 

velocity, �̂�, the �̂�𝑉-axis parallel to the satellite’s orbital 

momentum vector, �̂�, and the �̂�𝑉-axis such that it forms 

a right-handed frame. In the frame 𝑂𝑉(𝒙𝑉 , �̂�𝑉 , �̂�𝑉)  the 

sail normal direction is uniquely identified by the angular 

coordinates 𝜉, 𝜒, and 𝜁 shown in Fig. 2. These variables 

are correlated as:  

cos 𝜁 = cos 𝜉  cos𝜒 (2) 

The range for each of these angles depends on the 

instantaneous position of the Sun with respect to the 

sailcraft, in agreement with the assumption that the sail 

normal direction always has a component pointing away 

from the Sun. Using these angular coordinates and Eq. 

(2), the sail normal direction expressed in the velocity 

frame, �̂�𝑉, is defined as: 

�̂�𝑉 = cos 𝜁 𝒙𝑉 + cos𝜒 sin 𝜉 �̂�𝑉 + sin 𝜒 �̂�𝑉 (3) 

Fig. 2 also illustrates the aerodynamic drag direction, �̂�, 

and lift direction, �̂�: the first is always opposite to �̂�, 

while the latter points either parallel or antiparallel to the 

projection of �̂� onto the (𝒙𝑉,�̂�𝑉) plane, as expressed by 

the following relation: 

�̂� = −sign(cos 𝜁)
cos 𝜒 sin 𝜉  �̂�𝑉 + sin𝜒 �̂�𝑉
‖cos 𝜒 sin 𝜉  �̂�𝑉 + sin𝜒 �̂�𝑉‖

 (4) 

In Eq. (4) the minus sign guarantees that �̂�𝑉 ∙ �̂� ≤ 0 

(which should always hold true for a flat plate), while the 

“sign” function takes into account the aerodynamic 

symmetry of the flat sail and ensures that the lift direction 

corresponding to the sail normal directions �̂� and −�̂� is 

the same. Ultimately, it is worth noting that due to the 

aerodynamic symmetry the directions �̂�, �̂�, �̂�, and �̂� all 

lie in the same plane.  

 

2.1.4 Optimization Reference Frame 

The optimization reference frame 𝑂𝑂(𝒙𝑂, �̂�𝑂, �̂�𝑂) 
depicted in Fig. 3 is centered in the sailcraft and defined 

such that its 𝒙𝑂-axis points in the drag direction, �̂�, the 

�̂�𝑂 -axis points along �̂�𝑂 = (�̂� × �̂�) , and the �̂�𝑂 -axis 

completes the right-handed frame. The angle 𝜂 ∈ [0, 𝜋] 
is measured from the drag direction to the sunlight 

direction, so that the following relation holds: 

𝜂 = cos−1(�̂� ∙ �̂�) (5) 

Within this reference frame, the sail normal direction, 

�̂�𝑂, can be expressed in a similar fashion to Eq. (1) as: 

�̂�𝑂 = cos 𝜁 𝒙𝑂 + sin 𝜁 sin 𝛾 �̂�𝑂 + sin 𝜁 cos 𝛾 �̂�𝑂 (6) 

where 𝜁 ∈ [0, 𝜋]  represents the angle between the 𝒙𝑂 

direction and the sail normal direction, �̂�, and 𝛾 ∈ [0,2𝜋] 
is the angle measured from the �̂�𝑂  direction to the 

projection of the sail normal onto the ( �̂�𝑆 , �̂�𝑆 ) plane. 

These angles can be visualized through Fig. 1 by 

substituting the sunlight frame axes, 𝒙𝑆, �̂�𝑆, and �̂�𝑆, with 

the optimization frame axes, 𝒙𝑂 ,  �̂�𝑂 , and  �̂�𝑂 , and by 

substituting the angles 𝛼 and 𝛿 with 𝜁 and 𝛾. 

 

2.2 Equations of Motion 

In this paper, the solar sail is assumed to be Earth-

bound and its motion is determined by the SRP, 

aerodynamic, and gravitational accelerations. Its EoM 

are defined in the ECI frame and take the following form: 

�̈� +
𝜇⊕
𝑟3
𝒓 = 𝒂𝑆𝑅𝑃(𝒖(𝑡)) + 𝒂𝑎𝑒𝑟𝑜(𝒖(𝑡)) + 𝒂𝐽2 

(7) 

where the dot notation is used to indicate differentiation 

with respect to time 𝑡 and 𝜇⊕ = 398600.4415 km3/s2 

is the Earth’s gravitational parameter [14]. The vectors 𝒓 

and 𝒂  represent the sailcraft position and acceleration 

vectors in the ECI frame, respectively, while 𝒖(𝑡) =
�̂�𝐼(𝑡) is the sailcraft control vector equal to the inertial 

sail normal direction. The subscripts “SRP” and “aero” 

 
Fig. 3. Optimization reference frame. 

 
Fig. 2. Sailcraft attitude angles and aerodynamic drag, 

lift, and sail normal directions in the velocity reference 

frame. 
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refer to the SRP and aerodynamic accelerations, 

respectively, while “J2” indicates the gravitational 

perturbing acceleration due to the non-spherical, oblate 

shape of the Earth, modeled through the 𝐽2  spherical 

harmonics coefficient. By providing an initial time, 𝑡0, an 

initial sailcraft state, 𝑿0 = 𝑿(𝑡0) , and the control law 

𝒖(𝑡), Eq. (7) can be used to propagate the solar-sail state 

vector 𝑿(𝑡) and find the sailcraft trajectory. The above-

mentioned accelerations used to determine the EoM are 

described in more detail in the following sections. 

 

2.2.1 Solar Radiation Pressure Acceleration 

The SRP acceleration model used in this work 

assumes the solar sail to behave as a flat, perfectly 

reflecting surface. When adopting this sail model, 

hereinafter referred to as “ideal”, the SRP acceleration 

becomes a function of the sailcraft attitude only and can 

be conveniently expressed in the sail-fixed reference 

frame 𝑂𝑆 as [1]: 

𝒂𝑆𝑅𝑃,𝑆 = 𝜈𝑎𝑐 cos
2 𝛼 �̂�𝑆 (8) 

where 𝜈 ∈ [0,1] is the shadow factor and 𝑎𝑐 denotes the 

sailcraft characteristic acceleration defined as [1]:  

𝑎𝑐 = 2𝑆⊕/𝑐𝜎 (9) 

with 𝑆⊕ = 1367 W/m2  equal to the solar flux at a 

distance of 1 AU from the Sun [14], 𝑐 = 299792458 m/
s representing the speed of light [14], and 𝜎 the solar-sail 

loading parameter, equal to the ratio of the sailcraft total 

mass to its sail surface area. The shadow factor 𝜈 in Eq. 

(8) takes into account the effect of eclipses and its value 

ranges from 0 (no sunlight reaching the sail) to 1 (sail 

completely illuminated). In this paper, eclipses are 

modeled with a conical shadow model similar to the one 

presented in [15] and [16], with the only difference that 

penumbra is treated as umbra. This means that 𝜈 = 0 not 

only when the sailcraft is in the Earth’s umbra, but also 

when in penumbra, thus leading to more conservative 

results. The Earth radius considered for this conical 

shadow model is 𝑅⊕ = 6378.1363 km [14]. 
Based on Eq. (8), the expression of the SRP 

acceleration in the 𝑂𝐼  frame is:  

𝒂𝑆𝑅𝑃,𝐼 = 𝜈𝑎𝑐 cos
2 𝛼 �̂�𝐼 (10) 

with 

�̂�𝐼 = 𝑅𝑆→𝐼 ∙ �̂�𝑆 (11) 

where 𝑅𝑆→𝐼  is the rotation matrix to transform vectors 

from the 𝑂𝑆 frame to the 𝑂𝐼  frame, which depends on the 

sailcraft position and time.  

 

                                                           
* Throughout this paper, the NRLMISE-00 model is used with the index of the solar radio flux at 10.7 cm and the index of planetary 

geomagnetic activity taken from the Marshall Space Flight Center’s archived forecast of January 2021, for a percentile value of 50: 

https://www.nasa.gov/msfcsolar/archivedforecast (accessed September 30th, 2021). 

2.2.2 Aerodynamic Acceleration 

Similar to the SRP acceleration, the aerodynamic 

acceleration is also modeled assuming the solar sail to be 

a flat plate. By making the additional assumption that the 

sailcraft velocity is much larger than the thermal velocity 

of the atmospheric particles, the hyperthermal free-

molecular flow model presented in [17] can be used to 

describe the sail aerodynamics. Such model has already 

been employed in [11] and [13] to analyze solar-sail 

trajectories in the presence of atmospheric drag and is 

based on the following expression for the aerodynamic 

acceleration in the 𝑂𝑉 frame [13]:  

𝒂𝑎𝑒𝑟𝑜,𝑉 = 𝑫 + 𝑳 = (𝐶𝐷�̂� + 𝐶𝐿�̂�) 𝜌𝑣
2 2𝜎⁄  (12) 

In Eq. (12), 𝜌 represents the atmospheric density, 𝑣 the 

magnitude of the sailcraft inertial velocity, and 𝐶𝐷 and 𝐶𝐿 

the drag and lift coefficients defined as [13]: 

𝐶𝐷 = 2[𝜎𝑇 + 𝜎𝑁𝑉𝑅|cos 𝜁| + 
(13) 

 (2 − 𝜎𝑁 − 𝜎𝑇) cos
2 𝜁] |cos 𝜁| 

𝐶𝐿 = 2[𝜎𝑁𝑉𝑅 + (14) 

 (2 − 𝜎𝑁 − 𝜎𝑇)|cos 𝜁|] |cos 𝜁|  sin 𝜁 

where 𝜎𝑁  and 𝜎𝑇  represent the normal and tangential 

momentum accommodation coefficients, respectively, 

and 𝑉𝑅  is the ratio of the atmospheric particle average 

thermal velocity to the sailcraft inertial velocity. Based 

on [18], this paper uses: 𝜎𝑁 = 𝜎𝑇 = 0.8, 𝑉𝑅 = 0.05. 

Given 𝒂𝑎𝑒𝑟𝑜,𝑉 , the expression of the aerodynamic 

acceleration in the 𝑂𝐼  frame becomes: 

𝒂𝑎𝑒𝑟𝑜 = 𝑅𝑉→𝐼 ∙ 𝒂𝑎𝑒𝑟𝑜,𝑉 (15) 

where 𝑅𝑉→𝐼  is the rotation matrix to transform vectors 

from the 𝑂𝑉 frame to the 𝑂𝐼  frame, which depends on the 

sailcraft position and velocity. 

 

2.2.2.1 Atmospheric Density Model 

The atmospheric density 𝜌 used in Eq. (12) is found 

through an averaging technique based on the 

NRLMSISE-00* model available in Matlab® [19]. This 

density averaging process is adopted to decrease the 

simulation runtime at the cost of slightly reducing the 

accuracy of the results. The routine is as follows: 

 Given the initial sailcraft state, 𝑿0 = 𝑿(𝑡0) , its 

osculating Keplerian orbit is found. 

 A time interval [𝑡0, 𝑡0 + Δ𝑡] is considered, with Δ𝑡 =
𝑃/SpO, where 𝑃 is the osculating orbit’s period and 

SpO a user-provided parameter corresponding to the 

number of segments per orbit to consider. 

https://www.nasa.gov/msfcsolar/archivedforecast
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 Across the time interval, a set of evenly-spaced time 

nodes {𝑡0, 𝑡1, … , 𝑡NpS−1 = 𝑡0 + Δ𝑡} is defined and the 

corresponding states along the osculating orbit 

{𝑿0, 𝑿1 , … , 𝑿NpS−1} are found. Note that the number 

of nodes per orbit segment, NpS, is a user-provided 

parameter. 

 The atmospheric density is computed through the 

NRLMSISE-00 model for each state of the set 

{𝑿0, 𝑿1 , … , 𝑿NpS−1} , hence resulting in a set of 

densities {𝜌0, 𝜌1, … , 𝜌NpS−1}  which are averaged to 

give �̅�. 

 The averaged value �̅� is used as constant atmospheric 

density to numerically propagate the perturbed 

dynamics from 𝑿(𝑡0) to 𝑿(𝑡𝑁). 
 The process is repeated until the end of the 

simulation, taking 𝑡𝑁  and 𝑿(𝑡𝑁) as 𝑡0  and 𝑿0  of the 

next time interval. 

 

2.2.3 𝐽2 Gravitational Acceleration 

The gravitational acceleration due to the Earth’s 𝐽2 

effect in the 𝑂𝐼  frame is given by:  

𝒂𝐽2 = −
3

2

𝑅⊕
2

𝑟5
𝐽2𝜇⊕ ∙ 

(16) 
 

[(𝑥𝐼 �̂�𝐼 + 𝑦𝐼 �̂�𝐼) (1 − 5
𝑧𝐼
2

𝑟2
) + 𝑧 (3 − 5

𝑧𝐼
2

𝑟2
) �̂�𝐼] 

where 𝑥𝐼 , 𝑦𝐼 , and 𝑧𝐼 are the Cartesian coordinates of the 

sailcraft in the ECI frame and 𝐽2 = 1.082626925639 ∙
10−3 is the Earth’s 𝐽2 gravitational field constant of the 

JGM-2 geopotential model [14]. 

 

3. Optimal Control Problem 

The optimal control problem considered in the 

present study builds on the one first investigated by 

McInnes in [1], where control laws to maximize the 

instantaneous rate of change of any given orbital element 

were found under unperturbed, ideal solar-sail dynamics. 

Hereinafter the same maximization problem will be 

considered, however also taking into account 

aerodynamic and gravitational perturbations in the 

equations of motion and control. 

By referring to the generic orbital element as œ, the 

optimization problem at hand can be defined as finding 

the optimal control vector 𝒖(𝑡) = �̂�(𝑡) maximizing the 

cost function 𝐽(𝒖(𝑡)) = œ̇(𝒖(𝑡))  at any given time, 

subject to the dynamics described in Section 2. When the 

rate of change of a given orbital element is expressed 

through a Lagrange planetary equation, the cost function 

assumes the following form [1]:  

𝐽(𝒖(𝑡)) = œ̇(𝒖(𝑡)) = 𝒂(𝒖(𝑡)) ∙ 𝝀 (17) 

where 𝒂 is the sum of the accelerations on the right-hand 

side of Eq. (7) and 𝝀 is the so-called primer vector, which 

points along the optimal thrusting direction �̂�  that 

maximizes the orbital element’s rate of change. It is 

worth noting that although the 𝐽2  acceleration, 𝒂𝐽2 , 

influences the orbital element rate of change (and 

therefore the cost function 𝐽(𝒖)), it does not explicitly 

depend on the control vector 𝒖 , as shown in Eq. (7). 

Consequently, the problem of maximizing 𝐽(𝒖) at any 

time is independent of the 𝐽2  acceleration. For this 

reason, hereinafter only the SRP and aerodynamic 

accelerations are considered in the control optimization 

process, whereas the 𝐽2 acceleration is taken into account 

only in the propagation of the EoM. 

To solve this optimization problem, three different 

approaches are employed in this paper: an SRP-based 

optimization, an aerodynamic-based optimization, and a 

full-dynamics optimization. These optimization 

techniques are discussed in the following sections and 

can be applied to find the optimal sail orientation at a 

specific instant in time. However, during the sailcraft 

trajectory propagation such algorithms can be applied at 

each integration time step, hence yielding a sequence 

(history) of optimal sail normal directions representing 

the optimal steering law sought. 

 

3.1 Solar Radiation Pressure-based Optimization 

The SRP-based optimization method is employed 

when the SRP acceleration is the predominant 

acceleration (e.g., for high-altitude orbits). In this case, 

the aerodynamic acceleration is considered in the 

propagation of the EoM but neglected in the optimization 

process, therefore largely simplifying the optimal control 

computation. Under this assumption, the optimal control 

history 𝒖∗(𝑡)  is found using the method devised by 

McInnes in [1], where an analytical formulation to 

compute locally optimal steering laws is presented. This 

method is based on the idea of considering all the 

achievable SRP accelerations – which form a so-called  

acceleration envelope (AE) surface – and finding the 

optimal sail attitude corresponding to the acceleration 

vector with the largest component in the direction �̂� . 

Because of the simple expression of the SRP acceleration 

in the sunlight frame (see Eq. (8)), the optimal cone and 

clock angles of the sail normal, 𝛼∗  and 𝛿∗ , can be 

computed analytically at each moment in time and, from 

these, the corresponding optimal control history, 𝒖∗(𝑡) =
�̂�𝐼
∗(𝑡), can be found. 

 

3.2 Aerodynamic-based Optimization 

The aerodynamic-based optimization method is 

employed when the aerodynamic acceleration is the 

predominant acceleration (e.g., for low-altitude orbits or 

when in eclipse). In this case, the SRP acceleration is 

considered in the propagation of the EoM but neglected 

in the optimization process. Similar to the method 

described in Section 3.1, the optimal sail attitude is found 

by imposing that the aerodynamic acceleration 

component along �̂� is maximized. However, because of 
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the complex expression of the aerodynamic AE surface, 

the sail optimal attitude angles are found using a root-

finding method. Since the aerodynamic AE surface is 

symmetric with respect to the 𝒙𝑽 -axis direction, 

hereinafter the section of this surface with a plane passing 

through the 𝒙𝑽 -axis will be considered, which 

corresponds to an AE curve. An illustration of this curve 

in the (𝑳,̂ �̂�) plane is given in Fig. 4, where the variables 

used to describe the optimization procedure are also 

shown. By using Eq. (12), the angle 𝜓 measured from the 

direction �̂�  to the acceleration vector 𝒂𝑎𝑒𝑟𝑜  can be 

defined as: 

𝜓 = tan−1(‖𝑳‖ ‖𝑫‖⁄ ) = tan−1(𝐶𝐿 𝐶𝐷⁄ ) (18) 

As shown by Eq. (13) and (14), 𝐶𝐿 and 𝐶𝐷 are functions 

of 𝜁, and therefore so is 𝜓. Its maximum value, 𝜓𝑚𝑎𝑥 , 

can then be found by imposing: 

𝑑𝜓

𝑑𝜁
= 0   ⟺    

𝑑

𝑑𝜁
(
𝐶𝐿
𝐶𝐷
) =

𝐶𝐿
′𝐶𝐷 − 𝐶𝐿𝐶𝐷

′

𝐶𝐷
2 = 0 

(19) 

In Eq. (19), 𝐶𝐷
′  and 𝐶𝐿

′  are the derivatives of 𝐶𝐷  and 𝐶𝐿 

with respect to 𝜁: 

𝐶𝐷
′ = −2𝜎𝑇 sin 𝜁 − 

(20) 
 [2𝜎𝑁𝑉𝑅 + 3(2 − 𝜎𝑁 − 𝜎𝑇) cos 𝜁] sin 2𝜁 

𝐶𝐿
′ = [(2 − 𝜎𝑁 − 𝜎𝑇) cos 𝜁] 2⁄ + 2𝜎𝑁𝑉𝑅 cos 2𝜁 + (21) 

 3[(2 − 𝜎𝑁 − 𝜎𝑇) cos 3𝜁] 2⁄  

Equation (19) was solved using Matlab®’s root-finding 

function fzero with a tolerance of 10−10 rad. The angle 

𝜓𝜆 ∈ [0, 𝜋]  is measured from the direction �̂�  to the 

direction �̂� and based on its value two different scenarios 

can be defined. If 𝜓𝑚𝑎𝑥 < 𝜓𝜆 − 𝜋/2, the aerodynamic 

acceleration vector with the largest component along �̂� is 

a zero vector, i.e., the sail is oriented parallel to the wind 

flow with an optimal attitude angle of 𝜁∗ = 𝜋/2. Instead, 

if 𝜓𝑚𝑎𝑥 ≥ 𝜓𝜆 − 𝜋/2, a non-trivial solution for 𝜁∗ exists, 

which can be found by imposing that the direction 

perpendicular to �̂� and the tangent to the AE curve, �̂�, are 

aligned, see Fig. 4. This condition is equivalent to: 

𝜀 − (𝜓𝜆 − 𝜋 2⁄ ) = 0 (22) 

where 𝜀 ∈ [−𝜋/2, 𝜋/2] is a function of 𝜁 and is defined 

as the angle measured from the direction �̂�  to the 

direction �̂�:  

𝜀 = tan−1(𝐶𝐿
′ 𝐶𝐷′⁄ ) (23) 

Note that 𝜀 is illustrated in Fig. 4 with the subscript “(-)” 

to indicate the direction in which this angle decreases. 

The non-trivial solution 𝜁∗ can be found by solving Eq. 

(22) with a root-finding method (again, in the present 

work, Matlab®’s fzero function was used with a tolerance 

of 10−10 rad). After computing the angle 𝜁∗, the optimal 

direction of the normal vector in the ECI frame, �̂�𝐼
∗, can 

be found by considering the aerodynamic symmetry of 

the problem, for which �̂� always lies in the (�̂�, �̂�) plane 

and is coplanar with �̂�  and �̂� . Given the latter two 

directions expressed in the ECI frame, �̂�𝐼  and �̂�𝐼 , it is 

possible to compute the optimal direction �̂�𝐼
∗ in the (�̂�, �̂�) 

plane at an angular distance 𝜁∗ from �̂�𝐼 as: 

�̂�𝐼
∗ = cos(−𝜁∗) �̂�𝐼 + sin(−𝜁

∗) [
�̂�𝐼 × �̂�

‖�̂�𝐼 × �̂�‖
× �̂�𝐼] 

(24) 

where �̂� = �̂�𝐼 if 𝜁
∗ ≠ 𝜋/2. If 𝜁∗ = 𝜋/2, no lift or drag is 

generated by the sail and any direction of �̂� 

perpendicular to �̂�  is optimal. Here, the optimal sail 

normal direction, �̂�𝐼
∗ , is arbitrarily chosen to be the 

direction with the smallest possible angle with the 

sailcraft inertial position unit vector, �̂�, such that �̂� = �̂� 

in Eq. (24).  

The sail normal direction found through Eq. (24) does 

not take into account the direction of sunlight, �̂�. As such, 

 

Fig. 4. Envelope curve of aerodynamic acceleration in the (𝑳,̂ �̂�) plane and variables used to find the optimal 

aerodynamic acceleration. 
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it is possible that �̂�𝐼
∗ has a component in the direction of 

the Sun, meaning that the cone angle 𝛼 is not defined and 

the SRP acceleration cannot be computed (see Sections 

2.1.2 and 2.2.1). This issue can be solved by considering 

the aerodynamic symmetry of the sail, for which the same 

aerodynamic acceleration is found for both �̂�𝐼
∗ and -�̂�𝐼

∗. 

Based on this, a final check on the direction �̂�𝐼
∗ can be 

implemented. If �̂�𝐼
∗ ∙ �̂� ≥ 0, �̂�𝐼

∗ has no component in the 

direction of the Sun and therefore it can be taken as the 

final optimal sail normal direction. Conversely, if �̂�𝐼
∗ ∙

�̂� < 0, �̂�𝐼
∗  is switched in sign and −�̂�𝐼

∗  is taken as the 

optimal sail normal vector. 

 

3.3 Full-Dynamics Optimization  

The full-dynamics optimization technique is used 

when the aerodynamic and SRP accelerations are of 

comparable magnitudes. Similar to the procedures used 

in Sections 3.1 and 3.2, an AE surface is defined and the 

sail orientation maximizing the acceleration component 

along �̂� is sought. However, when considering both SRP 

and aerodynamics the set of all possible sail accelerations 

forms a highly-nonlinear envelope surface whose shape 

is time variant. Indeed, while the SRP-based and 

aerodynamic-based AE surfaces presented in Sections 

3.1 and 3.2 are shape-invariant when expressed in the 

sunlight and velocity reference frames, respectively, the 

shape of the full-dynamics AE surface depends on the 

relative orientation of the instantaneous �̂�  and �̂� 

directions, as well as the relative magnitude of the SRP 

characteristic acceleration, 𝑎𝑐 , compared to the 

maximum aerodynamic acceleration, 𝑎𝑎𝑒𝑟𝑜,𝑚𝑎𝑥 . In 

addition, the envelope surface can also be self-

intersecting, meaning that different sail attitudes can 

result in the same total acceleration vector. An example 

of such a surface is given for �̂� ⊥ �̂� and 𝑎𝑐 = 𝑎𝑎𝑒𝑟𝑜,𝑚𝑎𝑥 

in Fig. 5, where the corresponding SRP and aerodynamic 

AE surfaces are also shown for comparison. Because of 

the complex, time-variant shape of the AE surface and to 

the best of the authors’ knowledge, no analytical solution 

to the optimization problem exists and therefore a 

numerical approach was employed instead. The basic 

idea behind the proposed approach is to first find the 

global optimal solution of the cost function 𝐽(𝒖) for a 

large variety of scenarios and subsequently interpolate 

these pre-computed optimal solutions at each time step in 

the trajectory propagation to retrieve an interpolated 

global optimum. In this way, the attitude optimization 

computation is completely separated from the trajectory 

propagation, thereby allowing the latter to be performed 

with low computational effort. Hereinafter this 

optimization method is referred to as the “Pre-run 

Optimization and in-run INTerpolation” (POINT) 

method. The two phases of the method, the optimization 

and interpolation phases, are described in detail in 

Sections 3.3.1 and 3.3.2. 

 

3.3.1 Pre-run Optimization Phase 

The pre-run optimization phase of the POINT method 

aims to solve the optimization problem for a large set of 

different scenarios, i.e., for a large variety of 

combinations of AE shapes and �̂� directions. To do so, 

the optimization problem is parametrized by four 

parameters: 𝑅, 𝜂, 𝜃, and 𝜙. 

 The coefficient 𝑅  represents the ratio of the 

maximum SRP acceleration to the maximum 

aerodynamic acceleration and its value affects the AE 

shape. This coefficient indicates to what extent the 

AE shape is similar to the AE shape of the pure SRP 

acceleration or pure aerodynamic acceleration. For 

example, for increasing values of 𝑅 , the SRP 

acceleration increasingly dominates the aerodynamic 

acceleration, meaning that the AE shape becomes 

more similar to the SRP one. On the other hand, for 

𝑅 values close to zero, the aerodynamic acceleration 

is dominant so that the AE shape tends to resemble 

 
Fig. 5. SRP and aerodynamic AE surfaces (left) and full dynamics AE surface (right) in the 𝑂𝑂 frame, for �̂� = �̂�𝑂 

and 𝑎𝑐 = 𝑎𝑎𝑒𝑟𝑜,𝑚𝑎𝑥. 
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the AE shape of the pure aerodynamic case. By taking 

into account that the maximum SRP acceleration is 

equal to the solar-sail characteristic acceleration and 

that the maximum aerodynamic acceleration is 

achieved for 𝜁 = 0  (i.e., when the sail is 

perpendicular to the wind flow), 𝑅 can be expressed 

using Eq. (9), (12), (13), and (14) as:  

𝑅 =
𝑎𝑐

𝑎𝑎𝑒𝑟𝑜,𝑚𝑎𝑥
=
𝑆⊕
𝑐
 
2

𝜌𝑣2 
 

1

[2 − 𝜎𝑁(1 − 𝑉𝑅)]
 (25) 

Since both the SRP and aerodynamic accelerations 

are inversely proportional to the sail loading 

parameter 𝜎 , 𝑅  is independent of 𝜎 . This result 

implies that the AE shape – and thus the entire 

optimization process – is independent of the sail 

loading parameter. 

 The parameter 𝜂  determines the relative orientation 

of the SRP and aerodynamic AE surfaces and its 

definition is given in Section 2.1.4. Together with 𝑅, 

it uniquely defines the AE shape of the full-dynamics 

case, which results from combining the two separate 

(i.e., pure SRP and pure aerodynamic) AE surfaces. 

An example is given in Fig. 5, where the combination 

of the AE surfaces in the left plot generates the one in 

the right plot. 

 The angles 𝜃  and 𝜙  represent the spherical 

coordinates of the �̂� direction in the 𝑂𝑂  frame (see 

Fig. 3). 

Each set {𝑅, 𝜂, 𝜃, 𝜙}  represents a specific optimization 

problem which can be solved numerically to find the 

corresponding optimal sail attitude. To achieve this, in 

this paper a grid search is performed over the angles 𝜁 

and 𝛾  of the sail normal direction in the optimization 

frame. To explore the entire parameter space, a four-

dimensional grid of discrete values for 𝑅, 𝜂, 𝜃, and 𝜙 is 

created across the following domains: 𝑅 ∈ [𝑅𝑚𝑖𝑛 , 𝑅𝑚𝑎𝑥], 
𝜂 ∈ [0, 𝜋] , 𝜃 ∈ [0,2𝜋] , and 𝜙 ∈ [0, 𝜋/2] . 𝑅𝑚𝑖𝑛  and 

𝑅𝑚𝑎𝑥 are two threshold parameters determining when the 

full dynamics optimization should be used instead of the 

aerodynamic-based optimization (𝑅 > 𝑅𝑚𝑖𝑛) or the SRP-

based optimization (𝑅 < 𝑅𝑚𝑎𝑥). Their values have been 

determined based on thorough testing and are specified 

in Section 4. Finally, it is worth noting that only positive 

values of 𝜙 are considered because of the symmetry of 

the AE surface with respect to the (𝒙𝑂, �̂�𝑂) plane. Due to 

this symmetry, each pair of angles ±𝜙  corresponds to 

optimal normal directions in the 𝑂𝑂 frame, �̂�𝑂
∗ , that differ 

only in the sign of the component along the �̂�𝑂 direction, 

i.e., �̂�𝑂
∗ = [𝑛𝑂,𝑥

∗ , 𝑛𝑂,𝑦
∗ , ±𝑛𝑂,𝑧

∗ ]
𝑇
. Therefore, whenever a �̂� 

direction with 𝜙 < 0 is encountered during the trajectory 

propagation, the optimal normal direction �̂�𝑂
∗  computed 

for −𝜙  (> 0 ) in the pre-run optimization phase is 

                                                           
† In the normalization the Cartesian components of �̂� are considered instead of 𝜃 and 𝜙 to avoid discontinuities in the interpolation. 

retrieved and the sign of its 𝑛𝑂,𝑧
∗ -component is changed 

to obtain the optimal attitude for 𝜙 < 0. 

 

3.3.2 In-run Interpolation Phase 

To describe the interpolation process adopted in the 

POINT method, each set of variables {𝑅, 𝜂, 𝜃, 𝜙} will be 

represented as a point 𝑺 = [𝑆1, 𝑆2, 𝑆3, 𝑆4]
𝑇 =

[𝑅, 𝜂, 𝜃, 𝜙]𝑇 in a four-dimensional vector space. In this 

way, each grid point computed in the pre-run 

optimization phase is represented by 𝑺 ∈ ℝ4x1, while the 

set of all grid points is Σ = {𝑺1, 𝑺2, … , 𝑺𝑁} ∈ ℝ
4x𝑁, with 

𝑁 equal to the total number of grid points. 

At each time step of the trajectory propagation, 

specific values for 𝑅, 𝜂, 𝜃, and 𝜙 are encountered which 

identify a target point 𝑺𝑡 = [𝑆𝑡,1, 𝑆𝑡,2, 𝑆𝑡,3, 𝑆𝑡,4]
𝑇

. In 

general, 𝑺𝑡  will be different from any of the points 𝑺 

available in Σ. However, it is always possible to find a 

subset of points Σ𝑁𝐵𝐻 ⊂ Σ close to 𝑺𝑡  that enclose the 

region of space where 𝑺𝑡  is located. This region is 

obtained by considering, for each component 𝑆𝑡,𝑘 , the 

two closest neighboring values in the pre-optimized grid, 

𝑆𝑡,𝑘
−  and 𝑆𝑡,𝑘

+ , such that 𝑆𝑡,𝑘 ∈ [𝑆𝑡,𝑘
− , 𝑆𝑡,𝑘

+ ] , with 𝑘 =

1,… ,4 . This results in 24 = 16  possible combinations 

representing the coordinates of the points in Σ𝑁𝐵𝐻 ∈
ℝ4x16: 

Σ𝑁𝐵𝐻 =

{
 
 
 
 

 
 
 
 

 

𝑺𝑁𝐵𝐻,1   = [𝑆𝑡,1
− , 𝑆𝑡,2

− , 𝑆𝑡,3
− , 𝑆𝑡,4

− ]
𝑇

𝑺𝑁𝐵𝐻,2   = [𝑆𝑡,1
− , 𝑆𝑡,2

− , 𝑆𝑡,3
− , 𝑆𝑡,4

+ ]
𝑇

𝑺𝑁𝐵𝐻,3   = [𝑆𝑡,1
− , 𝑆𝑡,2

− , 𝑆𝑡,3
+ , 𝑆𝑡,4

− ]
𝑇

𝑺𝑁𝐵𝐻,4   = [𝑆𝑡,1
− , 𝑆𝑡,2

− , 𝑆𝑡,3
+ , 𝑆𝑡,4

+ ]
𝑇

𝑺𝑁𝐵𝐻,5   = [𝑆𝑡,1
− , 𝑆𝑡,2

+ , 𝑆𝑡,3
− , 𝑆𝑡,4

− ]
𝑇

⋮

𝑺𝑁𝐵𝐻,16 = [𝑆𝑡,1
+ , 𝑆𝑡,2

+ , 𝑆𝑡,3
+ , 𝑆𝑡,4

+ ]
𝑇

 

}
 
 
 
 

 
 
 
 

 
(26) 

Since each point in Σ𝑁𝐵𝐻 corresponds to an optimal sail 

orientation computed in the pre-run optimization phase, 

a set Γ𝑁𝐵𝐻 ∈ ℝ
3x16  of 16 optimal normal directions in 

frame 𝑂𝑂 , �̂�𝑂
∗ , is also given. The interpolation of these 

normal directions is performed through a normalized 

inverse distance weighted (IDW) technique [20] and 

applied to the problem at hand as follows. Before the 

interpolation is performed, 𝑺𝑡 and the points in Σ𝑁𝐵𝐻  are 

normalized †  to restrict the domain of their four 

components to [0,1] , thus resulting in the normalized 

target point �̅�𝑡  and neighboring set Σ̅𝑁𝐵𝐻 =
{�̅�𝑁𝐵𝐻,1, … , �̅�𝑁𝐵𝐻,16} . From these, the vector 𝛠 =
[ϱ1, … , ϱ16]

𝑇 is computed which contains the inverses of 

the Euclidean distances between �̅�𝑡  and 

�̅�𝑁𝐵𝐻,1, … , �̅�𝑁𝐵𝐻,16. The inverse distance weight vector, 

𝒘, is also calculated as:  
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𝒘 = [𝑤1 , … , 𝑤16]
𝑇 = (𝛠 ∘ 𝛠) (𝛠T ∙ 𝛠)⁄  (27) 

where ∘ indicates the element-wise Hadamard product of 

two vectors [21]. Finally, the optimal normal directions 

in Γ𝑁𝐵𝐻 , i.e., �̂�𝑂,𝑁𝐵𝐻,1
∗ , … , �̂�𝑂,𝑁𝐵𝐻,16

∗ , are used to define 

the following matrix 𝒩:  

𝒩 = [
�̂�𝑂,𝑁𝐵𝐻,1
∗ 𝑇

⋮

�̂�𝑂,𝑁𝐵𝐻,16
∗ 𝑇

] (28) 

which is then used to find the final interpolated normal 

direction, �̂�𝑂
∗ , as:  

�̂�𝑂
∗ = (𝒩 ∙ 𝒘) ‖𝒩 ∙ 𝒘‖⁄  (29) 

 

3.3.2.1 Handling of Local Optima 

As the neighboring points 𝑺𝑁𝐵𝐻,1, … , 𝑺𝑁𝐵𝐻,16 

consider different values for 𝑅 , 𝜂 , 𝜃 , and 𝜙 , they 

represent optimization problems with slightly different 

AE shapes and �̂� directions. However, due to the high 

nonlinearity of the problem, in certain cases these 

different AE shapes and primer vector’s directions make 

the optimal normal directions �̂�𝑂,𝑁𝐵𝐻,1
∗ , … , �̂�𝑂,𝑁𝐵𝐻,16

∗  

differ substantially. Such scenarios take place when the 

target point considered, 𝑺𝑡 , corresponds to an 

optimization problem with optimal regions of similar 

degrees of optimality. In these cases, the cost function 

values associated to these regions slightly change when 

moving between neighboring points of 𝑺𝑡, hence making 

the global optimum shift from one optimal region to 

another depending on the specific neighboring point 

considered. As a consequence, using IDW interpolation 

on the normal directions �̂�𝑂,𝑁𝐵𝐻,1
∗ , … , �̂�𝑂,𝑁𝐵𝐻,16

∗  can 

result in an interpolated solution �̂�𝑂
∗  that is far from the 

true optimum. 

To avoid this issue, the POINT method makes use of 

an algorithm that aims to identify such optimal regions 

before the interpolation. In this way, it is possible to 

consider each optimal region separately in the 

interpolation phase and compute different optimal 

solutions �̂�𝑂
∗ , which contain the global optimum. The 

algorithm is based on the idea that different optimal 

regions of the solution space correspond to optimal sail 

normal vectors pointing in different directions. In light of 

this, it is possible to identify the number of local optima 

of the optimization problem represented by 𝑺𝑡  by 

analyzing the angular distances between the optimal 

normal directions of Γ𝑁𝐵𝐻. This way, different subsets of 

Γ𝑁𝐵𝐻 can be defined that correspond to different clusters 

of normal directions, which in turn identify the local 

optimal regions. In this paper the cluster detection has 

been performed by means of a hierarchical clustering 

algorithm with single-linkage criterion [22]. The 

                                                           
‡ ACS3 mission data taken from personal communication with W. Keats Wilkie, NASA Langley Research Center, September 2021. 

algorithm computes the norm of the difference of each 

pair of normal directions in Γ𝑁𝐵𝐻, compares these norms 

with a threshold value, and, based on it, determines the 

number of clusters in Γ𝑁𝐵𝐻 . More specifically, in this 

paper the Matlab®’s function cluster was employed using 

a distance-based criterion and a hierarchical cluster tree 

(defined through the function linkage) built with a 

“shortest Euclidean distance” method. The value used for 

the threshold was 2 sin(𝜋/60) , corresponding to a 

minimum angle of 6 deg between normal directions of 

different clusters. This value was tuned based on the 

knowledge of the optimization problem under 

investigation, the number of grid points in Σ, and some 

trial and error. When the optimization problem is not 

characterized by multiple optimal regions, the algorithm 

returns one unique cluster that coincides with Γ𝑁𝐵𝐻 and 

therefore the interpolation routine can be performed as 

explained in the previous section. Conversely, if different 

clusters are found, for each cluster in Γ𝑁𝐵𝐻  the 

corresponding points in Σ𝑁𝐵𝐻  are taken and the 

normalization and interpolation routines are performed 

separately on each subset of Σ𝑁𝐵𝐻  to find multiple 

optimal solutions �̂�𝑂
∗ . From these, the optimal normal 

direction corresponding to the largest cost function value 

is taken as the global optimal solution. 

 

4. Validation 

In this section, two cases are discussed which aim to 

validate the POINT optimization method and show its 

accuracy, both for an orbit raising steering law and an 

inclination increase steering law. This is achieved by 

propagating one single orbit, optimizing its control with 

the POINT method, and comparing the control profile 

achieved with a reference solution. In both cases the 

ACS3 mission scenario is considered, which corresponds 

to a solar-sail characteristic acceleration of 𝑎𝐶 =
0.05 mm/s2 , a simulation start time of July 1st, 2022 

(i.e., the expected deployment date of the solar sail), and 

the following initial Keplerian elements: semi-major axis 

(SMA) 𝑎0 = 7093.1363 km , eccentricity 𝑒0 = 0 , 

inclination 𝑖0 = 98.2489 deg , right ascension of the 

ascending node Ω0 = 10.5029 deg, argument of perigee 

𝜔0 = 0 deg, and true anomaly 𝜗0 = 0 deg
‡. Note that 

these Keplerian elements identify a circular, Sun-

synchronous orbit with altitude ℎ0 = 715 km and local 

time of the ascending node (LTAN) at 6AM (dawn-dusk 

orbit). The analyses discussed in this section will not 

consider the 𝐽2  gravitational acceleration in the EoM. 

This choice is justified by the fact that the 𝐽2 acceleration 

has no secular effect on the target orbital elements 

analyzed (i.e., the SMA and inclination), but only a short-

term periodic effect. Therefore, including the 𝐽2 

acceleration would have added significant noise in the 

results. The atmospheric density is found through the 
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averaged NRLMSISE-00 model with SpO = 25  and 

NpS = 4 . Propagations of one orbital period using 

MATLAB®’s ode45 integrator are performed, with 

absolute and relative tolerances of 10−8. The reference 

solutions for both steering laws are found by performing 

a grid search at each propagation time step, with steps of 

0.01 deg  for the angles 𝛼  and 𝛿 . The POINT 

optimization method uses an optimized grid Σ where the 

components 𝑅 , 𝜂 , 𝜃 , and 𝜙  of the points 𝑺 ∈ Σ  are 

spaced with steps equal to Δ𝑅 = 1.21 and Δ𝜂 = Δ𝜃 =
Δ𝜙 = 1 deg. It should be noted that while Δ𝜂, Δ𝜃, and 

Δ𝜙  represent the differences between adjacent angular 

values of the grid, Δ𝑅 represents the ratio of consecutive 

𝑅 values. This means that given a value 𝑅𝑘 of the grid, 

the adjacent one, 𝑅𝑘+1, is found as 𝑅𝑘+1 = 𝑅𝑘 ∙ Δ𝑅. The 

acceleration ratio domains considered are 𝑅 ∈ [1/4, 50] 
and 𝑅 ∈ [1/100, 30] for the orbit raising and inclination 

increase steering laws, respectively. Finally, the grid 

search of the pre-run optimization phase of POINT was 

performed using Δ𝛾 = Δ𝜁 = 0.1 deg as angular steps. 

 

4.1 Orbit Raising 

For the orbit raising steering law, the control profiles 

of the reference solution and the POINT solution are 

given in Fig. 6. As can be appreciated from the zoomed 

plots of the cone and clock angle profiles, the POINT  

solution (in red) accurately approximates the reference 

solution (in blue). Also, from Fig. 6 it can be noted that 

instantaneous jumps in cone angle take place, both in the 

reference and POINT solutions. This is due to the 

averaging procedure of the atmospheric density model, 

which yields a step-wise variation in the density along the 

orbit and, therefore, also in the acceleration ratio. This in 

turn affects the control computation procedure, leading to 

the sudden variations in 𝛼  shown in the figure. As a 

measure of the error in optimal sail normal direction as 

computed by the POINT method, the angular 

displacement, 𝜖𝑛 , between the sail normal direction of 

the POINT method and the reference solution is 

computed at each time step. The result is displayed in Fig. 

7, where the dashed line indicates the root mean square 

(RMS) of 𝜖𝑛 , equal to 0.1742 deg. It should be noted 

that the RMS of 𝜖𝑛 depends on the angular steps Δ𝜂, Δ𝜃, 

Δ𝜙, Δ𝛾, and Δ𝜁 used in the pre-run optimization phase of 

POINT and are of comparable magnitudes, as one would 

  
Fig. 6. Orbit raising: control profile of the reference solution (blue) and POINT solution (red) over one orbital period. 

  
Fig. 7. Orbit raising: angular error between the sail 

normal directions found by the POINT method and grid 

search (blue) and RMS of the angular error over one 

orbital period (red, dashed). 
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expect when performing an interpolation. To have a 

measure of the POINT method’s accuracy, the relative 

error of the SMA increase, 𝜖Δ𝑎,𝑟𝑒𝑙 , can be considered. 

This is defined as: 

𝜖Δ𝑎,𝑟𝑒𝑙 = |(Δ𝑎 − Δ𝑎𝑟𝑒𝑓) Δ𝑎𝑟𝑒𝑓⁄ | (30) 

where Δ𝑎  and Δ𝑎𝑟𝑒𝑓  are the increases in SMA of the 

POINT and reference solutions, respectively. Its value 

after one orbital period is of 𝜖Δ𝑎,𝑟𝑒𝑙 = 2.7537 ∙ 10
−5.  

 

4.2 Inclination Increase 

The 𝛼 and 𝛿 angle profiles for the inclination steering 

laws found by the POINT method and grid search are 

given in Fig. 8. Here, it can be noted that the POINT 

solution closely resembles the reference solution. 

Nonetheless, the POINT solution manages to 

approximate the reference solution better during the first 

and last quarter of the orbit than in the middle part of the 

orbital revolution. This becomes even clearer in the 

zoomed plots of Fig. 8, as well as in Fig. 9, which 

displays the evolution of 𝜖𝑛. In particular, the latter figure 

shows that the POINT method experiences difficulties in 

finding the true optimal solution, leading to 

displacements in the sail normal direction in the order of 

some degrees. The displacements observed are due to the 

intrinsic difficulty in increasing the inclination in this 

middle part of the orbit. Indeed, within this segment of 

the orbit, every non-zero, out-of-plane acceleration 

achievable by the sail points in the opposite direction of 

�̂� and would therefore yield a negative Δ𝑖. Consequently, 

the optimal attitude is the one that minimizes the out-of-

plane acceleration to induce no change in inclination. 

However, multiple different sail attitudes lead to a Δ𝑖 
close to zero, hence making the search for the global 

optimal attitude hard for the POINT method. The relative 

error of the inclination increase, 𝜖Δ𝑖,𝑟𝑒𝑙, is defined similar 

to 𝜖Δ𝑎,𝑟𝑒𝑙  as: 

𝜖Δ𝑖,𝑟𝑒𝑙 = |(Δ𝑖 − Δ𝑖𝑟𝑒𝑓) Δ𝑖𝑟𝑒𝑓⁄ | (31) 

where Δ𝑖𝑟𝑒𝑓  and Δ𝑖  are the increases in inclination 

achieved by the reference optimal solution and by the 

POINT solution, respectively. Despite the displacements 

in the sail normal direction in the middle part of the orbit, 

the relative error achieved at the end of the propagation 

is 𝜖Δ𝑖,𝑟𝑒𝑙 = 8.4872 ∙ 10−6, which is deemed acceptable. 

  
Fig. 9. Inclination increase: angular error between the 

sail normal directions found by the POINT method and 

grid search (blue) and RMS of the angular error over 

one orbital period (red, dashed). 

 

  
Fig. 8. Inclination increase: control profile of the reference solution (blue) and POINT solution (red) over one orbital 

period. 
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5. Results and Analysis  

In this section, the POINT method will be used to 

compute the control laws to maximize the semi-major 

axis or inclination change, starting from different Earth-

centered orbits. For each of these target orbital elements, 

a parametric analysis will be performed to determine the 

achievable increase in the orbital element starting from 

different initial orbits, for different solar-sail 

characteristic accelerations, and different solar activity. 

In this way, a wide variety of scenarios is considered and 

a thorough analysis of the orbit change capabilities of 

solar sailing for Earth-bound missions is achieved. The 

characteristic accelerations to be considered vary 

between 10−2 and 10−1 mm/s2 to represent the current 

and near-future solar-sail technology. For example, the 

first solar sail launched into orbit, IKAROS, had a 

characteristic acceleration of 5.8 ∙ 10−3 mm/s2 , while 

NASA’s upcoming ACS3 and NEA Scout missions will 

achieve solar-sail characteristic accelerations of 5.0 ∙
10−2  and 6.3 ∙ 10−2 mm/s2 , respectively [23]. To 

consider a broad range of initial conditions representative 

of orbits commonly used for scientific LEO missions, the 

analyses are performed for circular, Sun-synchronous 

orbits with an LTAN at 6 AM (dawn/dusk) or 12 AM 

(noon/midnight) and altitudes ranging between 300 km 

and 1000 km. Finally, to account for the effect of solar 

activity on the atmospheric density, two different starting 

dates are considered: September 23, 2023 and September 

23, 2030, corresponding to maximum and minimum solar 

activity, respectively. It should be noted that these dates 

are chosen arbitrarily within longer-duration periods of 

solar maximum and minimum activity, and correspond to 

the autumn equinoxes, for which the Sun “orbits” in the 

Earth’s equatorial plane. Other dates within the periods 

of solar maximum/minimum can of course be considered, 

which would then correspond to slightly different 

orientations of the science orbit with respect to the Sun 

and which, therefore, would lead to slightly different 

results of the analyses. The EoM include the SRP, 

aerodynamic, and 𝐽2 accelerations and take into account 

eclipses. For each scenario, an orbit propagation of 10 

days is performed using Matlab®’s ode45 integrator, with 

absolute and relative tolerances of 10−12. The averaged 

NRLMSISE-00 atmospheric density model is used with 

SpO = 25  and NpS = 4 . Finally, the POINT 

optimization method is used with the same optimized 

grid Σ presented in Section 4. 

 

5.1 Orbit Raising 

The results of the parametric analysis performed for 

the orbit raising steering law appear in Fig. 10. The four 

plots display the increase in SMA, Δ𝑎, achieved after 10 

days for different combinations of LTAN and solar 

activity. Each plot shows 10  curves for 10  different 

values of the characteristic acceleration. The figure 

shows that, for a given LTAN, the solar activity 

determines the minimum altitude for which orbit raising 

is still possible. Conversely, the effect of a different solar 

activity on Δ𝑎 becomes negligible at high altitudes; the 

curves asymptotically tend to the same values. This is 

because the air density decreases exponentially with 

orbital altitude, reaching a point at which the 

aerodynamic drag becomes negligible and similar SMA 

increases are found even for largely different solar 

activities. Comparison of the plots for different LTAN 

values and the same solar activity shows that the effect of 

changing the LTAN from 6AM (dawn/dusk) to 12AM 

(noon/midnight) reduces the SMA increase. This is due 

to the presence of eclipses for a noon/midnight orbit, 

during which no SRP acceleration is exerted on the sail 

(no increase in SMA) and the sail is oriented parallel to 

the wind flow to minimize drag.  

The results in Fig. 10 for 𝑎𝐶 = 5.0 ∙ 10
−2 mm/s2 are 

combined in Fig. 11 to gain further insights in the ranges 

of achievable SMA increase. For example, if one 

considers a specific LTAN, the two curves for minimum 

and maximum solar activity enclose the region of 

maximum SMA increase for any solar activity. A specific 

example is given by the two marks that represent the 

ACS3 mission with a simulation start date of July 1st, 

2022. This date corresponds to an intermediate solar 

activity and, as such, the Δ𝑎  values achieved for the 

ACS3 mission lie well within the above-mentioned 

region. Alternatively, the curves for a fixed solar activity 

but with different LTANs can be considered. Since 

LTANs at 6AM and 12AM represent the orbits with the 

shortest and longest eclipsing time, respectively, any 

initial orbit with an LTAN different from 6AM or 12AM 

will show an SMA increase within the region enclosed 

by these two curves. Fig. 11 shows that the largest SMA 

increases are achieved at solar minimum and for an 

LTAN at 6AM, whereas the smallest values for Δ𝑎 are 

achieved at solar maximum and for an LTAN at 12AM. 

These two curves correspond to the overall best and 

worst orbit scenarios and for any circular, Sun-

synchronous orbit the achievable increase in SMA is 

always enclosed by these curves.  

The results in Fig. 10 and Fig. 11 can be used to 

inform the preliminary design of solar-sail LEO 

missions. In fact, although the results are given only for 

a propagation time of 10  days, the achievable SMA 

increase for longer propagation times can be retrieved 

from the same results by consulting the plots in an 

iterative fashion: consider a given initial altitude, ℎ0 , 

with an SMA increase Δ𝑎0 , then the same plot can be 

reused starting from a new altitude ℎ1 = ℎ0 + Δ𝑎0  to 

retrieve Δ𝑎1, which in turn is used to define ℎ2 and so 
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forth. At each iteration of this process the mission 

duration increases by 10 days, so that the iterations can 

be stopped until the desired mission duration is obtained. 

 

5.2 Inclination Increase 

The results of the parametric analysis for the 

inclination increase steering law appear in Fig. 12. The 

truncation of the curves at low altitude is due to a rapid 

loss in altitude when increasing the inclination under the 

effects of atmospheric drag. The orbit propagation is 

stopped when an altitude lower than 100 km is reached 

within 10 days. As can be seen, the altitude at which this 

condition occurs depends on the characteristic 

acceleration, solar activity, and LTAN. An interesting 

trend which can be appreciated in all four plots of Fig. 12 

is the steep gradient in the inclination increase for 

decreasing altitudes: when lowering the orbital altitude, 

not only the drag increases, but also the aerodynamic lift, 

which provides the out-of-plane acceleration used to 

change the inclination. At higher altitudes, no significant 

change in the inclination increase as a function of altitude 

can be observed. Conversely, a strong correlation 

between the inclination increase and the solar-sail 

characteristic acceleration can be noted. 

Similar to Fig. 11 for the orbit raising case, Fig. 13 

displays the variation in inclination increase for a 

characteristic acceleration of 𝑎𝐶 = 5 ∙ 10−2 mm/s2, for 

 

 
Fig. 10. Orbit raising steering law: SMA increase as a function of the initial altitude for different LTAN values and 

solar activities. 

 
Fig. 11. Orbit raising steering law: SMA increase for the 

orbit raising steering law with 𝑎𝐶 = 5 ∙ 10
−2 mm/s2. 
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minimum and maximum solar activities and LTANs at 

6AM and 12AM. For increasing values of ℎ0, the results 

for the solar minimum case and solar maximum case 

converge to the same values. This is because the 

atmospheric density decreases and the inclination 

increase is produced solely by the SRP acceleration, 

which is equal in both cases. Fig. 13 also shows the 

inclination increases achievable by the ACS3 mission at 

an intermediate solar activity. As can be seen, the values 

for Δ𝑖 fall slightly below or above the regions enclosed 

by the minimum and maximum solar activity. By further 

analysing these results, it was found that these 

differences are due to the different simulation start date 

of July 1st, 2022 instead of the autumn equinox. This 

results in a different orientation of the ACS3’s initial 

orbit with respect to the Sun and hence slightly different 

values for Δ𝑖.  
 

6. Conclusions  

In this paper a novel method to optimize Earth-bound 

solar-sail orbits in the presence of atmospheric drag has 

been presented and employed on a wide variety of 

scenarios. To reduce the computational effort required, 

an averaged atmospheric density model has been 

introduced. The optimal control problem has been 

analyzed thoroughly for different dynamical regimes, 

 

 
Fig. 12. Inclination increase steering law: inclination increase as a function of the initial altitude for different LTAN 

values and solar activities. 

 

 
Fig. 13. Inclination increase steering law: inclination 

increase for the orbit raising steering law with 𝑎𝐶 = 5 ∙
10−2 mm/s2. 
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namely the solar radiation pressure (SRP)-dominated 

regime, the aerodynamic drag-dominated regime, and the 

full-dynamics (SRP+drag) regime. To solve the 

optimization problem in the full-dynamics regime, the 

POINT optimization method has been introduced, which 

is based on a pre-run optimization phase and in-run 

interpolation phase. The pre-run optimization phase takes 

place before the trajectory propagation and aims to solve 

the optimal control problem for a broad range of 

scenarios, in order to store the corresponding optimal sail 

normal directions. Afterwards, the in-run interpolation of 

the optimal sail normal directions takes place at each 

integration time step during the propagation. A validation 

test has been performed to demonstrate the accuracy and 

global validity of the optimal solutions found by the 

POINT method. The method has been applied to an orbit 

raising steering law and inclination increase steering law 

on NASA’s upcoming ACS3 mission and a range of 

other circular, Sun-synchronous orbits, differing from 

each other on the local time of the ascending node, the 

altitude, and the solar-sail characteristic acceleration 

considered. The results of the analyses show that the 

minimum altitude for which orbit raising is achievable 

varies between 450 and 600 km  and strongly depends  

on the solar activity, while the local time of the ascending 

node affects the magnitude of the altitude increase. The 

inclination increase steering law proved to be unsuited 

for orbits with altitudes below 500 ÷ 650 km , as the 

sailcraft tends to de-orbit rapidly. Conversely, at high 

altitudes, increases in inclination are achievable, with 

their magnitude depending largely on the solar-sail 

characteristic acceleration. 
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