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Preface

A rigorous model based on classic electromagnetism to characterize the thermal radiation
of real ohmic media is presented in this thesis. This model explains the available energy
due to thermal agitation inside ohmic material based on Johnson’s theory of thermal noise
in electric circuits. The field is expanded in a finite number of modes (degrees of freedom
per unit of volume), which are all independent and orthogonal from each other and are
eigenvectors of Maxwell’s Equations. The minimum distance for two eigenvectors to be
independent is found as λβ/2 (where λβ is the real effective wavelength in the medium),
based on which an analytical expression of the total energy available by thermal agitation
in the finite volume is given. Integrating Poynting vectors of sources over the entire object
volume, an analytical expression to estimate the total spectral power radiated out by a real
ohmic material body is derived, which does not utilize Planck’s law of black body radiation
as an intermediary. Finally, a measurement campaign is proposed aiming at providing ac-
curate measurements of the thermal radiation from silicon samples of small dimensions in
the mm and sub-mm wave range.
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1
Introduction

1.1. Background
The universal absorption of solar energy, whether through natural processes like photo-
synthesis or artificial systems like photovoltaics, is undeniably one of the fundamental el-
ements for the very existence of our human civilization. The absorbed electromagnetic
(EM) energy by a certain medium, in the absence of other mechanisms, is then transformed
into thermal energy, resulting in the rising of the temperature of the medium. The mech-
anism of thermal emission, on the other hand, indicates the radiating EM energy from the
medium to counteract the continuous energy absorption[1]. This energy radiation is also
universal, from the thermal noises in electronic systems to the intensifying global warm-
ing. Radiometry is a field of science and engineering focused on modelling and measuring
this type of energy thermally radiated by material bodies.

The theoretical foundation of thermal radiation dates back to 1860, when Kirchhoff first
established the famous Kirchhoff’s law of thermal radiation [2], claiming the equality of ab-
sorptivity and emissivity of material bodies under thermal equilibrium. He also proposed
the idea of the black body, which is an ideal body that absorbs all the EM radiation incident
upon it. It is noteworthy that black bodies do not naturally exist and can only be artificially
synthesised. Nonetheless, the idea of the black body has become an intermediate agent to
characterize the emissivity of real bodies in this field of science ever since. Decades later,
based on thermodynamics and statistical physics, i.e. equipartition theorem, the empiri-
cally derived Rayleigh-Jeans [3], [4] law was established around the 1900s to describe the
spectral radiation of the black body. However, this model had a lethal problem in that the
brightness it predicted kept rising with respect to frequency, which contradicted the en-
ergy conservation law. Also, with the development of instrumentation, Rayleigh-Jeans law
failed to predict the experimental results of radiation of the artificially engineered black
bodies at high frequency, leading to the ultraviolet catastrophe. Groundbreakingly, Planck
[5] solved this crisis by establishing the famous Planck’s law of radiation. The brightness
of black bodies predicted by Planck’s law is shown in Figure 1.1 for various temperatures.
Instead of treating the EM radiation as a continuous quantity from a classic point of view,
he heuristically assumed that EM energy can be radiated in a discrete way. These discrete
packets of energy, called quanta by Planck and later photons by Einstein [6], set the very
basis for today’s soaring skyscraper of quantum physics.
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Figure 1.1: Planck’s law of black body brightness at different temperatures.

In 1928, Johnson [7] successfully characterised the thermal noises in electrical circuits
caused by the thermal agitation of charge carriers. His colleague Nyquist [8] demonstrated
Jonson’s discovery in a theoretical way, which was later called Fluctuation Dissipation The-
orem (FDT). Without any EM argument or experimental results, Nyquist replaced the clas-
sically derived average energy of one degree of freedom with a quantum correction term.
This noise model is generally referred to as the Johnson-Nyquist noise nowadays and is
widely used by the microwave community.

The relationship between classic Maxwell’s equations and quantum field theory has
kept puzzling electrical engineers. The first and most widely accepted tool to connect the
two fields is represented by Rytov’s current model. Based on Nyquist’s model, Rytov [9]
in 1953 first tried to model thermal radiation from an emissive perspective. He proposed
a hybrid classic-quantum model, computing the thermal radiation by solving Maxwell’s
equations with a set of impressed current sources which are forced by a quantum oscil-
lator (same as Nyquist’s correction term). However, by taking a closer look, there are two
problems with Rytov’s currents. On one side, the demonstration of this hybrid model [10]
presents some mathematical criticalities. On the other side, the entire procedure is much
less experimentally verified than one would think [11], given how long it has been accepted.
Some of these aspects will be discussed in detail in Section 2.3. Another important draw-
back of Rytov’s currents is that it was not clear how to mathematically implement them in
a simulation tool. [12] is possibly the only numerical attempt at calculating the radiation
directly from Rytov’s currents, but without presenting any experimental verification. In-
deed, the majority of work regarding emissivity in the radiometry community is achieved
by evaluating absorptivity, which is equal to emissivity after the establishment of thermal
equilibrium according to generalized Kirchhoff’s law [10].
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1.2. Motivation
Thermal noise has long been impacting the electrical engineering community, since it is
often the dominant term in the signal-to-noise ratio of communication and sensing sys-
tems. With the trend in the industry going towards higher and higher frequencies due to
the scarcity of spectrum resources, there is an interest in figuring out if the thermal radi-
ation remains well represented by Planck’s law or Rytov’s currents in the THz bands. This
is important especially because of the near availability of very sensitive, thousands of pix-
els thermal cameras in the THz range [13]–[15] that will fulfil the requirements of passive
imaging. However, the availability of such cameras does not correspond to a wealth of
information about the thermal radiation from known real material bodies kept at certain
temperatures. Actually, there are no measurements of thermal radiation from known ma-
terials at known temperatures in the sub-THz frequency range. As [11](page 1) suggests
the only strong evidence of Plank’s law in the mm-wave range is from the satellite-based
campaign, to investigate cosmic background [16]. However, by definition, we do not know
what is the radiation source of the cosmic background.

Another specific issue of interest to microelectronic engineers is the Drude model’s
impacts on the conductivities of semi-conductors, rendering their imaginary part non-
negligible already in the sub-THz range [17], where the advanced front-ends for commu-
nications and sensing are being developed. However, the impact of the Drude model on
thermal radiation has not been investigated in the literature. It is our conviction that in-
cluding the frequency-dependent properties of the Drude model for the conductivity of
the radiating materials will provide a decrease of the radiated spectral energy at frequen-
cies above the inverse of the scattering time of the free electrons. It is worth noticing that
this is not an exotic far-fetched phenomenon, but depending on the doping levels of the
materials, this frequency transition could already be occurring at 100 GHz.

Motivated by the lack of experimental evidence of thermal radiation and the prospects
of identifying a big role for Drude-like dispersion characteristics, this thesis aims to model
the thermal radiation of real material bodies electromagnetically in a rigorous way. The
model should be purely based on classic EM theory so that its consequences and termi-
nologies can be well-understood by electric engineers. Thermal radiation energy predicted
by this model should directly come from the characteristics of the ohmic material of the
real body, without the need of introducing black bodies as an intermediary reference. Af-
ter the establishment of the model, a measurement campaign should also be proposed in
order to fill the blank of thermal radiated power by real bodies at certain temperatures and
frequency bands, as well as to test the validity of our model.

1.3. Outline of the Thesis
The main part of this thesis is divided into seven chapters.

Some fundamental concepts of modern radiometry are explained in Chapter 2. First,
some radiometric quantities are introduced. Then, the hybrid classic-quantum model de-
veloped by Rytov is presented in Section 2.2. Some of its inherent problems are then dis-
cussed. Some works regarding coherence theory and radiometry are introduced in Sec-
tion 2.4, pointing out that the general assumption of incoherent sources of radiometry is
not always true.

Next, Drude model is explained in Chapter 3 as a tool to characterize the behaviour of
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plane waves interacting with ohmic media. Then, Johson-Nyquist noise caused by ther-
mally agitated electrons in electrical circuits is explained. A Norton-type and a Thevenin-
type equivalent circuit are presented and analysed.

In Chapter 4, our EM model to characterize the thermal radiation of real ohmic media
is proposed. Degrees of freedom in the EM field, each being the eigenvectors of Maxwell’s
equation and orthogonal to each other, comprise the total EM field in the emissive body.
The eigenvectors and their corresponding eigen-currents are given in an explicit way. The
total number of degrees of freedom inside a certain volume is given in Section 4.3. A
Johnson-like circuit is established in Section 4.4 to estimate the amount of energy each
of the degrees of freedom can deliver.

In the proceeding Chapter 5, two important issues are resolved. Self-impedance of
the eigenvector is derived analytically to serve as internal impedance and the load in the
Johnson-like circuit. Then, the mutual impedance of two eigenvectors is also asymptoti-
cally derived. The minimum distance for two eigenvectors to be uncoupled is found. Based
on these two findings, the total energy available within the medium is expressed analyti-
cally in Section 5.3.

Subsequently, by calculating the Poynting vectors from every independent generating
source, Chapter 6 addresses the power that actually leaves the radiating body. An analyt-
ical expression is derived and verified by numerical results as a quick tool to estimate the
spectral power radiated by a real finite ohmic body.

Based on the model introduced in previous chapters, Chapter 7 proposed an experi-
ment campaign to accurately measure the radiated power from real material bodies in the
mm and sub-mm wave range. The material selection process is introduced in Section 7.1
along with its characterization process in Section 7.2. The detectors are then introduced in
Section 7.3. A cavity on the waveguide short is designed to host the measurement samples.
Finally, possible measurement set-ups are described in Section 7.6.

Chapter 8 concludes the work of this thesis and discusses possible future works on this
project.

This thesis is supplemented by several appendices to provide some additional informa-
tion regarding each topic.



2
Basics of Radiometry

Radiometry is a school of science intended to measure incoherent radiant EM energy from
all kinds of media [1]. Some basic knowledge of radiometry is introduced and explained
in this chapter. Section 2.1 first introduces some basic radiometric quantities, including
brightness, radiation intensity, absorptivity and emissivity. Then, a hybrid classic-quantum
model proposed by Rytov in 1953 [9] explaining the thermal radiation from material objects
is presented in Section 2.2. This model proposed a set of current basis that can be used as
current sources in Maxwell’s equations. Based on this model, Kirchhoff’s radiation law can
also be generalized, which allows scientists ever since to study the emission of thermal
energy in a reciprocal way: from energy absorption. Using this reciprocity, the total power
radiated by a bulk object over a certain bandwidth can be calculated. However, Rytov’s
current falls on several problems, some of which are quite fundamental, as explained in
Section 2.3. Finally, Section 2.4 presents some work on the coherence of the field in thermal
radiating sources, which are traditionally considered as incoherent.

2.1. Radiometric Quantities
A basic quantity in radiometry is brightness B(Ω, A), also known as radiance, which repre-
sents the radiated power per unit solid angle per unit area (W sr−1m−2 for example). It is
calculated from dividing the radiation intensity I (Ω) (radiated power per unit solid angle)
by the effective area of the source normal to the radiation. In intensity I (Ω), the sources
are treated as point sources [1]. Brightness provides us with a tool to describe the radia-
tion from an extended incoherent source, which is a common assumption for sources in
radiometric applications.

Absorptivity abs is defined as the ratio of the power absorbed by the entire volume of the
object and the total power going through the surface of the object. Ideally, the absorptivity
of a black body is 1, which means all the power impinging on it will be absorbed. According
to Kirchhoff’s law of thermal radiation [2], absorptivity abs is equal to emissivity emsi after
the establishment of thermal equilibrium. Emissivity reflects how much energy is radiated
by a real body with respect to the black body under the same temperature:

emsi (T ) = B (T )

BBB (T )
, (2.1)

where B (T ) represents the brightness of the real body, BBB (T ) represents the brightness of
the black body, both under the same temperature T . The spectral brightness of the black

5
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body, considering two polarizations, is given by Planck [5] as:

B Plk
BB

(
f ,T

)= 2h f 3

c2
0

1

e
h f

kB T −1
, (2.2)

where kB is the Boltzmann constant (1.38×10−23 J · K −1), T is the temperature in Kalvin, h
is Planck constant (6.626×10−34 J · H z−1), h f indicates the energy of single photon at fre-
quency f , and c0 is the propagation speed in free space. At low frequencies, this brightness
can be approximated by Rayleigh-Jeans [3], [4] Law:

B R J
BB

(
f ,T

)= 2kB T f 2

c2
0

. (2.3)

2.2. The Hybrid Classic-Quantum Model
Rytov [9] in 1953 first extend the Johnson-Nyquist noise model (which will be explained in
detail in Section 3.2) to the thermal radiation of large dissipative systems. He proposed a
set of current densities that can be used as impressed current in Maxwell’s equations. This
is given by the conjugate correlation function of one elementary current density J⃗R (⃗ri ) and
its neighbouring element J⃗R

(⃗
r j

)
:

< J⃗R (⃗ri ) , J⃗∗R
(⃗
r j

)> = 4h f

e
h f

kB T −1
Re {σ}δ

(⃗
ri − r⃗ j

)
. (2.4)

Notice that the frequency-dependent term 4h f /(e
h f

kB T − 1) is inherited from the quantum
correction of the noise model proposed by Nyquist [8]. In (2.4), σ represents the complex
conductivity of the medium hosting these currents (see (3.3)). Here, only the real part of σ
is considered. δ

(⃗
ri − r⃗ j

)
indicates the orthogonality of these current. In other words, the

cross-correlation between any two of these neighbouring elementary currents is always
zero, no matter how they are close to each other physically. The problem of this counter-
intuitive postulation will be analysed in the next section.

Based on the proposed current (2.4), Rytov also generalized [9], [10], [18], [19] the Kirch-
hoff’s law, stating that the local absorptivity and emissivity is equal after the establishment
of thermal equilibrium. The absorptivity per unit of solid angle Ω and per frequency can
be written as:

abs
(
Ω, f

)= Pabs
(
Ω, f , V olume

)
Pi n

(
Ω, f , Ar ea

) , (2.5)

with Pi n
(
Ω, f , Ar ea

)
indicates the power going through the surface area of the object and

Pabs
(
Ω, f , V olume

)
indicates the power absorbed by the volume of the object, per unit

of solid angle Ω and per frequency. Based on generalized Kirchhoff’s law, we can have
abs

(
Ω, f

)= emi s
(
Ω, f

)
, as shown in Figure 2.1.

Bekefi [20] first introduced Rytov’s work to the Western scientific community in a clear
manner. He pointed out that, although in theory using Rytov’s current and Maxwell’s equa-
tions, together with appropriate boundary conditions applied on the surface of the object,
leads to a complete solution of the thermal emission of the object by calculating all the
Poynting vectors, the calculation itself is rather cumbersome for that one should sum up
the contributions from all the elementary currents. Bekefi suggested using the absorptivity
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Ω Ω
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Figure 2.1: Generalized Kirchhoff’s law: Reciprocity between local absorptivity and emissivity.

of the object to calculate the emissivity, which is the reciprocity property given by general-
ized Kirchhoff’s law. Using spectral brightness given by Planck in (2.2), the spectral power
radiated by material objects can be written analytically as:

PPlk
(

f
)= h f 3

c2
0

1

e
h f

kB T −1

[
1−|Γ|2][

1−e−2kαL
]
·S A, (2.6)

where L represents the total path the Poynting vector traversed in the object, |Γ|2 refers to
the power reflection coefficient, kα is the imaginary part of the propagation constant (see
(3.11)), and S A refers to the surface area of the radiating object. Then the power radiated
over a certain bandwidth BW can be represented as:

P = [
1−|Γ|2][

1−e−2kαL
]
·S A

∫
BW

h f 3

c2
0

1

e
h f

kB T −1
d f . (2.7)

The details of this derivation process are given in Appendix A.

2.3. The Problems of Rytov’s Current
Thanks to the reciprocity between the absorptivity and emissivity given by generalized
Kirchhoff’s law, scientists over the years, to name a few [21]–[23], have bypassed the prob-
lem caused by Rytov’s ill-posted currents. Only recently, [12] has attempted to use Rytov’s
current in emission mode to evaluate the power radiated outside an ideal silicon cube, with
a relative permittivity of εr =

(
12− j

)
and no dispersion. The result was later verified in our

group [24] using the tool of volumetric method of moments [25]. In [12], the finite body
(the bulk cube with side length L) has been discretized into N small cubes, each with side
length ∆, as shown in Figure 2.2. Rytov’s current is flowing volumetrically over the entire
small cube. The total current inside the body can be represented by the summation of all
volumetric currents as:

J⃗Rtot (⃗r ) = lim
∆→0

N∑
i=1

I i
R

1

∆2
r ect

(⃗
r − r⃗i ,∆3) p̂i , (2.8)

where the current amplitude I i
R is expressed as:

I i
R =

√√√√ 4h f

e
h f

kB T −1
Re {σ}∆e jφi . (2.9)
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This volumetric current is essentially the same as the elementary current given in (2.4) and
also obeys the orthogonality proposed by Rytov [10], i.e. each of the elementary volumetric
currents is uncoupled from its neighbouring element. p̂i in (2.8) represents the polariza-
tion of the current and r⃗i represent the centre of the i th elementary cube. The term 1

∆2 is to
compensate for the 3D volumetric distribution of r ect

(⃗
r − r⃗i ,∆3

)
, to ensure the unity of the

current amplitude I i
R . Re {σ} in (2.9) can also be represented by the frequency-dependent

conductivity of Drude’s model, which will be introduced in Chapter 3. Notice that the phase
term e jφi in (2.9) can be considered as random, consistent with the assumption of orthog-
onality and can be summed up when we consider the energy it radiates out. However, as
suggested by the limitation ∆ → 0, the side length ∆ of the elementary cube can be in-
finitesimally small. This essentially means that an infinite number of elementary currents
can exist in a finite object. In this way, the amount of energy inside the object is then infi-
nite, which, of course, contradicts the energy conservation law. Rytov[10], along with fellow
Soviet scientists like Landau[18], was aware of this problem, arguing that the model is still
valid as long as the radiated power is calculated outside the object from a macroscopic
sense.

𝜺𝒓,𝐞𝐟𝐟

𝐿

𝐿

𝐿

Δ

Δ

Figure 2.2: Discretization of a bulk object from Rytov’s current.

As mentioned before, the correlation in Rytov’s current (2.4) only exists when two ele-
ment coincide, r⃗i = r⃗ j . To prove this, Rytov gave a demonstration in his 1989 book [10] by
proposing a set of orthogonal basis functions φR

j (⃗r ), which is uncorrelated to each other
and should be the solution of Maxwell’s equations. He used this set of functions to expand
the field as (eq.(3.12) of [10]):

e (⃗r ) =
∞∑
j
α j ( f , r⃗ )φR

j (⃗r ), (2.10)

whereα j
(

f , r⃗
)

is an infinite set of the expansion coefficients applied to the orthogonal basis
functions φR

j (⃗r ). This essentially represents the field by an infinite superstition of modal
functions. Then Rytov shows that the cross conjugate correlation of two field positions r⃗
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and r⃗ ′ could be represented as (eq.(3.19) of [10]):

< e (⃗r ) ,e∗ (⃗
r ′)>∝

∞∑
j
φR

j (⃗r )φR
j

(⃗
r ′)∝ δ

(⃗
r − r⃗ ′) , (2.11)

using properties of the orthonormal modal expansions. However, Rytov failed to give the
exact form of these modal functions, simply suggesting their existence. However, their ex-
istence is highly arguable [26].

Furthermore, as inherited from Nyquist’s correction of Johnson’s current in FDT, the
Plank-like frequency dependence term in Rytov’s current (2.9) also lacks EM arguments.

2.4. Coherence and Radiometry
The fairly puzzling relationship between classic radiometry theory (i.e. the EM theory
based on Maxwell’s equations) and modern theories of radiation (Planck’s radiation law
and quantum radiation theory) had induced some critics by scientists [27], pointing out
that the energy transfer mechanism within the thermal radiative body remains an open
question. Wolf [27] tried to connect classic radiometry with the coherence theory of phys-
ical optics, in order to see to what extent can traditional radiometry concepts and laws,
which are based on the assumption of incoherence of the thermal sources, can be applied
to highly coherent optic sources such as lasers.

In [27], Wolf pointed out that for a planar Lambertian source, which is typically regarded
as spatially incoherent (see Appendix A), the spectral degree of spatial coherence for two
points r⃗1 and r⃗2 of the field in the source plane can be expressed as a sinc function, if the
non-radiating (reactive) part is ignored, as:

ρ
(⃗
r ′)= sin

(
k

∣∣⃗r ′∣∣)
k |⃗r ′| = sinc

(
k

∣∣⃗r ′∣∣) , (2.12)

where k is the propagation constant and r⃗ ′ = r⃗1 − r⃗2. This spatial coherence function is
defined as the conjugate spatial correlation of the electric (or magnetic) field in the afore-
mentioned two points normalized by the average intensity at these two points as [27], [28]:

ρ
(⃗
r ′)= < E⃗ (⃗r1) , E⃗∗ (⃗r2) >√

I (⃗r1) I (⃗r2)
, (2.13)

where < E⃗ (⃗r1) , E⃗∗ (⃗r2) > denotes the spatial correlation and I (⃗r ) denotes the intensity dis-
tribution across the planar source. As we can see from (2.12) that Lambertian sources are
not completely spatially incoherent as assumed by classic radiometry, but rather corre-
lated as suggested by the sinc function over the distance in terms of wavelength λ within
the medium. Only when

∣∣⃗r ′∣∣ = n λ
2 , where n is a positive integer, the two points r⃗1 and r⃗2

are then uncorrelated. The sinc relation is in agreement with correlation properties of black
body radiation [28]. Similar results of this sinc relation can also be seen in EM compatibility
theories to describe the correlation of the field in a reverberation chamber [29], [30].

It is worth noticing that the field correlation (coherence) mentioned above is derived
outside the source region, assuming a plane wave expansion of the field.



3
The Medium and the Thermal Noise

From a classic point of view, the thermal radiation of an ohmic medium comes from the
agitation of electrons by heat, which causes a fluctuation of electric charges [8]. In order
to study this thermal radiation, one fundamental thing is to have knowledge of the EM
characteristics of this medium, e.g. conductivity and permittivity. At high frequencies, the
traditional quasi-static model for conductivity is not accurate anymore due to the lack of
frequency dependence. In this chapter, Drude model [31], a classic EM model used for
material characterization, is introduced in Section 3.1, which will be used throughout this
thesis.

The fluctuation dissipation theorem (FDT) is then introduced in Section 3.2 to calcu-
late the observed current generated by thermal agitation of electric charges in conductors.
Instead of tracking the behaviour of each microscopic particle, this theorem provides us
with a method to analyse the thermal noise in electric circuits from a macroscopic point of
view.

3.1. Drude Model
Drude Model [17], [31] is a classic EM model to characterize the behaviour of plane waves
interacting with ohmic media. It describes the interactions between electrons and ions
with the presence of an external electric field. In Drude model, the conductive behaviour
of the material is frequency dependent. This frequency dependence is modelled via the
electrons in the material body, which are treated as classical point charges, accelerated
by the presence of an electric field and randomly hitting ions which, being much heavier
than electrons, can be assumed as stand still, as shown in Figure 3.1. Kinetic energy is then
transferred from the jittering electrons to the ions, which then creates heat. To characterize
this phenomenon, τ is defined as the average time between two consecutive hits, which is
called the scattering time. This is an intrinsic property of the material and is not subjected
to change by the variation of the external electric field.

The classical quasi-static limit of the conductivity relates the electric field E⃗ (ω) and
electric current density J⃗ (ω) at low frequencies as:

lim
ω→0

∣∣⃗J (ω)
∣∣∣∣E⃗ (ω)
∣∣ =σqs . (3.1)

10
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Figure 3.1: Kinetic energy is transferred from the accelerated electrons to the ions, which then creates heat.

This quasi-static limit can be represented as:

σqs = ne2τ

me
, (3.2)

where me = 9.1 ×10−31 kg is the mass of an electron, e = 1.6×10−19 C is the charge of an
electron and n is the number of free electrons per cubic meter in the material.

Drude upgraded this quasi-static model to include frequency dependencies. In Drude
model, the frequency-dependent conductivity is given as:

σ (ω) = σqs

1+ jωτ
= σqs

1+ω2τ2
− j

σqsωτ

1+ω2τ2
, (3.3)

where ω is the angular frequency. Hence, the frequency-dependent resistivity is:

ρ (ω) = 1

σ (ω)
. (3.4)

To define the permittivity of the material, we can start from Maxwell’s equations, which in
frequency domain [32] can be written as:

∇× E⃗ (ω) =− jωµH⃗ (ω)− M⃗ (ω) , (3.5a)

∇× H⃗ (ω) = jωεE⃗ (ω)+ J⃗ (ω) , (3.5b)

∇· E⃗ (ω) = ρe (ω)

ε
, (3.5c)

∇· H⃗ (ω) = ρm (ω)

µ
, (3.5d)

where E⃗ (ω) and H⃗ (ω) are the frequency domain electric and magnetic field, J⃗ (ω) and M⃗ (ω)
are electric and magnetic current sources, ε and µ are the permittivity and permeability of
the medium, and ρe (ω) and ρm (ω) are the electric and magnetic charge densities, respec-
tively. Notice that J⃗ (ω) and M⃗ (ω) in (3.5) are current densities with units A/m2 and V /m2.
In an ideal lossless medium, the permittivity ε is purely real. While a real lossy medium has
a complex permittivity, ε = (

ε′− jε′′
)
, where the imaginary part accounts for the losses in

the medium. The imaginary part of the permittivity should always be negative to guaran-
tee energy conservation. This loss in the dielectric medium can also be considered as an
equivalent conductor loss, and can be represented by Ohm’s law:

J⃗ (ω) =σ (ω) E⃗ (ω) . (3.6)
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In the absence of sources or out of the source region, J⃗ (ω) in (3.5b) can be replaced by (3.6):

∇× H⃗ (ω) = jωεE⃗ (ω)+σ (ω) E⃗ (ω) = jω

(
ε− jσ (ω)

ω

)
E⃗ (ω) = jωεe f f (ω) E⃗ (ω) . (3.7)

From (3.7), the effective permittivity of the material can be represented as:

εe f f (ω) =
(
ε− jσ (ω)

ω

)
= ε0εr,e f f = ε0εr∞

(
1− jσ (ω)

ωε0εr∞

)
, (3.8)

where ε0 = 8.854×10−12 F /m is the permittivity constant in free space and εr∞ is the rel-
ative permittivity saturation of the material at a very high frequency. The characteristic
impedance and the propagation constant can then be expressed as:

ζ (ω) = ζ0√
εr,e f f (ω)

, (3.9)

k (ω) = k0

√
εr,e f f (ω). (3.10)

Notice that we can express the complex propagation constant k with its real and imaginary
part as:

k = kβ− j kα. (3.11)

There are two noteworthy frequencies in this frequency-dependent model. One is the tran-
sitional frequency:

ωτ = 1

τ
, (3.12)

which depends on the scattering time τ. At this frequency, the real and imaginary part of
the resistivity are the same. After this frequency point, the imaginary part becomes dom-
inant. This means that now the scattering time τ is longer than the period of which the
electric field changes sign. Under this circumstance the electrons are forced to change sign
with the electric field before reaching to the ions, thus causing the free electrons to keep
oscillating, as shown in Figure 3.2, and not to transfer their kinetic energy to the ions.

Figure 3.2: Electrons are forced to change sign with the electric field before reaching to the ions, thus causing
the free electrons to keep oscillating.

Another frequency of interest is the plasma frequency, which corresponds to the plasma
oscillations:

ωp =
√

ne2

εr∞ε0me
. (3.13)
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After introducing the plasma frequency, we can then rewrite the effective permittivity (3.8)
as:

εr,e f f (ω) = εr∞
[

1−ω2
pτ

2
(

1

1+ω2τ2

)]
− jεr∞ω2

p
τ2

τω

(
1

1+ω2τ2

)
. (3.14)

The plasma frequency is usually a lot higher than the transition frequency for metals. For
frequencies lower than the plasma frequency, whereω2

pτ
2 >ω2τ2, it is apparent that the real

part of the effective permittivity is negative. The distance between each electron is small
compared to the wavelength. As the frequency increases, the size of the electrons becomes
larger compared with the wavelength. They thus become more reluctant to the change
of the external field and radiate less scattered field. When the frequency is high enough,
specifically after the plasma frequency, the medium begins to behave as "transparent" to
the incoming wave, meaning that the wave can propagate through the material without
any obstruction.

Using the representation of effective permittivity in (3.14), we can write characteristic
impedance in (3.9) as:

ζ (ω) = e
jπ
4

√
µ0ω

σqs

√
1+ω2τ2

1+ jγ (ω)
, (3.15)

where we define the variable γ (ω) as:

γ (ω) = ω

ω2
pτ

(
1+

(
ω2 −ω2

p

)
τ2

)
. (3.16)

At low frequencies, (3.16) is negligible and can be viewed as 0. Then, the characteristic
impedance is simplified as:

ζ
(
ω≪ωp

)=√
µ0ω

2σqs

(
1+ j

)
, (3.17)

where the real and imaginary part are more or less the same. This corresponds to Leon-
tovich [33] method, an approximation widely used in the microwave community for good
conductors. For frequencies much higher than the plasma frequency, γ (ω) can be ex-
pressed as:

γ (ω) = ω

σqs

(
1+ω2τ2) . (3.18)

This results in the characteristic impedance to have an asymptotic behaviour as:

ζ
(
ω≫ωp

)=√
µ0

ε0εr,∞
. (3.19)

3.1.1. Metal
Drude model accurately describes the dispersion of EM waves in materials with low re-
sistivities [17], namely metals. To give a specific example, consider gold, whose electron
density is n = 5.9×1028 electrons/m2, and scattering time is τ= 27 f s. The relative permit-
tivity at high frequency εr∞ is 1 for gold. Using (3.12) and (3.13), the transition frequency is
calculated as 5.89 THz, and the plasma frequency is around 2180 THz.

Figure 3.3 shows the resistivity of gold, with the transition frequency marked in a black
dashed line. As we can see from the figure, it is clear that for the frequencies lower than
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𝑓𝜏

Figure 3.3: Frequency dependent resistivity of gold, with the transition frequency marked in black dashed
line.

fτ the imaginary part of resistivity is smaller than the real part. It continues to rise until
intersecting with the real part at fτ and becomes larger than the real part for frequencies
higher than fτ.

(a)

𝑓𝜏 𝑓𝑝

(b)

Figure 3.4: (a)The absolute value of the effective permittivity (b)The propagation constant

Figure 3.4 shows the absolute value of the effective permittivity and the propagation
constant, with frequency in logarithmic scale. Two frequencies of interest: the transition
frequency fτ and the plasma frequency fp , are marked in black dashed lines. The two fre-
quencies can be clearly seen in the figure from the transition of the curves. As we can see
from Figure 3.4b that for frequencies higher than fp , the imaginary part of k is 0, which
means the wave can propagate through the medium without any attenuation. The real
part of the propagation constant continues to grow until fτ. Between fτ and fp , when the
electrons in the material are excited by the external wave, they also radiate a scattered field.
This field is opposite to the direction of the external field, thus causing destructive effects
on the propagation of the wave in the medium, similar to the scenario of waveguide cut-off
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[17].

Figure 3.5: The characteristic impedance of gold, with low frequencies from 0 to 10 THz zoomed in in the left.

Figure 3.5 shows the characteristic impedance of gold, with low frequencies from 0 to 10
THz zoomed-in on the left. For frequencies higher than fp , the characteristic impedance
tends to be the free space impedance ζ0, which corresponds to the fact that εr∞ is 1 for
gold. As it can be seen from the zoomed-in figure for low frequencies on the left, the real
and imaginary part are the same for frequencies below 1 THz, which corresponds to the
Lenotovich method introduced before.

The properties of the dispersion curves are highly dependent on the electron density n.
Metals can be ground into powder to lower their electron density. Metallic powder, or bad
metal (bad in terms of conductivity), is widely used in the microwave community to fabri-
cate absorbers [34]. Consider a kind of gold powder to which Drude model can be applied.
The electron density of the metallic powder is n = 4.32×1024 electrons/m2 and scattering
time remains the same as gold τ= 27 f s. One thing that is peculiar about this case is that,
the transition frequency and the plasma frequency overlap, fτ = fp = 5.9 THz, marked in
Figure 3.6. Figure 3.6 shows the propagation constant and characteristic impedance of this
material. It is clear that the material is more dispersive at low frequencies. For frequencies
much higher than fτ = fp , the material becomes "transparent" to the incoming wave, with
the propagation constant and impedance both similar to free space ones.

3.1.2. Semiconductors
Semiconductors are arguably the most important material in modern days microelectron-
ics industry. Mildly doped semiconductors generally have resistivity between 0.1 ∼ 100Ωcm,
much higher than metals in the GHz range. Thus, the dispersion characteristics of semi-
conductors have been of interest. Drude model played an important role to help scientists
and engineers understand the high-frequency response of diodes [35], [36], and to provide
fairly accurate results for describing the conduction results of semiconductors like silicon,
at GHz and THz range [37], [38].

For semiconductors, an equivalent electron mass in Drude model can be applied to
compensate for the loss of inertia due to the lattice structure and the bandgap structure of
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𝑓𝜏 = 𝑓𝑝

(a)

𝑓𝜏 = 𝑓𝑝

(b)

Figure 3.6: (a)The propagation constant of bad metal (b)The characteristic impedance of bad metal

the semiconductor material, msi = 0.26me for silicon [37] for example. The scattering time
in this case can be found as:

τ= msi

e
µ, (3.20)

with µ representing the mobility of the electrons, which can be represented as [39]:

µ=µmi n + µmax −µmi n

1+
(

n
Nr e f ,1

)α1
− µ1

1+
(

Nr e f ,2

n

)α2
. (3.21)

Table 3.1: Parameters in (3.21)

µmi n 6.85×10−3m2V −1s−1

µmax 0.1414m2V −1s−1

µ1 5.61×10−3m2V −1s−1

Nr e f ,1 9.20×1022m−3

Nr e f ,2 3.41×1026m−3

α1 0.711
α2 1.98

Several parameters in (3.21) are given in Table 3.1, based on experimental data. Using
(3.20) and (3.21), the dielectric parameters of silicon can be calculated from the previously-
given formulas. Generally for semiconductors, both the transitional frequency and the
plasma frequency, as defined in (3.12) and (3.13), are in the range of hundred GHz, de-
pending on the doping level.

To give a specific example, consider a type of doped silicon, whose electron density
is n = 1022 electrons/m2, with εr∞ = 11.7. The transition frequency is 909 GHz and the
plasma frequency is 514 GHz, both in the GHz range. The resistivity of this silicon is shown
in Figure 3.7, with fτ marked in dashed lines.

We now compare the characteristic impedance of the silicon mentioned above along
with two other doped silicon: n = 5×1021electrons/m2 ( fτ = 852 GHz, fp = 364 GHz), and
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𝑓𝜏

Figure 3.7: The resistivity of the silicon.

Figure 3.8: Comparison of the characteristic impedance of three silicon .

n = 5× 1022electrons/m2 ( fτ = 1216 GHz, fp = 1150 GHz), as shown in Figure 3.8. As we
can see, lower doping results in lower dispersion. Higher doping, on the other hand, has
strong frequency dependence. This allows us the freedom to properly select the doping of
the silicon to achieve the desired dispersion characteristics.

The dispersion properties of silicon are similar to the ones of metallic powder as studied
in the previous section. However, depending on the doping level, the transition frequencies
of silicon usually happen in the GHz range, instead of the THz range for metallic powders,
which gives us the opportunity to use existing detectors to measure the thermal radiation
of silicon at this frequency range.

3.2. Johnson-Nyquist Noise
In the year 1928, Johnson [7], along with his colleague Nyquist [8], successfully charac-
terised the thermal noises in electrical circuits caused by thermal agitation, now widely
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known as Johnson-Nyquist noise. Johnson experimentally determined that, in thermody-
namic equilibrium, the motion of free electrons agitated by heat will cause a fluctuation
of differences in potentials between impedances in the electric circuit, resulting in an ob-
served current. Nyquist theoretically demonstrated this discovery, which was later called
Fluctuation Dissipation Theorem (FDT) [40].
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Figure 3.9: (a)Basic circuit with only two resistors in series (b)Norton equivalent circuit (c)Thevenin
equivalent circuit.

Consider a basic electric circuit with only 2 impedance Zs and Zl , as shown in Fig-
ure 3.9(a). According to Johnson’s discovery, the square of the current flowing from Zs to Zl

can be expressed as:

i 2 = 4kB T
∫ ∞

0

Rs
(

f
)∣∣Ztot

(
f
)∣∣2 d f , (3.22)

where Rs
(

f
) = Re{Zs

(
f
)
} represents the real part of the source impedance and Ztot

(
f
)

represents the total transfer impedance of the network, both at each frequency point of f .
Thus, we can represent this spectral current as:

i
(

f
)=

√
4kB T Rs

(
f
)∣∣Ztot

(
f
)∣∣ . (3.23)

This thermal agitated current can be represented by a Norton-type equivalent circuit shown
in Figure 3.9(b). The impedance Zs can be regarded as the internal impedance of the cur-
rent source ig , transferring energy to Zl . The amplitude of the current source is given as:

ig
(

f
)=

√
4kB T Rs

(
f
)∣∣Zs

(
f
)∣∣ . (3.24)

Equivalently, the circuit can also be represented in Thevenin-type, as shown in Figure 3.9(c),
with a voltage source vg connected in series with two impedances. The amplitude of the
voltage source is:

vg
(

f
)=√

4kB T Rs
(

f
)
. (3.25)

In both cases, the current i flowing over the load impedance Zl in the circuit is the same
as (3.23). The current generated by the thermal agitation of electrons in Zs is divided by
both impedance in the circuit, Zs and Zl . The amount of power absorbed by Zl represents
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the power transferred from Zs to Zl . The situation is the same for the current generated by
Zl . When the two impedance are under the same temperature T , after the establishment
of thermal equilibrium, the amount of the power flowing in one direction should be exactly
the same as the power flowing in the other direction. In this situation, we can write the
power transferred from Zs to Zl as:

p
(

f
)= v2

g

|Ztot |2
Re {Zl } = 4kB T Rs

(
f
)∣∣Zs

(
f
)+Zl

(
f
)∣∣2 Rl

(
f
)

. (3.26)

And the power transferred from Zl to Zs is:

p
(

f
)= v2

g l

|Ztot |2
Re {Zs} = 4kB T Rl

(
f
)∣∣Zs

(
f
)+Zl

(
f
)∣∣2 Rs

(
f
)

, (3.27)

where vg l stands for the equivalent voltage source of Zl . Consider that two impedances are
equal and all purely real, i.e. Zs = Zl = Z = R, the power transferred in one direction is then:

p
(

f
)= v2

g

|Ztot |2
Re {Zl } = 4kB T R

(
f
)

4R2
(

f
) R

(
f
)= kB T. (3.28)

Nyquist, on the other hand, explained the experiment result of Johnson on a theoretical
basis. Consider the circuit in Figure 3.10 with two resistors R which are purely real. The
length of the conducting line connecting the two resistors is l . When the equilibrium is
established, short the two resistors at the end of the circuit, trapping the energy generated
by the two resistors. In this case, it can be also viewed as a set of waves existing in the line
with length 2l , vibrating at its natural frequencies. The lowest frequency of the wave that
can exist is when the wavelength λ is equal to 2l . In this mode, the frequency is f = c/2l ,
where c represents the propagation speed of the wave. In total, the number of these vibrat-
ing modes, also known as the degrees of freedom that can exist in this natural oscillator, in
certain frequency interval d f can be represented as:

N = 2l

c
d f . (3.29)

As suggested by the classic equipartition theorem, the average energy of each degree of
freedom is kB T . Then, the total energy of all the degrees of freedom is:

Etot d f = 2lkB T

c
d f . (3.30)

In this case, the average power transferred from one end to the other end over the distance
l in this electric circuit is just half of the total energy available:

P
(

f
)= 1

2

Etot
(

f
)

t
= 1

2

E
(

f
)

l
c

= kB T, (3.31)

which verifies the result of Johnson in (3.28). The same reasoning can also be applied to
the impedance network shown in Figure 3.9(a).
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𝑅 𝑅

𝑙

Figure 3.10: Nyquist’s demonstration.

At the end of his paper [8], Nyquist pointed out, without giving any justification, that
the average energy of one degree of freedom per frequency can be taken in accordance
with Planck’s law:

EPlk
(

f
)= h f

e
h f

kB T −1
. (3.32)

In this way, the current source in the circuit of Figure 3.9(b) is:

ig
(

f
)=

√
4h f

e
h f

kB T −1

Rs
(

f
)

∣∣Zs
(

f
)∣∣ , (3.33)

and the amplitude of the voltage source in Figure 3.9(c) can be represented by:

vg
(

f
)=

√√√√ 4h f

e
h f

kB T −1
Rs

(
f
)
. (3.34)

As stated in the paper [8] by Nyquist himself, at low frequencies and temperatures, the
two kinds of expressions (kB T and (3.32)) produce the same results. For high frequencies
and temperatures, however, experimental proof was lacking.

It is noteworthy that, since in Johnson-Nyquist representation we are only interested
in the energy transferred from one degree of freedom to another, the phase of the current
source (3.24) and the voltage source (3.25) are not defined.



4
Degrees of Freedoms in Infinite Media

In this chapter, a classic EM model [41], which sets the basis for this thesis, is introduced.
Aiming at explaining the thermal radiation from ohmic media in a rigorous way, this model
explains the available energy due to thermally agitation inside ohmic material from the
perspective of EM theory. The available energy inside the thermal agitated radiating body
in this new model is calculated from the characteristics of the medium of the real body
itself, without using the reciprocity and Planck’s law of black body radiation.

The total electric field in a certain medium at a certain frequency can be expanded in a
finite number of modes (degrees of freedom) expressed as:

e⃗tot
(⃗
r , f

)= NDoF∑
n=1

e⃗n,p (⃗
r , f

)
, (4.1)

where NDoF is the number of possible degrees of freedom inside the electric field, and
e⃗n,p

(⃗
r , f

)
is one degree of freedom (mode) located at r⃗n with polarization p, as shall be

explained in detail in Section 4.1. These modes are all independent of and orthogonal to
each other. If we are considering an ideal infinite medium, the NDoF in this case is also infi-
nite. In this case, NDoF can be represented by the number of degrees of freedom per unit of
volume. Each of these modes of the electric field is associated with a modal current. Then,
we can represent the summation of all these modal currents as the total current j⃗tot

(⃗
r , f

)
inside the electric field:

j⃗tot
(⃗
r , f

)= NDoF∑
n=1

i p
n

(
f
)

j⃗ n,p (⃗
r , f

)
, (4.2)

where j⃗ n,p
(⃗
r , f

)
represent the modal electric current density and i p

n
(

f
)

are the current am-
plitudes. All the degrees of freedom represent the same energy and consequently, the am-
plitudes of the currents are all the same for all these degrees of freedom. And the phases
for these currents are considered as random. Thus the phase term could be dropped in
(4.2) since we are only interested in the energy it delivers. In this sense, (4.1) and (4.2) are
a macroscopic energy-wise description of the electric field, for the fact that we are unable
to track the evolution of the field in the time domain. Notice that the frequency-dependent
notion in both (4.1) and (4.2) does not represent the Fourier-transformed time-domain cur-
rents. Instead, they are in the unit of the square root of the spectral energy, as suggested by
FDT.

21
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This chapter first introduces the essence of the modes in the expansion of the electric
field, as shown in (4.1). Each of these modes, being the lowest-order spherical wave, is a
solution of Maxwell’s equations either without the presence of the source or outside the
source region.

Next in Section 4.2, the eigenvectors of Maxwell’s equations are given, along with its
corresponding eigenvalues. Based on this, an eigen-current, being the modal current in
(4.2), is given in an explicit form in (4.5).

Then, the finite number of independent degrees of freedom in a certain volume is given
in Section 4.3. The criterion of these degrees of freedom being decoupled from each other
is given.

Finally, a Johnson-like circuit is introduced in Section 4.4 to estimate the amount of
energy available inside the medium of a certain volume, rendering by each of these ele-
mentary sources.

4.1. Modal Solutions of Maxwell’s Equations
We now consider a homogeneous media with infinite boundary, characterized by electric
permittivity ε= ε0εr , free space permeability µ=µ0, and frequency-dependent conductiv-
ity defined by Drude model in (3.3). In a source-free region, either without the presence
of the source or out of the source region, the general solution of Maxwell’s equation can
be represented by a summation of elementary wave functions [42]. We can thus choose to
represent the field with the lowest-order spherical waves, which is suitable for represent-
ing the solutions in our case, where Maxwell’s equations are associated with specific spatial
points r⃗n .

𝛿

Internal Source Region𝑉𝛿

𝑉𝐽

𝑒 = 𝜃

ℎ = 𝜙

𝑖𝑜𝑢𝑡

𝑧

𝑦
𝑥

Figure 4.1: An elementary current located in the origin of the coordinate system, oriented along ẑ direction.
Electric (red arrows) and Magnetic (blue circles with dots and crossed) field lines, in the presence of a dipole

radiating an outward wave. The detail of the source region with the superposition of an inward and an
outward wave

The sources of these lowest-order spherical waves are elementary current sources [42].
Consider an elementary current located in the origin of the coordinate system, oriented
along ẑ direction, as shown in the left of Figure 1. The lowest-order spherical wave gen-
erated by the source propagates outward. Figure 4.1 only shows an example of the TM
(transverse magnetic with respect to propagation direction r̂ ) field generated by an ele-
mentary electric current. The figure in the middle shows the field configuration, with red
arrows showing the electric field lines and blue dots and crosses showing the magnetic field
lines. The length of the current source is δ and the outward current amplitude is iout . The
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source itself, as shown in the zoomed-in figure at the right of Figure 4.1, can be interpreted
as the superposition of the inward and outward waves with the same amplitude. Outside
the source region Vδ (the region in yellow in Figure 1), only outward propagating waves re-
main. According to duality [42], [43], there is also a dual TE (transverse electric with respect
to propagation direction r̂ ) field orthogonal to the TM one, which positions at the same
spatial point r⃗n , and shares the same volume VJ . It is generated by an elementary magnetic
source.

The analytical expression for this lowest-order spherical TM and TE waves outside the
source region are well known, and can be found in various EM textbooks [42], [43]. For our
case shown in Figure 4.1, the TM field generated by an elementary electric current source
along ẑ can be represented as:

eT Mr
out (⃗r ) = ioutδ

ζcosθ

2π
e− j kr

(
1

(kr )2 − j

(kr )3

)
, (4.3a)

eT Mθ
out (⃗r ) = ioutδ

j sinθ

4π
e− j kr

[
1

kr
+ 1

j (kr )2 − 1

(kr )3

]
, (4.3b)

hT Mφ
out (⃗r ) = ioutδ

k2 sinθ

4π
e− j kr

[
j

1

kr
+ 1

(kr )2

]
, (4.3c)

eT Mφ
out = hT Mr

out = hT Mθ
out = 0. (4.3d)

From now on, we can use e⃗n,p (⃗r ) to indicate such electric field as in (4.1), radiated from an
elementary current source centred at r⃗n and polarized at direction p. Each of these fields
radiated by the elementary sources is regarded as a mode of the total electric field, without
the presence of the source or out of the source region.

4.2. Eigenvectors of Maxwell’s Equations
Using the commonly known Green’s dyadic for homogenous media, one can express each
of these modes, e⃗n,p (⃗r ), as:

e⃗n,p (⃗r ) =
Ñ ∞

−∞
¯̄g

e j (⃗
r , r⃗ ′) · j⃗ n,p (⃗

r ′)dr⃗ ′. (4.4)

Since that, each of these modes represents a solution of Maxwell’s equations either with-
out the presence of source or out of the source region, j⃗ n,p

(⃗
r ′) in (4.4) is an eigen-current

associated with this mode e⃗n,p (⃗r ). This means that, for a mode e⃗ (⃗r ) that verifies Maxwell’s
equations in a homogeneous space, one can always find a corresponding eigen-current
j⃗ n,p (⃗r ) that satisfies (4.4) and j⃗ n,p (⃗r ) should always bear the form as:

j⃗ n,p (⃗r ) ≡ (
σ+ jωε0εr

)
e⃗n,p (⃗r ) , (4.5)

where σ is the complex conductivity of the medium and can be represented by its real and
imaginary part as σ=σr + jσi . Substituting (4.5) into (4.4), it is clear that:Ñ ∞

−∞
¯̄g

e j (⃗
r , r⃗ ′) · e⃗n,p (⃗

r ′)dr⃗ ′ = e⃗n,p (⃗r )(
σ+ jωε0εr∞

) . (4.6)

Thus, one can claim that, e⃗n,p (⃗r ) is one of the eigenvectors of Maxwell’s equations in a
homogeneous medium, and 1/

(
σ+ jωε0εr

)
is its corresponding eigenvalue. This property

is proved in [41], using the EM theorems provided in [44]. A brief proof is also provided in
Appendix B of this thesis.
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4.3. Numbers of Independent Degree of freedoms
Each of the modes of electric field and its corresponding eigen-current introduced in Sec-
tion 4.1 and Section 4.2 can be interpreted as a degree of freedom of the total electric field.
They are centred at different locations, r⃗n , and can have 3 possible electric current polariza-
tion (TM) and 3 possible magnetic current polarization (TE) (due to the duality suggested
in Section 4.1), both oriented along three axis of the coordinate system respectively. Ac-
cordingly, the total electric field in (4.1) can be expressed as:

e⃗tot
(⃗
r , f

)= NDoF∑
n=1

e⃗n,p (⃗
r , f

)= 6∑
p=1

Npos∑
n=1

e⃗n,p (⃗
r , f

)
, (4.7)

where Npos is the number of positions that guarantees the degrees of freedom to be in-
dependent of each other. Each of these positions is associated with the aforementioned 6
possible polarizations. Thus we have NDoF = 6Npos .

Indeed, these modes e⃗n,p (⃗r ) can exist everywhere in the space, but they are not nec-
essarily independent, thus, not orthogonal to each other. In order to assess the indepen-
dence or orthogonality between two eigenvectors, the mutual impedance of two eigenvec-
tors e⃗n,p (⃗r ) and e⃗m,q

(⃗
r ′), can be defined using a conjugate projection on their correspond-

ing eigen-currents as:

Z pq
mn ≡

Ñ ∞

−∞
j⃗ n,p∗ (⃗r ) ·

[Ñ ∞

−∞
¯̄g
(⃗
r , r⃗ ′) · j⃗ m,q (⃗

r ′)dr⃗ ′
]

dr⃗ . (4.8)

Using (4.4), we can arrive at:

Z pq
mn =

Ñ ∞

−∞
j⃗ n,p∗ (⃗r ) · e⃗m,q (⃗r )dr⃗ . (4.9)

Replace j⃗ n,p (⃗r ) with the definition in (4.5), the mutual impedance can be represented as:

Z pq
mn = (

σ+ jωε0εr∞
)∗Ñ ∞

−∞
e⃗∗n,p (⃗r ) · e⃗m,q (⃗r )dr⃗ . (4.10)

For the sake of convenience, we can then define a coupling coefficient C pq
mn in (4.10) as:

C pq
mn (⃗rn , r⃗m) =

Ñ ∞

−∞
e⃗n,p∗ (⃗r , r⃗n )⃗em,q (⃗r , r⃗m)dr⃗ . (4.11)

Then the mutual impedance can be finally written as:

Z pq
mn = (

σ∗− jωε0εr∞
)

C pq
mn (⃗rn , r⃗m) . (4.12)

In order to make the two neighbouring eigen-sources independent from each other, C pq
mn (⃗rn , r⃗m)

must be 0. If C pq
mn (⃗rn , r⃗m), as a function of the mutual distance d = |⃗rn − r⃗m | of the two ele-

ments, always has a zero, then NDoF is defined as:

NDoF = Npos ×6 = V ol

d 3
mi n

×6, (4.13)

where dmi n is the minimal distance that makes C pq
mn (⃗rn , r⃗m) equal to 0.

Notice that (4.13) is true only when the existence of the zero of C pq
mn (⃗rn , r⃗m) is confirmed.

This property will be studied in Section 5.2.
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4.4. Energy Available per Degree of Freedom
Since these degrees of freedom are independent from each other (details in Section 5.2)
and have random phases, the total energy available per unit volume inside the medium can
simply be calculated by summing up the contributions of all degrees of freedom. Given the
premise that we are considering a homogeneous infinite medium, each of these degrees
of freedom renders the same amount of energy, denoted as E 1−DoF . Intuitively, the total
energy available per unit volume is simply:

E tot = NDoF ×E 1−DoF , (4.14)

The next step is to establish a model to estimate the amount of energy each of these degrees
of freedom can render.

𝑣 𝑔
=

4
𝑘
𝐵
𝑇
𝑅

𝑖𝑃

𝑍𝑃

𝑍
𝑙𝑜
𝑎
𝑑
=
𝑍
𝑃

Source

Figure 4.2: The Johnson-like Thevenin circuit

Based on Johnson’s work introduced in Section 3.2, a Johnson-like circuit, as shown in
Figure 4.2, was proposed in [41] to estimate the amplitude i p of each eigen-current and
the amount of energy one degree of freedom is available to deliver. Each degree of free-
dom is modelled as a voltage generator with an amplitude of

√
4kB T Rp and an internal

impedance, which is the self-impedance Z p of that degree of freedom, Rp = Re{Z p }. No-
tice that here we only retain the amplitude of (3.25), which is associated with the classic
explanation of average energy per degree of freedom kB T suggested by equipartition theo-
rem, instead of the Planck-like correction suggested by Nyquist in (3.34).

This "source" is then connected to a load Zload which represents the ambient environ-
ment of that degree of freedom. It can easily be seen that when Zload = Z p∗, which is the
case when a matched load is connected, the generator will render the maximum spectral
energy E

(
f
) = kB T to the load. However, this is hardly the case. Consider an infinite ho-

mogenous medium. In this case, Zload = Z p , rather than its conjugate. From Figure 4.2,
the current amplitude i p can be calculated as:

ip = vg

2Z p
=

√
4kB T Rp

2Z p
. (4.15)

Then, the spectral energy transferred by the generator to the load is:

E 1−DoF = ∣∣ip
∣∣2 Re

{
Z p}= kB T (Rp )2

|Z p |2 . (4.16)

In order to calculate (4.16), the self-impedance Z p of one degree of freedom must be found.
This shall be addressed in Section 5.1.



5
Coupling for Eigenvectors of Maxwell’s

Equations

In the previous chapter, a classic EM model describing the available energy inside the
ohmic medium due to thermal agitation is formed. The model is based on the degrees of
freedom within the electromagnetic field, which is the eigenvectors of Maxwell’s equations.
The total energy available is calculated by summing up all the energy available per degree
of freedom, as suggested by (4.14). In order to calculate this energy, two critical unresolved
issues must be cleared, i.e. the mutual coupling coefficient (as defined in (4.11)) must al-
ways have a zero and the self-impedance Z p of one degree of freedom must be given.

In this chapter, the self-impedance of one eigenvector is calculated and given explicitly
in (5.10). The numerical results calculated from the visible part of spatial Green’s function
verify this analytical expression. The mutual impedance of two eigenvectors is approxi-
mated by (5.50) and is proportional to a sinc function, thus confirming the existence of
zeros. This allows two degrees of freedom to be uncoupled from each other, with a min-
imum distance of λβ/2. This approximation proves to be a good match with numerical
results, despite some discrepancies in amplitudes for high frequencies.

Proceeding Section 4.4, the total energy available within the medium is given explicitly
in Section 5.3, which decreases proportionally to 1/ f 3 at high frequencies.

5.1. Self-impedance of 1 Eigenvector
5.1.1. Analytical Derivation
The electric field of an elementary electric current source oriented along ẑ placed at the
centre of the reference system with length δ and amplitude I0, as given in (4.3), can be
expressed as:

e⃗ (⃗r ) = I0δζ k2 e− j kr

4π

[
2cosθ

(
1

(kr )2 − j

(kr )3

)
r̂ + sinθ

(
j

kr
+ 1

(kr )2 − j

(kr )3

)
θ̂

]
. (5.1)

Notice that in (5.1), the components associated with 1/(kr )2 and 1/(kr )3 decay very fast
with respect to the increase of distance r . We can define these parts of Green’s function
as invisible, as they represent the reactive energy surrounding the dipole, as shown in Fig-

26



5.1. Self-impedance of 1 Eigenvector 27

ure 5.1. In this way, the visible part of Green’s function is defined as:

e⃗vi s (⃗r ) = I0δζ k2 j e− j kr

4πkr
sinθ θ̂. (5.2)

Proceeding as for (4.12), self-impedance of an elementary source is:

Z pp
nn = (

σ∗− jωε0εr
)

C pp
nn (⃗rn , r⃗n) , (5.3)

where the self-coupling coefficient C pp
nn is:

C pp
nn (⃗rn , r⃗n) =

Ñ ∞

−∞
e⃗n,p∗ (⃗r , r⃗n )⃗en,p (⃗r , r⃗n)dr⃗ . (5.4)

Replace e⃗n,p (⃗r , r⃗n) in (5.4) with (5.2), we can arrive at:

C pp
nn (⃗rn , r⃗n) = I 2

0δ
2 |ζ|2 |k|2

(4π)2

Ñ ∞

−∞
e j k∗r e− j kr

r 2
sin2θdr⃗ . (5.5)

Notice that k is complex and can be represented by (3.11):

e j k∗r e− j kr = e j(k∗−k)r = e−2kαr . (5.6)

Then the integral in (5.5) can be written in spherical coordinates as:

C pp
nn (⃗rn , r⃗n) = I 2

0δ
2 |ζ|2 |k|2

(4π)2

∫ 2π

0

∫ π

0

∫ ∞

0

e−2kαr

r 2
r 2sin3θdr dθ dφ. (5.7)

And the 3D integral can be closed respectively as:∫ 2π

0
dφ= 2π, (5.8a)

∫ π

0
sin3θdθ = 1

3
cos3θ−cosθ|π0 = 4

3
, (5.8b)∫ ∞

0
e−2kαr dr = 1

2kα
. (5.8c)

Invisible GF = Reactive energy

Visible GF = Active energy

Figure 5.1: Visible and invisible part of Green’s function
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Combing the results in (5.8), the integral in (5.5) can be closed analytically as:

C pp
nn (⃗rn , r⃗n) = I 2

0δ
2 |ζ|2 |k|2

(4π)2

4π

3kα
= I 2

0δ
2

λ2
0

ζ2
0
π

3kα
. (5.9)

The self-coupling coefficient shown by (5.9) turns out to be purely real, which corresponds
to the conjugate projection in its definition (5.4). Thus, the analytical form of self-impedance
of an elementary electric current source is:

Z pp
nn = (

σ∗− jωε0εr∞
) I 2

0δ
2

λ2
0

ζ2
0
π

3kα
. (5.10)

Using this expression, we can now represent the spectral energy transferred by 1 degree of
freedom as:

E 1−DoF = kB T (Rp )2

|Z p |2 = kB T
σ2

r∣∣σr − jσi − jωε0εr∞
∣∣2 , (5.11)

where σ= (
σr + jσi

)
represents the real and imaginary part of the complex conductivity.

5.1.2. Validation of the Result
In order to validate the analytical expression of self-impedance (5.9)and (5.10), a compari-
son with numerical results is needed. Spatial Green’s function of an electric current source
is expressed in its general form [45] as:

¯̄G
e j

(⃗r , r⃗ ′) =− j kζ
e− j k|R|

4π |R|
([

¯̄I − R̂R̂
]
− j

k |R|
[

¯̄I −3R̂R̂
]
− 1

k2 |R|2
[

¯̄I −3R̂R̂
])

, (5.12)

where |R| = |⃗r − r⃗ ′| is the distance between source and observation point. Similar to (5.1),
the latter two terms in (5.12) can also be regarded as the invisible part of the Green’s func-
tion. Hence, the visible part of the spatial Green’s function is:

¯̄G
e j
vi s (⃗r , r⃗ ′) =− j kζ

[
¯̄I − R̂R̂

] e− j k|R|

4π |R| . (5.13)

Then according to (5.3) the self-impedance of an elementary dipole can be expressed as:

Z pp
nn = (

σ∗− jωε0εr∞
)

C pp
nn (⃗rn , r⃗n)

= (
σ∗− jωε0εr∞

)
I 2

0δ
2
Ñ ∞

−∞
¯̄G

e j∗
vi s (⃗r , r⃗n) · p̂ ¯̄G

e j
vi s (⃗r , r⃗n) · p̂d r⃗ .

(5.14)

The self-impedance can then be calculated numerically using (5.14) by discretizing the
3D space adjacent to the source. Figure 5.2 shows the comparison between numerical and
analytical results of the self-impedance for a bad metal, BM1, whose electron density is
n = 5×1024 electrons/m2 and scattering time is τ = 1.3×10−14 s. As we can see from the
figure, the numerical and analytical results show a good agreement with each other.
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(a) Self-coupling Cnn (b) Self-impedance Znn

Figure 5.2: Comparison between numerical and analytical results of self-coupling

5.2. Mutual Impedance of 2 Eigenvectors
5.2.1. Analytical Derivation
The mutual impedance of 2 eigenvectors can be expressed by (4.11) and (4.12). Consider
the same elementary electric current source with length δ and amplitude I0, but placed at
point r⃗n and oriented along p̂ this time. The electric field associated to it can be written as:

e⃗ n,p (⃗r ) =
Ñ ∞

−∞
¯̄G

e j
(⃗r , r⃗n) · j⃗ (⃗rn) · p̂ d r⃗n = ¯̄G

e j
(⃗r , r⃗n)δ I0 · p̂. (5.15)

According to (4.11), the coupling coefficient C pq
mn can then be expressed as:

C pq
mn (⃗rn , r⃗m) = I 2

0δ
2
Ñ ∞

−∞
¯̄G

e j∗
(⃗r , r⃗n) · p̂ ¯̄G

e j
(⃗r , r⃗m) · q̂d r⃗ . (5.16)

Using 3D Fourier transform, the spatial Green’s function in (5.16) can be represented in
spectral domain:

¯̄G
e j (

x, y, z; x ′, y ′, z ′)= jζ

k (2π)3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
e− j kx(x−x ′)e− j ky (y−y ′)e− j kz(z−z ′)

k2 −k2
x −k2

y −k2
z

¯̄D
(⃗
k
)

dkxdky dkz ,

(5.17)

where k⃗ = kx x̂ +ky ŷ +kz ẑ, and ¯̄D
(⃗
k
)

is a dyad:

¯̄D
(⃗
k
)
=

k2 −k2
x −kxky −kxkz

−kxky k2 −k2
y −ky kz

−kxkz −ky kz k2 −k2
z

= (k2 ¯̄I −k2
r k̂k̂), (5.18)

where ¯̄I is the identity matrix, k2
r = k2

x +k2
y +k2

z , and k̂ = k⃗/kr is the unit vector of k⃗. Replace
(5.17) into (5.16), we can arrive at:

C pq
mn (⃗rn , r⃗m) = I 2

0δ
2

(2π)6

∣∣∣∣ ζk
∣∣∣∣2 Ñ ∞

−∞

Ñ ∞

−∞
e j kx (x−xn )e j ky (y−yn)e j kz (z−zn )

k∗2 −k2
x −k2

y −k2
z

¯̄D
∗ (⃗

k
)
· p̂dkxdky dkzÑ ∞

−∞
e− j k ′

x (x−xm )e− j k ′
y (y−ym)e− j k ′

z (z−zm )

k2 −k ′2
x −k ′2

y −k ′2
z

¯̄D
(⃗
k
)
· q̂dk ′

xdk ′
y dk ′

z dr⃗ . (5.19)
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Rearranging the terms in (5.19) and expand ¯̄D
(⃗
k
)

by the form in (5.18):

C pq
mn (⃗rn , r⃗m) = I 2

0δ
2

(2π)6

∣∣∣∣ ζk
∣∣∣∣2 Ñ ∞

−∞
e j (kx−k ′

x )xe j (k y−k ′
y )y e j (kz−k ′

z )zd xd yd zÑ ∞

−∞
e− j kx xn e− j ky yn e− j kz zn

k∗2 −k2
x −k2

y −k2
z

(
k∗2 ¯̄I −k∗2

r k̂k̂
)
· p̂dkxdky dkzÑ ∞

−∞
e j k ′

x xm e j k ′
y ym e j k ′

z zm

k2 −k ′2
x −k ′2

y −k ′2
z

(k2 ¯̄I −k2
r k̂ ′k̂ ′) · q̂dk ′

xdk ′
y dk ′

z . (5.20)

We can close the first 3D integral in dr⃗ = d xd yd z as:Ñ ∞

−∞
e j (kx−k ′

x )xe j (k y−k ′
y )y e j (kz−k ′

z )zd xd yd z = (2π)3δ(kx −k ′
x)δ(k y −k ′

y )δ(kz −k ′
z). (5.21)

Substituting (5.21) into (5.20), the 9D integral in (3.6) can then be reduced into a 3D integral:

C pq
mn (⃗rn , r⃗m) = I 2

0δ
2

(2π)3

∣∣∣∣ ζk
∣∣∣∣2 Ñ ∞

−∞
e− j kx xn e− j ky yn e− j kz zn

k∗2 −k2
x −k2

y −k2
z

e j kx xm e j ky ym e j kz zm

k2 −k2
x −k2

y −k2
z(

k∗2 ¯̄I −k∗2
r k̂k̂

)
· p̂(k2 ¯̄I −k2

r k̂k̂) · q̂dkxdky dkz . (5.22)

Rearranging the terms and we have:

C pq
mn (⃗rn , r⃗m) = I 2

0δ
2

(2π)3

∣∣∣∣ ζk
∣∣∣∣2 Ñ ∞

−∞
e− j kx (xn−xm )e− j ky (yn−ym )e− j kz (zn−zm )

(k∗2 −k2
x −k2

y −k2
z )(k2 −k2

x −k2
y −k2

z )(
k∗2 ¯̄I −k∗2

r k̂k̂
)
· p̂(k2 ¯̄I −k2

r k̂k̂) · q̂dkxdky dkz . (5.23)

Now, we focus on the terms induced by the Green’s dyad ¯̄D
(⃗
k
)
. A polarization function can

be defined as:

pol 2 (kr ) =
(
k∗2 ¯̄I −k∗2

r k̂k̂
)
· p̂

(
k2 ¯̄I −k2

r k̂k̂
)
· q̂ = ∣∣k2

∣∣2
(

¯̄I − k2∗
r

k2∗ k̂k̂

)
· p̂

(
¯̄I − k2

r

k2
k̂k̂

)
· q̂

= ∣∣k2
∣∣2

pol 2
r eal (kr ), (5.24)

where
∣∣k2

∣∣2 = k2∗k2. Then (5.23) can be expressed as:

C pq
mn (⃗rn , r⃗m) = I 2

0δ
2

(2π)3
|ζk|2

Ñ ∞

−∞
e− j kx (xn−xm )e− j ky (yn−ym)e− j kz (zn−zm )

(k∗2 −k2
x −k2

y −k2
z )(k2 −k2

x −k2
y −k2

z )
pol 2

r eal dkxdky dkz .

(5.25)
Now, we can change (5.25) into spherical coordinate system by adopting the standard pro-
cedure of changing variables: 

kx = kr sinβcosα,

ky = kr sinβsinα,

kz = kr cosβ.

(5.26)
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And define another set of variables to represent the position of two dipoles in spherical
coordinate: 

(xn −xm) = d sinθcosφ,(
yn − ym

)= d sinθ sinφ,

(zn − zm) = d cosθ.

(5.27)

where d =
√

(xn −xm)2 + (
yn − ym

)2 + (zn − zm)2 represents the distance of this two dipoles.
Then, (5.25) can be written as:

C pq
mn (⃗rn , r⃗m) = I 2

0δ
2 |ζk|2

(2π)3

∫ ∞

0

∫ 2π

0

∫ π

0

e− j kr d(sinβcosαsinθcosφ+sinβsinαsinθ sinφ+cosβcosθ)

(k∗2 −k2
r )(k2 −k2

r )

k2
r sinβpol 2

r eal dβdαdkr . (5.28)

Simplifying (5.28) using trigonometric identities, we can arrive at:

C pq
mn (⃗rn , r⃗m) = I 2

0δ
2 |ζk|2

(2π)3

∫ ∞

0

∫ 2π

0

∫ π

0

e− j kr d(sinβsinθcos(α−φ))e− j kr d cosβcosθ

(k∗2 −k2
r )(k2 −k2

r )

pol 2
r eal k2

r sinβdβdαdkr . (5.29)

In order to close the 3D integral in (5.29), from now on we will take a bold assumption that
pol 2

r eal ≈ 1/
p
π. However, one can always argue that this assumption is very brutal. In fact,

pol 2
r eal is a function of 3 variables kr , β andα. Considering the most coupled case in which

the two dipoles are polarized at the same direction, for example p̂ = q̂ = ẑ, pol 2
r eal can be

expressed as:

pol 2
r eal (kr ) =

(
¯̄I − k2∗

r

k2∗ k̂k̂

)
·ẑ

(
¯̄I − k2

r

k2
k̂k̂

)
·ẑ =

(
−k2∗

r

k2∗ sinβcosαcosβ

)(
−k2

r

k2
sinβcosαcosβ

)
+

(
−k2∗

r

k2∗ sinβsinαcosβ

)(
−k2

r

k2
sinβsinαcosβ

)
+

(
1− k2∗

r

k2∗ cos2β

)(
1− k2

r

k2
cos2β

)
. (5.30)

(5.30) is a very complicated function. It will be a very difficult job to close the 3D integral if
pol 2

r eal stays in the integral by its full form like (5.30). The effect of the assumption pol 2
r eal ≈

1/
p
π on the final result C pq

mn and Z pq
mn will be closely examined in Section 5.2.2 and 5.2.3.

Another approximation for pol 2
r eal is shown in Appendix B, which proves to perform worse

than pol 2
r eal ≈ 1/

p
π. After taking pol 2

r eal ≈ 1/
p
π, (5.29) can be written as:

C pq
mn (⃗rn , r⃗m) = I 2

0δ
2 |ζk|2

(2π)3

1p
π

∫ ∞

0

∫ 2π

0

∫ π

0

e− j kr d(sinβsinθcos(α−φ))e− j kr d cosβcosθ

(k∗2 −k2
r )(k2 −k2

r )

k2
r sinβdβdαdkr . (5.31)

Then, one shall notice that the integral in α can be closed analytically in the form of 0th
order Bessel functions of the first kind [46]:∫ 2π

0
e− j kr d sinθ sinβcos(α−φ)dα= 2πJ0

(
kr d sinθ sinβ

)
. (5.32)
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Substitute (5.32) into (5.31), we have:

C pq
mn (⃗rn , r⃗m) = 1p

π

I 2
0δ

2 |ζk|2
(2π)3 2π

∫ ∞

0

∫ π

0

J0
(
kr d sinθ sinβ

)
e− j kr d cosβcosθ

(k∗2 −k2
r )(k2 −k2

r )
k2

r sinβdβdkr .

(5.33)
In order to change the integral domain over kr to [−∞,∞], (5.33) can be represented as:

C pq
mn (⃗rn , r⃗m) = 1p

π

I 2
0δ

2 |ζk|2
(2π)3 2π

1

2

∫ ∞

−∞

∫ π

0

H (2)
0

(
kr d sinθ sinβ

)
e− j kr d cosβcosθ

(k∗2 −k2
r )(k2 −k2

r )
k2

r sinβdβdkr ,

(5.34)
where H (2)

0 represents the 0th order Hankel functions of the second kind. For large z, 0th
order Hankel functions of the second kind can be approximated as [46]:

H (2)
0 (z) ≈

√
2

πz
e− j ze

jπ
4 . (5.35)

Using this approximation, we have:

H (2)
0

(
kr d sinθ sinβ

)≈√
2

π

1√
kr d sinθ sinβ

e− j kr d sinθ sinβe
jπ
4 . (5.36)

Figure 5.3 shows the comparison between the Hankel functions H (2)
0

(
kr d sinθ sinβ

)
and its

approximation in (5.36). The Hankel function is well approximated by (5.36) when kr d is
relatively large.

(a) Real part (b) Imaginary part

Figure 5.3: Comparison between the left and right hand side of (5.36)

Using the approximation in (5.36), (5.34) can be represented as:

C pq
mn (⃗rn , r⃗m) = 1p

π

I 2
0δ

2 |ζk|2
(2π)3 π

√
2

π∫ ∞

−∞

∫ π

0

e
jπ
4√

kr d sinθ sinβ

e− j kr d sinθ sinβe− j kr d cosβcosθ

(k∗2 −k2
r )(k2 −k2

r )
k2

r sinβdβdkr . (5.37)
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The next step is to close the angular integral in β. Using the trigonometric identities, the
integral in β can be represented as:∫ π

0
e

jπ
4

e− j kr d sinθ sinβe− j kr d cosβcosθ√
kr d sinθ sinβ

sinβdβ=
∫ π

0
e

jπ
4

e− j kr d cos(β−θ)√
kr d sinθ sinβ

sinβdβ. (5.38)

Notice that (5.38) can be evaluated by its first order saddle point βs = θ as:∫ π

0
e

jπ
4

e− j kr d cos(β−θ)√
kr d sinθ sinβ

sinβdβ≈ e
jπ
4√

kr d

∫ π

0
e− j kr d cos(β−θ)dβ. (5.39)

Using an approximation method provided in page 382 of [47], if function f (z) has no sin-
gularities near the first order saddle point zs of q(z), the following integral can be approxi-
mated as:

I (Ω) =
∫

SDP
f (z)e jΩ q̂(z)d z ≈

√
2π

Ω
∣∣q̂ ′′ (zs)

∣∣ f (zs)e jΩ q̂(zs )± jπ
4 , q̂ ′′ ≷ 0, (5.40)

where SDP stands for Steepest Descend Path, q̂ denotes that both zs and the phase term
Ω q̂ (z) are real, and q̂ ′′ indicates the second-order derivatives. Applying the identity in
(5.40) into (5.39), we can arrive at:

e
jπ
4√

kr d

∫ π

0
e− j kr d cos(β−θ)dβ≈ e

jπ
4√

kr d

p
2π

e
jπ
4 e− j kr d√

kr d
=p

2π
j e− j kr d

kr d
. (5.41)

Substitute (5.41) back into (5.37), the integral now is only left with 1 dimension:

C pq
mn (⃗rn , r⃗m) = 1p

π

δ2 |ζk|2
(2π)3 2π

j

d

∫ ∞

−∞
kr e− j kr d

(k∗2 −k2
r )(k2 −k2

r )
dkr . (5.42)

The integral of kr on the right hand side of (5.42) can be closed using residue theorem. This
integral is in the form:

I =
∫ ∞

−∞
f (kr )dkr =

∫ ∞

−∞
kr e− j kr d

(k∗2 −k2
r )(k2 −k2

r )
dkr . (5.43)

It is clear that the function f (kr ) has four poles: k, k∗, −k∗ and k, as shown in Figure 5.4.
In order to make the function converge, the two poles for Im {kr } < 0, namely k and −k∗,
are selected for the following process.

We can define a closed clockwise contour C as shown in Figure 5.4. Using the residue
theorem:

I =
∫ ∞

−∞
kr e− j kr d

(k∗2 −k2
r )(k2 −k2

r )
d z =

∫
−C

kr e− j kr d

(k∗−kr )(k∗+kr )(k −kr )(k +kr )
d z

=−2π j
[
Res

(
f ,k

)+Res
(

f ,−k∗)]
.

(5.44)

First, we look at Res
(

f ,k
)
:

Res
(

f ,k
)= lim

kr →k
(kr −k)

kr e− j kr d

(k −kr ) (k +kr ) (k∗−kr ) (k∗+kr )

= −k

2k

e− j kd

(k∗−k) (k∗+k)
=−1

2

e− j kd(
2 j kα

)(
2kβ

) =−e− j kβd e−kαd

8 j kαkβ
. (5.45)
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𝐼𝑚{𝑓(𝑘𝑟)}

𝑅𝑒{𝑓(𝑘𝑟)}

𝑘

𝑘∗

−𝑘∗

−𝑘

Region of convergence 𝐶

Figure 5.4: Position of four poles in the complex plane

Then, we look at Res
(

f ,−k∗)
:

Res
(

f ,−k∗)= lim
kr →−k∗

(
kr +k∗) kr e− j kr d

(k −kr ) (k +kr ) (k∗−kr ) (k∗+kr )

= −k∗

2k∗
e j k∗d

(k +k∗) (k −k∗)
= −1

2

e j k∗d(−2 j kα
)(

2kβ
) = e j kβd e−kαd

8 j kαkβ
. (5.46)

Substituting (5.45) and (5.46) back into (5.44), we can finally close the integral as:

I =−2π j

[
−e− j kβd e−kαd

8 j kαkβ
+ e j kβd e−kαd

8 j kαkβ

]
=−πe−kαd

2kαkβ
j sin

(
kβd

)
. (5.47)

Substitute (5.47) into (5.42):

C pq
mn (⃗rn , r⃗m) = 1p

π

δ2 |ζk|2
(2π)3 2π

1

d

πe−kαd

2kαkβ
sin

(
kβd

)= 1p
π

δ2 |ζk|2
8π

e−kαd

kα
sinc

(
kβd

)
. (5.48)

Rearranging the terms, (5.48) can be written as:

C pq
mn (⃗rn , r⃗m) = 1p

π

δ2

λ2
0

ζ2
0
π

2kα
e−kαd sinc

(
kβd

)
. (5.49)

The comparison between the numerical evaluation of the 3D integral (5.31) and the analyt-
ical expression (5.49) we derived for the same bad metal BM1 as in Section 5.1.2 is shown in
Figure 5.5. The distance of the two dipoles is taken as the penetration depth of the material,
i.e., d = δp = 1/kα. It can be seen from the figure that the 3D integral is well approximated
by (5.49).

Finally, we can write the analytical expression for mutual impedance Z pq
mn as:

Z pq
mn = (

σ∗− jωε0εr∞
)

C pq
mn (⃗rn , r⃗m) = (

σ∗− jωε0εr
) 1p

π

δ2

λ2
0

ζ2
0
π

2kα
e−kαd sinc

(
kβd

)
. (5.50)

Based on the analytical expressions given in (5.49) and (5.50), it is easy to find that two
elementary dipoles are decoupled when:

d = n
π

kβ
= n

λβ

2
, n ∈N, (5.51)
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Figure 5.5: Comparison between the analytical expression (5.49) and numerical validation of (5.31)

where n is a positive integer and λβ = 2π/kβ is the real part of effective wavelength. In this
case C pq

mn = Z pq
mn = 0. The first null (the smallest positive root of function (5.50)) occurs just

when n = 1:

dmin = π

kβ
= λβ

2
. (5.52)

In this case, the number of degrees of freedom in (4.13) can be expressed as:

NDoF = Npos ×6 = V ol

d 3
min

×6 = 8V ol

λ3
β

×6. (5.53)

It is worth pointing out that the sinc term in (5.50) resembles the sinc in field coherence
introduced in Section 2.4. However, field coherence in Section 2.4 is the relation of the
field outside the source region, assuming a plane wave expansion. While our model here in
(5.50) represents the coupling of the eigen-sources themselves.

5.2.2. Validation of the Asymptotic Result
Similar to Section 5.1.2, the validity of the asymptotic expression of the mutual impedance
(5.49) and (5.50) need to be checked with the numerical results calculated by the spatial
Green’s function. Using the visible Green’s function defined in (5.13), the mutual coupling
coefficient C pq

mn of two elementary electric current source n, p and m, q can be expressed
as:

C pq
mn (⃗rn , r⃗m) = δ2

Ñ ∞

−∞
¯̄G

e j∗
vi s (⃗r , r⃗n) · p̂ ¯̄G

e j
vi s (⃗r , r⃗m) · q̂d r⃗ . (5.54)

Then the mutual impedance Z pq
mn of the two dipoles can be expressed as:

Z pq
mn (⃗rn , r⃗m) = (

σ∗− jωε0εr∞
)
δ2

Ñ ∞

−∞
¯̄G

e j∗
vi s (⃗r , r⃗n) · p̂ ¯̄G

e j
vi s (⃗r , r⃗m) · q̂d r⃗ . (5.55)

The comparisons of the mutual coupling C pq
mn and Z pq

mn , between the asymptotic analyt-
ical expression ((5.49), (5.50)) and the numerical result calculated by spatial visible Green’s
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(a) Mutual coupling Cmn (b) Mutual impedance Zmn

Figure 5.6: Comparison between numerical and analytical results of mutual coupling for BM1

Figure 5.7: Penetration depth, half-wavelength in the dielectric and half-wavelength in free-space for BM1

function ((5.54), (5.55)), are shown in Figure 5.6. The material used in this example is the
same bad metal BM1 used in Section 5.1.2 and the distance of the two dipoles is again taken
as the penetration depth δp of the material, which is shown in Figure 5.7.

As we can see from Figure 5.6 that below 20 THz, the numerical results are well approx-
imated by our analytical expressions. There are some discrepancies at higher frequencies,
but the trend of the curves remains identical. The reason accounting for these discrep-
ancies comes from the assumption we took for pol 2

r eal ≈ 1/
p
π. Its dependence on the 3

variables may play a more important role on the final result when the frequency becomes
higher. Also, for higher frequencies, the numerical results could lack accuracy due to the
limitation of the number of points taken in the numerical integration process.
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5.2.3. Analysis on the First Null
Nonetheless, as stated in Section 4.3, what is important is the position of the first null in
C pq

mn . This will be carefully analysed in this section.

Figure 5.8: Comparison of the position of nulls of analytical and numerical results at 20 THz as a function of
distance

Instead of showing C pq
mn as a function of frequency, as in Figure 5.6, we now select a

certain frequency and plot C pq
mn as a function of changing distance d . Figure 5.8 shows an

example for the same material BM1 at 20 THz, with distance d normalized by λβ/2. As
suggested by (5.51), for the analytical expression, the nulls should occur at d/(λβ/2) equal
to a positive integer, such as 1, 2, 3 . . .. But taking a closer look, we can discover that for
the numerical results, the positions of the nulls are not exactly integers as predicted by the
analytical expression. In the example in Figure 5.8, the 1st and 2nd null for the numerical
results are positioned at around 0.95 and 1.96, which is slightly shifted from the integers
predicted by our analytical expression.

Since we are most interested in the first null, which decides the number of degrees of
freedom we have in a certain volume, as stated by (4.13), we now focus on the shift from
the integers of the first null in the numerical result as a function of frequency. Figure 5.9a
shows the changing of the position of the first null calculated by the numerical method
for the same material BM1. We can discover that the curve starts around 1 at very low
frequencies, then rises to around 1.025 and begins dropping, passing 1 around 15.8 THz.
It means that at low frequencies and 15.8 THz, the first null appears exactly at d =λβ/2, as
suggested by our analytical expression.

If we now plot the energy transferred per degree of freedom, as given in (5.11), for the
same material BM1, as shown in Figure 5.9b, we can see that it peaks around very low fre-
quencies and 15.8 THz, which is identical to the two frequencies when the first null of the
mutual impedance appears exactly at d =λβ/2. As we can see from Figure 5.9b, at these
two frequencies, E 1−DoF ≈ kB T . Temperature T is taken as 300 Kelvin in this thesis if not
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15.8 THz

(a) Position of the first null

15.8 THz

(b) Estimated energy per degree of freedom

(c) Real and imaginary part of conductivity (d) (σi +ωϵ0ϵr∞) in (5.56)

Figure 5.9: Analysis for BM1

specified otherwise. Let’s recall that:

E 1−DoF = kB T (Rp )2

|Z p |2 = kB T
σ2

r∣∣σr − jσi − jωϵ0ϵr∞
∣∣2 . (5.56)

These two peaks suggest that at these frequencies, the imaginary part inside the absolute
bar of the denominator in (5.56), (σi +ωϵ0ϵr∞), is very small compared with the real part,
which results in the curve peaks around kB T , the maximum possible spectral energy one
degree of freedom can render. The imaginary part of the conductivity σi , defined in (3.3)
and shown in Figure 5.9c, is small at low frequencies. Consider that (ωϵ0ϵr∞) is a linear
function continuously rising with respect to increasing frequencies. Then (σi +ωϵ0ϵr∞) is
shown in Figure 5.9d, where at very low frequencies and 15.8 THz the value of the curve is
0 as we would expect.

To test our findings, we now propose a new kind of bad metal BM2, whose electron
density is n = 8×1024 electrons/m2 and scattering time is τ= 2×10−14 s. The position of its
first null calculated by the numerical method as a function of frequency and the estimated
energy per degree of freedom of BM2 are shown in Figure 5.10a and Figure 5.10b. As we can
see from the figures, again, when the nulls appear exactly at d =λβ/2, the estimated energy
per degree of freedom peaks around kB T .
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24 THz

(a) Position of the first null

24 THz

(b) Estimated energy per degree of freedom

Figure 5.10: Analysis for BM2

(a) Position of the first null (b) Estimated energy per degree of freedom

Figure 5.11: Analysis for BM3

We propose another kind of bad metal BM3, whose electron density is n = 3 × 1024

electrons/m2 and scattering time is τ = 8× 10−15 s. The estimated energy per degree of
freedom curve of this material, as shown in Figure 5.11b, does not have any peaks. It keeps
dropping from kB T at very low frequencies. Correspondingly, the position of the first null
only appears exactly at d =λβ/2 for very low frequencies and continues to shift towards
lower values when frequency increases, as shown in Figure 5.11a.

The two new materials BM2 and BM3 all comply with our discovery for BM1. We can
also examine our theory on silicon. A type of silicon (Si1), whose electron density is n =
8× 1021 is selected. Figure 5.12 to Figure 5.13 shows Cmn and Zmn calculated using both
analytical and numerical methods as before. Figure 5.12 shows the case when the mutual
distance d always equals to the penetration depth δp . Figure 5.13 shows the case that the
mutual distance d always equals a fixed number d = 250µm. Figure 5.14 shows the case
that Cmn is changing as a function of d , which is normalized by λβ/2, at a fixed frequency
of 100 GHz. The results of silicon are all in accordance with our previous discoveries for the
bad metals.

Now we are able to conclude that, for ideal lossless homogeneous media, the smallest
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(a) Mutual coupling Cmn (b) Mutual impedance Zmn

Figure 5.12: Mutual Coupling for Si1 when d = δp

(a) Mutual coupling Cmn (b) Mutual impedance Zmn

Figure 5.13: Mutual Coupling for Si1 when d = 250µm.

distance for two eigenvectors two be uncoupled is exactly λ/2. But for real dispersive ma-
terials, the actual position of the first null of the mutual impedance curve may shift from
λβ/2 depending on the dispersion curve of the material. This shift is not very significant
until certain frequencies. So in this case, the smallest distance can still be regarded as λβ/2.

5.3. Total Energy Available within the Medium
Proceeding (4.14), we can now write the total energy available in a certain volume V ol in
an analytical way using (5.11) and (5.53) as:

E tot = NDoF ×E 1−DoF = 48V ol

λ3
β

× kB T (Rp )2

|Z p |2 = 48V ol

λ3
β

kB Tσ2
r∣∣σr − jσi − jωϵ0ϵr∞

∣∣2 . (5.57)

Two examples of (5.57) realized for BM1 and BM3 are shown in Figure 5.15. The volume
is taken as a ball with a radius of 100µm. The bend of the curve around 16 THz for BM1
in Figure 5.15a is induced by the second peak of E 1−DoF (See Figure 5.9b). While the curve
for BM3 (Figure 5.15b) does not have the bend, as its corresponding E 1−DoF curve does not
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Figure 5.14: Mutual Coupling for Si1 at 100 GHz as a Function of Distance

(a) BM1 (b) BM3

Figure 5.15: Total energy available within a certain volume.

have a second peak (See Figure 5.11b). For low frequencies NDoF dominates the rise of the
curves with respect to frequency. While for high frequencies the curves decrease because
the curves of E 1−DoF drop significantly with respect to frequency.

To find out the rate of decrease of the curves for high frequencies, we now derive the
high-frequency approximation of E 1−DoF . At high frequencies, it can be approximated as:

lim
f →∞

E 1−DoF
E M ≈ kB T

lim f →∞ (Rp )2

lim f →∞ |Z p |2 ≈ kB T

(
σqs

ω2τ2

)2

|ωε0εr∞|2 ≈ kB T
σ2

qs

(2π)6ε2
0ε

2
r∞τ4

1

f 6
. (5.58)

Then the total energy available E tot at high frequencies can be approximated as:

lim
f →∞

E tot ≈ 48V ol · f 3(
c0
p
εr∞

)3 ×
kB Tσ2

qs

(2π)6ε2
0ε

2
r∞τ4

1

f 6
= 3V ol

4
(
c0
p
εr∞

)3

kB Tσ2
qs

π6ε2
0ε

2
r∞τ4

1

f 3
∝ 1

f 3
, (5.59)
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where c0 refers to the propagation speed in free space.
Unlike the traditional Rayleigh-Jeans model which continues to rise at high frequencies,

the total energy available in our model decreases proportionally to 1/ f 3 at high frequen-
cies (see (5.59)), despite using the classic description of average energy per degree of free-
dom kB T as suggested by equipartition theorem. One should always bear in mind that this
amount of energy is the energy available within the boundary of the medium. For the case
of a real finite object, the amount of energy actually leaving the boundary of the object will
be much less than the amount suggested by (5.57) since a large portion of this energy will be
absorbed by the object before it reaches to the boundary. This situation will be addressed
in detail in the next chapter.



6
Evaluation of Radiated Power

In previous chapters, we only focus on the available energy within in certain volume of
ohmic medium. In this proceeding chapter, instead of considering an ideal infinite medium,
we will establish a model to estimate the power radiated outside a real finite bulk object.

In this chapter, the generating currents of the eigenvectors are described in Section 6.1.
They are defined as volumetric current distributions on small cubes. Then, the possible
positions of the finite number of degrees of freedom are discussed in Section 6.2. These
possible positions result in a discretization of the bulk object. Then, the power radiated
outside the object boundary is calculated in Section 6.3 from the Poynting vectors of these
sources. An analytical approximation of this power is given in (6.35), whose credibility is
verified by numerical realization in Section 6.6. It turns out that for low frequencies, the
result of radiated power from our model is very similar to the traditional method given in
(2.6). While for high frequencies, there are some major discrepancies.

6.1. Generating Currents of the Eigenvectors
In Chapter 5, we treat the eigen-currents as elementary dipoles. We can now represent
the sources generating these eigenmodes as volumetric current distributions j⃗ (⃗r ) on small
cubes with side lengths equal to ∆, which is very small compared to the wavelength. They
can be represented as:

j⃗ (⃗r ) = I

∆2
r ect

(⃗
r ,∆3) · p̂, (6.1)

where I is the net current, and p̂ is the direction of the current, which is orthogonal to the
cross-section with an area of ∆2. For a source located at r⃗m , oriented along p̂ and with net
current I p

m , the current distribution is:

j⃗ (⃗r , r⃗ m) = I p
m

∆2
r ect

(⃗
r − r⃗m ,∆3) · p̂. (6.2)

Extending (4.2) to the generating currents, the total generating current inside the bulk ob-
ject can be represented as:

j⃗tot (⃗r , r⃗ m) =
NDoF∑
m=1

I p
m p̂

1

∆2
r ect

(⃗
r − r⃗m ,∆3). (6.3)

43



44 6. Evaluation of Radiated Power

The current I p
m in (6.2) and (6.3) can be represent by its amplitude and phase I p

m = ∣∣I p
m

∣∣e jφ
p
m .

The phase φp
m here is random due to that these currents are non-coherent to each other.

The amplitude of the current can be calculated via the Johnson-like circuit introduced
in Section 3.2. The load impedance Zl oad is associated with the load of the surrounding
environment of r⃗m , which represents the location of that degree of freedom. We can ap-
proximate that for every r⃗m in the object, Zload ≈ Zp , as if it is in an infinite homogenous
medium. This approximation is more accurate for degrees of freedom which are at the in-
ner layers of the bulk object and less accurate for ones near the surface of the object. Using
this approximation, the amplitude of each of the generating currents can be approximated
as: ∣∣I p

m

∣∣2 ≈ |I0|2 = kB T Rp

|Z p |2 , (6.4)

where Rp = Re{Z p }. Z p is given analytically in (5.10).

6.2. Position of Generating Currents
As we discovered in Chapter 5 that the minimal distance for two eigenmodes to be inde-

pendent can be approximated by
λβ
2 . Thus, the number of degrees of freedom in a certain

volume can be calculated by (5.53). However, where these degrees of freedom are actually
placed remains a problem. One simple and intuitive solution is to divide the object equally

by a grid with the side length of each cube equal to
λβ
2 , as shown in Figure 6.1a. The gener-

ating sources, as given by (6.2), are then placed at the centre of each cube, r⃗m . The number
of these centres is just Npos given in (5.53):

Npos = vol(
λβ
2

)3 = 8vol

λ3
β

. (6.5)

Figure 6.1b shows a cross-section of the ball object as given in Figure 6.1a. Since these
generating currents are independent of each other, the total power radiated outside the
object can be simply calculated by summing up the individual contribution of each degree
of freedom. By adopting the approximation in (6.4), we can thus represent the total power
as:

P tot
r ad

(
f
)= ∑

DoF
Pr ad1DOF =

Npos∑
m=1

Pol .∑
p=1

Pr ad

(
f , r⃗m , |I0|2 ,

[
λβ

2

]3
)

, (6.6)

where Pol = 6 represents 6 different possible polarizations.
However, one can always argue that the situation shown in Figure 6.1b is only one pos-

sible realization. There is always going to be other different allocations of these sources, for
example, the case shown in Figure 6.1c, as the positions of the sources r⃗m′ are shifted from
their previous positions r⃗m in Figure 6.1b. In fact, there is no reason to believe one place
is any better than others. Any position inside the object is equally possible for a degree
of freedom and its generating source to exist. Acknowledging this fact, one can divide the

grid of one degree of freedom (side length equals
λβ
2 ) into small cubes with a side length

of ∆, whose centre can be indicated by r⃗l , as shown in Figure 6.2. The generating current
associated with this degree of freedom has equal possibilities to be placed at all of these
small cubes. In this case, the power radiated outside by each degree of freedom can be
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𝜆𝛽
2

𝜆𝛽/2

𝜆𝛽/2

(a)

𝜆𝛽/2

Δ
𝜆𝛽

2

𝑟𝑚

(b)

𝑟𝑚

𝑟𝑚′

(c)

Figure 6.1: (a)Discretization of the bulk object (b)Cross-section in 2D (c)Another possible location of the
sources

represented as:

Pr ad1DOF = 1

L

L∑
l=1

Pr ad
(

f , r⃗l , |I0|2 ,∆3), (6.7)

where L represents the number of small cubes inside a cube of one degree of freedom:

L =
(
λβ
2

)3

∆3
=
λ3
β

8∆3
. (6.8)

L here is used as an average factor for the reason that these L small cubes actually represent
L possible realizations of the position of the generating source associated to one degree of
freedom.

Dividing all degrees of freedom into L sub-cubes and replacing L with (6.8), the total
power radiated outside the object can be written as:

P tot
r ad

(
f
)= 1

L
× ∑

DoF

L∑
l=1

Pr ad
(

f , r⃗l , |I0|2 ,∆3)= 8∆3

λ3
β

× ∑
DoF

L∑
l=1

Pr ad
(

f , r⃗l , |I0|2 ,∆3). (6.9)
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𝜆𝛽/2

Δ
…

𝑟𝑙1

𝑟𝑙𝐿

Figure 6.2: Divide the λβ/2 cube into smaller cubes with side length ∆. This figure only shows the x̂ oriented
current.

Δ

𝒓𝒍

Figure 6.3: Divide the whole bulk object into small cubes. Each of these cubes is a generating source.

We can represent the double summation in (6.9) by a single summation as:

P tot
r ad

(
f
)= 8∆3

λ3
β

L×Npos×pol∑
l=1

Pr ad
(

f , r⃗l , |I0|2 ,∆3)= 6× 8∆3

λ3
β

L×Npos∑
l=1

Pr ad
(

f , r⃗l , |I0|2 ,∆3). (6.10)

This is equivalent to the model shown in Figure 6.3. In Figure 6.3, we directly divide the
bulk object into L × Npos number of small cubes with side length ∆. Each of these small
cubes is a volumetric generating current source defined as:

j⃗ (⃗r , r⃗l ) = I0

∆2
r ect

(⃗
r − r⃗l ,∆3) · p̂. (6.11)

Since these currents are non-coherent, their contribution to the total power radiated out-
side can be summed up together. Just as a further clarification, one can realize that, firstly,
these small cubes represent different possible realizations of the degrees of freedom, thus
they are independent of each other. Secondly, all these L×Npos number of sources cannot

exist at the same time, only L number of these sources with a mutual distance of
λβ
2 with

the neighbouring source can exist at a certain moment.
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6.3. Power Radiated outside
As mentioned before, since these generating currents are non-coherent, their contributions
to the total power radiated outside can be summed up together, as illustrated in equation
(6.10). To calculate this power, one can integrate the Poynting vectors over the entire sur-
face area (S A) of the bulk object. In the example of Figure 6.1 and 6.3, the object is consid-
ered as a ball object. The Poynting vector is defined as the energy flux in a certain direction.
Generally, it can be written as [32]:

S⃗ = e⃗ × h⃗∗. (6.12)

We start from the contribution of one of the small volumetric currents of ∆3 defined by
(6.11). The electrical field generated by the volumetric current centred at r⃗l can be calcu-
lated as:

e⃗ (⃗r ) =
Ñ

∆3 (⃗rl )

¯̄g
e j

(⃗r , r⃗∆) · j⃗ (⃗r∆, r⃗l )dr⃗∆, (6.13)

where r⃗∆ refers to the points in the source volume ∆3 (⃗rl ) centred at r⃗l . If the observation
point is very far away from the source volume ∆3 (⃗rl ), we can take (⃗r − r⃗∆) ≈ (⃗r − r⃗l ). In this
way, the Green’s function in (6.13) can be approximated as the Green’s function at the centre
r⃗l :

e⃗ (⃗r , r⃗l ) = ¯̄g
e j

(⃗r , r⃗l )∆I0 · p̂. (6.14a)

Similarly, the magnetic field can be written as:

h⃗ (⃗r , r⃗l ) = ¯̄g
h j

(⃗r , r⃗l )∆I0 · p̂. (6.14b)

The Poynting vector of a volumetric generating source oriented along ẑ centred at r⃗l can be
written as:

S⃗ (⃗r − r⃗l ) = e⃗ (⃗r , r⃗l )× h⃗∗ (⃗r , r⃗l ) = |I0|2 ζ0∆
2 1

λ2
0

√
εr,e f f

∗ sin2 (θ−θl )

4|⃗r − r⃗l |2
e−2kα |⃗r−r⃗l | r⃗ − r⃗l

|⃗r − r⃗l |
, (6.15)

where θ and θl are the θ̂ component of vector r⃗ and r⃗l in spherical coordinate. The detailed
algebraic steps can be found in Appendix D. Then, the spectral power radiated by the source
centred at r⃗l outside the ball object can be calculated by integrating all the Poynting vectors
that have travelled through the whole surface area S A:

Pr ad
(

f , (⃗rs − r⃗l )
)=Ï

S A

[
1−Γ2 (⃗rs − r⃗l )

]
Re

{
S⃗ (⃗rs − r⃗l )

} · n̂ (⃗rs)dr⃗s , (6.16)

where r⃗s are the surface points of the whole object; n̂ (⃗rs) is the normal vector of the sur-
face at point r⃗s ; S⃗ (⃗rs − r⃗l ) is the Poynting vector flowing from the source point of r⃗l to the
surface point of r⃗s ; and Γ2 (⃗rs − r⃗l ) is the power reflection coefficient between the object
medium and its surrounding environment when the Poynting vector S⃗ (⃗rs − r⃗l ) arrives at
surface point r⃗s . Γ2 (⃗rs − r⃗l ) can be calculated using the Fresnel equations (details in Sec-
tion 6.6).

Notice that (6.15) only gives one case of the Poynting vector for the current oriented
along ẑ direction. The expression varies for currents oriented at different directions. But
this specific direction of the source does not contain any useful information, since we are
integrating the Poynting vector over the entire surface area and only intersted in the total
power radiated by all the sources. Hence, it is convenient to replace the directional sources
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by isotropic ones. We can then have an expression (detailed derivations see Appendix D) of
Poynting vectors for all of the isotropic sources as:

S⃗i so (⃗r − r⃗l ) = |Ii so |2 ζ0∆
2 1

λ2
0

√
εr,e f f

∗ 1

4 |⃗r − r⃗l |2
e−2kα |⃗r−r⃗l | r⃗ − r⃗l

|⃗r − r⃗l |
, (6.17)

In order to get the same power as the directional sources, i.e. make (6.15) equal to (6.17),
the current of the isotropic dipoles should be set as (detailed derivations see Appendix D):

|Ii so |2 = 2

3
|I0|2. (6.18)

If we define the power transmission coefficient as T (⃗r − r⃗l ) = [
1−Γ2 (⃗r − r⃗l )

]
, the spectral

power radiated by an isotropic source centred at r⃗l outside the whole surface area can then
be written as:

P i so
r ad

(
f , (⃗rs − r⃗l )

)=Ï
S A

T (⃗rs − r⃗l )Re
{
S⃗i so (⃗rs − r⃗l )

} · n̂ (⃗rs)dr⃗s . (6.19)

Substitute (6.17) into (6.19):

P i so
r ad

(
f , (⃗rs − r⃗l )

)= 1

6
|I0|2ζ0∆

2 1

λ2
0

Re
{√

εr,e f f

}Ï
S A

T (⃗rs − r⃗l )
e−2kα |⃗rs−r⃗l |

|⃗rs − r⃗l |2
r⃗s − r⃗l

|⃗rs − r⃗l |
· n̂ (⃗rs)dr⃗s .

(6.20)
Then, substituting (6.20) into (6.10), the total spectral power radiated outside the object by
the volumetric source at r⃗l can be written as:

P tot
r ad

(
f
)= 6×8∆3

λ3
β

1

6
|I0|2ζ0∆

2 1

λ2
0

Re
{√

εr,e f f

}L×Npos∑
l=1

Ï
S A

T (⃗rs − r⃗l )
e−2kα |⃗rs−r⃗l |

|⃗rs − r⃗l |2
r⃗s − r⃗l

|⃗rs − r⃗l |
· n̂ (⃗rs)dr⃗s

= 8∆3

λ3
β

|I0|2ζ0∆
2 1

λ2
0

Re
{√

εr,e f f

}L×Npos∑
l=1

Ï
S A

T (⃗rs − r⃗l )
e−2kα |⃗rs−r⃗l |

|⃗rs − r⃗l |2
r⃗s − r⃗l

|⃗rs − r⃗l |
· n̂ (⃗rs)dr⃗s .

(6.21)

To replace the summation in (6.21) by an integration, we can make an assumption that the
power contribution of the source at r⃗l is averagely distributed over the entire source volume
of ∆3 (⃗rl ). In this way, we can approximate the integral in (6.21) as:Ï

S A
T (⃗rs − r⃗l )

e−2kα |⃗rs−r⃗l |

|⃗rs − r⃗l |
r⃗s − r⃗l

|⃗rs − r⃗l |
· n̂ (⃗rs)dr⃗s

≈ 1

∆3

Ï
S A

Ñ
∆3 (⃗rl )

T (⃗rs − r⃗∆)
e−2kα |⃗rs−r⃗∆|

|⃗rs − r⃗∆|2
r⃗s − r⃗∆
|⃗rs − r⃗∆|

· n̂ (⃗rs)dr⃗∆dr⃗s , (6.22)

where 1/∆3 is the average factor to ensure the unity of the power. From now on, we extend
r⃗l to all points within the volume (V ol ) of the bulk object. To simplify the notation, we
can define a vector pointing from source point to surface point as: r⃗ ′ = (⃗rs − r⃗l ) and its
unit vector r̂ ′ = (⃗rs − r⃗l )/|⃗rs − r⃗l |, which is the direction of the Poyting vector. Then, the
summation of all generating sources in (6.21) can be approximated by the integration over
the entire volume (V ol ) of the bulk object:

P tot
r ad

(
f
)= 8

λ3
β

|I0|2ζ0∆
2 1

λ2
0

Re
{√

εr,e f f

}Ï
S A

Ñ
V ol

T
(⃗
r ′) e−2kα |⃗r ′|

|⃗r ′|2 r⃗ ′ · n̂ (⃗rs)dr⃗l dr⃗s . (6.23)
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Equation (6.23) represents the power per frequency radiates outside the bulk object with-
out any significant approximation and can be evaluated numerically, as shall be introduced
in Section 6.6.

6.4. Analytical Expression for High Loss Material
For high loss material, we can assume that only the layer close to the surface of the object
(i.e. S A) contributes to the flux that actually radiates outside. Then, the integration over the
entire volume can be replaced by a ball portion that intersects with the bulk object (blue
ball in Figure 6.4). The ball portion is centred at surface point r⃗s , with a radius of l , shaded
in light green in Figure 6.4:

P tot
r ad

(
f
)= 8

λ3
β

|I0|2ζ0∆
2 1

λ2
0

Re
{√

εr,e f f

}Ï
S A

∫ 2π

0

∫ π

0

∫ l

0
T

(⃗
r ′) e−2kα |⃗r ′|

|⃗r ′|2 r̂ ′ · n̂ (⃗rs)

r ′2 sinθ′dr ′dθ′dφ′dr⃗s .

(6.24)

𝑛

𝑙

𝑟𝑠

Figure 6.4: Integration over a ball portion (shaded in light green) that intersects with the bulk object (blue
ball)

𝑛(𝑟𝑠 = 0) = 𝑧′

𝑟′ = −𝑟𝑙

𝜃′
𝑙

𝑧′

Figure 6.5: Cross-section of Figure 6.4

The cross-section of Figure 6.4 is shown in Figure 6.5. If we place the origin of the coor-
dinate at the surface point r⃗s and consider n̂ (⃗rs) = ẑ ′, then we can have:

r̂ ′ · n̂ (⃗rs) = r̂ ′ · (ẑ ′)= cosθ′. (6.25)
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Then, (6.24) can be reduced to:

P tot
r ad

(
f
)= 8

λ3
β

|I0|2ζ0∆
2 1

λ2
0

Re
{√

εr,e f f

}Ï
S A

∫ 2π

0

∫ π

0

∫ l

0
T

(⃗
r ′) e−2kα |⃗r ′|

|⃗r ′|2 r ′2dr ′

cosθ′ sinθ′dθ′dφ′dr⃗s .

(6.26)

Considering the fact that the permittivity of the bulk object and its outside environment
are different, not all the fluxes coming from every angle can transmit through the surface.
In fact, only the fluxes with angles of incidence smaller than the critic angle θc are con-
tributing to the total power radiated out. For angles of incidence larger than θc , according
to Snell’s law, the corresponding angles of refraction are then larger than 90◦. In this case,
the fluxes will be reflected back within the object. Since we are considering a high loss ma-
terial, all the multi-reflections within the bulk object are ignored and considered as loss.
If the environment surrounding the bulk object has a relative permittivity of εr,2, the critic
angle can be calculated as:

θ1c = sin−1

[ p
εr,2

Re
{p

εr,e f f
}]

. (6.27)

𝒍
𝑛

𝜃𝑐

Figure 6.6: Introducing critical angle θc , the integration domain is reduced to a volume bounded by a
spherical cone (shaded in green).

This critical angle results in the integration domain of the ball portion in Figure 6.4 to be
reduced into a volume bounded by a spherical cone, as shaded in light green in Figure 6.6.
The total power radiated out can thus be represented as:

P tot
r ad

(
f
)= 8

λ3
β

|I0|2ζ0∆
2 1

λ2
0

Re
{√

εr,e f f

}Ï
S A

∫ 2π

0

∫ θc

0

∫ l

0
T

(⃗
r ′)e−2kαr ′

dr ′

cosθ′ sinθ′dθ′dφ′dr⃗s

(6.28)

To simplify the integral, we can assume that the transmission coefficient is always equal to
the broadside case for all angles of incidence smaller than the critical angle θc , and equal
to zero for other angles:

T
(⃗
r ′)≈ T

(
θ′ = 0,φ′ = 0

)
r ect

(
θ′, θc

)
. (6.29)
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Then, the transmission coefficient is independent of r⃗ ′ and can be pulled out of the integral
as:

P tot
r ad

(
f
)= 8

λ3
β

|I0|2ζ0∆
2 1

λ2
0

Re
{√

εr,e f f

}
T (0)

Ï
S A

∫ 2π

0

∫ θc

0

∫ l

0
e−2kαr ′

dr ′

cosθ′ sinθ′dθ′dφ′dr⃗s

(6.30)

The integrals in (6.30) can be closed respectively as:∫ 2π

0
dφ′ = 2π, (6.31a)∫ θc

0
cosθ′ sinθ′dθ′ = 1

2
sin2θc , (6.31b)∫ l

0
e−2kαr dr = 1−e−2kαl

2kα
, (6.31c)Ï

S A
dr⃗s = S A. (6.31d)

Substituting (6.31), (6.30) can be expressed analytically as:

P tot
r ad

(
f
)= 4

λ3
β

|I0|2ζ0∆
2 1

λ2
0

Re
{√

εr,e f f

}
T (0)πsin2θc

1−e−2kαl

kα
S A. (6.32)

Notice that we can approximate sin2θc as:

sin2θc = sin2

(
sin−1

[ p
εr,2

Re
{p

εr,e f f
}])

≈ εr,2

Re2
{p

εr,e f f
} . (6.33)

Then, the total power radiated outside can be written as:

P tot
r ad

(
f
)= 4

λ3
β

|I0|2ζ0∆
2 1

λ2
0

T (0)π
εr,2

Re
{p

εr,e f f
} 1−e−2kαl

kα
S A. (6.34)

If the medium surrounding the bulk object is free space, εr,2 = 1, (6.34) is reduced to:

P tot
r ad

(
f
)= 4

λ3
β

|I0|2ζ0∆
2 1

λ2
0

T (0)π
1

Re
{p

εr,e f f
} 1−e−2kαl

kα
S A. (6.35)

Equation (6.35) is the analytical expression to calculate the power per frequency radiated
by a real lossy material object, with |I0|2 defined in (6.4).

We can now evaluate (6.35) (referred to as EM in the figures) on real materials and com-
pare it with the Planck-like expression (2.6) (referred to as Planck in the figures) calcu-
lated using the brightness of black body. Figure 6.7 shows the curves of a bad metal (BM4)
with n = 4.7× 1023 electrons/m2 and τ = 12 f s. The bulk object is a ball with a radius of
RS = 100 µ m. The surface area S A can be calculated as S A = 4π R2

s . As we can see from the
figure, at low frequencies, the two curves are more or less comparable. Especially for the
zoomed-in figure, at frequencies below 0.2 THz, the two curves are overlapping.

The same comparison can also be made for silicon. Consider the bulk object of the
same size made of a type of silicon (Si2) with n = 1022 electrons/m2. The results are shown
in Figure 6.8. It is obvious that the peak of our model (EM) is one magnitude lower than the
Planck-like curve in (2.6). And the peak also appears at a lower frequency than the Planck-
like curve. Same to the bad metal case, the two curves are overlapping at low frequencies,
as can be seen in the zoomed-in figure on the left.
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Figure 6.7: Evaluation of (6.35) EM and (2.6) Plank on BM4

Figure 6.8: Evaluation of (6.35) EM and (2.6) Plank on Si2

6.5. Approximation for Very Low Frequencies
In the previous section, we have discovered that for low frequencies, our model (6.35) over-
laps with the Planck-like curve in (2.6). We now try to simplify (6.35) for every low frequen-
cies and compare it with (A.11), the low-frequency approximation of the Planck-like curve
that uses Rayleigh-Jeans law as black body brightness.

For every low frequencies, the real and imaginary part of the propagation constant can
be approximated as equal:

kα ≈ kβ = k0Re
{p

ϵr 1
}= k0Re

{√
1− jσ

ωϵ0

}
= k0 0.707

√
σqs

ωϵ0
. (6.36)
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Then the self-impedance of one degree of freedom given in (5.10) can be approximated as:

Zp ≈ (
σ∗− jωϵ0ϵr∞

) ∆2

λ2
0

ζ2
0

π

3k0 0.707
√

σqs

ωϵ0

. (6.37)

Notice that, for the frequency-dependent term inside the bracket, at low frequencies jωϵ0ϵr∞
is very small and conductivity σ can be approximated by its quasi-static part σqs given by
(3.2), which is purely real. Thus, (6.37) can be reduced to:

Z p ≈σqs
∆2

λ2
0

ζ2
0

π

3k0 0.707
√

σqs

ωϵ0

. (6.38)

Replace k0 with 2π
λ0

, (6.38) can be further reduced to:

Z p ≈σqs
∆2

λ0
ζ2

0
1

6×0.707
√

σqs

ωϵ0

. (6.39)

Notice that in (6.39) Z p is purely real at low frequencies. The amplitude of the current given
by (6.4) is then:

|I0|2 = kB T Rp

|Z p |2 = kB T

Z p
= kB Tλ0

σqs∆2 ζ2
0

6×0.707

√
σqs

ωϵ0
. (6.40)

Then, substitute (6.40) into (6.35) and use the approximation in (6.36):

P tot
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√

σqs
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= 24

λ3
β

kB T

σqs ζ0

1

λ0
T (0)π

1−e−2kαl

k0 0.707
√

σqs

ωϵ0

S A

= 12

λ3
β

kB T

σqs ζ0
T (0)

1−e−2kαl

0.707
√

σqs

ωϵ0

S A.

(6.41)

Using (6.36), at low frequencies, 1
λ3
β

in (6.41) can also be approximated as:

1

λ3
β

≈
[

0.707
√

σqs

ωϵ0

]3

λ3
0

. (6.42)

Substitute (6.42) into (6.41):
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r ad

(
f
)= 12

[
0.707

√
σqs

ωϵ0

]3

λ3
0

kB T

σqs ζ0
T (0)

1−e−2kαl

0.707
√

σqs

ωϵ0

S A
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[
0.707

√
σqs

ωϵ0

]2

λ3
0

kB T

σqs ζ0
T (0)

(
1−e−2kαl

)
S A

≈ kB T

λ3
0ωϵ0

6

ζ0
T (0)

(
1−e−2kαl

)
S A.

(6.43)
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Notice that ζ0 =
√

µ0
ϵ0

, ω= 2πc0
λ0

and c0 = 1p
µ0ϵ0

, (6.43) can be simplified as:
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f
)= kB T
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02π c0

λ0
ϵ0

6√
µ0
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T (0)
(
1−e−2kαl

)
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0
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ϵ0

1√
µ0
ϵ0

T (0)
(
1−e−2kαl

)
S A

= kB T

λ2
0

1p
µ0ϵ0

1p
µ0ϵ0

T (0)
(
1−e−2kαl

)
S A

= kB T

λ2
0

T (0)
(
1−e−2kαl

)
S A

= kB T f 2

c2
0

[
1−|Γ(0)|2](

1−e−2kαl
)

S A.

(6.44)

Here, comparing (6.44) with the results calculated by Bekefi [20] in (A.11) we can discover
that they are very similar.

6.6. Numerical Validation
As mentioned before, Equation 6.23 represents the power per frequency that radiates out-
side the bulk object without any significant approximation and can be evaluated numeri-
cally. Consider the same ball bulk object with a radius of Rs . It can be represented by the
spherical coordinate system as shown in Figure 6.9. This representation divides the ob-
ject into small portions with the volume of drl ×dθl ×dφl , which represents each source
point. Similarly, the surface area (S A) can also be divided into small portions of spheres
dΘs ×dΦs when the radial distance equals the radius of the ball Rs as shown in Figure 6.10.
Then, (6.23) can be represented as the summation of every source point in the whole vol-
ume through every surface point, as given in (6.45):

P tot
r ad

(
f
)= 8

λ3
β

|I0|2ζ0∆
2 1

λ2
0

Re
{√

εr,e f f

}
2π∑
0

π∑
0

2π∑
0

π∑
0

Rs∑
0

T
(⃗
r ′) e−2kα |⃗r ′|

|⃗r ′|2 r̂ ′ · n̂ (⃗rs)r 2
l sinθl dr l dθl dφl R2

s sinΘsdΘsdΦs . (6.45)

Figure 6.11 gives a pictorial representation of (6.45). Notice that in (6.45), |I0|2 can be
calculated by (6.4) and the normal vector n̂ (⃗rs) at r⃗s is equivalent to the unit radial vector
of the point r⃗s :

n̂ (⃗rs) = R̂s . (6.46)

Thus, (6.45) can be written in a more explicit way:

P tot
r ad

(
f
)= 8

λ3
β

kB T Rp

|Z p |2 ζ0∆
2 1

λ2
0

Re
{√

εr,e f f

}
2π∑
0

π∑
0

2π∑
0

π∑
0

Rs∑
0

T
(⃗
r ′) e−2kα |⃗r ′|

|⃗r ′|2 r̂ ′ · R̂sr 2
l sinθl dr l dθl dφl R2

s sinΘsdΘsdΦs . (6.47)
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Figure 6.9: Spherical coordinate.
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Figure 6.11: A pictorial representation of the numerical calculation (6.45).
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Figure 6.12: Transmission of Poyniting vectors at the surface of the bulk object.

The transmission coefficient in (6.47) can be calculated using Fresnel equations. Fig-
ure 6.12 shows a zoomed-in picture around the surface point r⃗s . First, the angle of inci-
dence θi is the angle between vector r⃗ ′ and the normal vector n̂ (⃗rs) and can be calculated
as:

θi = cos−1
(

r⃗ ′ · n̂

|⃗r ′|
)
. (6.48)

Then, using Snell’s law, the angle of refraction θt can be calculated as:

θt = sin−1

(
Re

{p
εr,e f f

}
p
εr,2

sinθi

)
, (6.49)

where εr,e f f is the effective permittivity of the material of the object, and εr,e f f is the effec-
tive permittivity of its surrounding environment. Consider the surrounding environment
as free space, then εr,2 = 1. Fresnel equations for electromagnetic power with TM (indicated
as parallel ∥) and TE (indicated as perpendicular ⊥ ) polarization are given as:∣∣∣Γ∥∣∣∣2 =

∣∣∣∣ζ0 cosθt −ζd cosθi

ζ0 cosθt +ζd cosθi

∣∣∣∣2

, (6.50a)

∣∣Γ⊥∣∣2 =
∣∣∣∣ζ0cosθi −ζd cosθt

ζ0cosθi +ζd cosθt

∣∣∣∣2

, (6.50b)

where ζ0 is free space impedance and ζd is the impedance in the bulk object given as ζd =
ζ0p
εr,e f f

. Then, the power transmission coefficient can be expressed respectively as:

T ∥ = 1−
∣∣∣Γ∥∣∣∣2

, (6.51a)

T ⊥ = 1− ∣∣Γ⊥∣∣2
. (6.51b)

Considering the fact that our equivalent source is unpolarized and isotropic, we can define
an effective power transmission coefficient as the average of the transmission coefficient
for the two polarizations.

Te f f =
1

2

(
T ∥+T ⊥

)
. (6.52)



6.6. Numerical Validation 57

Figure 6.13: An example of Te f f compared with T ∥ and T ⊥.

Figure 6.13 gives an example of comparison between T ⊥, T ∥ and Te f f , for the bulk ob-
ject with an ideal relative permittivity equal to 11.7. As we can see from the figure, the
critical angle θc here is 17◦. For angles of incidence larger than θc , the transmission coeffi-
cient equals to zero. Also, for θi < θc , Te f f is not far away from the transmission coefficient
at the broadside. So (6.29) can serve as a good approximation for most of the cases.

𝑥 𝑦

𝑧

Figure 6.14: An example of 1/8 of the ball volume.

The numerical evaluation process of (6.47) is extremely time and resource-consuming,
especially for the size of the bulk object much larger than the wavelength, Rs ≫ λβ. We
can utilize the symmetry of the ball-shaped object to speed up the calculation process. It is
clear that for the isotropic source, the Poynting vectors radiating from every source in the
whole volume through every 1/8 of the surface area are the same. Equivalently, the Poynt-
ing vectors radiating from sources in every 1/8 of the volume through the whole surface
area are the same. Figure 6.14 gives an example of 1/8 of the ball volume. Originally in
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(6.47), the range of the variables are:

Sour ces =


rl ∈ [0,Rs] ,

θl ∈ [0,π] ,

φl ∈ [0,2π] .

and, Sur f ace =


Rs ,

Θs ∈ [0,π] ,

Φs ∈ [0,2π] .

(6.53)

Using this symmetry, we can calculate the 1/8 of the total energy radiated out P 1/8
r ad ( f ) by

taking the range of the surface variables as:

Sur f ace =


Rs ,

Θs ∈ [0,π/2] ,

Φs ∈ [0,π/2] .

(6.54a)

or equivalently changing the range of the source variables as:

Sour ces =


rl ∈ [0,Rs] ,

θl ∈ [0,π/2] ,

φl ∈ [0,π/2] .

(6.54b)

Intuitively, the total power radiated out can be simply calculated as:

P tot
r ad

(
f
)= 8×P 1/8

r ad

(
f
)

. (6.54c)

Then (6.47) can be expressed as:
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Or equivalently:
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Using (6.55a) or (6.55b) we can evaluate (6.23) in a numerical way. We can then compare
the results with the analytical approximation we derived at (6.35).

6.6.1. Validation Results
We can test the numerical results of two bulk objects of the same size and the same material
as in Section 6.4. The results of BM4 is shown in Figure 6.15, with the numerical result indi-
cated as EM(Num), the analytical approximation in (6.35) indicated as EM(Analy) and the
Planck-like expression (2.6) indicated as Planck. As we can see from the figure, the analyt-
ical and numerical results show good agreement with each other over low frequencies. For
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higher frequencies, there are some slight differences between analytical and numerical re-
sults. Similar behaviour can also be seen in the results of Si2 in Figure 6.16. The numerical
result also shows some discrepancies with the analytical one, especially around the peak of
the curves, as can be seen in the zoomed-in figure.

Notice that the frequency range of the numerical calculation is limited due to the fact
that the wavelength is getting smaller with respect to the increase of frequency. In order
to achieve the same level of accuracy in point sampling (dr l = λβ/100 for example), the
number of points taken in the object of the same size increases exponentially with respect
to frequency. Thus the frequency range for the numerical calculation is limited by the com-
putation resources.

Figure 6.15: Numerical validation of BM4.

Figure 6.16: Numerical validation of Si2.
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6.6.2. Analysis on the Discrepancies

(a) 0.1 to 0.5 THz (b) 0.6 to 1.1 THz

Figure 6.17: Comparioson when Te f f is taken as T(0) and T(θ)

The discrepancies between the analytical expression and the numerical evaluation pri-
marily come from the approximation we take in (6.29), where we assumed in the analytical
expression that the transmission coefficient is always equal to the broadside case for the
angle of incidence smaller than the critical angle θc . In fact, the effective transmission coef-
ficient Te f f in (6.53) varies with respect to the angle of incidence, as shown by the example
in Figure 6.13.

We can examine this judgment by setting Te f f in the numerical validation also always
equal to the broadside case, as in the analytical approximation. Figure 6.17 shows the case
of Si2 from 0.1 to 0.5 THz and around the peak of the curve from 0.6 to 1.1 THz. As we can
see from the figure, the numerical results of Te f f always taken as broadside (indicated as
Num(T(0)) in the figure), almost overlaps with the analytical curve. While for the numerical
results of Te f f calculated by the Fresnel equations (indicated as Num(T(θ)) in the figure),
the discrepancy remains.

Also, some numerical errors can also be induced by the lack of accuracy during the
numerical calculation process at high frequencies.

Now we are able to conclude that analytical expression (6.35) is a good approximation
for most of the cases and can be used to estimate the total spetral power radiated outside a
bulk object made from ohmic materials.



7
Experiment Proposal

In previous chapters, we have established a classic EM model to estimate the power ra-
diated from a finite real body. This model sets the theoretical basis for our measurement
campaign, which will be introduced in this chapter.

Due to the lack of existing data for the thermal radiation of a real finite body made by
ohmic materials at known temperatures, we would like to propose a campaign to provide
accurate measurements of radiated power from material bodies in the mm and sub-mm
range and test the validity of our classic EM model versus the Planck-like model.

Section 7.1 to 7.5 introduces the preliminary works of designing the experiment, in-
cluding the process of material selection, material characterization using Terahertz Time
Domain Spectroscopy (THz-TDS) system, instrument selection and the readout mecha-
nism. Silicon is selected as the material for the measurement. Four Virginia Diodes (VDI)
[48] zero-bias Schottky detectors operating at different frequency bands are selected as the
measurement instrument. A cavity on a waveguide (WG) short is designed to host the sam-
ple. The readout mechanism is discussed in Section 7.5. A low-noise amplifier should be
connected to enhance the DC voltage level in the output of the detector.

Then, three measurement set-ups are proposed in Section 7.6.

7.1. Material Selection
Silicon is one of the most widely used materials in modern integrated circuits. This preva-
lence provides us with easy access to silicon samples with different doping levels. Also,
silicon can be in various sizes, from the finest wafer to large ingots. The technologies to
process silicon materials, like laser dicing or photolithography and etching, are fairly ma-
ture.

As studied in Section 3.1.2, silicon can easily reach resistivity between 0.1 ∼ 100Ωcm
by doping, resulting in its transition frequency appearing in the frequency range of the
sub-THz band. The frequency-dependent characteristics of silicon can be accurately mod-
elled by Drude model. Carefully manipulating the doping levels between samples, we can
achieve desired characteristics of silicon to have a clear contrast in measured power to test
our model. Based on all the aforementioned reasons, we would like to choose silicon as our
measurement material.

We can calculate the power per frequency radiated by silicon with different doping us-
ing our EM model. The analytical expression of the radiated power per frequency is given

61
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by (6.35):

PE M
(

f
)= 4
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|I0|2ζ0∆
2

kαRe
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εr,e f f
} [

1−|Γ|2][
1−e−2kαL

]
·S A. (7.1)

The power per frequency of the Planck-like curve predicted by Bekefi [20] in (2.6) is also
given for comparison as:

PPlk
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f
)= h f 3

c2
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1

e
h f

kB T −1

[
1−|Γ|2][

1−e−2kαL
]
·S A. (7.2)

Consider a cubic silicon sample with a side length of L = 500µm. The surface area of
the sample can be calculated as: S A = 6×L2 = 1.5×10−6mm2. Using the analytical expres-
sion given by our EM model (7.1), we can plot the spectral power radiated by the samples
with various doping levels. Figure 7.1a shows results from 75 GHz to 500 GHz of four dif-
ferent types of silicon, whose electron density n are 1021, 1022, 1023, and 1024 electrons/m2

and corresponding nominal resistivity are about 4.6, 0.5, 0.09 and 0.02Ωcm respectively, at
room temperature of 300 K. For comparison, the result of a metal sample (Copper(Cu) with
n = 8.49×1028 electrons/m2 and τ= 27 f s.) of the same size is also provided in Figure 7.1a.
The results of the same samples predicted by (7.2) are given in Figure 7.1b. Silicon sam-
ples with an electron density of 1022 electrons/m2 can radiate the most spectral power in
both predictions. Figure 7.2 shows the direct comparison between our EM model and the
Planck-like curve in linear scale. As we can see from Figure 7.2b, for silicon with an elec-
tron density of n = 1022 electrons/m2, the results predicted by two models are comparable.
While for n = 1021 electrons/m2 case as shown in Figure 7.2a, the results of our EM model
is one magnitude lower than the prediction of the Planck-like curve.

(a) EM model (7.1) (b) Planck-like curve (7.2)

Figure 7.1: Spectral power radiated by the silicon sample predicted by two models.

The spectral power results for silicon sample with n = 1022 electrons/m2 at various tem-
peratures (300 (room temperature), 500, 800 and 1000 Kelvin) are shown in Figure 7.3. The
radiated spectral power is higher for higher temperatures.

7.2. Material Characterization
Commercially available silicon wafers are labelled by the nominal resistivity, i.e. the tradi-
tional quasi-static model as introduced in Section 3.1. However, due to limitations caused
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(a) n = 1021 electrons/m2. (b) n = 1022 electrons/m2.

Figure 7.2: Comparison between the EM model and the Planck-like curve for two samples in linear scale.

Figure 7.3: Spectral power for silicon sample with n = 1022 electrons/m2 at various temperatures.

by the manufacturing process, it is difficult to have accurate control of these parameters. As
a result, this nominal resistivity is usually given in a rough range. To get the exact parameter
of the sample under test (SUT), we propose to use the THz-TDS system provided by Menlo
systems [49]. A brief introduction of the system and the measurement set-up is given in Ap-
pendix E, as well as the procedure to extract the complex permittivity of the SUT from the
measured transmission coefficient data. Then a transmission line model (Figure 7.4) is es-
tablished and analysed in detail in Appendix F to reconstruct this transmission coefficient
from a theoretical perspective. By comparing the theoretical and measured transmission
coefficients, we can fit our measured data into Drude model to have a complete under-
standing of the SUT.

During the characterization, one measurement with SUT and one reference measure-
ment without SUT are done. The received time domain signal can be transformed into the
frequency domain signal using Fourier Transform. The measured transmission coefficient
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Figure 7.4: Transmission line model for the THz-TDS sample measurement.

data can then be expressed as:

T = S̃s
(

f
)

S̃r
(

f
) , (7.3)

where S̃r
(

f
)

is the frequency domain reference data and S̃s
(

f
)

for frequency domain mea-
surement data with SUT. The theoretical transmission coefficient can be derived from the
transmission line model shown in Figure 7.4. Medium 2 represents the SUT, and medium
1 and 3 are regarded as free space. The THz pulse is transmitted from the side of medium
1 and received at the side of medium 3. The transmission coefficient from medium 1 to
medium 3 can be represented as:

T = (1+ΓB ) (1+ΓA)

e j kz2d e− j k0d (
1+ΓB e− j kz22d

) , (7.4)

where ΓA and ΓB are the reflection coefficients at point A and B , k0 and kz2 are propagation
constants in free space and SUT, and d is the thickness of SUT.

(a) The Transmission coefficient. (b) The square root of effective permittivity.

Figure 7.5: Fitting the data of a silicon slab measured using THz-TDS with Drude model.

Figure 7.5 shows an example of a silicon slab with a thickness of d = 525µm and labelled
with nominal resistivity as 2 ∼ 5Ωcm. After tuning the parameters and fitting with Drude
model, the electron density of the silicon slab is found as 1.15×1021electrons/m2. The cor-
responding nominal (quasi-static) resistivity of this silicon slab is 4Ωcm. The transmission
coefficients from the measurement (as defined in (7.3)) and Drude model (as defined in
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(7.4)) are shown in Figure 7.5a. For comparison, the transmission coefficients of (7.4) eval-
uated by the traditional quasi-static model of conductivity is also given in Figure 7.5a. It can
be clearly seen from the figure that the quasi-static model can not represent the behaviour
of the material for high frequencies, which are frequencies higher than a few hundred GHz
in the case of silicon. The square root of effective permittivity

p
εr,e f f of the fitted Drude

model is shown in Figure 7.5b, compared with the effective permittivity directly extracted
from the measurement data (detailed methods can be found in Appendix E). The oscilla-
tions of measurement data from both figures in Figure 7.5 and the transmission coefficient
fitted by Drude model in Figure 7.5a represent the multi-reflect of the THz signal at the
air-dielectric interface between SUT and its surrounding environment.

7.3. Detectors
Based on the predictions given in Section 7.1, we can calculate the sensitivity requirements
of the detectors needed in this campaign. Consider a bandwidth of BW = 100 GHz and an
average spectral power of P ( f ) = 10−21 W/Hz for silicon with an electron density of n = 1022

electrons/m2, the estimated power over this frequency band PBW = P
(

f
)

BW = 10−10 W,
which is too small to be detected by the normal broadband power detectors. To avoid com-
plexity and make the measurements repeatable, cryogenic detectors are avoided during the
selection process.

Schottky diodes have long been used as direct detectors for microwave bands [50]. It
can operate in either room or cryogenic temperature and generally has a faster response
time compared with traditional detectors like bolometers [51]. Schottky diodes have great
sensitivity and frequency response with zero bias. For our measurement campaign, we
select four different zero-bias Schottky diode detectors from VDI [48] operating in different
frequency bands. These detectors are typically hosted in waveguide cavities and there is a
detector for each of the standard rectangular waveguide. Each of the detectors is supposed
to be sensitive only to signals in the spectral bandwidth and its corresponding waveguide
is considered as single mode. Their parameters are shown in Table 7.1.

Table 7.1: Parameters of VDI zero-bias detectors.

Model Frequency
Band (GHz)

WG Dimension
(mm ×mm)

NEP
(pW /

p
H z)

Responsivity
(V/W)

WR10ZBD 75 – 110 2.5×1.27 9.4 2800
WR5.1ZBD 140 – 220 1.2954×0.6477 11 2400
WR3.4ZBD 220 – 330 0.8636×0.4318 12 2200
WR2.2ZBD 330 - 500 0.5588×0.2794 12.7 1600

All these detectors have a rectangular waveguide RF input port and coaxial output, as
shown in Figure 7.6. The parameter responsivity in Table 7.1 represents the ratio between
the input RF power Pr ec and output voltage Vout of the detector system. It is defined as:

Resp = Vout

Pr ec
. (7.5)

The responsivity is in the unit of V/W. The responsivity data given in Table 7.1 is the typical
responsivity and is subject to change for different detectors. Each detector should be cal-
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Figure 7.6: Schematic of WR10ZBD from [52]. (The dimensions are in inches).

ibrated in order to get the detailed responsivity curve with respect to frequency. Another
parameter is NEP, which stands for Noise Equivalent Power. It represents the spectral den-
sity of noise divided by the responsivity and is in the unit of W /

p
H z. It can be represented

by Signal-to-Noise Ratio after detection (SN RAD ) as shown in Figure 7.7 by:

SN RAD = Pr ec

N EP

√
2τi nt , (7.6)

where Pr ec represents the power received and τi nt stands for the integration time. NEP is
defined as the power that makes SN RAD equal to 1 in 1 Hz of output bandwidth. If τi nt

is taken as 0.5 seconds, Pr ec will be equal to NEP in this case. Generally, NEP is used as a
metric to describe the sensitivity of the detector. As we can see from Table 7.1, VDI zero-bias
detectors generally have NEP of several picowatts per square root of Hertz, which satisfy the
requirements of our measurements.

NEP

IntegratorDetector

𝑷𝒓𝒆𝒄 𝑺𝑵𝑹𝑨𝑫
𝝉𝒊𝒏𝒕

Figure 7.7: Definition of NEP.

7.4. Waveguide Short Cavity to Host Samples
Because operating at high frequencies, the waveguide input ports of the VDI zero-bias de-
tectors are physically very small, as seen in Table 7.1. It is difficult to put measurement
samples directly inside the waveguide. A cavity is designed on a waveguide short to host
the silicon sample as shown in Figure 7.8. The waveguide short is commercially available
from [53]. The silicon sample can be diced from a large silicon wafer. Then the waveg-
uide short can be screwed to the RF input port of the detector, acting as the source of the
measurement. The detailed drawing of the design of this cavity is shown in Appendix G.
Figure 7.9 shows the cross-section of the structure when the waveguide short is connected
to the RF input port. The silicon sample is placed at the centre of the cavity. Due to the
fact that the aperture of the waveguide port Ap is much smaller than the size of the sample,
only a part of the power fluxes will go into the waveguide. This structure is then equivalent
to putting a silicon sample directly in the waveguide.
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Waveguide Short

Sample

5.5

5.
5

Figure 7.8: Cavity on the waveguide short for silicon sample. Dimensions are in mm.

RF Input

Sample

𝐴𝑝 WG WG

Sample

Figure 7.9: Cross-section of the waveguide short with sample placed in the cavity connected to the RF input
port of the detector. Equivalent to sample directly put in waveguide.

7.5. Readout Mechanism
A digital multimeter HP 3458A [54] is used to read the voltage output of the detector. The
smallest input resistance of this multimeter can be selected as Ri n = 10MΩ. In this case,
the Johnson Noise of this input resistance can be calculated as:

vn =
√

4kB T Ri n = 4×10−7V = 400nV. (7.7)

However, the thermal RF signals are all expected to be around or lower than 10−9 W. Con-
sider the example given in Section 7.1. As we can see from Figure 7.2b, the average spectral
power for the sample with n = 1022 electrons/m2 over WR10 bandwidth (BW = 35 GHz)
is Pav g

(
f
) = 0.5×10−21 W/Hz. The power detected over this bandwidth can be estimated

as Pdet = Pav g
(

f
)

BW = 17.5 pW. The typical responsivity of the corresponding detector is
2800 V/W (Table 7.1). Then we can calculate the expected output voltage of the detector
using (7.5) as:

vex
out = Resp P ex

r ec = 17.5×10−12 ×2800 = 4.9×10−8 = 49nV. (7.8)

which is lower than the Johnson noise of the input resistance. Accordingly, the multimeter
cannot be used because the signal will entirely be submerged by the Johnson noise.
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A low-noise operational amplifier can then be used to enhance the DC voltage level in
the output of the detector, and the multimeter is then cascaded to the amplifier to perform
the reading. If the voltage gain of the amplifier is set as G = 1000, the expected voltage after
the amplifier vex

amp can be calculated as:

vex
amp =Gvout =GResp P ex

r ec = 4.9×10−5V = 49µV , (7.9)

which should give at least two orders of magnitude of dynamic range for the voltage. The
interpretation of the received power Pr ec from the voltage readout can be simply obtained
inverting (7.9) as:

Pr ec =
vamp

G Resp
. (7.10)

7.6. Measurement Set-ups
Three possible measurement set-ups are proposed in this section.

• A. Measurement of a large ingot in the far field.

ESD Protection

𝑽𝒐𝒖𝒕

𝒅

Zero-Bias
Detector

Multimeter

Low Noise AmplifierHorn Antenna

Figure 7.10: Measurement of a large ingot in the far field.

A set-up can be proposed as the measurement of a large ingot in the far field through
a horn antenna. The detector is directly connected to the receiving antenna. Then,
an ESD (Electrostatic Discharge) protection circuit is connected to the output port
of the detector to protect its ESD-sensitive components. Then, because the output
signal is small, a low noise amplifier is connected to amplify the output DC signal.
Then the signal can be read by the multimeter.

Using our EM model given in (7.1) or the Planck-like curve given in (7.2), we can
calculate the brightness of the radiating object by assuming it is uniform in free space
as:

B f s
(

f
)= P tot

r ad

(
f
)

4π S A
, (7.11)

where S A is the surface area of the radiating object. P tot
r ad

(
f
)

is the spectral power
radiated by the object.

Then the estimated received power by a horn antenna operating in a certain band-
width BW can be calculated as:

Pr ec =
∫

BW

∫
Ωa

Ae f f
(
Ω, f

)
F

(
Ω, f

)
B f s

(
Ω, f

)
dΩad f , (7.12)
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where Ae f f
(
Ω, f

)
is to the effective aperture of the receiving antenna, F

(
Ω, f

)
is the

normalized radiation pattern of the antenna, and Ωa is the beam solid angle of the
receiving antenna. We can assume that the brightness is constant in the solid angle
of the antenna. Then, (7.12) can be expressed as:

Pr ec =
∫

BW
Ae f f ( f )B f s

(
f
)∫
Ωa

F (Ω)dΩa d f . (7.13)

The efficiency of the antenna ηant
(

f
)

is defined as:

ηant
(

f
)= Gant

(
f
)

Dant
(

f
) . (7.14)

where Gant is the gain of the antenna and Dant is the directivity of the antenna. Here,
we can take the directivity as its maximum, Dant

(
f
) = Dmax . It can then be repre-

sented by the normalized radiation pattern:

Dmax
(

f
)= 4π∫

Ωa
F (Ω)dΩa

. (7.15)

Figure 7.11: Estimated power detected for Set-up A for silicon ingots with an electron density of n = 1022

electrons/m2.

Table 7.2: Estimated power (pW) detected for Set-up A for silicon ingots with an electron density of n = 1022

electrons/m2.

WR10
(75∼110

GHz)

WR5.1
(140∼220

GHz)

WR3.1
(220∼330

GHz)

WR2.2
(330∼500

GHz)

EM 6.7 19.3 28.2 38.9
Planck 6.0 15.6 22.6 35.8
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The effective aperture Ae f f can be represented as:

Ae f f
(

f
)=Gant

(
f
) λ2

0

4π
. (7.16)

Substituting (7.14) ∼ (7.16), (7.13) can be represented as:

Pr ec =
∫

BW
B f s

(
f
)

Gant
(

f
) λ2

0

4π

∫
Ωa

F (Ω)dΩa d f

=
∫

BW
B f s

(
f
)
ηant

(
f
)

Dant

(
f
) λ2

0

4π

∫
Ωa

F (Ω)dΩa d f

=
∫

BW
B f s

(
f
)
ηant

(
f
) 4π∫
Ωa

F (Ω)dΩa

λ2
0

4π

∫
Ωa

F (Ω)dΩa d f

=
∫

BW
B f s

(
f
)
ηant

(
f
)
λ2

0d f .

(7.17)

(7.17) tells us that for a thermal source distributed over a solid angle wider than the
antenna beam, the received power by the antenna is proportional to antenna effi-
ciency.

Consider a set of ideal horn antennas operating at the same frequency bands as the
detectors. Their all have a constant efficiency over their bandwidth as ηant = 0.9.
Then we can estimate the received power over the frequency bands of the detectors
given in Table 7.1 using (7.17) for silicon ingots with an electron density of n = 1022

electrons/m2. Comparisons are made for results using our EM model (7.1) and the
Planck-like curve (7.2). The detailed numbers can be found in Table 7.2. The num-
bers are comparable to those that we expected to be able to measure based on the
sensitivity of the detectors given in Table 7.1. It is not known how sensitive these
detectors are outside their designated frequency band.

• B. Direct measurement through the waveguide.

RF
Sample

Waveguide Port

WG Short

Figure 7.12: Direct measurement through waveguide.

The second set-up can then be proposed to provide a direct measurement through
the waveguide. Silicon samples are placed in the cavity in the waveguide short intro-
duced in Section 7.4. Then the waveguide short is directly connected to the RF input
waveguide port of the detector. The readout mechanism is similar to the first set-up
with a low-noise amplifier connected between the output port of the detector and the
multimeter. We expect the power level of this set-up is comparable to the previous
case.
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• C. Measurement through two antennas in the near field.

Heating Plate

Horn Antenna

𝒅

Figure 7.13: Measurement through two antennas in the near field.

The third set-up is measurement through two horn antennas placed at the near field.
The waveguide short with the sample placed in the cavity is connected to the trans-
mitting antenna. The detector is connected to the receiving antenna. The two anten-
nas are aligned and the distance d between the two antennas is smaller than 2D2/λ
(D is the dimension of the horn antenna and λ is the wavelength) to ensure the near
field transmission. The power per frequency received can be estimated by:

Pr ec (T ) =
∫

BW
PW G

(
f ,T

)
S21( f ,d)d f , (7.18)

where PW G
(

f ,T
)

is the total spectral power radiated by the sample in the waveguide
and can be estimated by our model and S21( f ,d) is the power transmission coeffi-
cient from the input port of the transmitting antenna to the output port of the receiv-
ing antenna and can be obtained using full wave simulation tools like CST studio.
A heating plate can be placed under the transmitting structure to achieve measure-
ments at different temperatures T .

A possible matching layer design can be applied on the surface of the silicon samples
to increase the radiated power. The detail of this design is discussed in Appendix H.



8
Conclusions and Future Work

A rigorous model based on classic EM to characterize the thermal radiation of real ohmic
media is described in this thesis. Based on Johnson’s theory of thermal noise in electric
circuits, the model explains the available energy due to thermal agitation inside ohmic ma-
terial. The field is expanded in a finite number of modes (degrees of freedom per unit of
volume), which are all independent and orthogonal from each other and are eigenvectors
of Maxwell’s Equations.

The self-impedance of one eigenvector is given analytically in (5.10), based on which
the energy available per degree of freedom could be calculated by a Johnson-like circuit.
The mutual impedance of two eigenvectors is asymptotically approximated by (5.55). It
turns out that the minimum distance for two eigenvectors to be independent isλβ/2, where
λβ is the real effective wavelength in the medium. Then, the number of degrees of freedom
in a finite volume is given by (5.53) and the total energy available by thermal agitation in
the finite volume is given by (5.57).

Considering a real material body, the generating current of each of the modes is defined
as volumetric, resulting in a discretization of the radiating object. Then, the directional
generating currents are replaced by isotropic sources to simplify the calculation process.
The Poynting vectors of sources over the entire object volume are integrated, resulting in
an analytical expression (6.35) to estimate the total spectral power radiated out by a real
ohmic material body as:

PE M
(

f
)= 4

λ3
β

π

λ2
0

|I0|2ζ0∆
2

kαRe
{p

εr,e f f
} [

1−|Γ|2][
1−e−2kαL

]
·S A, (8.1)

where |I0| is defined in (6.4), kα is the imaginary part of the propagation constant, εr,e f f

is the effective permittivity of the medium, |Γ|2 is the power reflection coefficient at the
medium-air surface, L is the path Poynting vectors have traversed and S A is the surface
area of the radiating object.

This model is purely based on classic EM. The frequency dependence of the spectral
thermal radiation power it predicted directly comes from the resistivity dispersion of the
material that makes up the radiating body. As a result, Planck’s law of black body radiation
is no longer required as an intermediary.

A measurement campaign is proposed aiming at providing accurate measurements of
the thermal radiation from silicon samples of small dimensions in the mm and sub-mm
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wave regime. The samples are characterised by a THz-TDS system to obtain their exact EM
parameters. Four Schottky diode zero-bias detectors are selected and different possible
measurement set-ups are described.

Future works of this project should focus on the measurement campaign. The radiation
mechanism of silicon samples hosted in the cavity should be studied in order to estimate
the power detected in Set-up B and C. The horn antenna in Set-up A and C should be se-
lected and measured. The noise level of the measurement system should be characterized.
After the successful measurement of silicon samples, the potential of measuring different
kinds of materials should be studied.



A
Power Radiated by Material Objects Based

on the Hybrid Model

Consider a large object made of lossy medium in which the internal reflections can be ne-
glected. Using the reciprocity suggested by generalized Kirchhoff’s law, the total power
radiated per unit solid angle is given by Bekefi in Eq.(33) of [20] as:

P
(

f ,Ω
)= [

1−|Γ|2]BBk f
(

f ,T
)

S
[
1−exp(−αωL)

]
, (A.1)

where αω represents the total absorption per unit length of path. It can be calculated as:

αω = 4π

λ
Imag

{√
1+ σ

jωε0εr∞

}
. (A.2)

Using the definition of effective permittivity in (3.8), αω can be expressed by kα, the imagi-
nary part of propagation constant:

αω = 4π

λ0

p
εr∞Imag

{√
1+ σ

jωε0εr∞

}
= 2Imag

{
2π

λ0

√
εr,e f f

}
= 2kα. (A.3)

Notice that the absorption coefficient given in (A.2) is derived from the characteristics of
the material being considered, rather than the absorption process suggested by the reci-
procity of generalized Kirchhoff’s law. In this way, (A.1) can be written as:

P
(

f ,Ω
)= [

1−|Γ|2]BBk f
(

f ,T
)

S
[

1−e−2kαL
]

. (A.4)

In (A.1) and (A.4); L represents the total path the Poynting vector traversed in the object;
|Γ|2 refers to power reflection coefficient; And S refers to the projection of the cross-section
of the object onto a plane that is perpendicular to the observer, as shown in Figure A.1. The
reason to choose the cross-section is that for an object of arbitrary shape, the projection
of its cross-section is easy to identify. BBk f

(
f ,T

)
is given by Bekefi (Eq.(5) of [20]) for one

polarization, using Rayleigh-Jeans law (2.3), as:

B R J
Bk f

(
f ,T

)= kB T f 2

2πc2
0

. (A.5)
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Accordingly, using Planck’s law of black body radiation (2.2), BBk f
(

f ,T
)

can be given as:

B Plk
Bk f

(
f ,T

)= h f 3

2πc2
0

1

e
h f

kB T −1
. (A.6)

𝑠

𝑜𝑏𝑠

𝑜𝑏𝑗

Figure A.1: Cross-section of the radiating object.

However, we can consider the object as a Lambertian surface. According to Lambert’s
cosine law [55], this kind of surface has the following identities, as shown in Figure A.2. For
a unit of radiation surface d A, each wedge in Figure A.2 represents a unit of solid angle
dΩ. The intensity of radiation of each wedge corresponds to the area of the wedge. Using
simple geometry, we know that the length of each wedge is the diameter of the circle times
cosθ. Here, θ denotes the angle between the direction of radiation intensity (same as the
direction of Poynting vector) and the normal of the radiation surface d A. So, when the
observer is at broadside, it can receive the maximum radiation intensity ImaxdΩd A. For
the observer at θ, the intensity is reduced to Imax cos(θ)dΩd A.

𝑑𝐴

𝑑Ω

𝑑Ω

𝐼max𝑑Ω𝑑𝐴

𝐼max cos 𝜃 𝑑Ω𝑑𝐴

𝑂𝑏𝑠𝑏𝑟𝑜𝑎𝑑𝑠𝑖𝑑𝑒

𝜃

𝑂𝑏𝑠𝜃

Figure A.2: Lambert’s cosine law.

Using the Lambertian cosine law, power radiated per unit solid angle dΩ from per unit
of surface d A can be represented as:

P
(

f ,Ω, A
)= [

1−|Γ|2]BBk f
(

f ,T
)[

1−e−2kαL
]

cosθ. (A.7)

Integrating (A.7) over all solid angle 4π and entire surface area S A, the total spectral power
radiated by the bulk object per frequency can be written as:

P
(

f
)=Ï

S A

∫ 2π

0

∫ π
2

0

[
1−|Γ|2]BBk f

(
f ,T

)[
1−e−2kαL

]
cosθ sinθdθdφd A. (A.8)
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The integral regarding θ and φ can be closed as:∫ 2π

0
dφ= 2π, (A.9a)

∫ π/2

0
cosθ sinθdθ = 1

2
sin2θ|

π
2
0 = 1

2
. (A.9b)

Then (A.8) can be written as:

P
(

f
)= [

1−|Γ|2]BBk f
(

f ,T
)[

1−e−2kαL
]
π ·S A. (A.10)

Here, S A represents the whole surface area of the Lambertian source. Considering two pos-
sible polarizations, the total spectral power radiated for low frequencies can be represented
by replacing BBk f

(
f ,T

)
with (A.5):

PR J
(

f
)= kB T f 2

c2
0

[
1−|Γ|2][

1−e−2kαL
]
·S A. (A.11)

Replacing BBk f
(

f ,T
)

with (A.6), (A.11) can be represented as:

PPlk
(

f
)= h f 3

c2
0

1

e
h f

kB T −1

[
1−|Γ|2][

1−e−2kαL
]
·S A. (A.12)

Then the total power radiated by the bulk object over certain bandwidth BW can be repre-
sented as:

P =
∫

BW
P

(
f
)

d f = [
1−|Γ|2][

1−e−2kαL
]

2π ·S A
∫

BW
BBk f

(
f ,T

)
d f . (A.13)



B
Derivation of Eigenvalues of Maxwell’s

Equations

The Maxwell’s equations only with electric source J⃗ , satisfying radiation condition, can be
written as follows:

∇× E⃗ =− jωµH⃗ , (B.1a)

∇× H⃗ = jωεE⃗ + J⃗ , (B.1b)

∇· H⃗ = 0, (B.1c)

∇·
(

E⃗ + J⃗

jωϵ

)
= 0. (B.1d)

Take the curl of both sides of (B.1b). By substituting (B.1a) in, the wave equation can be
arrived for magnetic field H⃗ as:

∇×∇× H⃗ −k2H⃗ =∇× J⃗ , (B.2a)

where k2 =ω2µε. For electric field E⃗ , similarly, we can write the wave equation as:

∇×∇× E⃗ −k2E⃗ =− jωµ J⃗ . (B.2b)

We can make use of two vector identities:

∇×∇× A⃗ =∇(∇· A⃗
)−∇2 A⃗, (B.3a)

∇· (∇× A⃗
)= 0. (B.3b)

Then, (B.2a) can be written as:

∇(∇· H⃗
)−∇2H⃗ −k2H⃗ =∇× J⃗ . (B.4)

Using (B.1c), we can write the Helmholtz equation for magnetic field H⃗ as:

∇2H⃗ +k2H⃗ =−∇× J⃗ . (B.5)

Then, if we take curl of (B.2a), using (B.3a),we can arrive at:

∇×∇×∇× H⃗ −k2 (∇× H⃗
)∇(∇· (∇× H⃗

))−∇2 (∇× H⃗
)−k2 (∇× H⃗

)=∇×∇× J⃗ . (B.6)
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Then use (B.3b):
∇2 (∇× H⃗

)+k2 (∇× H⃗
)=−∇×∇× J⃗ . (B.7)

Replace ∇× H⃗ with (B.1b):

∇2 (
jωεE⃗ + J⃗

)+k2 (
jωεE⃗ + J⃗

)=−∇×∇× J⃗ . (B.8)

Finally, we can write the Helmholtz equation for electric field E⃗ as:

∇2

(
E⃗ + J⃗

jωε

)
+k2

(
E⃗ + J⃗

jωε

)
=−∇×∇× J⃗

jωε
. (B.9)

Notice that (B.5) and (B.9) are derived using only equations (B.1) and the vector identities.
Consequently, (B.5) and (B.9) are essentially equivalent to the Maxwell equations (B.1), for
any E⃗ and H⃗ that satisfies radiation conditions [56].

𝑉𝛿

𝑉𝐽

Figure B.1: The arbitrary region VJ where the source is presence and the source region Vδ

The unique solution of (B.9) is given by [44] as:

E⃗ (⃗r ) = j

ωϵ

Ñ
VJ−Vδ

[ ∇′×∇′× J⃗
(⃗
r ′)] e− j k |⃗r−r⃗ ′|

4π |⃗r − r⃗ ′| dr⃗ ′+ − j J⃗ (⃗r )

ωε
, (B.10)

where e− j k |⃗r−r⃗ ′|
4π|⃗r−r⃗ ′| is the scalar Green’s function, VJ represents the volume in which the source

is located, and Vδ represents the volume of the delta function of the source. So V ol −Vδ ,
called "principal value" in [44], excludes the singularity of the Green’s function at r⃗ = r⃗ ′. If
we introduce a current as:

J⃗ =− jωεE⃗ , (B.11)

we can then substitute it in to (B.9). We can write that:

∇2 (
E⃗ − E⃗

)+k2 (
E⃗ − E⃗

)= 0 =−∇×∇× J⃗

jωε
. (B.12)

Consequently, we have:
∇×∇× J⃗ = 0. (B.13)

Using (B.13), (B.10) is reduced to the term only proportional to the current itself:

E⃗ (⃗r ) = − j J⃗ (⃗r )

ωε
, (B.14)
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Replace ε by the definition in (3.8). After some algebraic steps, we can arrive at:

J⃗ (⃗r ) = (
σ (ω)+ jωε0εr∞

)
E⃗ (⃗r ) , (B.15)

which is the eigen-current given in (4.5). If we replace J⃗ (⃗r ) in (B.14) by (B.15), and equate
(B.14) to (4.4), we can prove that:Ñ ∞

−∞
¯̄g

e j (⃗
r , r⃗ ′) · E⃗

(⃗
r ′)dr⃗ ′ = E⃗ (⃗r )(

σ+ jωε0εr∞
) . (B.16)



C
Another Approximation for pol 2

r eal

As defined in (5.24):

pol 2
r eal (kr ) =

(
¯̄I − k2∗

r

k2∗ k̂k̂

)
· p̂

(
¯̄I − k2

r

k2
k̂k̂

)
· q̂ . (C.1)

One approximation is k2 ≈ k2
r , thus k2∗ ≈ k∗

r . In this case, considering the most coupled
case in which the two dipoles are polarized at the same direction, thus p̂ = q̂ , (C.1) is re-
duced to:

pol 2
r eal ≈ pol 2

f ake =
(

¯̄I − k̂k̂
)
· p̂

(
¯̄I − k̂k̂

)
· p̂. (C.2)

Replace pol 2
r eal with pol 2

f ake in (5.29), then the 3D integral can then be performed numer-
ically.

Figure C.1: Coupling coefficient with pol 2
f ake
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Figure C.1 shows the comparison between numerical results, analytical results of (5.49),
which adopts the approximation of pol 2

r eal ≈ 1/
p
π, and the result with pol 2

r eal ≈ pol 2
f ake .

It is clear that pol 2
f ake proves to be a worse approximation than pol 2

r eal ≈ 1/
p
π.



D
Poynting Vectors of Directional and

Isotropic Current Sources

The Poynting vectors of a directional current source and an isotropic current source are
derived in this appendix, proving that the current of the isotropic dipoles should be set as

|Ii so |2 = 2
3 |I0|2 in order to get the same power as the directional sources.

Similar to (4.3), the electric and magnetic field of a ẑ oriented volumetric generating
electric current placed at the origin are:

E⃗ (⃗r ) = jζ
k2I0∆sinθ

4π
e− j kr

[
1

kr
+ 1

j (kr )2 − 1

(kr )3

]
θ̂+ζ I0∆cosθ

2π
e− j kr

(
1

(kr )2 − j

(kr )3

)
r̂ ,

(D.1a)

H⃗ (⃗r ) = k2 I0∆sinθ

4π
e− j kr

[
j

1

kr
+ 1

(kr )2

]
ϕ̂. (D.1b)

The reactive part of the field can be ignored. Since we are interested in the propagating part
of the power, we can focus on the visible part of the field as:

E⃗vi s (⃗r ) = eθθ̂ = jζ
kI0∆sinθ

4πr
e− j kr θ̂, (D.2a)

H⃗vi s (⃗r ) = eϕϕ̂= j
kI 0∆sinθ

4πr
e− j kr ϕ̂. (D.2b)

Then, the Poynting vector of the source can be expressed as:

S⃗ = E⃗ × H⃗∗ = EθH∗
ϕr̂ = jζ

kI0∆si nθ

4πr
e− j kr

(
j kI 0∆sinθ

4πr
e− j kr

)∗
r̂

= jζ
kI0∆si nθ

4πr
e− j kr − j k∗I∗0∆sinθ

4πr
e j k∗r r̂

= ζI0I∗0∆
2kk∗ sin2θ

e− j kr e j k∗r

16π2r 2
r̂ .

(D.3)

Acknowledging that I0I∗0 = |I0|2, kk∗ = |k|2 and e− j kr e j k∗r = e−2kαr , (D.3) can be written as:

S⃗ = |kI0|2 ζ∆
2 sin2θ

16π2r 2
e−2kαr r̂ . (D.4)
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Substitute the following expressions for impedance and propagation constant in the medium:

ζ= ζ0p
εr,e f f

= ζd√
1− jσ

ωεd

, (D.5a)

|k|2 = kk∗ = k2
0
√
εr,e f f

√
εr,e f f

∗ = k2
d

√
1− jσ

ωεd

√
1− jσ

ωεd

∗
. (D.5b)

Then, the Poynting vector can be expressed as:

S⃗ = |I0|2 ζ0p
εr,e f f

∆2 4π2

λ2
0

√
εr,e f f

√
εr,e f f

∗ sin2θ

16π2r 2
e−2kαr r̂

= |I0|2∆2
ζ0

λ2
0

√
εr,e f f

∗ sin2θ

4r 2
e−2kαr r̂ .

(D.6)

Calculate the spectral power radiating over a sphere with radius r , where r is very large in
terms of wavelength:

P0
(

f
)=Ï

4π

|I0|2∆2
ζ0

λ2
0

√
εr,e f f

∗ sin2θ

4r 2
e−2kαr r̂ ·r̂ r 2 sinθdθdφ. (D.7)

The integral in (D.7) can be closed respectively as:∫ 2π

0
dφ= 2π, (D.8a)∫ π

0
sin3θdθ =

(
1

3
cos3θ−cosθ

)
|π0 = 4

3
. (D.8b)

Then, the integral can be closed as:

P0
(

f
)= 2|I0|2∆2

ζ0π

3λ2
0

√
εr,e f f

∗e−2kαr . (D.9)

Consider an isotropic current source whose field does not have angular dependence. The
electric and magnetic field of the source can be represented as:

E i so
vi s (r ) = E i so

θ θ̂ = jζ
kIi so∆

4πr
e− j kr θ̂, (D.10a)

H i so
vi s (r ) = H i so

ϕ ϕ̂= j
kI i so∆

4πr
e− j kr ϕ̂ . (D.10b)

Then, the Poynting vector of this source can be expressed as:

S⃗i so = E⃗ i so × H⃗ i so∗ = E i so
θ H i so∗

ϕ r̂ = jζ
kIi so∆

4πr
e− j kr

(
j

kI i so∆

4πr
e− j kr

)∗
r̂

= jζ
kIi so∆

4πr
e− j kr − j k∗I∗i so∆

4πr
e j k∗r r̂

= ζ |Ii so |2 |k|2∆2 e−2kαr

16π2r 2
r̂

= |Ii so |2∆2
ζ0

λ2
0

√
εr,e f f

∗ e−2kαr

4r 2
r̂ .

(D.11)
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Same as before, we can calculate the power radiating over a sphere with radius r :

Pi so
(

f
)=Ï

4π

|Ii so |2∆2
ζ0

λ2
0

√
εr,e f f

∗ e−2kαr

4r 2
r̂ ·r̂ r 2 sinθdθdφ. (D.12)

The integral in φ is the same as (D.8). The integral in θ can be closed as:∫ π

0
sinθdθ =−cosθ|π0 = 2. (D.13)

The integral can be closed as:

Pi so
(

f
)= |Ii so |2∆2

ζ0π

λ2
0

√
εr,e f f

∗e−2kαr . (D.14)

If we would like the isotropic source to radiate the same power as the normal directional
dipole, we can equate the right-hand side of both (D.9) and (D.14):

|Ii so |2∆2
ζ0π

λ2
0

√
εr,e f f

∗e−2kαr = 2|I0|2∆2
ζ0π

3λ2
0

√
εr,e f f

∗e−2kαr . (D.15)

After a few simple algebraic steps, we can have:

|Ii so |2 = 2

3
|I0|2 . (D.16)



E
Material Characterization using THz-TDS

TERA K15 from Menlo System [49] is shown in Figure E.1. The system consists of two Pho-
toconductive antennas (PCA) and four plano-convex lenses. The two PCA are coupled via
the quasi-optical paths as shown in Figure E.2.

The sample under test (SUT) is placed in the centre as shown in the figure. In order to
extract the characteristics of SUT, two measurements, one without SUT and one with SUT,
should be done. From these two measurements, we are able to extract the complex permit-
tivity of the sample material at high frequencies. The received time domain signal can be
transformed into frequency domain signal using Fourier Transform, resulting in S̃r ( f ) for
measurement without SUT and S̃s

(
f
)

for measurement with SUT. The transmission coeffi-
cient T of the SUT can then be represented with a magnitude term ρ (ω) and a phase term
φ (ω) as:

T = S̃s
(

f
)

S̃r ( f )
= ρ (

f
) · e− jφ( f ). (E.1)

Using the transmission line model analysed in Appendix F, we are able to fit our measured
transmission data with the Drude model to determine the exact parameters of the material
(e.g. the density of electrons n and scattering time τ).

The relative permittivity saturation εr,∞ of Drude model can be extracted from the mea-
sured transmission data. Some optical parameters can be easily derived using the repre-

Figure E.1: TERA K15 from Menlo System.
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Rx PCA Tx PCASUT

plano-convex lenses plano-convex lenses

Figure E.2: Geometry of the Lens.

sentation of (E.1) [57], [58]. The complex refractive index can be represented as:

ñ
(

f
)= n

(
f
)− iκ( f ), (E.2)

where the real refractive index n
(

f
)

can be derived from the phase alterations induced by
the SUT:

n
(

f
)=φ(

f
) c0

2π f d
+1, (E.3)

where d is the thickness of the SUT, and c0 is the speed of propagation in free space. And
the imaginary part of the complex refractive index is known as extinction coefficient κ

(
f
)
,

which corresponds to the absorption of the SUT:

κ
(

f
)= c0

2π f d
ln

(
4n

(
f
)

ρ
(

f
)(

n
(

f
)+1

)2

)
. (E.4)

Thus the absorption coefficient can be written as:

α
(

f
)= 4π f

c0
κ

(
f
)

. (E.5)

Then, the complex permittivity ε= ε′− jε′′ can be expressed as:

ε′( f ) = n2 (
f
)− κ2 (

f
)

, (E.6a)

ε′′( f ) = 2n( f )κ
(

f
)

. (E.6b)

Here we can take the saturation of the real part ε′( f ) at high frequencies as εr∞ when we fit
the measurement data with Drude model.



F
Transmission Line Model of the THz-TDS

System

The equivalent transmission line model [59] of the measurement configuration of the THz-
TDS system is shown in Figure F.1. The THz pulse is transmitted from the side of medium 1
and received at the side of medium 3. Medium 1 and medium 3 represent the host material
of the sample under test (SUT). They are free space in our case. Thus, their impedance and
propagation constant are all equal to the free space case:

Z3 = Z1 = Z0, (F.1a)

kz1 = kz3 = k0. (F.1b)

Medium 2 represents the SUT. The THz beam of incidence can be considered as a plane
wave:

E⃗t (⃗r ) =V (z) êt . (F.2)

The voltage in the transmission line model is expressed as:

Vi (z) =V +
i e− j ki z +V −

i e j ki z . (F.3)

We can obtain the reflection and transmission coefficient by solving the transmission line
model. For medium 3 the voltage can be written as:

V3 (z) =V +
3 e− j k0z . (F.4)

And for medium 2 and 1 as:

V2 (z) =V +
2 e− j kz2z +V −

2 e j kz2z . (F.5)

𝑍2, 𝑘𝑧2𝑍1, 𝑘𝑧1 𝑍3, 𝑘𝑧3

𝑉3
+

𝑧 = 0 𝑧 = ℎ

Γ𝐴 Γ𝐵

Figure F.1: Transmission line model for the THz-TDS sample measurement.
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V1 (z) =V +
1 e− j k0z +V −

1 e j k0z . (F.6)

At z = d , the reflection coefficient ΓB can be represented as:

ΓB = V −
2 e j kz2d

V +
2 e− j kz2d

= Z0 −Z2

Z0 +Z2
. (F.7)

Then V2 (z) can be represented as:

V2 (z) =V +
2 e− j kz2z +ΓB V +

2 e j kz2(z−2d). (F.8)

At z = d , V3 (z = d) and V2 (z = d) should be the same. In this way, we can have:

V3 (z = d)

V2 (z = d)
= V +

3 e− j k0d

V +
2 e− j kz2d +ΓB V +

2 e− j kz2d
= 1. (F.9)

After some algebraic steps, we can have:

V +
3

V +
2

= e− j kz2d (1+ΓB )

e− j k0d
. (F.10)

At z = 0, the input impedance Zi nA and reflection coefficient can be represented as:

Zi nA = Z2
Z0 + j Z2 tan(kz2d)

Z2 + j Z0 tan(kz2d)
. (F.11)

ΓA = V −
1

V +
1

= Z2 −Zi nA

Z2 +Zi nA

. (F.12)

Using the similar procedure as before, V1 (z) can be represented as:

V1 (z) =V +
1 e− j k0z +V +

1 ΓAe j k0z . (F.13)

At z = 0, V1 (z = 0) and V2 (z = 0) should be the same. In this way, we can have:

V2 (z = 0)

V1 (z = 0)
= V +

2 +ΓB V +
2 e− j kz22d

V +
1 (1+ΓA)

= 1. (F.14)

After some algebraic steps, we can have:

V +
2

V +
1

= (1+ΓA)

1+ΓB e− j kz22d
. (F.15)

Then we can represent the transmission coefficient from medium 1 to 3 as:

T = (1+ΓB )(1+ΓA)

e j kz2d e− j k0d (1+ΓB e− j kz22d )
. (F.16)



G
Drawing of a Cavity on Waveguide Short

The drawing of a cavity for silicon samples on the waveguide short is shown in Figure G.3
on the next page. The roundings with a radius of 1 mm are designed for the milling process
due to the limitations of the available milling cutter.

A picture of the finished product is shown in Figure G.1. Figure G.2 shows the picture of
the product in use.

Figure G.1: A picture of the finished product.

(a) Waveguide port of the detector. (b) Waveguide short applied on.

Figure G.2: Pictures of the product in use.
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Figure G.3: The drawing of the chamber on waveguide short.



H
A possible Matching Layer Design for

Silicon Ingot

Paper [60] presents a Matching Layer (ML) design for silicon lens array at 500 GHz using
laser-ablated structures. The design uses a periodic sub-wavelength structure shown in
Figure H.1.

ℎ

𝑤

𝑝

𝛼

ℎ

𝑝

𝑤

Figure H.1: Schematic of the truncated pyramid ML design.

The design in [60] is then scaled to meet the frequency requirement of the detectors,
from 75 to 500 GHz. The design parameters are given in Table H.1. According to [60] the
minimum angle α (see Figure H.1) that can be obtained for this truncated pyramid design
is 13◦. To give some redundancy for the laser ablation process, the angle α is designed as
15◦.

Table H.1: Parameters of ML design.

d(µm) p(µm) h(µm) α(µm)
73 196 231 15

The structure is then simulated in CST for a unit cell of the truncated pyramid structure
made of ideal lossless silicon (εr = 11.7, due to the limitation of the CST solver) to obtain the
effective transmission coefficient between the silicon and free space. The effective trans-
mission coefficient is defined the same as (6.52) by taking an average between TE and TM
polarization:

Te f f =
1

2

(
T ∥+T ⊥

)
. (H.1)
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92 H. A possible Matching Layer Design for Silicon Ingot

The result is given in Figure H.2. For comparison, the effective transmission coefficient
without this ML at broadside is calculated using Fresnel equations (6.50) as T w/o

e f f = 0.7 =
−3.6 dB. As we can see from the figure, for the broadside case, the transmission coefficient
improves by at least 1.5 dB.

For the case without ML, power fluxes with an angle of incidence larger than the crit-
ical angle θc = 17◦ will not propagate through the dielectric-air surface. The ML allows
fluxes with angles of incidence larger than θc to propagate through, although there are
some glitches for transmission coefficients in higher frequencies. Also, for larger angles
of incidence, the transmission coefficient is lower.

Figure H.2: Effective transmission coefficient for the ML design with different angle of incidence θi .
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