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830 A. Cipriani et al.

1 Introduction

The concept of self-organized criticality was introduced in Bak et al. [2] as a lattice
model with a fairly elementary dynamics. Despite its simplicity, this model exhibits
a very complex structure: the dynamics drives the system towards a stationary state
which shares several properties of equilibrium systems at the critical point, e.g. power
law decay of cluster sizes and of correlations of the height-variables. The model was
generalised by Dhar [5] in the so-called Abelian sandpile model (ASP). Since then, the
study of self-criticality has become popular in many fields of natural sciences, and we
refer the reader to Járai [10] andRedig [20] for an overviewon the subject. In particular,
several modifications of the ASP were introduced such as non-Abelian models, ASP
on different geometries, and continuum versions like the divisible sandpile treated in
Levine andPeres [15,16].We are interested in the latter onewhich is defined as follows.
By a graph G = (V, E) we indicate a connected, locally finite and undirected graph
with vertex set V and edge set E . By deg(x) we denote the number of neighbours
of x ∈ V in E and we write “y ∼V x” when (x, y) ∈ E . A divisible sandpile
configuration on G is a function s : V → R, where s(x) indicates a mass of particles
at site x . Note that here, unlike the ASP, s(x) is a real-valued (possibly negative)
number. If a vertex x ∈ V satisfies s(x) > 1, it topples by keeping mass 1 for itself
and distributing the excess s(x)− 1 uniformly among its neighbours. At each discrete
time step, all unstable vertices topple simultaneously.

Given (σ (x))x∈V i.i.d. standard Gaussians, we construct the divisible sandpile with
weights (σ (x))x∈V by defining its initial configuration as

s(x) = 1 + σ(x) − 1

|V |
∑

y∈V
σ(y). (1.1)

As in many models of statistical mechanics, one is interested in defining a notion of
criticality here too.

Let e(n)(x) denote the total mass distributed by x before time n to any of its neigh-
bours. If e(n)(x) ↑ eV where eV : V → [0, +∞], then eV is called the odometer of
s. We have the following dichotomy: either eV < +∞ for all x ∈ V (stabilization), or
eV = +∞ for all x ∈ V (explosion). It was shown in Levine et al. [17] that if s(x) is
assumed to be i.i.d. on an infinite graph which is vertex transitive, and if E[s(x)] > 1,
s does not stabilize, while stabilization occurs for E[s(x)] < 1. In the critical case
(E[s(x)] = 1) the situation is graph-dependent. For an infinite vertex transitive graph,
with E[s(x)] = 1 and 0 < Var(s(x)) < +∞ then s almost surely does not stabilize.

For a finite connected graph, one can give quantitive estimates and representations
for eV . It is shown inLevine et al. [17, Proposition 1.3] that the odometer corresponding
to the density (1.1) on a finite graph V has distribution

(eV (x))x∈V
d=
(

η(x) − min
z∈V η(z)

)

x∈V

123



Scaling limit of the odometer in divisible sandpiles 831

where η is a “bilaplacian” centered Gaussian field with covariance

E[η(x)η(y)] = 1

deg(x)deg(y)

∑

w∈V
g(x, w)g(w, y)

setting

g(x, y) = 1

|V |
∑

z∈V
gz(x, y) (1.2)

and gz(x, y) = E
[∑τz−1

m=0 1{Sm=y}
]
for S = (Sm)m≥0 a simple random walk on V

starting at x and τz := inf{m ≥ 0 : Sm = z}. The field is called “bilaplacian” since a
straightforward computation shows that

�2
g

(
1

deg(x)deg(y)

∑

w∈V
g(x, w)g(w, y)

)
= δx (y) − 1

|V |

where �g denotes the graph Laplacian

�g f (x) :=
∑

y∼V x

f (y) − f (x), f : V → R .

Hence the covariance is related to the Green’s function of the discrete bilaplacian (or
biharmonic) operator.

The interplay between the odometer of the sandpile and the bilaplacian becomes
more evident in the observation made by Levine et al. on the odometer in V := Z

d
n ,

the discrete torus of side length n > 0 in dimension d. They write (after the statement
of Proposition 1.3):

“We believe that if σ is identically distributedwith zeromean and finite variance,
then the odometer, after a suitable shift and rescaling, converges weakly as
n → +∞ to the bilaplacian Gaussian field on R

d”.

Note that, although they work with Gaussian weights in the proof of Proposition 1.3,
their comment comprises also the casewhenσ has amore general distribution. Inspired
by the above remark, we determine the scaling limit of the odometer in d ≥ 1 for
general i.i.d. weights: we show that indeed it equals �, the continuum bilaplacian,
but on the unit torus T

d (see Theorems 1 and 2). A heuristic for the toric limit is that
the laplacian we consider is on Z

d
n , which can be seen as dilation of the discrete torus

T
d ∩(n−1

Z)d . We highlight that� is not a random variable, but a random distribution
living in an appropriate Sobolev space on T

d . There are several ways in which one
can represent such a field: a convenient one is to let � be a collection of centered
Gaussian random variables

{〈�, u〉 : u ∈ H−1(Td)
}
with variance E

[〈�, u〉2] =
‖u‖2−1, where

‖u‖2−1 :=
(
u,�−2u

)

L2(Td )
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832 A. Cipriani et al.

and �2 now is the continuum bilaplacian operator. We will give the analytical back-
ground to this definition in Sect. 2.2. As a by-product of our proof, we are able to
determine the kernel of the continuum bilaplacian on the torus which, to the best of
the authors’ knowledge, is not explicitly stated in the literature.

Related work Scaling limits for sandpiles have already been investigated: in the ASP
literature limits for stable configurations have been studied, for example, in Levine
et al. [18] and Pegden and Smart [19]. Their works are concerned with the partial
differential equation that characterizes the scaling limit of the ASP in Z

2. They
also provide an interesting explanation of the fractal structure which arises when
a large number of chips are placed at the origin and allowed to topple. The prop-
erties of the odometer play an important role in their analysis. In the literature of
divisible sandpiles models, the scaling limit of the odometer was determined for
an α-stable divisible sandpile in Frómeta and Jara [6], who deal with a divisible
sandpile for which mass is distributed not only to nearest-neighbor sites, but also
to “far away” ones. Their limit is related to an obstacle problem for the truncated
fractional Laplacian. In the subsequent work Cipriani et al. [4], the authors of the
present paper extend the result to the case in which the assumption on the finite vari-
ance of the σ ’s is relaxed, and obtain an alpha-stable generalised field in the scaling
limit.

The discrete bilaplacian (also calledmembrane) model was introduced in Sakagawa
[23] and Kurt [11,12] for the box of Z

d with zero boundary conditions. In d ≥ 4 Sun
and Wu [27] and Lawler et al. [13] construct a discrete model for the bilaplacian field
by assigning random signs to each component of the uniform spanning forest of a
graph and study its scaling limit. As far as the authors know, Levine et al. [17] is the
first paper in which the discrete bilaplacian model has been considered with periodic
boundary conditions.

1.1 Main results

Notation We start with some preliminary notations which are needed throughout the

paper. LetTd be the d-dimensional torus, alternatively viewed as R
d

Z
d or as [− 1

2 ,
1
2 )

d ⊂
R
d . Z

d
n := [− n

2 , n
2 ]d ∩ Z

d is the discrete torus of side-length n ∈ N, and T
d
n :=

[− 1
2 ,

1
2 ]d ∩ (n−1

Z)d is the discretization of T
d . Moreover let B(z, ρ) a ball centered

at z of radius ρ > 0 in the 
∞-metric. We will use throughout the notation z ·w for the
Euclidean scalar product between z, w ∈ R

d . With ‖ · ‖∞ we mean the 
∞-norm,
and with ‖ · ‖ the Euclidean norm. We will let C, c be positive constants which may
change from line to line within the same equation. We define the Fourier transform of
a function u ∈ L1(Td) as û(y) := ∫

Td u(z) exp (−2πιy · z) d z for y ∈ Z
d . We will

use the symbol ·̂ to denote also Fourier transforms on Z
d
n and R

d . We will say that a
function f (n) = o (1) if limn→+∞ f (n) = 0.

We can now state our main theorem: we consider the piecewise interpolation of
the odometer on small boxes of radius 1

2n and show convergence to the continuum
bilaplacian field.
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Scaling limit of the odometer in divisible sandpiles 833

Theorem 1 (Scaling limit of the odometer for Gaussian weights) Let d ≥ 1 and let
(σ (x))x∈Zd

n
be a collection of i.i.d. standard Gaussians. Let en(·) := e

Z
d
n
(·) be the

odometer on Z
d
n associated to these weights. The formal field

�n(x) := 4π2
∑

z∈Td
n

n
d−4
2 en(nz)1B

(
z, 1

2n

)(x), x ∈ T
d (1.3)

converges in law as n → +∞ to the bilaplacian field� onT
d . The convergence holds

in the Sobolev spaceH−ε(T
d) with the topology induced by the norm ‖ · ‖H−ε (Td ) for

any ε > max
{
1 + d

4 , d
2

}
(see Sect. 2.2 for the analytic specifications).

The reason to impose ε > max
{
1 + d

4 , d
2

}
is two-folded: on the one hand, it

ensures the tightness of �n , on the other it allows us to define the law of � prop-
erly (see the construction of abstract Wiener space in Sect. 2.2). Observe moreover
that max

{
1 + d

4 , d
2

}
has a transition at d = 4, which is reminiscent of the phase

transition of the bilaplacian model on Z
d (see for instance Kurt [12]).

We can now show the next Theorem, which generalises the previous one to the
case in which the weights have an arbitrary distribution with mean zero and finite
variance. We keep the proof separate from the Gaussian one, as the latter will allow
us to obtain precise results on the kernel of the bilaplacian, and has also a different
flavor. Moreover, the more general proof relies on estimates we obtain in the Gaussian
case. With a slight abuse of notation, we will define a field �n as in Theorem 1 also
for weights which are not necessarily Gaussian (in the sequel, it will be clear from the
context to which weights we are referring to).

Theorem 2 (Scaling limit of the odometer for general weights) Assume (σ (x))x∈Zd
n

is a collection of i.i.d. variables with E [σ ] = 0 and E
[
σ 2
] = 1. Let d ≥ 1 and en(·)

be the corresponding odometer. If we define the formal field �n as in (1.3) for such
weights, then it converges in law as n → +∞ to the bilaplacian field � on T

d . The
convergence holds in the same fashion of Theorem 1.

We now give an explicit description of the covariance structure of �. Our motiva-
tion is also a comparison with the whole-space bilaplacian field already treated in
the literature. More precisely, for d ≥ 5, Sun and Wu [27, Definition 3] define the
bilaplacian field �̃d on R

d as the unique distribution on
(
C∞
c (Rd)

)∗
such that, for all

u ∈ C∞
c (Rd),

〈
�̃d , u

〉
is a centered Gaussian variable with variance

E
[〈

�̃d , u
〉2] =

∫∫

R
d ×R

d
u(x)u(y)‖x − y‖4−d d x d y.

Since we obtain a limiting field onT
d , we think it is interesting to give a representation

for the covariance kernel of the biharmonic operator in our setting. From now on, when
we use the terminology “zero average” for a function u, we always mean

∫
Td u(x) d

x = 0.
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834 A. Cipriani et al.

Theorem 3 (Kernel of the biharmonic operator in higher dimensions) Let d ≥ 5. Let
furthermore u ∈ C∞(Td) and with zero average. Then there exists Gd ∈ L1(Rd) such
that

E
[〈

�, u
〉2] =

(
u, �−2u

)

L2(Td )

=
∫∫

Td×Td
u(z)u(z′)

∑

w∈Zd

Gd(z − z′ + w) d z d z′. (1.4)

Gd can be computed as follows: there exists hd ∈ C∞(Rd) depending on d such that

Gd( · ) = π4− d
2 �

(
d − 4

2

)
‖ · ‖4−d + hd( · ). (1.5)

Remark 1 (Kernel of the biharmonic operator in lower dimensions) The convergence
result of Theorem 2 allows us to determine the kernel in d ≤ 3 too. In fact, for such
d interchanging sum and integrals is possible, so that we can write

(
u, �−2u

)

L2(Td )
=

∑

ν∈Zd \{0}

|̂u(ν)|2
‖ν‖4 =

∫∫

Td×Td
u(z)u(z′)K(z− z′) d z d z′, (1.6)

where we can define the kernel of the bilaplacian to be

K(z − z′) :=
∑

ν∈Zd \{0}

e2πι(z−z′)·ν

‖ν‖4 , z, z′ ∈ T
d .

Outline of the articleThe necessary theoretical background is given in Sect. 2, together
with anoutline of the strategyof the proof ofTheorem1.Auxiliary results and estimates
are provided in Sect. 3. The proof of Theorem 1 lies in Sect. 4, and of Theorem 2 in
Sect. 5. Finally we conclude with the proof of Theorem 3 in Sect. 6.

2 Preliminaries

In this section we review the basics of the spectral theory of the Laplacian on the
discrete torus from Levine et al. [17]. We also remind the fundamentals of abstract
Wiener spaces which enable us to construct standard Gaussian random variables on a
Sobolev space on T

d . The presentation is inspired by Silvestri [25]. We also comment
on the basic strategy of the proof of Theorem 1 and make some important remarks on
the test functions we use for our calculations. We refer for the Fourier analytic details
used in this article to Stein and Weiss [26] and for a survey on random distributions
to Gel’fand and Vilenkin [7].
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Scaling limit of the odometer in divisible sandpiles 835

2.1 Fourier analysis on the torus

We now recall a few facts about the eigenvalues of the Laplacian from Levine et al.
[17] for completeness. Consider theHilbert space L2(Zd

n) of complex valued functions
on the discrete torus endowed with the inner product

〈 f, g〉 = 1

nd
∑

x∈Zd
n

f (x)g(x).

The Pontryagin dual group of Z
d
n is identified again with Z

d
n . Let {ψa : a ∈ Z

d
n}

denote the characters of the group where ψa(x) = exp(2πιx · a
n ). The eigenvalues of

the Laplacian �g on discrete tori are given by

λw = −4
d∑

i=1

sin2
(πwi

n

)
, w ∈ Z

d
n .

Recalling (1.2), we use the shortcut gx (y) := g(y, x). Let ĝx denote the Fourier
transform of gx . It follows that

ĝx (0) = n−d
∑

y∈Zd
n

gx (y) =: L (2.1)

for all x ∈ Z
d
n (it can be seen in several ways, for example by translation invariance,

that L is independent of x). Finally, we recall Levine et al. [17, Equation (20)]: for all
a �= 0,

λa ĝx (a) = −2dn−dψ−a(x). (2.2)

2.2 Gaussian variables on homogeneous Sobolev spaces on the torus

Since our conjectured scaling limit is a random distribution, we think it is important to
keep the article self-contained and give a brief overview of analytic definitions needed
to construct the limit in an appropriate functional space. Our presentation is based on
Sheffield [24, Section 2] and Silvestri [25, Sections 6.1, 6.2].

An abstract Wiener space (AWS) is a triple (H, B, μ), where:

(1) (H, (·, ·)H ) is a Hilbert space,
(2) (B, ‖ · ‖B) is the Banach space completion of H with respect to the measurable

norm ‖ · ‖B on H , equipped with the Borel σ -algebra B induced by ‖ · ‖B , and
(3) μ is the unique Borel probability measure on (B,B) such that, if B∗ denotes the

dual space of B, then μ ◦ φ−1 ∼ N (0, ‖φ̃‖2H ) for all φ ∈ B∗, where φ̃ is the
unique element of H such that φ(h) = (φ̃, h)H for all h ∈ H .

We remark that, in order to construct a measurable norm ‖ · ‖B on H , it suffices to
find a Hilbert–Schmidt operator T on H , and set ‖ · ‖B := ‖T · ‖H .

123



836 A. Cipriani et al.

Let us construct then an appropriate AWS. Choose a ∈ R. Let us define the operator
(−�)a acting on L2(Td)-functions u with Fourier series

∑
ν∈Zd û(ν)eν(·) as follows

((eν)ν∈Zd denotes the Fourier basis of L2(Td)):

(−�)a

⎛

⎝
∑

ν∈Zd

û(ν)eν

⎞

⎠ (ϑ) =
∑

ν∈Zd \{0}
‖ν‖2aû(ν)eν(ϑ).

Let “∼” be the equivalence relation on C∞(Td) which identifies two functions dif-
fering by a constant and let Ha(Td) be the Hilbert space completion of C∞(Td)/∼
under the norm

( f, g)a :=
∑

ν∈Zd \{0}
‖ν‖4a f̂ (ν)ĝ(ν).

Define the Hilbert space

Ha :=
{
u ∈ L2(Td) : (−�)au ∈ L2(Td)

}
/∼.

We equip Ha with the norm

‖u‖2Ha(Td )
= (

(−�)au, (−�)au
)
L2(Td )

.

In fact, (−�)−a provides a Hilbert space isomorphism between Ha and Ha(Td),
which when needed we identify. For

b < a − d

4
(2.3)

one shows that (−�)b−a is a Hilbert–Schmidt operator on Ha (cf. also Silvestri [25,
Proposition 5]). In our case, we will be setting a := −1. Therefore, by (2.3), for any
−ε := b < 0 which satisfies ε > 1 + d

4 , we have that (H
−1, H−ε, μ−ε) is an AWS.

The measure μ−ε is the unique Gaussian law onH−ε whose characteristic functional
is

�(u) := exp

(
−‖u‖2−1

2

)
.

Thefield associated to�will be called� and is the limiting field claimed inTheorem1.
There is a perhaps more explicit description of � which is based on Gaussian

Hilbert spaces [9, Chapter 1]. The construction is taken from Janson [9, Exam-
ple 1.25]. Let (�, A, P) be a probability space with A its Borel σ -algebra. Assume
that on � one can define a sequence of i.i.d. standard Gaussians (Xm)m∈N. Let further
(Xm)m∈N be an orthonormal basis of H−1(Td). Then there is an isometric embedding
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Scaling limit of the odometer in divisible sandpiles 837

� : H−1(Td) ↪→ L2(�, P) such that 〈�, Xm〉 d= Xm for all m. Indeed, by the
properties of AWS, the mapping (H−ε)∗ � φ �→ 〈�, φ〉 is an isometry of the dense
subspace (H−ε)∗ onto S := {〈�, u〉 : u ∈ (H−ε)∗

}
. The mapping can be extended

by continuity to an isometry between H−1 and the corresponding closure of S. Tak-
ing � := H−ε and P := μ−ε , this entails an alternative construction of �: it is the

unique Gaussian process indexed by H−1 such that �
d= {〈�, u〉 : u ∈ H−1(Td)

}

with 〈�, u〉 ∼ N
(
0, ‖u‖2−1

)
for any u ∈ H−1(Td).

2.3 Strategy of the proof of Theorem 1

Firstly, we show that η can be decomposed into the sum of two independent fields,
namely

Proposition 4 There exist a centered Gaussian field (χx )x∈Zd
n
with covariance

E[χxχy] = H(x, y) as in (3.3) and a centered normal random variable Y with vari-
ance (2d)−2nd L2 (where L is as in (2.1)), such that Y is independent from (χx )x∈Zd

n
and

(η(x))x∈Zd
n

d= (Y + χx )x∈Zd
n
.

In particular, en(·) admits the representation

(en(x))x∈Zd
n

d=
(

χx − min
z∈Zd

n

χz

)

x∈Zd
n

.

This decomposition is similar in spirit to the one in the proof of Levine et al. [17,
Proposition 1.3], but we stress that the random fields we find are different. The proof
of the above Proposition can be found in Sect. 3.1. As a consequence, to achieve
Theorem 1 it will suffice to determine the scaling limit of the χ field, because test
functions have zero average, and hence we can get rid of the minimum appearing in
the odometer representation. We will therefore show

(P1) (L(�n))n∈N is tight in the space H−ε(T
d) where −ε < − d

2 .
(P2) From the above tightness result, there exists a subsequential scaling limit

� = limk→+∞ �nk for the convergence in law in the space H−ε . The proof is
complete once we show this limit is unique: by Ledoux and Talagrand [14, Sec-
tion 2.1], it suffices to prove that, for all mean-zero test functions u ∈ C∞(Td),

lim
n→+∞E

[
exp (ι 〈�n, u〉)] = �(u),

where the RHS is the characteristic function of �. We will calculate the limit
of the second moment of 〈�n, u〉 directly in d ≤ 3 and through a mollifying
procedure in d ≥ 4.

123



838 A. Cipriani et al.

This will conclude the proof. Since the “finite dimensional” convergence is somewhat
more interesting, we will defer the tightness proof to Sect. 4.2 and show (P2) in
Sect. 4.1.

A note on test functions By the above construction, the set of test functions we will
consider is the set of smooth functions C∞(Td) with zero mean. We need to stress at
this juncture an important remark:C(Td)doesnot correspond to the class of continuous
functions on [− 1

2 ,
1
2 )

d , but only to functions which remain continuous on R
d when

extended by periodicity. Similar comments apply toC∞(Td) functions. See also Stein
and Weiss [26, Section 1, Chapter VII] for further discussions. Therefore, when we
consider u : R

d → R which is periodic and belongs toC∞, we consider its restriction
to [− 1

2 ,
1
2 )

d while computing its integral on T
d .

3 Auxiliary results

In this section we provide a proof of Proposition 4. The result helps us tackle the sin-
gularity arising from the zero eigenvalue of �g and will also reduce the determination
of the scaling limit to finding the scaling limit of (χx )x∈Zd

n
.

3.1 Proof of Proposition 4

Proof First, observe that, by Parseval’s identity on the discrete torus, we can write the
covariance of the Gaussian field (η(x))x∈Zd

n
as

E [η(x)η(y)] = (2d)−2
∑

z∈Zd
n

g(z, x)g(z, y)

= (2d)−2nd ĝx (0)ĝy(0) + (2d)−2nd
∑

z∈Zd
n \{0}

ĝx (z)ĝy(z). (3.1)

First observe that using the description of g(x, y) in terms of the simple random walk
(Sm)m≥0 on Z

d
n we derive

ĝx (0) = n−d
∑

y∈Zd
n

gx (y) = n−2d
∑

y∈Zd
n

∑

z∈Zd
n

∑

m≥0

Px (Sm = y,m < τz)

= n−2d
∑

z∈Zd
n

∑

y∈Zd
n \{z}

∑

m≥0

Px (Sm = y,m < τz)

= n−2d
∑

z∈Zd
n

∑

m≥0

Px (τz > m) = n−2d
∑

z∈Zd
n

Ex [τz]. (3.2)

One can notice that ĝx (0) is independent of x by translation invariance. Hence we
get that the first term in the left-hand side of (3.1) is a constant equal to (2d)−2nd L2

having set L := n−2d∑
q∈Zd

n
Ex [τq ]. As for the contribution from other sites,
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(2d)−2nd
∑

z∈Zd
n \{0}

ĝx (z)ĝy(z)
(2.2)= n−d

∑

z∈Zd
n \{0}

exp
(−2πιx · z

n

)
exp

(
2πιy · z

n

)

|λz|2 .

Define a centered Gaussian field (χx )x∈Zd
n
with covariance given by

H(x, y) = n−d

16

∑

z∈Zd
n \{0}

exp(2πι(y − x) · z
n )

(∑d
i=1 sin

2
(
π

zi
n

))2 . (3.3)

The field associated to H is well-defined and in fact H is positive definite. To see this,
given a function c : Z

d
n → C one has that

∑
x,y∈Zd

n
H(x, y)c(x)c(y) ≥ 0. Indeed,

∑

x,y∈Zd
n

H(x, y)c(x)c(y) = n−d

16

∑

x,y∈Zd
n

∑

z∈Zd
n \{0}

exp(2π(y − x) · z
n )

(∑d
i=1 sin

2
(
π

zi
n

))2 c(x)c(y)

= n−d

16

∑

z∈Zd
n \{0}

d(z)d(z) ≥ 0,

where d(z) := ∑
x∈Zd

n
exp(−2πιx · z

n )
(∑d

i=1 sin
2(π

zi
n )
)−1

c(x). Hence it turns out

that (η(x))x∈Zd
n
has the same distribution as (Y + χx )x∈Zd

n
where Y is a Gaussian

random variable with mean zero and variance (2d)−2nd L2 independent of the field χ .

To conclude, note that the odometer function satisfies en(x)
d= η(x)−minz∈Zd

n
η(z)

d=
χx − minz∈Zd

n
χz . ��

4 Proof of Theorem 1

We recall that it will suffice to prove the two properties (P1) and (P2) to achieve the
Theorem. We first use to our advantage the fact that the test functions we consider
have zero average, hence we can get rid of the minimum term which appears in the
definition of the odometer. Let us recall the field in (1.3)

�n(·) = 4π2
∑

z∈Td
n

n
d−4
2 en(nz)1B

(
z, 1

2n

)(·).

We define a linear functional on C∞(Td) by setting

〈�n, u〉 :=
∫

Td

⎛

⎝4π2n
d−4
2
∑

z∈Td
n

1
B
(
z, 1

2n

)(x)en(nz)

⎞

⎠ u(x) d x .
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However using Proposition 4, and the fact that u has zero mean, one sees that

〈�n, u〉 = 4π2
∑

z∈Td
n

n
d−4
2 χnz

∫

B(z, 1
2n )

u(x) d x

− 4π2
∑

z∈Td
n

n
d−4
2

(
min
w∈Zd

n

χw

)∫

B(z, 1
2n )

u(x) d x

= 4π2
∑

z∈Td
n

n
d−4
2 χnz

∫

B(z, 1
2n )

u(x) d x = 〈
�′

n, u
〉

letting

�′
n(·) := 4π2

∑

z∈Td
n

n
d−4
2 χnz 1B

(
z, 1

2n

)(·)

By the theory of Gaussian Hilbert spaces of Sect. 2.2, �n = �′
n in distribution. Hence

in the sequel we will, with a slight abuse of notation, consider �′
n but denote it simply

as �n , since the law of the two fields is the same. We are now ready to begin with
(P2).

4.1 Proof of (P2)

Overview of the proof We have just seen that

〈�n, u〉 = 4π2
∑

z∈Td
n

n
d−4
2 χnz

∫

B(z, 1
2n )

u(x) d x .

We now replace the integral over the ball above by the value at its center and gather
the remaining error term. More precisely we get

4π2
∑

z∈Td
n

n
d−4
2 χnz

∫

B(z, 1
2n )

u(x) d x = 4π2
∑

z∈Td
n

n
d−4
2 χnzn

−d
∫

B(z, 1
2n )

ndu(x) d x

= 4π2
∑

z∈Td
n

n
d−4
2 χnzn

−du(z)

+ 4π2
∑

z∈Td
n

n
d−4
2 χnzn

−d

(∫

B(z, 1
2n )

ndu(x) d x − u(z)

)

= 4π2n− d+4
2
∑

z∈Td
n

χnzu(z) + Rn(u).
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Here the remainder Rn(u) is defined by

Rn(u) := 4π2
∑

z∈Td
n

n
d−4
2 χnzn

−d

(∫

B(z, 1
2n )

ndu(x) d x − u(z)

)

= 4π2n− d+4
2
∑

z∈Td
n

χnzKn(z) (4.1)

where using that the volume of B(z, 1
2n ) is n−d we have

Kn(z) :=
∫

B(z, 1
2n )

ndu(x) d x − u(z) = nd
[∫

B(z, 1
2n )

(u(x) − u(z)) d x

]
. (4.2)

We observe that using the above decomposition one can split the variance of 〈�n, u〉
as

E
[
〈�n, u〉2

]
= 16π4n−(d+4)

∑

z, z′∈Td
n

u(z)u(z′)E[χnzχnz′ ] + E
[
Rn(u)2

]

+ 4π2E

⎡

⎣n− d+4
2
∑

z∈Td
n

u(z)χnz Rn(u)

⎤

⎦ .

To deal with the convergence of the above terms we need two propositions. The first
one shows that the first term yields the required limiting variance.

Proposition 5 In the notation of this Section,

16π4 lim
n→+∞ n−(d+4)

∑

z, z′∈Td
n

u(z)u(z′)E[χnzχnz′ ]

= 16π4 lim
n→+∞ n−(d+4)

∑

z, z′∈Td
n

u(z)u(z′)H
(
nz, nz′

)

= ‖u‖2−1.

The second Proposition says the remainder term is small.

Proposition 6 In the notations of this Section, limn→+∞ Rn(u) = 0 in L2.

Then an application of the Cauchy-Schwarz inequality will allow us to deduce that

lim
n→+∞E

[
〈�n, u〉2

]
= ‖u‖2−1

and the condition (P2) will be ensured. We give the proof of Proposition 5, which is
the core of our argument, in Sect. 4.1.1 and of Proposition 6 in Sect. 4.1.2.
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4.1.1 Proof of Proposition 5

Before we begin our proof we would like to prove a bound which would be crucial in
estimating the eigenvalues of the Laplacian on the discrete torus. This lemma will be
used later for other parts of the proof too.

Lemma 7 There exists c > 0 such that for all n ∈ N and w ∈ Z
d
n \{0} we have

1

‖πw‖4 ≤ n−4

(
d∑

i=1

sin2
(πwi

n

))−2

≤
(

1

‖πw‖2 + c

n2

)2

(4.3)

Proof We consider

d∑

i=1

n2 sin2
(πwi

n

)
=

d∑

i=1

w2
i π

2

(
sin
(
θni

)

θni

)2

with θni := πwi n−1 ∈ [−π/2, π/2] \{0}. This gives the left-hand side of (4.3).
Moreover

‖πw‖2 −
d∑

i=1

n2 sin2
(πwi

n

)
=

d∑

i=1

w2
i π

2

⎛

⎝1 −
(
sin
(
θni

)

θni

)2
⎞

⎠ ≤ C‖w‖4n−2

because 0 ≤ 1 − sin2(x)x−2 ≤ C x2 for some C > 0. In this way

1
∑d

i=1 n
2 sin2

(
πwi
n

) − 1

‖πw‖2 = ‖πw‖2 −∑d
i=1 n

2 sin2
(

πwi
n

)
∑d

i=1 n
2 sin2

(
πwi
n

) ‖πw‖2

≤ C‖w‖4n−2

∑d
i=1 n

2 sin2
(

πwi
n

) ‖πw‖2 . (4.4)

Considering that, for x ∈ [−π/2, π/2], sin2(x)x−2 ∈ [4/π2, 1
]
, one gets that

d∑

i=1

n2 sin2
(πwi

n

)
≥ 4‖w‖2 (4.5)

which plugged into (4.4) gives that

1
∑d

i=1 n
2 sin2

(
πwi
n

) − 1

‖πw‖2 ≤ Cn−2

for C > 0, thus (4.3) is proven. ��
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Remark 2 The equation (4.5) is not enough to obtain sharp asymptotics for∑d
i=1 n

2 sin2 (πwi/n) as n → ∞. On the other hand, we will use it in the sequel
while looking for a uniform lower bound for the same quantity for all w �= 0.

We begin with the proof of Proposition 5. Let u : T
d → R be a smooth function

with zero mean. Define un : Z
d
n → R as un(z) := u( zn ). Note that

16π4n−2dnd−4
∑

z, z′∈Td
n

u(z)u(z′)E[χnzχnz′ ]

= 16π4n−2dnd−4
∑

z, z′∈Zd
n

u(z)u(z′)H(nz, nz′)

= π4n−2dn−4
∑

z, z′∈Td
n

u(z)u(z′)
∑

w∈Zd
n \{0}

exp(2πι(z − z′) · w)
(∑d

i=1 sin
2
(

πwi
n

))2 . (4.6)

To show the above expression converges it is enough to consider the convergence of

n−2d
∑

z, z′∈Td
n

u(z)u(z′)
∑

w∈Zd
n \{0}

exp(2πι(z − z′) · w)

‖w‖4 . (4.7)

This can be justified by showing that (4.6) can be bounded above and below appro-
priately by (4.7). Now observing that

n−2d
∑

z, z′∈Td
n

u(z)u(z′) exp(2πι(z − z′) · w) = |ûn(w)|2 ≥ 0 (4.8)

the lower bound of (4.3) immediately gives

π4n−2d−4
∑

z, z′∈Td
n

u(z)u(z′)
∑

w∈Zd
n \{0}

exp(2πι(z − z′) · w)
(∑d

i=1 sin
2
(

πwi
n

))2

≥ n−2d
∑

z, z′∈Td
n

u(z)u(z′)
∑

w∈Zd
n \{0}

exp(2πι(z − z′) · w)

‖w‖4 .

For the upper bound, using the bound in (4.3) we get

π4n−2d−4
∑

z, z′∈Td
n

u(z)u(z′)
∑

w∈Zd
n \{0}

exp(2πι(z − z′) · w)
(∑d

i=1 sin
2
(

πwi
n

))2

≤ π4n−2d
∑

z, z′∈Td
n

u(z)u(z′)
∑

w∈Zd
n \{0}

exp(2πι(z − z′) · w)

(
1

‖πw‖2 + c

n2

)2

.
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Now we expand the square: the first term gives the correct upper bound as in (4.7) and
the other two terms are negligible. In fact we show firstly that

lim
n→+∞ cn−2dn−2

∑

z, z′∈Td
n

u(z)u(z′)
∑

w∈Zd
n \{0}

exp(2πι(z − z′) · w)

‖w‖2 = 0.

Using (4.8) and Parseval’s identity we get

cn−2dn−2
∑

z, z′∈Td
n

u(z)u(z′)
∑

w∈Zd
n \{0}

exp(2πι(z − z′) · w)

‖w‖2

= cn−2
∑

w∈Zd
n \{0}

1

‖w‖2 |ûn(w)|2

‖w‖≥1≤ cn−2
∑

w∈Zd
n \{0}

|ûn(w)|2 ≤ cn−2
∑

w∈Zd
n

|ûn(w)|2

= cn−2n−d
∑

w∈Zd
n

∣∣∣u
(w

n

)∣∣∣
2 = cn−2

⎛

⎝n−d
∑

w∈Td
n

|u(w)|2
⎞

⎠ .

Since n−d∑
w∈Td

n
|u(w)|2 → ∫

Td |u(w)|2 dw < +∞ we get that the second term
converges to zero. Note that the same computation shows

n−2dn−4
∑

z, z′∈Td
n

u(z)u(z′)
∑

w∈Zd
n \{0}

exp(2πι(z − z′) · w)≤n−4

⎛

⎝n−d
∑

w∈Td
n

|u(w)|2
⎞

⎠ ,

which again goes to zero as n → +∞. So this shows that we can from now on
concentrate on showing the convergence of (4.7). We split now our proof, according
to whether d ≤ 3 or d ≥ 4.

The case d ≤ 3 In the first case, the argument is more straightforward: we rewrite

(4.7)=
∑

w∈Zd \{0}
‖w‖−4 1

w∈Zd
n

∑

z∈Td
n

n−du(z) exp(2πιz · w)
∑

z′∈Td
n

n−du(z′) exp(−2πιz′ · w).

Since
∑

z∈Td
n
n−du(z) exp(2πιz ·w) is bounded above uniformly in n, and

∑
w∈Zd \{0}

‖w‖−4 < +∞ in d < 4, we can apply the dominated converge theorem and obtain

lim
n→+∞ (4.7) =

∑

w∈Zd \{0}
‖w‖−4 |̂u(w)|2 = ‖u‖2−1

which concludes the proof of (P2) for d ≤ 3.
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The case d ≥ 4 Here it is necessary to think of another strategy since
∑

w∈Zd ‖w‖−4

is not finite. Let φ ∈ S(Rd), the Schwartz space, be a mollifier supported on [− 1
2 ,

1
2 )

d

with
∫
R
d φ(x) d x = 1 and let φκ(x) := κ−dφ( x

κ
) for κ > 0. It is a classical result

[22, Theorem 7.22] that for δ = 0, 1, 2 . . . there exists A > 0 (depending on κ and
δ) such that ∣∣φ̂κ (w)

∣∣ ≤ A (1 + ‖w‖)−δ . (4.9)

Now to show the convergence of (4.7) is equivalent to considering

lim
κ→0

lim
n→+∞ n−2d

∑

z, z′∈Td
n

u(z)u(z′)
∑

w∈Zd
n \{0}

φ̂κ (w)
exp(2πι(z − z′) · w)

‖w‖4

since we claim that

lim
κ→0

lim sup
n→+∞

n−2d
∑

z, z′∈Td
n

u(z)u(z′)
∑

w∈Zd
n \{0}

(
φ̂κ (w) − 1

) exp(2πι(z − z′) · w)

‖w‖4 = 0.

(4.10)

Indeed, using the fact that
∫
R
d φκ(x) d x = 1 we have

∣∣φ̂κ (w) − 1
∣∣ ≤

∫

R
d
φκ(y)

∣∣∣e2πιy·w −1
∣∣∣ d y.

Exploiting the fact that | exp(2πιx) − 1|2 = 4 sin2(πx) and | sin(x)| ≤ |x | we obtain
∣∣φ̂κ (w) − 1

∣∣ ≤ Cκ‖w‖
∫

R
d
‖y‖φ(y) d y ≤ Cκ‖w‖ (4.11)

due to the fact that φ is supported on [− 1
2 ,

1
2 )

d . Recalling un(z) = u( zn ) and plugging
the estimate (4.11) in (4.10) we get that

∣∣∣∣∣∣
n−2d

∑

w∈Zd
n \{0}

φ̂κ (w) − 1

‖w‖4
∑

z, z′∈Td
n

u(z)u(z′) exp(2πι(z − z′) · w)

∣∣∣∣∣∣

≤ Cκ
∑

w∈Zd
n \{0}

‖w‖−3 |ûn(w)|2 . (4.12)

Using ‖w‖ ≥ 1 we have

∑

w∈Zd
n \{0}

‖w‖−3 |ûn(w)|2 ≤
∑

w∈Zd
n \{0}

|ûn(w)|2 ≤
∑

w∈Zd
n

|ûn(w)|2

= n−d
∑

w∈Zd
n

∣∣∣u
(w

n

)∣∣∣
2 = n−d

∑

w∈Td
n

|u(w)|2
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where we have used Parseval’s identity. We observe then that

lim sup
n→+∞

∣∣∣∣∣∣
n−2d

∑

w∈Zd
n \{0}

φ̂κ (w) − 1

‖w‖4
∑

z, z′∈Td
n

u(z)u(z′) exp(2πι(z − z′) · w)

∣∣∣∣∣∣

≤ Cκ‖u‖2L2(Td )
< +∞.

Taking the limit κ → 0 in the previous expression we deduce the claim (4.10). Now
we have to derive the limit of the following expression:

n−2d
∑

z, z′∈Td
n

u(z)u(z′)
∑

w∈Zd
n \{0}

φ̂κ (w)
exp(2πι(z − z′) · w)

‖w‖4 . (4.13)

Since φ̂κ has a fast decay at infinity, and

lim
n→+∞ n−d

∑

z∈Td
n

u(z) exp(2πιz · w) = û(w)

we can apply the dominated convergence theorem to obtain

lim
n→+∞ n−2d

∑

z, z′∈Td
n

u(z)u(z′)
∑

w∈Zd
n \{0}

φ̂κ (w)
exp(2πι(z − z′) · w)

‖w‖4

=
∑

w∈Zd \{0}
φ̂κ (w)

|̂u(w)|2
‖w‖4 .

The bound |φ̂κ (·)| ≤ 1 can be used to obtain a bound uniform in κ on the right-
hand side of the above expression: consequently we apply the dominated convergence
letting κ → 0 to achieve

lim
κ→0

lim
n→+∞ n−2d

∑

z, z′∈Td
n

u(z)u(z′)
∑

w∈Zd
n \{0}

φ̂κ (w)
exp(2πι(z − z′) · w)

‖w‖4

=
∑

w∈Zd \{0}

|̂u(w)|2
‖w‖4 = ‖u‖2−1.

This concludes the proof of Proposition 5.

4.1.2 Proof on the remainder: Proposition 6

We owe the reader now the last proofs on Rn (see (4.1)). First we state the following

Lemma 8 There exists a constant C > 0 such that supz∈Td |Kn(z)| ≤ Cn−1.
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Proof Using the mean value theorem as u ∈ C∞(Td)we get that, for some c ∈ (0, 1),

|Kn(z)| ≤ nd
∫

B
(
z, 1

2n

) |u(x) − u(z)| d x

≤ nd
∫

B
(
z, 1

2n

) ‖∇u(cx + (1 − c)z)‖ ‖z − x‖ d x

≤ C
nd

2n

∫

B
(
z, 1

2n

) ‖∇u(cx + (1 − c)z)‖ d x ≤ C
‖∇u‖L∞(Td )

n
.

Since ‖∇u‖L∞(Td ) < +∞ the claim follows. ��
We reprise now the proof on the limit of Rn(u).

Proof of Proposition 6 We first compute E
[
Rn(u)2

]
obtaining

E
[
Rn(u)2

]
= 16π4n−2d

∑

z, z′∈Td
n

nd−4H
(
nz, nz′

)
Kn(z)Kn

(
z′
)

(4.5)≤ n−2d
∑

z, z′∈Td
n

∑

w∈Zd
n \{0}

exp(2πι(z − z′) · w)

‖w‖4 Kn(z)Kn
(
z′
)

≤ n−2d
∑

z, z′∈Td
n

∑

w∈Zd
n \{0}

exp(2πι(z − z′) · w)Kn(z)Kn
(
z′
)

since ‖w‖ ≥ 1. Letting K ′
n(x) := K ( xn ), thanks to Lemma 8 we have that the previous

expression is equal to

∑

w∈Zd
n \{0}

K̂ ′
n(w)K̂ ′

n(w) ≤
∑

w∈Zd
n

K̂ ′
n(w)K̂ ′

n(w)

= n−d
∑

w∈Zd
n

K ′
n(w)K ′

n(w) ≤ ||Kn||2L∞(Td )
≤ Cn−2.

This shows immediately that Rn(u) converges in L2 to 0. ��
We are then done with the proof of (P2) on page 7.

4.2 Tightness: proof of (P1)

We proceed to prove tightness. Before that, we must introduce a fundamental result:
Rellich’s theorem.

Theorem 9 (Rellich’s theorem) If k1 < k2 the inclusion operator Hk2(Td) ↪→
Hk1(Td) is a compact linear operator. In particular for any radius R > 0, the closed
ball BH− ε

2
(0, R) is compact inH−ε .
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Sketch of the proof The proof is readily adapted from the one inRoe [21, Theorem5.8].
Let ω > 0 be arbitrarily small. Let B be the unit ball of Hk2(Td). We quotient then the
space Hk2(Td) by the subspace Z := {

f : f̂ (ν) = 0 for ‖ν‖ > N
}
with N = N (ω)

large enough so that ‖ f ‖k1 < ω for f ∈ B ∩ Z . The unitary ball in Hk2/Z is
then compact and thus can be covered by finitely many ω-balls, giving a finite 2ω-
covering of balls for B in the Hk1 -norm as well. This shows the inclusion operator is
compact.

We take k1 := −ε and k2 := − ε
2 . By the definitions in Sect. 2.2, there is a Hilbert

space isomorphism between Ha(Td) and Ha(T
d). Applying the above observation,

we get the result. ��

Proof of tightness Choose −ε < − d
2 . Observe that

‖�n‖2L2(Td )
= 16π4nd−4

∑

x, y∈Td
n

(
χnx − min

w∈Zd
n

χw

)(
χny − min

w∈Zd
n

χw

)

is a. s. finite, for fixed n, being a finite combination of Gaussian variables and their
minimum. Hence �n ∈ L2(Td) ⊂ H−ε(T

d) a. s. By Rellich’s theorem it will suffice
to find, for all δ > 0, a R = R(δ) > 0 such that

sup
n∈N

P
(
‖�n‖H− ε

2
≥ R

)
≤ δ.

A consequence of Markov’s inequality is that such an R(δ) can be found as long as
we show that for some C > 0

sup
n∈N

E
[
‖�n‖2H− ε

2

]
≤ C.

Since�n ∈ L2, it admits a Fourier series representation�n(ϑ) = ∑
ν∈Zd �̂n(ν)eν(ϑ)

with �̂n(ν) = (�n, eν)L2(Td ). Thus we can express

‖�n‖2H− ε
2

=
∑

ν∈Zd \{0}
‖ν‖−2ε

∣∣�̂n(ν)
∣∣2 .

Observe that

�̂n(ν) =
∫

Td
�n(ϑ)eν(ϑ) d ϑ = 4π2

∑

x∈Td
n

n
d−4
2 χnx

∫

B(x, 1
2n )

eν(ϑ) d ϑ.
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This gives

E
[
‖�n‖2H− ε

2

]

= 16π4
∑

ν∈Zd \{0}

∑

x, y∈Td
n

‖ν‖−2εnd−4E
[
χnxχny

] ∫

B(x, 1
2n )

eν(ϑ) d ϑ

∫

B(y, 1
2n )

eν(ϑ) d ϑ

= 16π4
∑

ν∈Zd \{0}

∑

x, y∈Td
n

‖ν‖−2εnd−4H(nx, ny)
∫

B(x, 1
2n )

eν(ϑ) d ϑ

∫

B(y, 1
2n )

eν(ϑ) d ϑ.

(4.14)

Let us denote by Fn, ν : T
d
n → R the function Fn, ν(x) := ∫

B(x, 1
2n )

eν(ϑ) d ϑ . Since

eν ∈ L2(Td), the Cauchy-Schwarz inequality implies that Fn,ν ∈ L1(Td).

Assume we can prove

Claim 10 There exists C ′ > 0 such that

sup
ν∈Zd

sup
n∈N

∑

x, y∈Td
n

nd−4H(nx, ny)Fn, ν(x)Fn, ν(y) ≤ C ′. (4.15)

Using the above Claim and −ε < − d
2 , from (4.14) we get

E
[
‖�n‖2H− ε

2

]
=16π4

∑

ν∈Zd \{0}
‖ν‖−2ε

∑

x, y∈Td
n

nd−4H(nx, ny)Fn, ν(x)Fn, ν(y)

≤ C ′∑

k≥1

kd−1−2ε ≤ C.

This concludes the proof, assuming Claim 10. ��
We are then left to show the claim we have made:

Proof of Claim 10 First we use the bound (4.5) and the fact that

∑

x, y∈Td
n

exp(2πι(x − y) · w)Fn, ν(x)Fn, ν(y) =
∣∣∣F̂n, ν(w)

∣∣∣
2
n2d ≥ 0

123
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to obtain

∑

x, y∈Td
n

nd−4H(nx, ny)Fn, ν(x)Fn, ν(y)

=
∑

x, y∈Td
n

nd−4n−d

16

∑

w∈Zd
n \{0}

exp(2πι(x − y) · w)
(∑d

i=1 sin
2
(
π

wi
n

))2 Fn, ν(x)Fn, ν(y)

(4.5)≤ C
∑

x, y∈Td
n

∑

w∈Zd
n \{0}

exp(2πι(x − y) · w)

‖w‖4 Fn, ν(x)Fn, ν(y) (4.16)

Choose a mollifier φκ as in the previous considerations (see below (6.1)). We rewrite
the expression in the right-hand side of (4.16) accordingly as

C
∑

x, y∈Td
n

∑

w∈Zd
n \{0}

φ̂κ (w)
exp(2πι(x − y) · w)

‖w‖4 Fn, ν(x)Fn, ν(y)

+ C
∑

x, y∈Td
n

∑

w∈Zd
n \{0}

(
1 − φ̂κ (w)

) exp(2πι(x − y) · w)

‖w‖4 Fn, ν(x)Fn, ν(y). (4.17)

First we get a bound for the second term. Denote as Gn, ν : Z
d
n → R the rescaled

function Gn, ν(z) := Fn, ν(
z
n ). Now we have

C
∑

x, y∈Td
n

∑

w∈Zd
n \{0}

(
1 − φ̂κ (w)

) exp(2πι(x − y) · w)

‖w‖4 Fn, ν(x)Fn, ν(y)

= C
∑

w∈Zd
n \{0}

1 − φ̂κ (w)

‖w‖4
∑

x, y∈Zd
n

Fn, ν(
x

n
)Fn, ν(

y

n
) exp

(
2πι(x − y) · w

n

)

= Cn2d
∑

w∈Zd
n \{0}

1 − φ̂κ (w)

‖w‖4 Ĝn, ν(w)Ĝn, ν(w)
(4.11)≤ Cκn2d

∑

w∈Zd
n

∣∣∣Ĝn, ν(w)

∣∣∣
2

where in the last inequality we have used that ‖w‖ ≥ 1 and
∣∣∣Ĝn, ν(0)

∣∣∣
2 ≥ 0. The

description of Gn, ν , the fact that |Fn, ν(w)| ≤ n−d and Parseval give

∑

w∈Zd
n

∣∣∣Ĝn, ν(w)

∣∣∣
2 = n−d

∑

w∈Zd
n

Gn, ν(w)Gn, ν(w) = n−d
∑

w∈Td
n

Fn, ν(w)Fn, ν(w)

≤ n−2d
∑

w∈Td
n

∫

B(w, 1
2n )

|eν(ϑ)| d ϑ = n−2d
∫

Td
|eν(ϑ)| d ϑ

≤ n−2d‖eν‖L1(Td ) ≤ Cn−2d . (4.18)
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By means of (4.18) we get that

C
∑

x, y∈Td
n

∑

w∈Zd
n \{0}

(
1 − φ̂κ (w)

) exp(2πι(x − y) · w)

‖w‖4 Fn, ν(x)Fn, ν(y) ≤ Cκ. (4.19)

We are back to bounding the first term in (4.17).

C
∑

x, y∈Td
n

∑

w∈Zd
n \{0}

φ̂κ (w)
exp(2πι(x − y) · w)

‖w‖4 Fn, ν(x)Fn, ν(y)

= C
∑

x, y∈Td
n

∑

w∈Zd \{0}
φ̂κ (w)

exp(2πι(x − y) · w)

‖w‖4 Fn, ν(x)Fn, ν(y)

− C
∑

x, y∈Td
n

∑

w∈Zd : ‖w‖∞>n

φ̂κ (w)
exp(2πι(x − y) · w)

‖w‖4 Fn, ν(x)Fn, ν(y).

Using (4.9) we obtain a bound on the second term as

∑

x, y∈Td
n

∑

w∈Zd : ‖w‖∞>n

φ̂κ (w)
exp(2πι(x − y) · w)

‖w‖4 Fn, ν(x)Fn, ν(y)

≤ C
∑

x, y∈Td
n

∑

w∈Zd : ‖w‖∞>n

n−4
∣∣φ̂κ (w)

∣∣
∣∣∣Fn, ν(x)Fn, ν(y)

∣∣∣

≤ C
∑

w∈Zd : ‖w‖∞>n

∣∣φ̂κ (w)
∣∣

⎛

⎝
∑

x∈Td
n

|Fn, ν(x)|
⎞

⎠
2

≤ C
∑

w∈Zd : ‖w‖∞>n

‖eν‖2L1(Td )

(1 + ‖w‖)δ ≤ C. (4.20)

Finally (4.9) tells us that

∑

x, y∈Td
n

∑

w∈Zd \{0}
φ̂κ (w)

exp(2πι(x − y) · w)

‖w‖4 Fn, ν(x)Fn, ν(y)

≤ C
∑

x, y∈Td
n

∑

w∈Zd

1

(1 + ‖w‖)δ
∣∣∣Fn, ν(x)Fn, ν(y)

∣∣∣

≤ C
∑

w∈Zd

1

(1 + ‖w‖)δ ‖eν‖2L1(Td )
≤ C, (4.21)

whereC possibly depends on κ and δ. Plugging in (4.15) the expressions (4.19), (4.20)
and (4.21) we can draw the required conclusion. ��
This gives a proof of (P1) on page 7 and completes the proof of Theorem 1.
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5 Proof of Theorem 2

Strategy of the proof We will argue as in Theorem 1 and need thus to show both (P1)
and (P2). While (P2) will follow almost in the same way as in the Gaussian case, (P1)
will require a different approach. Firstly, we will need to remove constants in defining
en so that we will end up working with a field depending only on linear combinations
of (σ (x))x∈Zd

n
. Secondly, we will show in Sect. 5.1 that, for σ bounded a. s., the

convergence to the bilaplacian field is ensured via the moment method. Lastly, we will
truncate the weights σ at a levelR > 0 and show that the truncated field approximates
the original one.

Reduction to a bounded field We first recall some facts from Levine et al. [17]. Note
that odometer en satisfies {

�gen(x) = 1 − s(x),

minz∈Zd
n
en(z) = 0.

Also if one defines

vn(y) = 1

2d

∑

x∈Zd
n

g(x, y)(s(x) − 1), (5.1)

then �g(en − vn)(z) = 0. Since any harmonic function on a finite connected graph
is constant, it follows from the proof of Proposition 1.3 of Levine et al. [17] that
the odometer has the following representation also in the case where the weights are
non-Gaussian:

en(x) = vn(x) − min
z∈Zd

n

vn(z). (5.2)

Let us define the following functional: for any function hn : Z
d
n → R set

�hn (x) := 4π2
∑

z∈Td
n

n
d−4
2 hn(nz)1B

(
z, 1

2n

)(x), x ∈ T
d .

Note that for u ∈ C∞(Td) such that
∫
Td u(x) d x = 0 it follows immediately that

〈
�en , u

〉 = 〈
�vn , u

〉
.

Observe that

s(x) − 1 = σ(x) − 1

nd
∑

y∈Zd
n

σ(y)

and hence we have from (5.1)

vn(y) = 1

2d

∑

x∈Zd
n

g(x, y)σ (x) − 1

2dnd
∑

x∈Zd
n

g(x, y)
∑

z∈Zd
n

σ(z).
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By (3.2) it follows that (2d)−1∑
x∈Zd

n
g(x, y) = (2d)−1n−d∑

w∈Zd
n
Ey[τw] which is

independent of y. We can then say that

vn(y) = 1

2d

∑

x∈Zd
n

g(x, y)σ (x) − Cn−d
∑

z∈Zd
n

σ(z).

If we call

wn(y) := (2d)−1
∑

x∈Zd
n

g(x, y)σ (x),

by the mean-zero property of the test functions it follows that
〈
�vn , u

〉 = 〈
�wn , u

〉
.

Therefore we shall reduce ourselves to study the convergence of the field �wn . To
determine its limit, we will first prove that all moments of �wn converge to those of
�; via characteristic functions, we will show that the limit is uniquely determined by
moments.

5.1 Scaling limit with bounded weights

The goal of this Subsection is to determine the scaling limit for bounded weights,
namely to prove

Theorem 11 (Scaling limit for bounded weights) Assume (σ (x))x∈Zd
n
is a collection

of i.i.d. variables with E [σ ] = 0 and E
[
σ 2
] = 1. Moreover assume there exists

K < +∞ such that |σ | ≤ K almost surely. Let d ≥ 1 and en(·) be the corresponding
odometer. Then if we define the formal field �n as in (1.3) for such i.i.d. weights, then
it converges in law as n → +∞ to the bilaplacian field � on T

d . The convergence
holds in the same fashion of Theorem 1.

Before showing this result, wemust prove an auxiliary Lemma. It gives us a uniform
estimate in n on the Fourier series of the mean of u in a small ball.

Lemma 12 Fix u ∈ C∞(Td) with zero average. If we define

Tn : T
d → R

z �→
∫

B(z, 1
2n )

u(y) d y

and Tn : Z
d
n → R is defined as Tn(z) := Tn

( z
n

)
, then for n large enough we can find

a constant M := M(d, u) < +∞ such that

nd
∑

z∈Zd
n

∣∣T̂n(z)
∣∣ ≤ M.
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Proof For z ∈ Z
d
n we can write

T̂n(z) = 〈Tn, ψz〉 = 1

nd
∑

y∈Zd
n

Tn(y)ψ−z(y)

= 1

nd
∑

y∈Zd
n

Tn
( y
n

)
exp

(
−2πιz · y

n

)
= 1

nd
∑

y∈Td
n

Tn(y) exp(−2πιz · y).

(5.3)

Since u ∈ C∞(Td), one can take derive under the integral sign and get that Tn ∈
C∞(Td), so

∑
z∈Zd

∣∣T̂n(z)
∣∣ < +∞. Hence by the Fourier inversion theorem we have

the following inversion formula to be valid for every y ∈ T
d :

Tn(y) =
∑

w∈Zd

T̂n(w) exp (2πιy · w) .

First we split the sum above according to the norm of w and plug it in (5.3). Namely
we get

T̂n(z) = 1

nd
∑

y∈Td
n

Tn(y) exp(−2πιz · y)

= 1

nd
∑

y∈Td
n

∑

w∈Zd
n

T̂n(w) exp(2πιw · y) exp(−2πιz · y)

+ 1

nd
∑

y∈Td
n

∑

w∈Zd : ‖w‖∞>n

T̂n(w) exp(2πιw · y) exp(−2πιz · y). (5.4)

Let us look at the first summation: using the orthogonality of the characters of L2(Zd
n)

we can write

1

nd
∑

y∈Td
n

∑

w∈Zd
n

T̂n(w) exp(2πιw · y) exp(−2πιz · y)

= 1

nd
∑

w∈Zd
n

T̂n(w)
∑

y∈Zd
n

exp
(
2πιw · y

n

)
exp

(
−2πιz · y

n

)

= 1

nd
∑

w∈Zd
n

T̂n(w)nd 1w=z = T̂n(z).

Noting that

T̂n(0) = 1

nd
∑

y∈Td
n

Tn(y) = 1

nd
∑

y∈Td
n

∫

B
(
y, 1

2n

) u(x) d x = 1

nd

∫

Td
u(x) d x = 0,
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this means we need to show that
∑

z∈Zd
n \{0}

∣∣T̂n(z)
∣∣ ≤ C(d)n−d . We follow the

proof of Stein and Weiss [26, Corollary 1.9, Chapter VII]. For a multi-index α =
(α1, . . . , αd) ∈ N

d and a point x = (x1, . . . , xd) ∈ R
d we set

xα :=
d∏

j=1

x
α j
j

and adopt the convention 00 = 1. We choose now a smoothness parameter k0 > d.
For any α with |α| := α1 + · · · + αd ≤ k0 we can find a constant c = c(k0, d) such
that

∑

α: |α|=k0

4π2z2α ≥ c‖z‖2k0 .

Note that

∑

z∈Zd
n \{0}

∣∣T̂n(z)
∣∣ ≤

∑

z∈Zd
n \{0}

∣∣T̂n(z)
∣∣

⎛

⎝
∑

α: |α|=k0

4π2z2α

⎞

⎠

1
2

‖z‖−k0c− 1
2

≤
⎛

⎝
∑

z∈Zd
n \{0}

∣∣T̂n(z)
∣∣2

∑

α: |α|=k0

4π2z2α

⎞

⎠

1
2
⎛

⎝
∑

z∈Zd
n \{0}

‖z‖−2k0

⎞

⎠

1
2

c− 1
2 .

Here we have used the Cauchy-Schwarz inequality in the last step. Now since∑
z∈Zd

n \{0} ‖z‖−2k0 < +∞ we can compute a constant C such that

∑

z∈Zd
n \{0}

∣∣T̂n(z)
∣∣ ≤ C

⎛

⎝
∑

z∈Zd
n \{0}

∣∣T̂n(z)
∣∣2 ∑

α: |α|=k0

4π2z2α

⎞

⎠

1
2

≤ C

⎛

⎝
∑

α: |α|=k0

∑

z∈Zd

∣∣T̂n(z)
∣∣2 4π2z2α

⎞

⎠

1
2

. (5.5)

Let us call Dα the derivative with respect to α. Using the rule of derivation of Fourier
transforms [26, Chapter I, Theorem 1.8] and Parseval we have that

∑

z∈Zd

∣∣T̂n(z)
∣∣2 4π2z2α =

∫

Td

∣∣DαTn(x)
∣∣2 d x .

By the smoothness of u we deduce that

|DαTn(x)| ≤ ‖Dαu‖L∞(Td )

∫

B(0, 1
2n )

dw = ‖Dαu‖L∞(Td )(2n)−d . (5.6)
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Plugging this estimate in (5.5) we get that

∑

z∈Zd
n \{0}

∣∣T̂n(z)
∣∣2 ≤ Cn−d

⎛

⎝
∑

α: |α|=k0

‖Dαu‖2L∞(Td )

⎞

⎠

1
2

.

This finally gives that

∑

z∈Zd
n \{0}

∣∣T̂n(z)
∣∣ ≤ C(k0, d, u)n−d .

For the second summand of (5.4) observe that

∫

Td
DαTn(w) e−2πιz·w dw = (2πιz)α T̂n(z), α ∈ N

d .

The parameter α will be chosen later so that the second summand is of lower order
than the first. By (5.4) and (5.6)

∣∣T̂n(z)
∣∣ ≤ 2−d−1‖Dαu‖L∞(Td )

πnd |zα| .

We use this estimate to get

1

nd
∑

y∈Td
n

∑

‖w‖∞>n

T̂n(w) exp(2πιw · y) exp(−2πιz · y) ≤
∑

‖w‖∞>n

∣∣T̂n(w)
∣∣

≤ C(u, d, α)

nd

+∞∑


=n


d−1


|α| ≤ C(u, d, α)n−|α| (1 + O
(
n−1

))
.

Thus choosing α with |α| > d we find a constant M = M(d, u) such that

∑

z∈Zd
n

∣∣T̂n(z)
∣∣ ≤ Mn−d

as we wanted to show. ��
Wecannow startwith themomentmethod, andwebeingwithmoment convergence.

Moment convergence Wenow show that all moments converge to those of the required
limiting distribution. This is explained in the following Proposition.

Proposition 13 Assume E [σ ] = 0, E
[
σ 2
] = 1 and that there exists K < +∞ such

that |σ | ≤ K almost surely. Then for all m ≥ 1 and all u ∈ C∞(Td)with zero average,
the following limits hold:
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lim
n→+∞E

[〈
�wn , u

〉m] =
{

(2m − 1)!!‖u‖m−1, m ∈ 2N

0, m ∈ 2N +1.
(5.7)

Proof We will first show that the m = 2 case satisfies the claim.

Case m = 2 We have the equality

E
[
wn(y)wn(y

′)
] = (2d)−2

∑

x∈Zd
n

g(x, y)
∑

x ′∈Zd
n

g(x ′, y′)E[σ(x)σ (x ′)].

The independence of the weights gives

E
[〈

�wn , u
〉2] = 16π4 n

d−4

4d2
∑

x∈Zd
n

⎛

⎝
∑

z∈Td
n

g(x, nz)Tn(z)

⎞

⎠
2

.

With the same argument of the proof of Proposition 4 one has

(2d)−2
∑

x∈Zd
n

g(x, y)g(x, y′) = nd L2 + H(y, y′) (5.8)

so that, using that test functions have zero average,

E
[〈

�wn , u
〉2] = 16π4 n

d−4

4d2
∑

x∈Zd
n

⎛

⎝
∑

z∈Td
n

g(x, nz)Tn(z)

⎞

⎠
2

= 16π4nd−4
∑

z, z′∈Td
n

H(nz, nz′)Tn(z)Tn(z′)

= 16π4nd−4
∑

z, z′∈Td
n

H(nz, nz′)
∫

B(z, 1
2n )

u(x) d x
∫

B(z′, 1
2n )

u(x ′) d x ′.

Now we break the above sum into the following 3 sums (recall Kn(u) from (4.2)):

E
[〈

�wn , u
〉2] = 16π4nd−4

∑

z, z′∈Td
n

n−2d H(nz, nz′)u(z)u(z′)

+ 16π4nd−4
∑

z, z′∈Td
n

n−2d H(nz, nz′)Kn(z)Kn(z
′)

+ 32π4nd−4
∑

z, z′∈Td
n

n−2d H(nz, nz′)Kn(z)u(z′).

A combination of Propositions 5 and 6 with the Cauchy-Schwarz inequality shows
that the first term converges to ‖u‖2−1 in the limit n → +∞ and the other two go to
zero.

Having concluded the case m = 2, we would like to see what the higher moments
look like. Let us take for example m = 3, in which case
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E
[〈

�wn , u
〉3]

=
(
4π2n

d−4
2

2d

)3 ∑

z1, z2, z3∈Td
n

E [w(nz1)w(nz2)w(nz3)] Tn(z1)Tn(z2)Tn(z3)

=
(
2π2n

d−4
2

d

)3 ∑

z1, z2, z3∈Td
n

∑

x1, x2, x3∈Zd
n

E

⎡

⎣
3∏

j=1

σ(x j )

⎤

⎦
3∏

j=1

g(x j , nz j )Tn(z j )

=
(
2π2n

d−4
2

d

)3 ∑

z1, z2, z3∈Td
n

∑

x∈Zd
n

E
[
σ 3(x)

] 3∏

j=1

g(x, nz j )Tn(z j )

=
(
2π2n

d−4
2

d

)3

E
[
σ 3
] ∑

x∈Zd
n

⎡

⎣
∑

z∈Td
n

g(x, nz)Tn(z)

⎤

⎦
3

.

More generally, let us call P(n) the set of partitions of {1, . . . , n} and as P2(n) ⊂
P(n) the set of pair partitions. We denote as � a generic block of a partition P and
as |�| its cardinality (for example, � = {1, 2, 3} is a block of cardinality 3 of
P = {{1, 2, 3}, {4}} ∈ P(4)). Observe that

E
[〈
�wn , u

〉m] =
(
2π2n

d−4
2

d

)m ∑

z1, ..., zm∈Td
n

E

⎡

⎣
m∏

j=1

wn(nz j )

⎤

⎦
m∏

j=1

Tn(z j )

=
(
2π2n

d−4
2

d

)m ∑

P∈P(m)

∏

�∈P

E
[
σ |�|] ∑

x∈Zd
n

⎛

⎜⎝
∑

z j∈Td
n : j∈�

∏

j∈�

g(x, nz j )Tn(z j )

⎞

⎟⎠

=
∑

P∈P(m)

∏

�∈P

(
2π2n

d−4
2

d

)|�|
E
[
σ |�|] ∑

x∈Zd
n

⎛

⎝
∑

z∈Td
n

g(x, nz)Tn(z)

⎞

⎠
|�|

. (5.9)

For a fixed P , let us consider in the product over � ∈ P any term corresponding to a
block � with |�| = 1: this will give no contribution because σ is centered. Consider
instead � ∈ P with 
 := |�| > 2. We see that

(
2π2n

d−4
2

d

)


E
[
σ

] ∑

x∈Zd
n

⎛

⎝
∑

z∈Td
n

g(x, nz)Tn(z)

⎞

⎠
l

=
(
2π2n

d−4
2

d

)


E
[
σ

] ∑

x∈Zd
n

⎛

⎝
∑

z∈Zd
n

g(x, z)Tn(z)

⎞

⎠



.
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Applying Parseval the above expression equals

(
2π2n

d−4
2

d

)


E
[
σ

] ∑

x∈Zd
n

⎛

⎝nd
∑

z∈Zd
n

ĝx (z)T̂n(z)

⎞

⎠



(2.2)=
(
4π2n

d−4
2

)


E
[
σ

] ∑

x∈Zd
n

⎛

⎝
∑

z∈Zd
n \{0}

ψ−z(x)

−λz
T̂n(z)

⎞

⎠



. (5.10)

Here we have used that T̂n(0) = 0. Thanks to the fact that −λz ≥ Cn−2 uniformly
over z ∈ Z

d
n \{0} (see (4.5)) we obtain

(
2π2n

d−4
2

d

)


E
[
σ

] ∑

x∈Zd
n

⎛

⎝
∑

z∈Td
n

g(x, nz)Tn(z)

⎞

⎠
l

≤ CE
[
σ

]
n


d
2 +d

⎛

⎝
∑

z∈Zd
n \{0}

∣∣T̂n(z)
∣∣

⎞

⎠



. (5.11)

Sinceσ is almost surely bounded, byLemma12we can conclude that each term in (5.9)

corresponding to a block of cardinality 
 > 2 has order at most n

d
2 −(
−1)d = o (1).

Hence in (5.9) only pair partitions of m will give a contribution of order unity to the

sum. Since, for m := 2m′ + 1, there are no pair partitions, E
[〈

�wn , u
〉2m′+1

]
will

converge to zero. Otherwise, for m := 2m′ we can rewrite

E
[〈

�wn , u
〉2m′] =

∑

P∈P2(2m′)

⎛

⎜⎝
4π4nd−4

d2
∑

x∈Zd
n

⎛

⎝
∑

z∈Zd
n

g(x, z)Tn(z)

⎞

⎠
2
⎞

⎟⎠

m′

+ o (1) .

Since |P2(m)| = (2m − 1)!! and the term in the bracket above converges to ‖u‖2−1 we
can conclude the proof of Proposition 13. ��

TightnessThe proof of tightness is, not suprisingly, a re-run of that in theGaussian case.
In fact tightness depends on the covariance structure of the field we are examining;
since both the Gaussian functional �n and wn share the same covariance, we can
recover mostly of the results already calculated. First we notice that

‖�wn‖2L2(Td )
= 16π4

(2d)2
nd−4

∑

x, y∈Zd
n

g(x, y)σ (x)
∑

x ′, y′∈Zd
n

g(x ′, y′)σ (x ′)
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is finite with probability one, since σ is bounded. One can then go along the lines of
the proof of (P1) in Sect. 4.2 and get to (4.14) which will become, in our new setting,

16π4

(2d)2

∑

ν∈Zd \{0}

∑

x, y∈Td
n

‖ν‖−2εnd−4E [wn(nx)wn(ny)]
∫

B(x, 1
2n )

eν(ϑ) d ϑ

∫

B(y, 1
2n )

eν(ϑ) d ϑ

(5.8)= 16π4
∑

ν∈Zd \{0}

∑

x, y∈Td
n

‖ν‖−2εnd−4
(
nd L2 + H(nx, ny)

)

×
∫

B(x, 1
2n )

eν(ϑ) d ϑ

∫

B(y, 1
2n )

eν(ϑ) d ϑ.

Since
∫
Td eν(ϑ) d ϑ = 0, the previous expression reduces to

16π4
∑

ν∈Zd \{0}

∑

x, y∈Td
n

‖ν‖−2εnd−4H(nx, ny)
∫

B(x, 1
2n )

eν(ϑ) d ϑ

∫

B(y, 1
2n )

eν(ϑ) d ϑ.

From this point onwards, the computations of the proof of (P1) can be repeated in a
one-to-one fashion.

5.2 Truncation method

At themomentwe are able to determine the scaling limit when theweights are bounded
almost surely. To lift this condition to zero mean and finite variance only, we begin
by defining a truncated field and show it will determine the scaling limit of the global
field. Fix an arbitrarily large (but finite) constant R > 0. Set

w<R
n (x) := 1

2d

∑

y∈Zd
n

g(x, y)σ (y)1{|σ(y)|<R},

w≥R
n (x) := 1

2d

∑

y∈Zd
n

g(x, y)σ (y)1{|σ(y)|≥R} .

Clearly wn(·) = w<R
n (·) + w≥R

n (·). To prove our result, we will use

Theorem 14 (Billingsley [3, Theorem 4.2]) Let S be a metric space with metric ρ.
Suppose that (Xn, u, Xn) are elements of S × S. If

lim
u→+∞ lim sup

n→+∞
P
(
ρ(Xn, u, Xn) ≥ τ

) = 0

for all τ > 0, and Xn, u ⇒n Zu ⇒u X, where “ ⇒′′
x indicates convergence in law as

x → +∞, then Xn ⇒n X.
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Following this Theorem, we need to show two steps:

(S1) limR→+∞ lim supn→+∞ P
(∥∥∥�wn − �w<R

n

∥∥∥H−ε

≥ τ

)
= 0 for all τ > 0.

(S2) For a constant vR > 0, we have �w<R
n

⇒n
√

vR � ⇒R � in the topology of
H−ε .

As a consequence we will obtain that �wn converges to � in law in the topology of
H−ε .

5.2.1 Proof of (S1)

We notice that
∥∥∥�wn − �w<R

n

∥∥∥H−ε

=
∥∥∥�

w
≥R
n

∥∥∥H−ε

by definition, for every realization of (σ (x))x∈Zd
n
. Since, for every τ > 0,

P
(∥∥∥�

w
≥R
n

∥∥∥H−ε

≥ τ

)
≤

E
[∥∥∥�

w
≥R
n

∥∥∥
2

H−ε

]

τ 2

it will suffice to show that the numerator on the right-hand side goes to zero to show
(S1). But

E
[∥∥∥�

w
≥R
n

∥∥∥
2

H−ε

]

= 16π4
∑

ν∈Zd \{0}

∑

x, y∈Td
n

‖ν‖−4εnd−4E
[
w≥R
n (xn)w≥R

n (ny)
]

×
∫

B(x, 1
2n )

eν(ϑ) d ϑ

∫

B(y, 1
2n )

eν(ϑ) d ϑ (5.12)

Since the σ ’s are i.i.d., we see that

E
[
w≥R
n (xn)w≥R

n (yn)
]

= 1

4d2
∑

w∈Zd
n

g(nx, w)g(ny, w)E
[
σ(w)21{|σ(w)|≥R}

]

+ 1

4d2
∑

w �=v∈Zd
n

g(nx, w)g(ny, v)E
[
σ(w)σ(v)1{|σ(w)|≥R}1{|σ(v)|≥R}

]

=
(
E
[
σ 21{|σ |≥R}

]
− E

[
σ1{|σ |≥R}

]2) 1

4d2
∑

w∈Zd
n

g(nx, w)g(ny, w)

+ E
[
σ1{|σ |≥R}

]2 1

4d2
∑

w, v∈Zd
n

g(nx, w)g(ny, v). (5.13)
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Pluging the last expression into (5.12) gives two terms. The first one is, using (5.8),
equal to

16π4
(
E
[
σ 21{|σ |≥R}

]
− E

[
σ1{|σ |≥R}

]2)

×
∑

ν∈Zd \{0}
‖ν‖−4εnd−4

∑

x, y∈Td
n

H(nx, ny)Fn, ν(x)Fn, ν(y)

where Fn, ν(x) was defined as
∫
B(x, 1

2n )
eν(ϑ) d ϑ . We have at hand (4.15), which we

can use to upper-bound the previous expression by

C ′16π4
(
E
[
σ(w)21{|σ(w)|≥R}

]
− E

[
σ(w)1{|σ(w)|≥R}

]2) ∑

ν∈Zd \{0}
‖ν‖−4ε

for some C ′ > 0. The sum over ν is finite as long as ε > d/4, and

E
[
σ(w)21{|σ(w)|≥R}

]
− E

[
σ(w)1{|σ(w)|≥R}

]2

is going to zero as R → +∞ (note that σ has finite variance). We will show that the
second term obtained by inserting the second summand of (5.13) in (5.12) is zero to
complete the proof of (S1). In fact we obtain

4π4

d2
nd−4E

[
σ1{|σ |≥R}

]2 ∑

ν∈Zd \{0}
‖ν‖−4ε

×
∑

x, y∈Td
n

∑

w, v∈Zd
n

g(nx, w)g(ny, v)Fn, ν(x)Fn, ν(y).

We consider the second line in the previous expression to deduce that it equals

∣∣∣∣∣∣

∑

x∈Td
n

∑

w∈Zd
n

g(nx, w)Fn, ν(x)

∣∣∣∣∣∣

2

= n2d

∣∣∣∣∣∣

∑

w∈Zd
n

∑

x∈Zd
n

ĝw(x)F̂n, ν(x)

∣∣∣∣∣∣

2

(2.2)=
∣∣∣∣∣∣
−2d

∑

w∈Zd
n

∑

x∈Zd
n \{0}

ψ−x (w)

λx
F̂n, ν(x) +

∑

w∈Zd
n

ĝw(0)F̂n, ν(0)

∣∣∣∣∣∣

2

where Parseval’s theorem was used in the first equality. Both the summands above are
zero: the first because

∑

w∈Zd
n

ψ−x (w) = nd〈ψ0, ψ−x 〉 = 0, x �= 0,
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the second because eν has zero average and so

F̂n, ν(0) = n−d
∑

y∈Zd
n

Fn, ν(y) = 0.

5.2.2 Proof of (S2)

Our idea is to use the computations we did for the case in which σ is bounded a. s.
since we are imposing that |σ | < R. However we have to pay attention to the fact
that σ 1{|σ |<R} is not centered anymore, but has mean mR := E[σ 1{|σ |<R}], nor has
variance 1, but vR := Var[σ 1{|σ |<R}]. However we can circumvent this by using our
previous results. If we set

σR(x) := σ(x)1{|σ(x)|<R} −mR

we can consider the field

�n,R(x) := 4π2

2d
n

d−4
2
∑

z∈Td
n

∑

w∈Zd
n

g(w, nz)σR(w)1B(z, 1
2n )(x), x ∈ T

d .

Since (2d)−1∑
y∈Zd

n
g(·, y) is a constant function on Z

d
n it follows that

〈
�n,R, u

〉 =
〈
�w<R

n
, u
〉

for all smooth functions u with zero average. Hence the field �n,R has the same law
of �w<R

n
. If we multiply and divide the former by

√
vR, we obtain

�n,R = √
vR

4π2

2d
n

d−4
2
∑

z∈Td
n

∑

w∈Zd
n

g(w, nz)
σR(w)√

vR
1B(z, 1

2n )(x), x ∈ T
d .

Since now the weights σR(w)(vR)− 1
2 satisfy the assumptions of Theorem 2, we know

that the above field will converge to
√

vR � in law. Using the covariance structure
of the limiting field, the fact that the field is Gaussian, and limR→+∞

√
vR = 1, a

straightforward computation shows that
√

vR � converges in law to� in the topology
of H−ε . With Theorem 14 we can conclude.

6 Proof of Theorem 3

PreliminariesWemust concludewith the proof of Theorem 3 and begin by introducing
some notation. We take ζ , an (arbitrary) smooth radial function on R

d , such that

{
ζ(x) = 1 ‖x‖ ≥ 1

2 ,

ζ(x) = 0 ‖x‖ ≤ 1
4 .

(6.1)
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Let us call

G(x) := ζ(x)‖x‖−4 = ‖x‖−4 + (ζ(x) − 1)‖x‖−4

and let Gd be its Fourier transform (in the sense of distributions)

Gd(x) := Ĝ(x).

Since (ζ(·) − 1)‖ · ‖−4 is a compactly supported distribution, its Fourier transform

will be a smooth function which we call hd . Using the results on ‖̂ · ‖−4 contained
in Example 2.4.9 of Grafakos [8], we have the explicit description of Gd in (1.5). In
particular Gd decays faster than the reciprocal of any polynomial function at infinity.
To see this, recall that D̂αG(x) = (2πιx)|α| Gd(x), for any multi-index α. If the order
of the derivative is large enough (precisely |α| > d − 4), then DαG(x) ∈ L1(Rd); in
this case, (2πιx)|α| Gd(x) is bounded on R

d and hence |Gd(x)| ≤ C‖x‖−N for every
positive integer N as ‖x‖ → +∞. Let us denote by fκ := Gd ∗ φκ and note that

f̂κ(·) = Ĝd(·)φ̂κ (·) = ζ(·)‖ · ‖−4φ̂κ (·). (6.2)

It follows that for some C > 0 (depending on κ),

∣∣ f̂κ(·)∣∣ ≤ C(1 + ‖ · ‖)−d−1. (6.3)

Moreover
| fκ(·)| ≤ C (1 + ‖ · ‖)−d−1 (6.4)

near infinity thanks to the rapid decay ofGd at infinity; furthermoreGd is integrable near
zero in d ≥ 5 by (1.5). Hence fκ is C∞(Rd) and also in L1(Rd). Using fκ = Gd ∗ φκ

and the definition of ζ we have that

(4.13) = n−2d
∑

z, z′∈Td
n

u(z)u(z′)
∑

w∈Zd
n

φ̂κ (w)ζ(w)
exp(2πι(z − z′) · w)

‖w‖4

= n−2d
∑

z, z′∈Td
n

u(z)u(z′)
∑

w∈Zd
n

f̂κ(w)exp(2πι(z − z′) · w). (6.5)

Now we can rewrite this term as

n−2d
∑

z, z′∈Td
n

u(z)u(z′)
∑

w∈Zd

f̂κ(w)exp(2πι(z − z′) · w)

− n−2d
∑

z, z′∈Td
n

u(z)u(z′)
∑

w∈Zd : ‖w‖∞>n

f̂κ(w)exp(2πι(z − z′) · w). (6.6)

First we show the second term above is negligible in the following Lemma.
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Lemma 15

lim
n→+∞ n−2d

∑

z, z′∈Td
n

u(z)u(z′)
∑

w∈Zd : ‖w‖∞>n

f̂κ(w) exp(2πι(z − z′) · w) = 0.

Proof Note that

n−2d

∣∣∣∣∣∣

∑

z, z′∈Td
n

u(z)u(z′)
∑

w∈Zd : ‖w‖∞>n

f̂κ(w) exp(2πι(z − z′) · w)

∣∣∣∣∣∣

=
∣∣∣∣∣∣

∑

w∈Zd : ‖w‖∞>n

f̂κ(w)

⎛

⎝n−d
∑

z∈Td
n

u(z) exp(2πιz · w)

⎞

⎠

⎛

⎝n−d
∑

z′∈Td
n

u(z′) exp(−2πιz′ · w)

⎞

⎠

∣∣∣∣∣∣

≤ ‖u‖2L∞(Td )

∑

w∈Zd : ‖w‖∞>n

∣∣ f̂κ(w)
∣∣

≤ C‖u‖2L∞(Td )

∑

w∈Zd : ‖w‖∞>n

1

(1 + ‖w‖)d+1 ≤ C‖u‖2L∞(Td )
n−1

thanks to (6.3) and the Euler–MacLaurin formula [1, Theorem 1]. This shows
Lemma 15. ��

Therefore, rather than working on (6.5), we will concentrate on the first term of
(6.6).

Proof of Theorem 3 Following the proof of Proposition 5, it is enough to prove the
convergence of the first term of (6.6) to the right-hand side of (1.4). Since fκ and f̂κ
satisfy the assumptions of the Poisson summation formula [26, Corollary 2.6, Chap-
ter VII], we apply it to (6.5) and obtain

lim
n→+∞ n−2d

∑

z, z′∈Td
n

u(z)u(z′)
∑

w∈Zd

f̂κ(w) exp(2πι(z − z′) · w)

= lim
n→+∞ n−2d

∑

z, z′∈Td
n

u(z)u(z′)
∑

w∈Zd

fκ((z − z′) + w)

= lim
n→+∞

∑

w∈Zd

n−2d
∑

z, z′∈Td
n

u(z)u(z′) fκ((z − z′) + w). (6.7)

We would then like to exchange sum and limit and thus we shall justify the use of the
dominated convergence theorem. To this purpose we need to observe that ‖z − z′‖ ≤√
d so that

∣∣‖z − z′ + w‖ − ‖w‖∣∣ ≤ 2
√
d. Therefore
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∑

w∈Zd

n−2d
∑

z, z′∈Td
n

∣∣u(z)u(z′) fκ((z − z′) + w)
∣∣

(6.4)≤ Cn−2d‖u‖2L∞(Td )

∑

w∈Zd : ‖w‖∞>
√
d

∑

z, z′∈Td
n

1

(1 + ‖z − z′ + w‖)d+1

+ Cn−2d‖u‖2L∞(Td )

∑

w∈Zd : ‖w‖∞≤√
d

∑

z, z′∈Td
n

1

(1 + ‖z − z′ + w‖)d+1 . (6.8)

The second term can be directly bounded by a constant independent of n, being a finite
sum. As for the first term in (6.8) we have by the Euler–MacLaurin formula

Cn−2d‖u‖2L∞(Td )

∑

w∈Zd : ‖w‖∞>
√
d

∑

z, z′∈Td
n

1

(1 + ‖z − z′ + w‖)d+1

≤ Cn−2d‖u‖2L∞(Td )

∑

w∈Zd : ‖w‖∞>
√
d

∑

z, z′∈Td
n

1

(1 − 2
√
d + ‖w‖)d+1

≤ C

(∫ +∞
√
d−1

ρd−1

(1 − 2
√
d + ρ)d+1

d ρ + c

)
≤ c (6.9)

where C, c are independent of n in each occurence above. These inequalities plugged
into (6.8) give the desired bound which allows us to switch summation and limit in
(6.7). Going on and using also the smothness of fκ we compute

lim
n→+∞

∑

w∈Zd

n−2d
∑

z, z′∈Td
n

u(z)u(z′) fκ((z − z′) + w)

=
∑

w∈Zd

∫∫

Td×Td
u(z)u(z′) fκ((z − z′) + w) d z d z′.

The fast decay of Gd and hence of fκ at infinity enables us to apply the dominated
convergence again to finally arrive at

lim
κ→0

∑

w∈Zd

∫∫

Td×Td
u(z)u(z′) fκ((z − z′) + w) d z d z′

=
∑

w∈Zd

∫∫

Td×Td
u(z)u(z′)Gd((z − z′) + w) d z d z′.

Due to polynomial decay ofGd at infinity it is immediate to exchange sum and integrals
to derive (1.4). ��
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