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Abstract A two degree of freedommass on amoving
belt system has been considered to study the effect of
friction-induced oscillations, due to nonlinear contact
properties and external excitation, on friction modula-
tion. Both tangential and normal excitation are present
and the Hertz-Damp model governs the normal con-
tact. The combined presence of the normal-tangential
coupling through friction and of the external excitation,
results in a parametric excitation and triggers friction-
induced oscillations. Using a numerical analysis, the
occurrence of such oscillations is explained through the
inspection of the friction force versus relative veloc-
ity plots, which indicate the presence of a negative
damping effect in the tangential direction, despite con-
sidering Amontons-Coulomb law. Hence, a linearized
stability analysis of the steady sliding state, by tak-
ing advantage of the Method of Direct Separation of
Motion, is employed to predict the bifurcation point
as function of system parameters. It is shown that the
linearized stability analysis provides a good qualitative
agreement for the occurrence of the friction-induced
oscillations for the investigated system,while the quan-
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titative match varies depending on the system parame-
ters and their values. Lastly, the effect of the observed
friction-induced oscillations on the frictionmodulation
is studied. Through a numerical analysis, a significant
degree of scatteredness in friction force modulation is
observed. Such scatteredness is significantly linked to
the emergence of friction-induced oscillations, and it
also depends on the averaging procedure used to quan-
tify the effective friction reduction.

Keywords Nonlinear contact · Friction-induced
oscillations · Nonlinear vibration · Effective friction ·
Negative damping

1 Introduction

Friction-induced oscillations are very common in
mechanical systems, and in most cases they are unde-
sirable. Examples include the noise generated by door
hinges or car brakes, and the chatter of machine tools
or vibrations in slides and seals. One of the most stud-
ied mechanisms that leads to friction-induced oscilla-
tions is based on the presence of a decreasing friction
force or friction coefficient linked to the corresponding
increase in relative sliding velocity, naturally trigger-
ing a negative damping-like effect [1]. If such “negative
damping” is higher than the bulk or structural damp-
ing of the system, instability occurs, characterized by
the growth of the oscillatory motion during sliding.
Friction-induced oscillations may also occur for a con-
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stant value of the friction coefficient if phenomena such
as sprag-slip [2–4] ormode coupling [5–8] characterize
the system dynamics. Another mechanism that causes
instability is the presence of a follower force for struc-
tures resembling the Pflüger or Ziegler column [9].

The role of damping is generally a key factor in
friction-induced vibrations. In fact, with reference to
themode-couplingmechanism,Hoffmann andGaul [5]
analyzed a mass on belt system characterized by a
vertical and horizontal degree of freedom, and con-
cluded that the presence of non-proportional damp-
ing may, counterintuitively, destabilize the system.
Similar observations were made by Sinou and Jeze-
quel [6], pointing out that an optimal structural damp-
ing ratio and a pulsation ratio are capable of decreas-
ing the unstable region due to mode coupling. Massi
and Giannini [10] performed an experimental investi-
gation of the relationship between the distribution of
modal damping and the propensity to develop squeal
in a beam-on-disk setup. Fritz and coworkers [11] used
a finite element model of a whole brake corner and
then a stability analysis to study the effects of damp-
ing on brake squeal coalescence patterns. Charroyer
and coworkers [12] considered amass-spring system of
three degrees of freedom with friction and carried out
parametric studies to evaluate the effects of various sys-
tem parameters on stability, especially that of damping
in mode-coupling instabilities with planar and rectilin-
ear friction assumptions. Besides damping, the pres-
ence of a nonlinear contact stiffness has also a leading
role in determining unstable regions. Li and cowork-
ers [7] showed that an increase in the nonlinear stiff-
ness, tends to destabilize the nonlinear system, while at
certain higher values, a stable regime can be achieved.

Besides mechanisms leading towards friction-
induced oscillations, techniqueswere also developed to
mitigate such phenomena. Thomsen [13], for example,
considered a mass-on-moving belt system subjected to
a high-frequency tangential excitation and showed that
the excitation can effectively cancel the negative slope
in the friction-velocity relationship, thus preventing
self-excited oscillations. Hoffman and coworkers [14]
showed that external excitation has a stabilizing effect
on the mode-coupling instability of a two degree of
freedom model. Michaux and coworkers [15] studied
the effect of the tangential excitation on the system sta-
bility considering the traditional mass-on-moving belt
system and using a monotonic and a non-monotonic
friction-velocity relations. Their study demonstrated

that while excitation is found to always have a stabi-
lizing influence in the case of a Stribeck friction law
(non-monotonic friction-velocity relation), the system
with the monotonic decreasing friction behaviour can
be either stabilised or destabilised by the external exci-
tation. The latter scenario, was already stressed out by
Berger and coworkers [16,17], highlighting that the
presence of excitation can also produce locally unsta-
ble responses. They considered a twodegree of freedom
system with linear contact properties, excited by the
fluctuations causedby a rough surfacewhile the tangen-
tial direction is excited by the normal-tangential cou-
pling of friction. Arising from the velocity-dependent
coupling of the normal and tangential modes and the
periodic normal force variations, a parametric reso-
nancewas encountered for a ratio between forcing exci-
tation and natural frequency in the normal direction
equal to two.

The application of an external excitation has an
effect not only on the system stability but also on the
friction force, resulting into a friction modulation. In
most studies, the effect of an oscillatory load on the fric-
tion force has been investigated with an emphasis on
the high-frequency forcing [13–15]. Recently, Sulollari
and coworkers [18] showed that the combination of the
averaging technique and the velocity response function
can be used to determine the vibration-induced effect
on the friction force for a general frequency of exci-
tation. Other than theoretical studies, several experi-
mental studies on the influence of oscillatory loads on
friction have been conducted. In the ’60 s, Tolstoi [19]
showed experimentally that contact micro-vibrations,
acting normal to the sliding plane, strongly affect both
the magnitude of the frictional force and the stability of
sliding. Later on, Tworzydlo and Becker [20], followed
the general line of Tolstoi’s experiments and performed
a numerical analysis assuming a non-linear normal
compliance of the interface, matching the experimental
data with a good accuracy. Matunaga and Onoda [21]
also investigated the effect of vibration on the fric-
tion force, by means of a mass sliding on an in-plane
vibrating table. The observed reduction of the fric-
tion force, due to oscillatory loads, was also predicted
by a simplified model assuming Amontons-Coulomb
law.Despite the qualitativematch between experiments
and model, the measured reduced friction force val-
ues also exhibited a non-negligible degree of scattered-
ness with reference to the analytical results. The rea-
son for such discrepancy could be due to the omission
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of system dynamic effects in the theoretical analysis.
In later studies, the effect of the contact compliance
on the vibration-induced friction modulation mecha-
nism received more attention. For example, Kapelke
and Seemann [22], adopted an elasto-plastic friction
model (Dupont model [23]) to match their experimen-
tal results on friction modulation. However, the fric-
tion model parameters needed to be retuned, depend-
ing on the excitation frequency used. More recent stud-
ies [24,25] confirmed the need to use a compliant con-
tact model to match experimental results of vibration-
induced friction reduction, between various material
pairs (e.g. steel, Teflon, PTFE) characterized by dif-
ferent surface roughness. In most of the investigation
encountered so far, aimed at quantifying the vibration-
induced friction modulation (or reduction) from exper-
iments, an analysis on the stability of the investigated
system is often missing.

With reference to the aforementioned background,
the aim of this study is to analyze the stability of the
continuous sliding state and the friction modulation of
a two-degrees-of-freedom mass on belt system. The
investigated system is governed by nonlinear contact
properties and is harmonically excited in both the tan-
gential and normal direction. The nonlinear contact
is characterized by a normal contact force, which is
assumed tobegovernedby theHertz-Dampmodel [26].
The nonlinear normal force is then used to define the
friction force which is proportional to a given coeffi-
cient of friction. The presence of a harmonic normal
excitation and the normal-tangential coupling through
friction results in a periodically time-varying dissipa-
tive term, representing parametric excitation. Contrary
to what shown in [13–15], the numerical simulations
highlight that occurrence of such parametric excitation
along the tangential direction can destabilize an other-
wise stable steady sliding state of the system. To com-
plement and extend the results presented in [16,17], it is
shown that the parametric excitation in the dissipative
term leads to negative slopes in the friction force versus
relative velocities relationship, indicating the presence
of a negative damping mechanism which can trigger
friction-induced vibrations, independently of the ratio
between forcing excitation and natural frequencies of
the system. Due to such instability mechanism, the har-
monically excited system then oscillates not only at the
excitation frequency but also at the natural frequency of
the tangential mode. An attempt is made to predict the
onset of such friction-induced vibrations through a lin-

earized stability analysis, and taking advantage of the
Method of Direct Separation ofMotion [18,27,28] that
allows to incorporate the averaged effects of the friction
force. Through a brief numerical validation study, it is
demonstrated that, for the investigated model configu-
ration, the results from the linearized stability analysis
show a good qualitative agreement with the occurrence
of friction-induced oscillations, though the quantitative
match varied depending on the system parameters and
their values. Further numerical analysis also demon-
strates how the occurrence of a friction-induced oscil-
lation can drastically change the outcome of a friction
modulation analysis. A significant degree of scattered-
ness in terms of friction forcemodulation is observed in
the numerical results, mirroring those attained experi-
mentally by Matunaga and Onoda [21] and depending
on the averaging procedure used to quantify friction
change. Averaging over the vibration period of the tan-
gential mode results in almost no scatteredness.

In this paper, first the two-degree-of-freedommodel
with nonlinear contact properties is introduced in
Sect. 2. In Sect. 3, friction-induced vibrations are
observed through a numerical analysis and the mech-
anism triggering these vibrations is found. In Sect. 4,
a stability analysis is performed where the eigenval-
ues of the Jacobian matrix of the linearized harmoni-
cally unforced and forced systems are calculated and
theRouth-Hurwitz criteria is used to study the influence
of system properties and excitation on the stability of
the steady sliding state. In Sect. 5, the effect of these
vibrations on friction modulation is portrayed. Finally,
conclusions are drawn in Sect. 6 and Appendices are
added, providing additional details to the discussions
and to the results presented in this study.

2 The model system

To reveal the effects of system parameters and exter-
nal excitation on the occurrence of friction-induced
vibration and on friction change, the system illustrated
in Fig. 1 is developed from a classic two-degree-of-
freedom (2-DOF)model. The system consists of amass
M positioned on a belt, moving at a constant speed Vb.
In the tangential direction, a linear spring with stiffness
K1 and a linear dashpot with damping coefficient C1

are present.
In the vertical direction, the Hertz-Damp contact

model is employed [26], whereby a non-linear damper
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Fig. 1 Layout of the 2-DOFHetz-Damp system subject to exter-
nal harmonic loads in the normal and tangential directions

is used in parallel with theHertz spring [29]. According
to this model, the normal force Fn becomes:

Fn =
{
K2X

3/2
2 + C2X

3/2
2 Ẋ2 forX2 > 0

0 forX2 ≤ 0,
(1)

where the stiffness 3
2K2X

1/2
2 and the damping coeffi-

cientC2X
3/2
2 are respectively considered as the normal

nonlinear contact stiffness and the nonlinear damping
between the objects in relative sliding motion. Note
that the use of the Hertz-Damp model for this study
is not dictated by any specific application, but it only
serves the purpose of introducing nonlinear terms in
the normal direction. For the current study, nonlin-
ear terms related to the tangential contact stiffness are
neglected, since a high-level of complexity already
arises due to the Hertz-Damp model. To avoid further
complexities, the study of the transition between stick
and slip through partial slip (see [30,31]) is also omit-
ted. Throughout the study, and with reference to the
stability analysis, only the continuous-sliding regime
is considered. While stick–slip may still occur at cer-
tain belt velocities, the presence of an external exci-
tation (especially in the horizontal direction) extends
the range of velocities where continuous sliding takes
place [13,14]. Additionally, as one of the key objec-
tives of the study is to examine friction modulation,
which is calculated by averaging the friction force over
one oscillation period during sliding, on the case of
stick–slip, this averaging approach is rather question-
able, as it involves averaging a “static” and an oscilla-
tory responses of the system. Furthermore, throughout

the paper, the chosen system parameter values guar-
antee that the mass is always in contact with the belt
(non-jumping condition).

Given the time-varying normal force, the expression
of the friction force Ff then becomes

Ff = μ(Vr )Fn = μ(Vr )(C2X
3/2
2 Ẋ2 + K2X

3/2
2 ). (2)

For the chosen model setup, we consider the kinetic
friction to be the same as the static friction. The adopted
friction law for this illustrative example, resembles
the Amontons-Coulomb’s law [32,33], since the corre-
sponding friction force is directly linked to a constant
coefficient of friction, and proportional to the normal
force. The direction of the friction force is established
through a “signum” function assigned to the coefficient
of friction, which reads as follows

μ(Vr ) = μssgn(Vr ), (3)

where μs is the static friction coefficient and Vr is
the relative velocity. Regarding the external load, both
tangential and normal loading characterized by a fre-
quency �e and amplitude Mα�2

e are applied as shown
in Fig. 1. The equations of motion of the system then
become

[
1 0
0 1

] (
Ẍ1

Ẍ2

)
+

[
2β1ω1 0

0 2β∗
2ω∗

2X
3/2
2

] (
Ẋ1

Ẋ2

)

+
[
ω2
1 0
0 ω∗2

2

] (
X1

X3/2
2

)

+
(

μssgn(Ẋ1−Vb)(2β∗
2ω∗

2X
3/2
2 Ẋ2 + ω∗2

2 X3/2
2 )

−g

)

=
(

α�2
e sin(�et)

−α�2
e sin(�et)

)
, (4)

where β1 = C1
2Mω1

, β∗
2 = C2

2Mω∗
2
, ω2

1 = K1
M , ω∗2

2 = K2
M

and Vr is written in terms of Ẋ1 and Vb. Note that while
β1 is dimensionless, β∗

2 has the dimension of 1
m5/4 and

instead of rad
s , ω∗

2 has the dimension of rad
m1/4s

. Thus, the
system described in Eq. (4) consists of two nonlinearly
one-way coupled subsystemswhere the first subsystem
is coupled to the second one through the friction force.

It is important to note that the tangential and normal
excitation applied to the system have the same magni-
tude and frequency, with no phase shift between them.
This type of loading can occur, for example, if an exter-
nal force is applied at a 45-degree angle relative to the
tangential direction of the mass. However, for the sake
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Fig. 2 a Comparison of the velocity response in the tangential
direction for different Vb values; b Amplitude spectrum of the
velocity Ẋ1; c Spectrogramvisualising the variation of frequency

spectrum with time for Vb = 4 m/s (ω1 = 1 rad
s , ω∗

2 = 0.5 rad
m1/4s

,

β1 = 0.1, β∗
2 = 0.15 1

m5/4 , α = 2 m, �e = 4 rad
s and μs = 0.4)

of analysis, an example with a phase shift of π/2, as
well as an examplewith different excitation frequencies
is examined in Sect. 3, to demonstrate that the inves-
tigated mechanism of friction-induced vibrations can
still occur under these conditions.

3 Preliminary numerical analysis

To obtain the numerical solutions of the velocity
response for different loading scenarios and system
parameters, the equations of motion, Eq. (4), are solved
numerically using the MATLAB solver ode45. To
ensure that the chosen integration schemeappropriately
captures the system’s dynamics, for all the cases stud-
ied, the system’s energy balance is verified, confirm-
ing that energy conservation is maintained. Figure2a

shows the numerical solution of the velocity response
along the tangential direction for 3 different values of
the belt velocity and for an external excitation driven at
4 rad/s. Note that the chosen time-window in Fig. 2a, is
far away from the initial transient part of the response.
As illustrated in Fig. 2a, different Vb values lead to vari-
ations in the velocity response.Most importantly, oscil-
lations of several periods are present in the dynamic
response.

To get an overview of the spectral content, the Fast
Fourier Transform (FFT) is applied over the entire time
span, and the corresponding amplitude spectrum is dis-
played in Fig. 2b. The figure reveals a distinct peak not
only at the excitation frequency, �e = 4 rad/s, but also
atω = 1 rad/s. The latter corresponds to the natural fre-
quency ω1 of the system along the tangential direction.
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The peak is present for certain values of belt veloci-
ties and vanishes after Vb ≈ 8 m/s. Thus, the response
oscillates not only at the excitation frequency but also
at the natural frequency ω1. Due to the non-linearity,
other peaks are observed in the amplitude spectrum. As
the nonlinearity is neither purely even nor purely odd,
it leads to a mix of even and odd harmonics. However,
they have small amplitudes and subsequently small sig-
nificance on the response. In Fig. 2c, a spectrogram
is depicted, visualising how the frequency spectrum
varies with time. As indicated in the spectrogram, the
peak atω = 1 rad/s persists throughout the whole dura-
tion and is not solely a result of the transient part of the
response.

In the scenario depicted in Fig. 2, the excitation fre-
quency �e is an integer multiple of the natural fre-
quency ω1. However, even with non-integer multipli-
ers, the peak atω1 is still present. For instance, as shown
in Appendix A.1, when the excitation frequency is set
to 4.5 rad/s, the peak at ω1 remains evident. Moreover,
the peak atω1 also occurs for caseswhen frequencies of
excitation of the tangential and normal forcing are dif-
ferent from each other. As illustrated in Appendix A.1,
when the excitation frequencies are 6 rad/s and 4 rad/s
for the tangential and normal directions, respectively,
the amplitude spectrum of the velocity response Ẋ1

still exhibits notable peaks at ω1 alongside the two
excitation frequencies and other harmonics. Thus, the
oscillations at the natural frequency ω1 indicate the
presence of friction-induced vibrations. In the exam-
ples discussed so far, no phase shift has been observed
between the tangential and normal loading. However,
the friction-induced vibrations can still occur when a
phase shift of π/2 is present, even though the veloc-
ity range for which these vibrations appear differs.
An additional example illustrating this is provided in
Appendix A.1.

To understand the mechanism by which friction can
induce vibrations, the time-evolving friction force is
investigated, with reference to the change of the cor-
responding relative sliding velocity. Figure3a shows
a time-series of the velocity response along the tan-
gential direction, characterized predominately by the
forcing frequency and by the natural frequencyω1. The
steady-state part is represented by the blue region, from
which corresponding friction force versus relative slid-
ing velocity plots are investigated.

Figure 3b presents such a plot obtained over one
full period T1 (=2π

ω1
). The plot starts at the point indi-

Fig. 3 a Transient (grey) and steady-state (blue) part of the
velocity response Ẋ1; b Friction force versus relative velocity.
Belt velocity Vb= 4m/s. The rest of the parameters as in Fig. 2

cated by the blue arrow, with the color transitioning
from dark blue to lighter blue as it progresses. The
annotated red arrows show regions where the friction
force increases while the relative velocity decreases in
magnitude, or vice versa, indicating a negative slope in
the friction force-velocity relationship. This negative
slope corresponds to a negative damping effect along
the tangential direction, which triggers the motion of
the corresponding vibrational mode. Thus, parametric
excitationof the dissipative term leads to the occurrence
of negative damping, the net presence of which (from
viscous damping and friction force) in the tangential
direction (in parts of the oscillation cycles) explains
the emergence of the additional peak at ω1, and is the
mechanism causing friction-induced oscillations. The
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presence of positive net damping in other parts of the
oscillation cycles bounds the response.

To predict the onset of friction-induced vibrations,
in the next section, a linearized stability analyses of
the 2-DOF system is performed, considering both the
harmonically unforced and forced scenarios (hereafter
referred to simply as unforced and forced for brevity).
For the forced cases, the linearized stability analysis
is set up by taking advantage of the Method of Direct
Separation of Motion.

4 Stability analysis of the steady sliding state

In this section, the stability analysis at the equalibrum
point is carried out for both the unforced and forced sys-

tem. To take into account the excitation-induced fric-
tion modulation effect, the Method of Direction Sepa-
ration of Motion (MDSM) is used within the linearized
stability framework. First, a linearized eigenvalue anal-
ysis is performed to assess the local stability of the
steady sliding state of the system. Then, the Routh-
Hurwitz stability criterion is applied to examine how
various parameters influence the stability.

4.1 Jacobian linearization and stability analysis of the
unforced system

The stability analysis of the unforced system is con-
ducted by calculating the complex eigenvalues of the
linearized system. To determine such eigenvalues, the
Jacobianmatrix is used. The initial stage in the Jacobian
linearization process involves identifying the equilib-
rium points of the system. To accomplish this, the equa-
tions of motion are expressed in the following state-
space form

Y1 = Ẋ1 (5)

Ẏ1 = −2β1ω1Y1 − ω2
1X1

+μs(2β
∗
2ω∗

2X
3/2
2 Y2 + ω∗2

2 X3/2
2 ) (6)

Y2 = Ẋ2 (7)

Ẏ2 = −2β∗
2ω∗

2X
3/2
2 Y2 − ω∗2

2 X3/2
2 + g (8)

equivalent to Eq. (4) for Ẋ1 < Vb (the mass never
overtakes the belt) and X2 > 0 (non-jumping case).
Setting the Eqs. (5)- (8) to zero, the equilibrium points
are

(X0
1,Y

0
1 ) =

(
μsg

ω2
1

, 0

)
,

(X0
2,Y

0
2 ) =

⎛
⎝(

g

ω∗2
2

)2/3

, 0

⎞
⎠ . (9)

By taking the partial derivatives of equations (5)-(8),
the Jacobian matrix is obtained

J =

⎡
⎢⎢⎢⎢⎣

∂ Ẋ1
∂X1

∂ Ẋ1
∂Y1

∂ Ẋ1
∂X2

∂ Ẋ1
∂Y2

∂Ẏ1
∂X1

∂Ẏ1
∂Y1

∂Ẏ1
∂X2

∂Ẏ1
∂Y2

∂ Ẋ2
∂X1

∂ Ẋ2
∂Y1

∂ Ẋ2
∂X2

∂ Ẋ2
∂Y2

∂Ẏ2
∂X1

∂Ẏ2
∂Y1

∂Ẏ2
∂X2

∂Ẏ2
∂Y2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎣

0 1 0 0

−ω2
1 −2β1ω1 μs(3β∗

2ω∗
2X

1/2
2 Y2 + 3

2ω
∗2
2 X1/2

2 ) 2μsβ
∗
2ω∗

2X
3/2
2

0 0 0 1

0 0 −3β∗
2ω∗

2X
1/2
2 Y2 − 3

2ω
∗2
2 X1/2

2 −2β∗
2ω∗

2X
3/2
2

⎤
⎥⎥⎦ , (10)

and evaluating the Jacobian at the equilibrium points,
the linearization reads as follows

J0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

−ω2
1 −2β1ω1

3
2μsω

∗2
2

(
g

ω∗2
2

)1/3
2μsβ

∗
2 g

ω∗
2

0 0 0 1

0 0 −3
2 ω∗2

2

(
g

ω∗2
2

)1/3 −2β∗
2 g

ω∗
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(11)

The complex eigenvalues, λ, are found by solving the
determinant

|λI − J0| = 0. (12)

The roots of the characteristic equation are computed
numerically, and in Fig. 4, the real part σ , indicating
the growth rate, and the imaginary part ω, representing
the oscillation frequencies of the complex eigenvalues
λ are depicted. These are plotted for a range of β1 val-
ues, while maintaining all other parameters constant as
in Fig. 2. The stability of the linearized and unforced
system is determined by the sign of σ . If the sign of
the sigma of all roots is negative, the unforced system
is stable.

For β1 ≥1, four negative real σ values are present in
Fig. 4a and the oscillation frequencies ω of the modes
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Fig. 4 a Real part σ versus β1; b Imaginary part ω versus β1.
�e =0 (unforced system) and the rest of parameters as in Fig. 2

merge and equal zero, as shown in Fig. 4b, leading to an
overdamped system. Forβ1 < 1, only onemode experi-
ences overdamping. Still, all the σ values are negative,
meaning that the unforced linearized system is stable. It
is worth highlighting that the adopted system is differ-
ent from the 2-DOF models considered in [5–7] where
a mode-coupling mechanism due to the presence of a
diagonal spring enabled the instability to occur in the
corresponding unforced systems, and the effect of sys-
tems parameters such as damping, contact nonlinearity
or friction coefficient on the instability were studied. It
should also be noted that even though the friction coef-
ficient μs appears in the Jacobian matrix J0, Eq. (11),
it does not appear in the characteristic equation derived
from Eq. (12). Consequently, contrary to systems with
the mode-coupling mechanism enabled by a diagonal

spring [5], the stability of the unforced system is not
influenced by the friction coefficient. In the following
section, the stability analysis of the linearized forced
system is investigated.

4.2 Jacobian linearization and stability analysis of the
forced system

Here, the 2-DOF system in the presence of tangen-
tial and normal harmonic excitation is considered,
and the effect of excitation on the stability of the
steady sliding state is investigated. To examine this,
the Method of Direct Separation of Motion is used
which separates the “slow” and “fast” components of
the motions [18,27,28]. The slow motions, the stabil-
ity of which is investigated, are those of primary inter-
est, whereas the excitation is accounted for only by its
“average” influence. The separation of motions X1(τ )

and X2(τ ) into the slow and fast components reads as
follows

X1(τ ) = Z1(τ ) + �−1�1(τ,�τ) (13)

X2(τ ) = Z2(τ ) + �−1�2(τ,�τ), (14)

where Z1(τ ), Z2(τ ) describe the slowmotions and�1,
�2 describe the fast motions at the rate of the exter-
nal excitation. To make the transformation of variables
from X to Z and � unique, the following constraint is
applied

〈�(τ,�τ)〉 = 1

2π

∫ 2π

0
�(τ,�τ)d(�τ) = 0, (15)

where<> defines the average operator over the period
of the rapidly oscillating component.

The application of the MDSM into the equations of
motion is greatly complicated by the formof the nonlin-
earity X3/2

2 . Therefore, before substituting Eq. (13) and
Eq. (14) into Eq. (4), to make the solution process more
tractable, the nonlinearity is expressed in the form of a
polynomial. Performing a third-order least-squares fit
to the nonlinearity over the interval 0 < X2 < X2,max

yields to

X3/2
2 = c3X

3
2 + c2X

2
2 + c1X2 + c0, (16)

where

c3 = − 8

33X3/2
2,max

, c2 = 72

77X1/2
2,max

,

c1 = 24X1/2
2,max

77
, c0 = −8X3/2

2,max

1155
, (17)
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and X2,max is the maximum value of X2 encountered.
The series approximationhas amaximumerror of about
10−2. Similar fits for the nonlinearity X3/2

2 have been
used by Bryant [34] and Hess and Soom [35]. Sub-
stituting Eq. (16) into Eq. (4), separating the motions
[X] = [X1 X2]T into the components [Z] = [Z1 Z2]T
and [�] = [�1 �2]T and making use of the averaging
operation, the equations of motion for the components
in Z are obtained

Z̈1 + 2β1ω1 Ż1 + ω2
1Z1 + μ̄(2β∗

2ω∗
2 Ż2 + ω∗2

2 )

×(c3Z
3
2 + c2Z

2
2 + c1Z2 + c0) = 0 (18)

Z̈2 + (2β∗
2ω∗

2 Ż2 + ω∗2
2 )

×(c3Z
3
2 + c2Z

2
2 + c1Z2 + c0) − g = 0, (19)

where μ̄(Vr ) is the effective friction characteristic (still
to be defined). The equations of motion for the compo-
nents in � are shown in Appendix A.3. Equations (18)
and (19) for the slow motions are similar in form to
Eq. (4) for the total motion, but with the excitation
accounted for by the effective friction μ̄ instead of the
ordinary μ and the nonlinearity expressed in the form
of the polynomial given by Eq. (16). The utilization of
the polynomial form was needed to simplify the appli-
cation of the MDSM. Conversely, when applying the
Jacobian linearization to the equations of slow motion,
Eqs. (18) and (19), the polynomial form of the non-
linearity makes the determination of the equilibrium
points cumbersome. Hence, it proves more convenient
to handle the nonlinearity expressed as Z3/2

2 . Thus,
Eqs. (18) and (19) are rewritten as

Z̈1 + 2β1ω1 Ż1 + ω2
1Z1

+μ̄(2β∗
2ω∗

2 Ż2 + ω∗2
2 )Z3/2

2 = 0 (20)

Z̈2 + (2β∗
2ω∗

2 Ż2 + ω∗2
2 )Z3/2

2 − g = 0. (21)

To determine the Jacobian matrix, Eq. (20) and
Eq. (21) are written in the state-space form and the
equilibrum points are found setting the latter to zero,
see Appendix A.2. The Jacobian evaluated at the equi-
librium points is

J0f =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

−ω2
1 −2β1ω1 + μ̄′g 3

2 μ̄0ω∗2
2

(
g

ω∗2
2

)1/3
2μ̄0β∗

2 g
ω∗
2

0 0 0 1

0 0 −3
2 ω∗2

2

(
g

ω∗2
2

)1/3 −2β∗
2 g

ω∗
2

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(22)

where the index f refers to the forced system and μ̄′
denotes the slope of the effective friction at the equilib-
rium point; note that the linearization of the effective
friction expression is necessary for the formulation of
the Jacobian of the system. To find the expression of the
effective friction μ̄ in the sliding regime, in a previous
study where linear contact properties were used [18],
it was demonstrated that the velocity response function
of the system can be exploited. For that system, the
effective friction expression is

μ̄(Vr ) =
{

μs

(
1 − 2

π arccos
(
Ż1−Vb

V̂

))
for |Ż1−Vb|≤V̂

μssgn(Ż1 − Vb) for |Ż1−Vb|≥V̂
,

(23)

where V̂ corresponds to the amplitude of the velocity
response obtained for linear contact properties. Then,
μ̄′ and μ̄0 are obtained through the linearizationprocess
as follows

μ̄ = μ̄0 + ∂μ̄

∂ Ż1

∣∣∣∣
Ż1=0

Ż1 + O(Ż1)
2, (24)

where

μ̄0 = μ̄(Ż0
1), μ̄′ = 2μs

π V̂
√
1 − (Vb/V̂ )2

(25)

for V̂ > Vb.
The complex eigenvalues, λ f are found from the

determinant

|λ f I − J0f | = 0, (26)

which is solved numerically, and the real part, σ , of
the complex eigenvalues, λ f , is plotted in Fig. 5a for
a range of Vb values and the same parameters used
as in Fig. 4. While in Fig. 4a, the σ values are all
negative, Fig. 5a depicts positive σ values for Vb belt
velocities smaller than approximately 8m/s. The posi-
tive σ values indicate instability for the corresponding
range of Vb values. This range of belt velocities cor-
relates to the one for which the spectral response peak
at ω1 is shown in the amplitude spectrum in Fig. 2b.
Thus, Vb ≈ 8m/s, is the bifurcation point below which
friction-induced vibrations are observed. For Vb values
higher than 8m/s, a sudden drop to negative σ values
is depicted. In this range of Vb values, the amplitude of
the velocity response V̂ is smaller than the belt veloc-
ity, indicating that the effective friction is constant and
its slope is zero. Consequently, the excitation has no
impact on stability, the characteristic equation of the
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forced systemmatches that of the unforced system, and
the system is stable at the equilibrium point.

Small discrepancies in the value of the bifurca-
tion point predicted by the stability analysis and that
observed in the numerical results are due to approxima-
tions in the stability analysis. As mentioned above, the
expression for effective friction is derived for a system
with linear contact properties (which does not expe-
rience friction-induced oscillations). However, as will
be shown in Sect. 4, since the stability analysis depends
on the slope of the effective friction curve, the expres-
sion obtained for linear contact properties remains a
good approximation. If for a specific parameter space,
the slope of the effective friction in the current systems
significantly differs from the slope in the system with
linear contact properties, the discrepancy in the results
obtained through stability and numerical analysis will
increase. In the next section, the effect of the slope of
effective friction curve on the stabilitywill be discussed
in more detail.

The findings outlined here complement and further
extend the domain of investigation explored in Thom-
sen [13] and Hoffmann [14], in which external exci-
tation was employed to quench the initially unstable
system at the equilibrium point. In the current inves-
tigated model, the unforced system is stable and the
presence of an harmonic excitation may induce insta-
bility of the steady sliding state. The current study also
extends the results obtained by Michaux and cowork-
ers [15], since their research indicates that an excitation
can stabilise or destabilize a single degree of freedom
system governed by a decreasing friction law, while in
this study, instability is observed despite considering
the Amontons-Coulomb law. Moreover, it should be
noted that the stability analysis presented in this study
does not provide insights into the stick–slip behavior of
the investigated system. Although a negative σ value
indicates system stability, it does not offer information
on whether the system may exhibit stick–slip or not.

It is important to highlight that even though a value
of β∗

2 = 0.15 is utilized, the system is overdamped
along the vertical direction due to the presence of the
nonlinearity. This holds true for both unforced and
forced scenarios, as depicted in Figs. 4b and 5b. In the
case where linear contact properties are considered, as
discussed in [18], aβ2 value greater than1would lead to
overdamping. For instance, if β2 = 3, the system with
linear contact properties is overdamped in the X2 direc-
tion and locally unstable along the X1 direction, leading

Fig. 5 a Real part σ versus Vb; b Imaginary part ω versus Vb.
�e = 4 rad/s (forced system) and the rest of parameters as in
Fig. 2

to friction-induced vibrations for belt velocities lower
than the bifurcation belt velocity (see Appendix A.3
for further details).Hence, friction-induced oscillations
can occur in an overdamped system with linear contact
properties as well. It should be noted that while the
effect of damping on friction-induced vibrations is dis-
cussed here, systems with both linear and nonlinear
contact properties can also experience friction-induced
vibrations when they are underdamped by altering the
other parameter values. This is shown in the next sec-
tion,where theRouth-Hurwitz criterion is used to study
the effect of the model parameters on the evolution of
the bifurcation point of the system.
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4.3 Routh-Hurwitz stability criterion

In the previous section, the stability of the steady siding
state was determined using the roots of the characteris-
tic equation.Here, theRouth-Hurwitz stability criterion
is used as it provides the means for testing the stability
without having to obtain the roots of the characteris-
tic equation. Moreover, utilizing this approach enables
the derivation of analytical expressions of the Routh-
Hurwitz coefficients (in relation to system parameters)
that can be employed to determine which parameters
govern the stability and how they effect the evolution
of the bifurcation point of the system. Considering
Eq. (26), the 4-th order characteristic polynomial can
be written as

λ4 + a1λ
3 + a2λ

2 + a3λ + a4 = 0. (27)

for which the expressions of a1, a2, a3 and a4 are shown
in Appendix A.4. Moreover, applying the Routh-
Hurwitz criterion to this characteristic equation gives
the four following coefficients

H1 = a1

H2 = a1a2 − a3

H3 = a1a2a3 − a23 − a4a
2
1

H4 = a1a2a3a4 − a1a
2
4 − a4a

2
3 .

(28)

If all these coefficients are positive, the steady sliding
state is stable. When at least one of the coefficients is
negative, the steady sliding state is unstable

Figure 6a portrays the effect of Vb and β1. Since for
the parameters chosen, H3 governs the stability, only
the contour line of H3 is shown. The shaded area corre-
sponds to negative values of H3 and, as a result, repre-
sents the region inwhich friction-induced vibration can
occur (in the graphs’s legend, it is indicated as “unsta-
ble”). It can be seen that as the values of the damping
coefficient β1 increase, the range of belt velocities Vb
for which the steady sliding state is unstable decreases.
Thus, a higher β1 value helps in decreasing the range
of belt velocities where friction-induced vibrations can
occur. This can be explained by the net damping along
the tangential direction turning positive once the dis-
sipated energy due to viscosity and due to the friction
force exceeds the energy associated with the negative
damping effect of the friction force. Considering the
approximations introduced for the linearized stability
analysis, a numerical validation study of the effect of
β1 on the system stability is presented in Fig. 17 in

Fig. 6 Parametric study on the stability of the system: a effect
of damping ratio β1; b effect of damping ratio β∗

2

Appendix A.5, demonstrating a good qualitative and
quantitative agreement between the numerical results
and the stability diagram. A comprehensive discussion
can be found in Appendix A.5.

The effect of damping ratio in the normal direction
β∗
2 is shown in Fig. 6b where the contour line of H3 is

plottedwith the shaded area corresponding to the unsta-
ble region. This region remains relatively the same for
increased β∗

2 values (limited to β∗
2 = 0.3 because the

system is overdamped even for the value of 0.15 used in
this study.) Thus, unlike β1, variations in β∗

2 have little
effect on the unstable region. The numerical validation
plots in Fig. 18 show a good qualitative agreement.
While the quantitative match is good within the stabil-
ity region, discrepancies are observed in the unstable
region for certain parameter values (seeAppendixA.5).
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Fig. 7 Parametric study on the stability of the system: effect of
excitation frequency �e. The rest of the parameters as in Fig. 2

To assess the influence of the excitation frequency
�e, Fig. 7 shows the contour line of H3 as a function of
�e and Vb. The unstable region decreases for increased
�e values. Thus, a higher �e value helps in decreas-
ing the range of belt velocities where friction-induced
vibrations occur. As mentioned previously, it is impor-
tant to note that the unstable region gives no informa-
tion about the stick–slip behaviour. For the excitation
frequency value used in this study, i.e. �e = 4 rad/s,
Fig. 7 shows that for belt velocities smaller than the
bifurcation point of Vb ≈ 8m/s, friction-induced oscil-
lations occur and the numerical results, Fig. 2, indi-
cate that the system is in the sliding state. For differ-
ent excitation frequencies, however, the system might
exhibit a stick–slip behaviour. For example, for exci-
tation frequencies �e = 8 rad/s and �e = 10 rad/s,
the numerical validation plots presented in Fig. 19 in
Appendix A.5 show that stick–slip behavior occurs
within the stable regions depicted in the stability dia-
gram (for Vb values less than 10m/s and 15m/s, respec-
tively). These results contradict those by previous stud-
ies [13–15] where high excitation frequencies were
used to quench stick–slipmotion. The numerical results
also indicate that the stability diagram underestimates
the size of the unstable region as excitation frequencies
increase.

In Fig. 8a, b the influence of the stiffness, by vary-
ing the values of ω1 and ω∗

2 values. As the ω1 value
increases, the unstable region decreases, reaching its
minimum when ω1 = �e = 4 rad/s. However, as
ω1 continues to increase beyond this point, the unsta-

Fig. 8 Parametric study on the stability of the system: a effect
of ω1; b effect of ω∗

2 . The rest of the parameters are chosen as in
Fig. 2

ble region begins to expand. The numerical validation
plots shown in Fig. 20 in Appendix A.5 display a good
qualitative and quantitative match. Regarding ω∗

2, the
numerical results show stick–slip regions for increasing
ω∗
2 values (the actual frequency being the square root

of the linearised stiffness term, i.e., 3
2ω

∗2
2

(
g

ω∗2
2

)1/3

).

Therefore, the y-axis of the stability diagram is limited
toω∗

2 = 2 rad
m1/4s

. In Fig. 8b, it is shown that the unstable
region slightly decreases by varying ω∗

2. In Fig. 21, a
good qualitative and quantitative agreement is shown
with the numerical validation plots (Appendix A.5).

Lastly, the influence of μ̄′ is studied. While in the
Jacobian matrix of the forced system in Eq. (22), both
μ̄′ and μ̄0 are present, in the expressions of a1, a2, a3
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Fig. 9 Slope of average friction versus belt velocity. Parameters
as in Fig. 2

and a4 of the characteristic equation, Eq. (27), only
μ̄′ remains, meaning that the complex eigenvalues and
also the Routh-Hurwitz coefficients, Eq. (28), depend
only on μ̄′. Thus, the stability is influenced by the
slope of the effective friction expression. As shown in
Eq. (23), the effective friction expression is defined by
a piece-wise function. For relative velocities smaller
than V̂ , the average friction takes the shape of an arc-
cosine, the slope of which increases with increasing Vb
value and goes to infinity as Vb approaches the V̂ value.
For relative velocities bigger than V̂ , the average fric-
tion becomes the constantμs and its slope is zero. This
behaviour is also portrayed in Fig. 9.When the slope μ̄′
becomes zero, the characteristic equation of the forced
system aligns with that of the unforced system, indicat-
ing that the excitation has no influence on the stability.
Thus, for Vb exceeding V̂ , the system is stable, akin
to the unforced system. For Vb less than V̂ , slope val-
ues span from nearly zero to positive infinity (based on
the parameters determining μ̄′). Hence, the stability is
primarily governed by the system parameters such as
damping, stiffness and frequency of excitation, as μ̄′
depends on these parameters.

5 Effect on friction modulation

In this section, the aim is to study the effect of friction-
induced vibrations on friction modulation. In our pre-
viouswork [18], it was demonstrated that effective fric-
tion expression is calculated using a cycle of the veloc-
ity response of the system in the steady-state regime.

Fig. 10 a Velocity response for Vb = 4m/s; b Friction mod-
ulation obtained averaging over 2π

�e
. The cycle colors in plot a

correspond to the colored circles in plot (b). Parameters as in
Fig. 2

The direction of the friction force changes depending
on the direction of relative velocity, and the effective
friction is calculated by performing an averaging oper-
ation on the friction force over one cycle of oscillation.
In case of no friction-induced oscillations, the variation
in the cycles of the velocity response (due to higher
harmonics) is negligible. For the system considered
in this study, however, since oscillations at the natural
frequency are also present, the calculation of the fric-
tion modulation is not that straightforward. Looking at
the graph illustrating the numerically obtained veloc-
ity response for �e = 4 rad/s and Vb = 4 m/s, see
Fig. 10a, the cycles differ from each other, since mul-
tiple oscillation periods are present. Consequently, the
averaged friction values (averaging over 2π

�e
) derived
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Fig. 11 a Velocity response for Vb = 4m/s; b Friction mod-
ulation obtained averaging over 2π

ω1
. The cycle colors in plot a

correspond to the colored circles in plot (b). Parameters as in
Fig. 2

from different cycles are not the same, as shown in
Fig. 10b. The colors of the circles, which illustrate the
effective friction values, align with the colors of the
cycles employed in computing these effective friction
values. As shown in Fig. 10b, there is a scatteredness
in the effective friction values for belt velocities less
than 8m/s, corresponding to the bifurcation point (see
Fig. 5). As a result of this scatteredness, there existmul-
tiple effective friction values for a specific belt velocity.

If instead of using cycles aligning with the period
of excitation frequency, as depicted in Fig. 10a, the
averaging process is performed over 2π

ω1
(associated

with the first spectral peak in the amplitude spectrum
shown in Fig. 2b), as illustrated in Fig. 11a, the out-
comes presented in Fig. 11b are obtained, exhibiting a

more repeatable trend for the effective friction values at
different belt velocities. Additionally, the average fric-
tion plot derived using the stable system with linear
contact properties (as done in [18]) is depicted by the
black line, revealing lower average friction values (for
Vb < 9m/s) at a given belt velocity. It is worthmention-
ing that in this scenario, the excitation frequency is four
times the natural frequency.Consequently, in the steady
state, after four cycles corresponding to the excitation
frequency period (Fig. 10a), the response repeats itself
(Fig. 11a). Hence, opting for a different time window
of at least four cycles and conducting averaging over
2π
�e

, as in Fig. 10b, or over 2π
ω1

, depicted in Fig. 11b,
would yield the same outcomes.

Increasing the excitation frequency to�e = 6 rad/s,
the results depicted in Fig. 12a are obtained, show-
ing a bigger scatteredness in the effective friction val-
ues (the numerical validation plot is shown in Fig. 19a
in Appendix A.5). Averaging over 2π

ω1
instead, results

again in almost no scatteredness, as shown in Fig. 12b.
Compared to the stable linear case (see black contin-
uous line in Fig. 12b), the effective friction values are
higher for Vb < 7 m/s, lower for 8m/s < Vb < 15 m/s
and equal to the linear case for Vb > 16 m/s. Thus,
increasing the excitation frequency leads to an increase
in scatteredness in Fig. 12a and in a variation of the
effective friction values that, depending on the belt
velocities, might either increase or decrease compared
to the ones obtained for the stable system with linear
contact properties, Fig. 12b.

In several theoretical and experimental works con-
ducted on the effect of vibration-induced friction reduc-
tion, themeasurements did notmatch themodel predic-
tions obtained assuming an Amontons-Coulomb law to
model the friction force. Gutowski and Leus [36,37],
for example, analysed the influence on the averaged
friction force of an external forcing applied parallel
and perpendicular to the sliding direction, respectively.
While for the case of longitudinal excitation, the dis-
crepancy of experimental measurements with the theo-
retical results obtained assuming Amontons-Coulomb
friction law was not significantly large, for the case
of transverse excitation significant mismatches were
observed. To better catch the experimental behaviour,
they used the Dahl and the Dupont models [23] that
take into account a tangential contact stiffness. The
Dahl friction model with different stiffness values was
employed by Wang and coworkers as well and a qual-
itatively good match was obtained with the experi-
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Fig. 12 a Friction modulation obtained averaging over 2π
�e

; b

Friction modulation obtained averaging over 2π
ω1

. The cycle col-
ors in plot a correspond to the colored circles in plot (b). �e =
6 rad/s and the rest of the parameters as in Fig. 2

mental results [38,39]. Deviations were still observed
for specific material combinations. Kapelke also used
the Dupont model and the Amontons-Coulomb law
to compare the experimental results to theoretical
ones [22]. An excellent match between the experimen-
tal results and the elasto-plastic Dupont model was
observed. However, to accurately catch the behaviour
of the friction force reduction observed for tests car-
ried out with high excitation frequencies, signifi-
cantly different values of stiffness were needed for
the Dupont model compared to the ones used for the
low-frequency tests. Figure13 shows the effective fric-
tion plots obtained using the Amontons-Coulomb law
and both the full and reduced elasto-plastic model as
conducted in [22]. The figure indicates that the elasto-

Fig. 13 Friction-velocity characteristics: Amontons-Coulomb,
reduced and full elasto-plastic friction model as in [22]

plastic friction model yields higher effective friction
values than the Amontons-Coulomb law, similar to the
results shown in Fig. 11b. Increasing the excitation fre-
quency results in a different trend, Fig. 12b.

To summarise, in this study, the friction force is
assumed to be proportional to the coefficient of friction
and the normal force being time-varying and nonlinear.
In other words, rather than considering a single degree
of freedom system coupled to a Dahl and/or Dupont
model (which includes a tangential contact stiffness),
nonlinear contact properties along the normal direction
are incorporated, which, if excited, generate a nonlin-
ear time varying friction force. Hence, attention should
be paid to the presence of unexpected dynamic nor-
mal force variation during vibration-assisted friction
reduction experiments, in which only a deliberate tan-
gential or lateral excitation is applied. An uncontrolled
misalignment of such excitation directions with respect
to the sliding plane can lead to a time-varying normal
force, eventually causing friction-induced vibrations.
The combination of nonlinear contact properties along
the normal direction and external excitation results in
friction modulation graphs which display shapes that
qualitatively resemble those obtained experimentally
and are different from those derived from systems with
no friction-induced oscillations.

6 Conclusions

In this work, the effect of external excitation and non-
linear contact properties on the stability of the steady
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sliding state andon the frictionmodulation of a 2 degree
of freedom mass on a moving belt system is stud-
ied. Both tangential and normal excitation are present
and the nonlinear contact properties are represented
by the Hertz-Damp model. The presence of the time-
varying normal contact force and the corresponding
friction friction leads to parametric excitation, trig-
gering friction-induced oscillations. Whenever these
oscillations are detected, parts of the friction force ver-
sus relative velocity plots reveal negative slopes, even
though Amontons-Coulomb law is assumed. The pres-
ence of the parametrically induced negative net damp-
ing in the tangential direction is the mechanism behind
friction-induced oscillations.

To predict the onset of such oscillations, a lin-
earized stability analysis is performed taking advan-
tage of the Method of Direct Separation of Motion
that allows to incorporate the averaged effects of the
friction force modulated through the applied external
excitations. While the unforced system is stable at the
equilibrium point, the forced system exhibits friction-
induced vibration for certain regions of the parame-
ter space. Thus, while external excitation is generally
used to quench self-excited oscillation, the presence of
an oscillating normal force and the normal-tangential
friction coupling can also destabilise an otherwise sta-
ble equilibrium state. Additionally, the Routh-Hurwitz
criterion is used to study the effect of varying themodel
parameters on the occurrence of friction-induced vibra-
tions. It is found that a higher damping ratio for β1

helps in decreasing the region where friction-induced
vibrations occur. Similarly, as the natural frequency ω1

increases, the unstable region decreases, reaching its
minimum near resonance. However, as ω1 continues to
increase beyond this point, the unstable region expands
again. For the parameter space considered, varying β∗

2
and ω∗

2 has little impact on the unstable region. A
higher excitation frequency �e value increases the sta-
ble region. For all cases, the stability analysis does not
provide information onwhether the systemmight expe-
rience stick–slip behaviour or not. The numerical vali-
dation study demonstrated that the results from the lin-
earized stability analysis showa good qualitative agree-
ment with the occurrence of friction-induced oscilla-
tions, though the quantitative match varied depending
on the system parameters and their values. It is worth
mentioning that this study makes use of a simplified
model, with reference to the investigation of parametric
excitation.Modifying it couldmake it more representa-

tive of specific real-case scenarios, as shown in [4,10–
12].

Lastly, the effect of friction-induced vibrations on
friction modulation is studied. Whenever friction-
induced vibration is present, the cycles in the velocity
response differ from each other, since multiple oscilla-
tion frequencies are present. This results in a scattered-
ness in the effective friction values for the range of belt
velocities for which instability is observed. Therefore,
multiple effective friction values can exist for a specific
belt velocity. A similar level of scatteredness can also
be observed in related experimental studies. Instead,
averaging over the vibration period of the tangential
mode results in almost no scatteredness and in effective
friction plots with shapes that qualitatively resemble
those obtained experimentally or obtained using Dahl
and/or Dupont models. Finally, this work calls for fur-
ther experimental validation, and at the same time, it
highlights the need to keep track and measure the pres-
ence of normal force oscillations that may occur during
the experiments.
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Parametric excitation and friction

Fig. 14 a Amplitude spectrum of the velocity Ẋ1 for �e=4.5 rad/s; bAmplitude spectrum of the velocity Ẋ1 for excitation frequencies
6 rad/s and 4 rad/s for the tangential and normal directions, respectively. The rest of the parameters as in Fig. 2

Appendix A

A.1 Numerical solution: responses for different
excitation frequencies

In Sect. 3, the excitation frequency �e used is an inte-
ger multiple of the natural frequency ω1. As shown in
Fig. 14a, setting the excitation frequency to 4.5 rad/s
still produces a noticeable spectral peak at ω1. More-
over, the spectral peak at ω1 is also evident even when
the excitation frequencies applied in the tangential and
normal direction differ from each other. As illustrated
in Fig. 14b, when the excitation frequencies are 6 rad/s
and 4 rad/s for the tangential and normal directions,
respectively, the amplitude spectrum of the velocity
response Ẋ1 still exhibits a notable spectral peak at
ω1. The primary spectral peak aligns with the tangen-
tial excitation frequency of 6 rad/s, while the spec-
tral peak corresponding to the normal excitation fre-
quency of 4 rad/s is also notable. It is worth highlight-
ing, that a strong response emerges at the second har-
monic ω = 2ω1. Hence, different excitation frequen-
cies may induce strong higher harmonics. In compari-
son, the amplitudes at other harmonics are negligible.

In Fig. 15, the amplitude spectrum of the veloc-
ity response Ẋ1 is displayed for the case where the
excitation in the tangential direction has a phase shift
of π/2 relative to the excitation in the normal direc-
tion. The spectral peak at ω1 is again evident, mean-
ing that friction-induced vibrations occur even when a
phase shift is present. However, compared to the case

Fig. 15 Amplitude spectrum of the velocity Ẋ1 for �e=4 rad/s
and phase shift π/2; The rest of the parameters as in Fig. 2

of no phase shift, the velocity range for which these
vibrations appear is different. Thus, the phase shift has
an influence on the range of belt velocities for which
friction-induced vibrations occur.

A.2 Stability analysis: Jacobian linearisation for the
forced system

Here, for sake of completeness, the equations ofmotion
� are obtained. As written in subsection 4.2, separat-
ing the motions [X] = [X1 X2]T into the components
[Z] = [Z1 Z2]T and [�] = [�1 �2]T, making use of
the averaging operation and subtracting the equation
of motion for Z from the total one, the equations of
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Fig. 16 a Real part σ versus Vb for linear contact properties; b Amplitude spectrum of the velocity Ẋ1. (ω1 = 1 rad/s, ω2 = 0.5 rad/s,
β1 = 0.1, β2 = 3, α = 2m, �e = 4 rad/s and μs = 0.4)

Fig. 17 Amplitude spectrum of the velocity Ẋ1: a β1 = 0.05; b β1 = 0.2; (c) β1 = 0.4. The rest of the parameters as in Fig. 2
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Fig. 18 Amplitude spectrum of the velocity Ẋ1: a β∗
2 = 0.1 1

m5/4 ; b β∗
2 = 0.2 1

m5/4 ; c β∗
2 = 0.3 1

m5/4 . The rest of the parameters as in
Fig. 2

motion for the components of � are obtained

�e�
′′
1 + 2�̇′

1 + �−1
e �̈1 + 2β1ω1(�

′
1 + �−1

e �̇1)

+ω2
1�

−1
e �1 + μ(Ż1 − Vb + �′

1 + �−1
e �̇1)

×(2β∗
2ω∗

2(Ż2 + �′
2 + �−1

e �̇2) + ω∗2
2 )

(c3(Z2 + �−1
e �2)

3 + c2(Z2 + �−1
e �2)

2

+c1(Z2 + �−1
e �2) + c0) − μ̄(2β∗

2ω∗
2 Ż2 + ω∗2

2 )

(c3Z
3
2 + c2Z

2
2 + c1Z2 + c0) = α�2

e sin(�eτ)

(A1)

and

�e�
′′
2 + 2�̇′

2 + �−1
e �̈2 + (2β∗

2ω∗
2(Ż2 + �′

2

+�−1
e �̇2) + ω∗2

2 )(c3(Z2 + �−1
e �2)

3

+c2(Z2 + �−1
e �2)

2 + c1(Z2 + �−1
e �2) + c0)

−(2β∗
2ω∗

2 Ż2 + ω∗2
2 )(c3Z

3
2 + c2Z

2
2 + c1Z2 + c0)

= −α�2
e sin(�eτ). (A2)

In a previous work [18], it was stated that the motions
can be separated for all frequencies of the excitation.
Therefore, in this work, no restrictions are imposed on
the order of magnitude of �e.

Referring again to subsection 4.2, writing the equa-
tions of slowmotion, Eq. (18) and Eq. (19), in the state-
space form results in

S1 = Ż1 (A3)

Ṡ1 = −2β1ω1S1 − ω2
1Z1

+μ̄(2β∗
2ω∗

2S2 + ω∗2
2 )Z3/2

2 (A4)

S2 = Ż2 (A5)

Ṡ2 = −(2β∗
2ω∗

2S2 + ω∗2
2 )Z3/2

2 + g (A6)

Setting the Eqs. (A3)–(A6) to zero, the equilibrium
points are
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Fig. 19 Amplitude spectrum of the velocity Ẋ1: a �e = 6 rad/s; b �e = 8 rad/s; c �e = 10 rad/s. The rest of the parameters as in
Fig. 2

(Z0
1, S

0
1 ) =

(
μ̄0g

ω2
1

, 0

)
,

(Z0
2, S

0
2 ) =

⎛
⎝

(
g

ω∗2
2

)2/3

, 0

⎞
⎠ . (A7)

A.3 Numerical solution: linear contact properties

Referring to the discussion in subsection 4.2, here, a
2 DOF system with linear contact properties is con-
sidered, as detailed in [18]. For β2 = 3, the system is
overdamped in the normal direction and has an unstable
equilibrium, as illustrated in Fig. 16a. Thus, friction-
induced oscillations occur (see the peak at ω1 in the
amplitude spectrum, Fig. 16b) for Vb values less than
the bifurcation point, Vb ≈ 10m/s, despite the assump-

tion of linear contact properties. As in the case of non-
linear contact properties, the presence of a positive
net damping in parts of the oscillation cycles bounds
the response. In general, a better correlation (than in
Fig. 2b) in the range of belt velocities between the sta-
bility analysis and the numerical results is observed,
since the effective friction expression used corresponds
to the system with linear contact properties.

A.4 Routh-Hurwitz criterion: a1, a2, a3 and a4
expressions

Here, the expressions for a1, a2, a3, and a4 utilized
in deriving the Routh-Hurwitz coefficients in subsec-
tion 4.3 are displayed.
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Fig. 20 Amplitude spectrum of the velocity Ẋ1: a ω1 = 0.3 rad
s ; b ω1 = 3 rad

s ; c ω1 = 12 rad
s . The rest of the parameters as in Fig. 2

a1 = 2β1ω1 − μ̄′g + 2β∗
2 g

ω∗
2

a2 = ω2
1 + (−2β1ω1 + μ̄′g)

(−2β∗
2 g

ω∗
2

)

+ 3

2
ω∗2
2

(
g

ω∗2
2

)1/3

a3 = 2β∗
2 gω

2
1

ω∗
2

+ (−2β1ω1 + μ̄′g)⎛
⎝−3

2
ω∗2
2

(
g

ω∗2
2

)1/3
⎞
⎠

a4 = 3

2
ω2
1ω

∗2
2

(
g

ω∗2
2

)1/3

(A8)

A.5 Numerical validation of stability diagrams

Referring to the discussion in subsection 4.3, here,
numerical results of the amplitude spectrum are dis-
played to validate parts of the stability diagrams. The
stability diagram in Fig. 6a shows that a higher β1 value
helps in decreasing the range of belt velocities where
friction-induced vibrations occur. The amplitude spec-
tra in Fig. 17 show that, indeed, as β1 value increases
from 0.05 in Fig. 17a, to 0.2 in Fig. 17b and 0.4 in
Fig. 17c, the range of belt velocities for which friction-
induced vibrations are observed decreases.

The stability diagram of β∗
2 displayed in Fig. 6b

shows that the unstable region remains relatively the
same as β∗

2 values are varied. The amplitude spectra in
Fig. 18 illustrate that as the value of β∗

2 increases from
0.1 1

m5/4 in Fig. 18a to 0.2 1
m5/4 in Fig. 18b, and further

to 0.3 1
m5/4 in Fig. 18c, the range of belt velocities for
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Fig. 21 Amplitude spectrum of the velocity Ẋ1: a ω∗
2 = 0.4 rad

m1/4s
; b ω∗

2 = 0.9 rad
m1/4s

; c ω∗
2 = 1.5 rad

m1/4s
. The rest of the parameters as

in Fig. 2

which friction-induced oscillation occur decreases. In
all cases, no friction-induced vibrations are observed
for Vb > 8 m/s, which matches the stability diagram.
However the quantitative match is not good for smaller
Vb and high β∗

2 values, as the numerical results show
a decrease in the range of belt velocities for which
friction-induced oscillations are triggered.

The stability diagram of �e, Fig. 7, show that
the instability region decreases for increased �e val-
ues. Figure19a displays the amplitude spectrum for
�e = 6 rad/s which shows a good qualitative and
quantitative match to the stability diagram. For exci-
tation frequencies �e = 8 rad/s and �e = 10 rad/s,
the numerical results indicate that stick–slip behavior
occurs within the stability regions shown in the stabil-
ity diagram, specifically for Vb values below10m/s and
15m/s, respectively. Therefore, the amplitude spectra

in Fig. 19b, c start at belt velocities Vb higher than
these values. The numerical results also show that the
stability diagram underestimates the size of the unsta-
ble region as the excitation frequencies rise, since they
show friction-induced vibrations over a broader range
of belt velocities.

The stability diagram in Fig. 8a shows that as ω1

value increases, the instability region decreases, reach-
ing its minimumwhenω1 = �e = 4 rad/s. The numer-
ical results confirm that as ω1 increases from 0.3 rad/s
in Fig. 20a to 3 rad/s in Fig. 20b, the range of belt veloci-
ties exhibiting friction-induced oscillations narrows.At
even higher ω1 values, such as ω1 = 12 rad/s, no peak
is seen in the amplitude spectrum, as shown in Fig. 20c,
aligning with the stability diagram. Thus, there is good
qualitative and quantitative agreement between the sta-
bility diagram and the numerical results.
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Regarding the influence of ω∗
2, the stability diagram

in Fig. 8b shows that varying ω∗
2 slightly decreases

the instability region. The amplitude spectra in Fig. 21
show a good quantitative match to the stability diagram
for Vb > 8m/s. At lower belt velocities, the quantitative
match deteriorates, as the reduction in the belt veloc-
ity ranges where friction-induced oscillations occur is
more pronounced in the numerical results. This indi-
cates that the stability diagrams overestimate the extent
of the unstable region.
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