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Abstract

This report presents the results of the graduation thesis from the TU Delft, performed at the
Integrated Vehicle Safety (IVS) department of TNO. The goal of this graduation project is
to develop a unified path-planning and -tracking method for autonomous vehicles in highway-
driving scenarios, by making use of Artificial Potential Fields (APFs).

Most autonomous vehicles base their navigation control on first planning a path, which is then
tracked by using a combination of feedback and feedforward control. The strength of using
APFs is the possibility to integrate the path-planning and -tracking process. This concept
has already been extensively used in the field of robotics. The attractive and repulsive forces
coming from the APF guide the robot towards the final goal while avoiding obstacles. This
offers an intuitive way to represent the level of hazard experienced in the direct environment.
However, considerably less research has been devoted to the application of APFs in the field
of autonomous vehicles. Furthermore, the available research mostly treats the vehicle as a
particle, thereby leaving out the more complicated vehicle dynamics.

Therefore, this research is aimed at including the vehicle dynamics into the path-planning
process such as to generate feasible and desirable paths. A Model Predictive Control (MPC)
framework is proposed to fulfill this task. The adopted vehicle model is given by the linear
bicycle model, which represents the vehicle dynamics sufficiently well for highway applications.
The two main maneuvers of lane keeping and lane changing are executed with the aid of two
different potential fields that were designed for these specific purposes: the road and obstacle
APF, respectively. A second order Taylor approximation is used to incorporate the APFs into
the quadratic MPC cost function. The Simulink model from TNO to simulate the controlled
vehicle is modified by extending it to curved roads and by including the developed APF
MPC controller. The resulting algorithm is capable of following curved highway lanes and
overtaking slower vehicles at different velocities in the simulation environment. The results
are compared with the previously developed path planner and lateral controller from TNO. In
order to also deliver longitudinal control action, the model can be connected to the Adaptive
Cruise Control (ACC) application of TNO.

It is concluded that the suggested method potentially offers a powerful solution to the navi-
gation control of autonomous vehicles. Real-life experiments have to be done in the future to
validate the performance of the controller.

Master of Science Thesis E.Y. Snapper



ii

E.Y. Snapper Master of Science Thesis



Table of Contents

Preface xi

1 Introduction 1
1-1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1-2 Literature study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1-3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Autonomous driving 7

2-1 Autonomous vehicle system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2-2 Driver behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2-3 Highway environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2-4 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2-5 Vehicle maneuvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2-6 Collision avoidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Controller design 17

3-1 Model predictive control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3-2 Vehicle model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3-3 Potential field functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3-3-1 Road potential field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3-3-2 Obstacle potential field . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3-3-3 Artificial potential field . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3-4 Combining APF with MPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Simulations 49
4-1 TNO controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4-2 Quadratic programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4-3 Weight tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4-4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4-5 Experimental considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Master of Science Thesis E.Y. Snapper



iv Table of Contents

5 Conclusions 65

5-1 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

A Bicycle model derivation 69

B Quadratic Taylor approximation 73

C MPC matrix derivation 79

D Simulink model 85

E Tuned obstacle PF parameters 91

F Lane-change characteristics results 99

Bibliography 111

Glossary 117

List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Index 125

E.Y. Snapper Master of Science Thesis



List of Figures

1-1 The different domains that come together in autonomous vehicles . . . . . . . . 2

1-2 Highway platooning for CACC applications . . . . . . . . . . . . . . . . . . . . . 3

2-1 The complex architecture of an autonomous vehicle system . . . . . . . . . . . . 9

2-2 Sensor measurements of the environment: 1) lateral lane-center distance, 2) lane
heading, 3) lane curvature, 4) longitudinal obstacle distance, 5) lateral obstacle
distance, 6) longitudinal velocity difference . . . . . . . . . . . . . . . . . . . . . 12

2-3 Flow chart of vehicle maneuvers for highway driving . . . . . . . . . . . . . . . . 15

2-4 Two options for collision avoidance: 1) comfortable lane change, 2) normal braking 16

3-1 Simplified block diagram of autonomous vehicle system with APF MPC controller 18

3-2 Transformation from car to bicycle model . . . . . . . . . . . . . . . . . . . . . 20

3-3 Different coordinate frames used in simulation . . . . . . . . . . . . . . . . . . . 20
3-4 Free-body diagram of the bicycle model . . . . . . . . . . . . . . . . . . . . . . 21

3-5 Spring and damper analogy for the APF method . . . . . . . . . . . . . . . . . . 23

3-6 Morse PF UM , with k1 = 0.3, k2 = 0.042, and k3 = 15.5 . . . . . . . . . . . . . 26

3-7 Gradient of Morse PF UM , with k1 = 0.3, k2 = 0.042, and k3 = 15.5 . . . . . . 26

3-8 Right and left lane potential fields Urℓ,sr and Uℓℓ,sr for a straight road, with Ar =
0.5 and br = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3-9 Straight road potential field Ur,sr, with Ar = 0.5 and br = 1 . . . . . . . . . . . 29

3-10 Curved road PF computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3-11 Curved road potential field Ur,cr, with Ar = 0.5, br = 1, and c2 = 5e−6 m1 . . . 32

3-12 Obstacle projection to lane center . . . . . . . . . . . . . . . . . . . . . . . . . 34

3-13 Obstacle potential field Uo, with Ao = 1, (Xo, Yo) = (375, 0) m, xσ = 375 m,
and σy = 0.865 m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3-14 Total artificial potential field of curved road with two obstacles, with λr = 1, Ar =
0.5, br = 1, c2 = 5e−6 m−1, λo = 25, Ao = 1, (Xo,1, Yo,1) = (375, 0.7031) m,
(Xo,2, Yo,2) = (775, 6.5031) m, xσ = 375 m, and σy = 0.865 m . . . . . . . . . . 38

Master of Science Thesis E.Y. Snapper



vi List of Figures

4-1 Graphical representation of tracking error definitions used by TNO . . . . . . . . 50

4-2 TTC-instances for tuning the host vehicle lane change, with Vh = 120 kmh−1,
∆Vo,h = −20 kmh−1, and c2 = 5e−6 m−1 . . . . . . . . . . . . . . . . . . . . . 55

4-3 Angled view of total APF with obstacle PF blocking the left lane, with Vh =
120 km/h, ∆Vo,h = −20 km/h, c2 = −0.00025 m−1, xσ = 130 m, and σy =
0.865 m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4-4 Characteristics to evaluate the lane-change performance: 0) lane-change initiation,
1) rise time: tr, 2) lane-change duration: td, 3) settling time: tse, 4) longitudinal
IVD: dlo, 5) lateral IVD: dla, 6) overshoot: do, 7) lateral acceleration ay, 8) lateral
jerk jy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4-5 Time characteristics of lane-changing host vehicle, with Vh = 120 kmh−1, ∆Vo,h =
−20 kmh−1, and c2 = 5e−6 m−1 . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4-6 Less challenging lane-change maneuvers towards the inside of the curve . . . . . 60

4-7 More challenging lane-change maneuvers towards the outside of the curve . . . . 60

4-8 Host and obstacle vehicle path results, with Vh = 120 kmh−1, ∆Vo,h = −20 kmh−1,
and c2 = 5e−6 m−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4-9 Lateral acceleration and jerk for c2 = 5e−6 m−1, Vh = 120 kmh−1, Vo = 100 kmh−1 61

4-10 Host vehicle states for c2 = 5e−6 m−1, Vh = 120 kmh−1, Vo = 100 kmh−1 . . . 62

A-1 Bicycle model configuration expressed in global road coordinate frame . . . . . . 69

A-2 Free-body diagram of the bicycle model . . . . . . . . . . . . . . . . . . . . . . 69

B-1 Lateral QAs of straight road PF Ur,sr . . . . . . . . . . . . . . . . . . . . . . . 75

B-2 Longitudinal QA of curved road PF Ur,cr . . . . . . . . . . . . . . . . . . . . . . 76

B-3 Lateral QA of obstacle PF Uo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

B-4 Longitudinal QA of obstacle PF Uo . . . . . . . . . . . . . . . . . . . . . . . . . 78

D-1 Simulink model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
D-2 World model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
D-3 Host vehicle model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
D-4 APF MPC control system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

D-5 TNO control system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

D-6 APF MPC control system details . . . . . . . . . . . . . . . . . . . . . . . . . . 90

E-1 Obstacle PF weight λ0 versus Vh for different ∆Vo,h for all c2 . . . . . . . . . . 91

E-2 Obstacle PF σx-measure xσ versus Vh for different ∆Vo,h with c2 ≥ 0 . . . . . . 93

E-3 Obstacle PF σx-measure xσ versus Vh for different ∆Vo,h with c2 ≤ 0 . . . . . . 94

F-1 Characteristics to evaluate the lane-change performance: 0) lane-change initiation,
1) rise time: tr, 2) duration: td, 3) settling time: tse, 4) longitudinal IVD: dlo, 5)
lateral IVD: dla, 6) overshoot: do . . . . . . . . . . . . . . . . . . . . . . . . . . 99

F-2 Lane-change characteristics box plots for c2 = 0m−1 . . . . . . . . . . . . . . . 100

E.Y. Snapper Master of Science Thesis



List of Figures vii

F-3 Lane-change characteristics box plots for c2 = 1.0e−6 m−1 . . . . . . . . . . . . 101

F-4 Lane-change characteristics box plots for c2 = 5.0e−6 m−1 . . . . . . . . . . . . 102

F-5 Lane-change characteristics box plots for c2 = 1.0e−5 m−1 . . . . . . . . . . . . 103

F-6 Lane-change characteristics box plots for c2 = 5.0e−5 m−1 . . . . . . . . . . . . 103

F-7 Lane-change characteristics box plots for c2 = 1.0e−4 m−1 . . . . . . . . . . . . 104

F-8 Lane-change characteristics box plots for c2 = 2.5e−4 m−1 . . . . . . . . . . . . 105

F-9 Lane-change characteristics box plots for c2 = -1.0e−6 m−1 . . . . . . . . . . . 106

F-10 Lane-change characteristics box plots for c2 = -5.0e−6 m−1 . . . . . . . . . . . 106

F-11 Lane-change characteristics box plots for c2 = -1.0e−5 m−1 . . . . . . . . . . . 107

F-12 Lane-change characteristics box plots for c2 = -5.0e−5 m−1 . . . . . . . . . . . 108

F-13 Lane-change characteristics box plots for c2 = -1.0e−4 m−1 . . . . . . . . . . . 109

F-14 Lane-change characteristics box plots for c2 = -2.5e−4 m−1 . . . . . . . . . . . 109

Master of Science Thesis E.Y. Snapper



viii List of Figures

E.Y. Snapper Master of Science Thesis



List of Tables

1-1 The levels of autonomy outlined by SAE . . . . . . . . . . . . . . . . . . . . . . 2

2-1 Minimum horizontal lane curve radii in [m] for different design speeds and cants . 11

2-2 Symbols from the Mobileye sensor measurements . . . . . . . . . . . . . . . . . 13

2-3 Symbols from the lateral lane center position equation . . . . . . . . . . . . . . 14

2-4 Symbols from the obstacle information calculations . . . . . . . . . . . . . . . . 14

3-1 Symbols from the straight road PF function . . . . . . . . . . . . . . . . . . . . 30

3-2 Symbols from the curved road PF function . . . . . . . . . . . . . . . . . . . . . 33

3-3 Symbols from the obstacle PF function . . . . . . . . . . . . . . . . . . . . . . . 35

3-4 Symbols from the obstacle PF rotation coefficients . . . . . . . . . . . . . . . . 37

3-5 Parameters of the host vehicle . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3-6 Symbols from the cost function . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4-1 Mean lane-change characteristics of APF MPC and TNO controller . . . . . . . 59

E-1 λo in [-] against Vh and ∆Vo,h in [kmh−1] for all c2 . . . . . . . . . . . . . . . . 92

E-2 xσ in [m] against Vh and ∆Vo,h in [kmh−1] for c2 = 0 m−1 . . . . . . . . . . . . 92

E-3 xσ in [m] against Vh and ∆Vo,h in [kmh−1] for c2 = 1.0e−6 and 5.0e−6 m−1 . . 95

E-4 xσ in [m] against Vh and ∆Vo,h in [kmh−1] for c2 = 1.0e−5 and 5.0e−5 m−1 . . 95

E-5 xσ in [m] against Vh and ∆Vo,h in [kmh−1] for c2 = 1.0e−4 and 2.5e−4 m−1 . . 96

E-6 xσ in [m] against Vh and ∆Vo,h in [kmh−1] for c2 = -1.0e−6 and -5.0e−6 m−1 . 96

E-7 xσ in [m] against Vh and ∆Vo,h in [kmh−1] for c2 = -1.0e−5 and -5.0e−5 m−1 . 97

E-8 xσ in [m] against Vh and ∆Vo,h in [kmh−1] for c2 = -1.0e−4 and -2.5e−4 m−1 . 97

F-1 Mean lane-change characteristics for c2 = 0 m−1 . . . . . . . . . . . . . . . . . 100

Master of Science Thesis E.Y. Snapper



x List of Tables

F-2 Mean lane-change characteristics for c2 = 1.0e−6 and 5.0e−6 m−1 . . . . . . . 101

F-3 Mean lane-change characteristics for c2 = 1.0e−5 and 5.0e−5 m−1 . . . . . . . 102

F-4 Mean lane-change characteristics for c2 = 1.0e−4 and 2.5e−4 m−1 . . . . . . . 104

F-5 Mean lane-change characteristics for c2 = -1.0e−6 and -5.0e−6 m−1 . . . . . . . 105

F-6 Mean lane-change characteristics for c2 = -1.0e−5 and -5.0e−5 m−1 . . . . . . . 107

F-7 Mean lane-change characteristics for c2 = -1.0e−4 and -2.5e−4 m−1 . . . . . . . 108

E.Y. Snapper Master of Science Thesis



Preface

This is the Master of Science graduation thesis from the Delft Center for Systems and Control
(DCSC) department within the faculty of Mechanical, Maritime and Materials Engineering
(3mE) at Delft University of Technology. The topic of this research, namely using Artificial
Potential Fields (APFs) for path planning and control of autonomous vehicles, is of interest
to the Integrated Vehicle Safety (IVS) department of TNO in Helmond.

This research was performed within the Cooperative Control Systems (CCS) group of TNO,
under supervision of dr. ir. Mohsen Alirezaei and dr. ir. Elham Semsar-Kazerooni, to whom
I want to express my enormous gratitude. There were some difficult times where you showed
great understanding and gave me the space I needed, which I really appreciated. Thank you
for your time and guidance during our weekly progress meetings. Your thoughts and advice
have helped a lot to move forward.

I look back at my time at TNO with good memories, even though traveling back and forth
between Delft and Helmond could sometimes be quite exhausting. However, it gave me the
opportunity to read many books in the estimated number of 260 train journeys. Luckily, I
was able to stay in hotels and explore the area of Eindhoven. Fun fact: I have tried eight
different hotels, slept 39 times in either Eindhoven or Helmond, and went to see the movies
fourteen times on these occasions.

I would also like to thank my TUD supervisor, prof. dr. ir. Hans Hellendoorn, for his monthly
coaching sessions (as I liked to call it) where we had some good talks. Although we did not
discuss my work in much detail, I always left your office with new motivation and ideas. Also
thank you for your feedback and review of my final thesis.

Of course I want to acknowledge my parents, who have supported me in every possible way,
for which I remain forever thankful. I could not have done this without you. Furthermore,
I want to mention my fantastic friends, who were there when I needed them, for distraction
and doing fun things together. Lastly, special thanks go out to my girlfriend. Graduation
could be a very though ride for both of us, with many doubts and uncertainties. I am glad
to have shared this experience with you. You were my rock in all of this. Furthermore, I will
not forget to mention my girlfriend’s help with the graphic design of the illustrations in this
report. This future control engineer knows nothing about InDesign and EPS-figures.

Delft, University of Technology E.Y. Snapper
January 10, 2018

Master of Science Thesis E.Y. Snapper



xii Preface

E.Y. Snapper Master of Science Thesis



Chapter 1

Introduction

The number of vehicles has been steadily increasing in the last few decades. In the Nether-
lands, this number increased from over 6.3 million cars in 2000 to almost 8 million in 2005 [1].
This increase poses severe challenges for transportation systems. Traffic delays and conges-
tions, for example, increase travel time and therefore impact society and economy negatively.
This has raised the interest in developing intelligent traffic solutions, like automated platoons,
where vehicles are driving in platoon form, with small inter-vehicle time gaps of well below one
second [2]. Fully autonomous driving makes this possible, since it can greatly improve on the
human reaction time. This will significantly increase the road capacity of existing roads and
reduce the fuel consumption, due to lower aerodynamic drag. Moreover, autonomous driving
also promises to improve transportation in terms of traffic throughput, passenger comfort,
and road safety.

The interest of both the academic and commercial industry in the field of autonomous vehicles
has grown increasingly in the past couple of years because of the many promising benefits
for society [3]. Another reason for it being so popular is that many research domains come
together in autonomous vehicles, like robotics, computer science, and engineering. The illus-
tration from Figure 1-1 shows the knowledge from different backgrounds that is combined in
the autonomous vehicle design. Many open issues remain to be researched, like environment
perception, modeling, localization, map building, path planning, decision making, and motion
control [4]. Software is the key driving factor in all of this, but social acceptance also plays a
critical role.

The increased interest in autonomous driving has led to the rapid development of new tech-
nologies and big improvements on already existing technologies. The first successful imple-
mentation of the autonomous vehicle dates back to the 80’s, by the pioneering Carnegie
Mellon University [5]. Nowadays, many car manufacturers, like Tesla, Audi, Mercedes, Re-
nault, and Fiat, have already developed their own intelligent vehicle solutions [6]. However,
it is hard to determine the current state-of-the-art, since car manufacturers generally do not
publicly disclose any details on their scientific advances. Nevertheless, the expectation is that
autonomous vehicles will be the most viable means of transportation by 2040 [7].
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2 Introduction

Figure 1-1: The different domains that come together in autonomous vehicles

Passive safety solutions such as crumple zones, seat belts, and airbags have been standard
vehicle features to reduce the number of fatalities [8]. Modern vehicles are equipped with
sensing, computational and actuating capabilities, which allows for the design of active safety
features, called Advanced Driver Assistance Systems (ADAS), such as Adaptive Cruise Con-
trol (ACC) and lane-keeping systems [9]. ADAS roadmaps show that the number of assistance
functionalities will increase steadily in the near future [10]. Some of these systems, like Elec-
tronic Stability Control (ESC) are already mandatory in the EU since 2011 [11]. To indicate
the level of vehicle automation, the Society of Automotive Engineers (SAE) outlines six levels
for self-driving cars, from no automation to full automation. This system has become the
standard and is summarized in Table 1-1 [12].

Table 1-1: The levels of autonomy outlined by SAE

Classification Description

Level 0 No automation You drive it
Level 1 Driver assistance Hands on the wheel
Level 2 Partial automation Hands off the wheel, eyes on the road
Level 3 Conditional automation Hands off the wheel, eyes off the road - sometimes
Level 4 High automation Hands off, eyes off, mind off - sometimes
Level 5 Full automation Steering wheel is optional

The research for this graduation thesis was conducted at the Integrated Vehicle Safety (IVS)
department of TNO. The research focus of this department is to further develop the tech-
nology behind active safety systems and get closer towards fully autonomous vehicles. These
solutions improve the safety of vehicles and prevent human fatalities and severe injuries in
a robust and reliable manner [13]. The daily work was performed in collaboration with the
Cooperative Control Systems (CCS) group. They specialize in building novel real-time safety
critical cooperative and automated systems, covering fundamental theory, model-based de-
velopment, simulation, and experimental evaluation in proof-of-concept demonstrators. The
unique expertise, tools and facilities of TNO have led to the development of several high and
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1-1 Problem statement 3

low level control software, such as the following ADAS systems:

• Vehicle State Estimation (VSE!),

• Anti-Lock Braking System (ABS),

• Autonomous Emergency Braking (AEB),

• Cooperative Adaptive Cruise Control (CACC),

• Fully Automated Highway Platooning.

CACC is a good example of the capabilities of an automatic vehicle. It aims at achieving
small inter-vehicle distances, which can increase the road capacity, reduce traffic jams, and
improve on fuel consumption. The method is based on inter-vehicle data exchange through
wireless communication and data obtained by radar or LiDAR. Figure 1-2 depicts this, with
vi+1 and di+1 the communicated velocity and vehicle-distance of vehicle i+ 1, respectively.

Figure 1-2: Highway platooning for CACC applications

The IVS department is located at the Automotive Campus in Helmond, that promotes itself
as the national and international hotspot, meeting point and place of business in the field
of automotive and smart mobility [14]. Companies and institutes ranging from the fields of
education, research and industry, like Fontys, Lightyear, Rijkswaterstaat, VDL, and many
more are based at this location. The Automotive Campus provides shared high-tech automo-
tive testing facilities and flexible working places, where smart, safe, and sustainable mobility
solutions for people, roads and vehicles are realized.

1-1 Problem statement

The task of path planning plays an critical role in developing an autonomous vehicle, which
makes it an important field of research. The navigation control in most autonomous vehi-
cles is based on first planning a path to a goal. The task of tracking this planned path is
then achieved by feedback and feedforward controllers that apply correctional lateral and
longitudinal control, consisting of steering input and braking or throttle action, respectively.

The strength of using the Artificial Potential Field (APF) method is the possibility to integrate
this path-planning and -tracking process. It is based on the generation of repulsive Potential
Fields (PFs) associated with obstacles, whereas the PF fixed to the goal position has an
attractive effect on the vehicle. The sum of these fields yields the final APF, from which
the artificial force is computed that directs the vehicle through the environment. One way
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to produce a planned path is to simulate the vehicle motion under influence of the field,
after which the simulated path can then be used as the planned path. The APF-method is
often referred to as being a local method [15]. The applied artificial force namely includes the
contributions from all PFs, but the forces are stronger close to an obstacle and have less effect
at a larger distance. This allows for a local representation of the environment, which reduces
computational difficulties significantly [16]. Another advantage is that it offers a simple and
intuitive way to represent the level of hazard experienced by the vehicle in the environment.
Furthermore, it results in paths that can be driven with some acceptable tolerance, as opposed
to following a strictly defined trajectory.

The main contribution of this research is the development of a unified path-planning and
-control solution for autonomous vehicles driving on highways using the APF-method. The
vehicle dynamics should be incorporated into the planning of feasible and safe paths with the
ability to re-plan in changing traffic situations. The research question is phrased as follows:

How to plan and track desirable and feasible paths for highway-driving au-
tonomous vehicles using the APF-method?

The research aims at planning paths for controlled vehicles driving in steady traffic consisting
of homogeneous vehicles on a two-lane highway. The planned paths should satisfy the criteria
for being desirable and feasible, which are formally defined next. The paths are considered
to be desirable if they are planned such that the vehicle:

• Stays on the road while driving according to common traffic rules and conventions;

• Follows the center of the lane, with a preference for the rightmost lane;

• Performs lane-change maneuvers in order to overtake slower preceding vehicles; and

• Keeps appropriate safety margins to static and dynamic obstacles.

In addition to being desirable, the planned paths are only allowed if they are considered to
be feasible. This is the case if the planned paths can be tracked in a successful way that
guarantees safety by avoiding collisions and satisfies the vehicle limitations. The comfort
criteria that are used to evaluate the quality of the planned path are given by the path
smoothness and having comfortable accelerations.

These desirable and feasible paths are to be generated by the APF-method. It should therefore
have the capability to continuously re-plan the path based on the changing traffic situations.
In simulation, it is assumed that all required sensor measurements are available. This corre-
sponds to having the position and heading of the controlled vehicle on the road as well as the
respective relative positions and velocities of the surrounding traffic. Furthermore, the layout
of the highway environment is assumed to be known. The method is designed for real-time
application such that it can be implemented on a real autonomous vehicle, which means that
it should be computationally efficient.

The aim is to reproduce human-like driving behavior, since the controlled vehicle will be oper-
ating among vehicles that still have a driver behind the wheel. This means, for example, that
common driving rules need to be incorporated, like left-side overtaking, having a preference to
stay in the lane center, and returning to the right most lane. Only typical highway conditions
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are considered, which means appropriate road curvatures and velocities, and normal driving
conditions. Emergency maneuvers are beyond the scope of this thesis.

The paths resulting from the APF-method have to be tracked in order to evaluate the path-
planning performance. The lateral controller developed by TNO is initially used for this
purpose. In case the TNO controller proves to be unsuitable for integration with the APF-
method, a new controller will be developed. The vehicle is also equipped with an ACC
(longitudinal) controller. Tracking paths at constant longitudinal velocity is preferred, so this
has to be taken into account in the design.

For practical implementation of the lateral control algorithm, a Toyota Prius is available
TNO to serve as the experimental vehicle. It has a park assistant system that can be used to
control the angle of the steering wheels. This test platform can be used to test and validate
the lateral control performance. However, due to implementation issues that are described in
Section 4-5, no experimental testing was done, unfortunately.

The general problem statement is summarized with the following research objectives:

• Modeling the static and dynamic road environment using PFs;

• Formally defining solution requirements in terms of safety, comfort, and performance;

• Adopting a controller capable of tracking the proposed trajectory from the APF; and

• Evaluation of the integrated path-planning and -tracking method in simulation.

1-2 Literature study

This section presents a summary of the findings from the literature study that was performed
in preparation for the main research. The most common path-planning methods were dis-
cussed, together with the main challenges encountered in this field. Next, an overview of
the most general path-tracking controllers was given and their advantages and disadvantages
were compared. After that, the APF-method was explained and the challenges to obtain
good path-planning and -tracking performance were identified. Several examples were given
to show the different applications of APFs in path planning and control. Some general com-
ments on the APF design requirements for automated driving were given eventually. The
most important results from the literature study are presented below.

Path planning is a very exciting field of research for which new solutions are provided
almost daily. The main challenges of path planning for autonomous vehicles are given by the
limited sensor data of the environment, the dynamic and kinematic vehicle constraints, and
the computational demand for real-time implementation. Classical path-planning approaches,
like cell decomposition methods and rapidly-exploring random trees, have the major drawback
of leaving out the vehicle dynamics [17]. This leads to a suboptimal tracking performance
at high speeds and for varying path curvatures. The dynamics of both the controlled and
the obstacle vehicle play namely an important role in successful path planning. The absolute
and relative velocities, for example, determine the safe distance that should be maintained.
Current research focuses on generating trajectories that are similar to human driving behavior,
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in order to yield user-acceptable paths [18]. Human-like driving is characterized by smooth
and continuous steering action, while minimizing the lateral jerk and acceleration.

Trajectory tracking is concerned with computing the actuator input that makes the vehicle
track the predefined trajectory. This can either be a correction to the steering input to adjust
the lateral position, or an application of the brake or throttle to change the longitudinal
speed. The used vehicle model and the quality of the planned path influence the performance
of the tracking controller. The bicycle model is the mostly used dynamic model to describe
the lateral dynamics of the vehicle. The linearized equations give a good representation of
the vehicle behavior in steady-state highway-driving scenarios. The controller can be tuned
by evaluating the tracking performance during a lane-change maneuver from looking at the
rise time, overshoot, settling time and kept inter-vehicle distance of the response. A detailed
comparison between many different lateral controllers concluded that no perfect control law
exists that can be used in every situation and at all velocities. Choosing a suitable controller
for a specific design case is done by considering its simplicity, efficiency, and robustness.

The APF-method offers a very promising solution to the path-planning problem for au-
tonomous vehicles. The path is planned from forward simulation of the vehicle motion that is
influenced by the artificial force coming from the PFs. The main challenge is how to include
the vehicle dynamics into the path-planning process in order to produce feasible paths. The
height, slope, and shape of the PF are recognized to play an important role in producing the
desired vehicle behavior.

1-3 Thesis outline

The main body of the thesis is organized in the following way. Chapter 2 describes the
basic principles of autonomous driving that are relevant for this research. This includes
the autonomous system, the employed sensors, the highway environment, and some of the
most common vehicle maneuvers. After that, the design of the APF path-planning and -
control method is explained in Chapter 3. It treats the equations behind the bicycle model,
the construction of the PFs, and the formulation of the Model Predictive Control (MPC)
framework. Chapter 4 elaborates on the used simulation environment. It talks about the
implementation of the APF MPC controller in MATLAB and Simulink, gives some details
about the TNO controller, and discusses the obtained results. Finally, Chapter 5 gives the
conclusions of this graduation work, ending with some recommendations for future research.

Several Appendices is found at the back of this thesis, containing material that is too extensive
to be included into the main body. It contains the derivation of equations, mathematical
theory, several plots and figures, and tables with simulation results. An exact overview of
each Appendix is given next:

• A: Bicycle model derivation;

• B: Quadratic Taylor approximation;

• C: MPC matrix derivation;

• D: Simulink model;

• E: Tuned obstacle PF parameters;

• F: Lane-change characteristics results.

The thesis closes off with the bibliography, the glossary, containing the list of acronyms and
the list of symbols, and finally the index.
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Chapter 2

Autonomous driving

This Chapter serves as a more detailed introduction to the topic of autonomous driving. The
outline is as follows. Section 2-1 briefly outlines the complex technology behind the control
system of an autonomous vehicle. Next, Section 2-2 elaborates on the things that characterize
the human driving behavior. Section 2-3 treats the subject of the highway layout, which is
the environment of interest in this research. After that, Section 2-4 gives some details on
the sensors that are commonly used by autonomous vehicles. Furthermore, it describes the
sensor measurements that are available for the design of the path-planning method. Section
2-5 shortly discusses the two most basic vehicle maneuvers. Next, Section 2-6 describes the
different approaches to collision avoidance. Finally, a list is presented with the assumptions
that were made in the design of the APF path-planner and -controller.

2-1 Autonomous vehicle system

This Section describes the main characteristics of the autonomous vehicle system and its
general differences with robots.

The problem of finding collision-free trajectories does not only exist in the automotive field,
but also in nautics, aerospace, and robotics. Although path planning for robots and vehicles
is very much alike, there are some crucial differences between the two, which is why the meth-
ods for robotics generally cannot be applied directly to autonomous vehicles. For example,
geometric methods are unfavorable in scenarios with several obstacles and rule-based methods
easily become too complex because it is impossible to predefine all possible traffic situations
that can be encountered [10].

Robotic path-planning algorithms generally produce non-smooth paths that are not satisfied
by the non-holonomic constraints of a vehicle. Some robots are able to track such paths,
because they are omnidirectional. A car, however, would have to stop repeatedly to reori-
ent its front wheels in order to perfectly track the path with discontinuous curvature. A
non-holonomic system is subject to kinematic constraints that restricts its motion. Car-like
vehicles can only move forward or backward in the direction perpendicular to the rear wheel
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8 Autonomous driving

axle. Simply put, a car is unable to move straight to the side. Also, the turning radius is
bounded due to the mechanical limits of the steering wheel. These non-holonomic constraints
make planning paths much harder.

Another significant difference with path planning for robots is that the lateral and longitudinal
danger distribution around a driving vehicle is not uniform. That is to say: a vehicle should
stay far behind a preceding vehicle, but is allowed to come relatively close to the side of another
vehicle. This is related to the fact that the lateral velocity is very small in comparison with the
longitudinal velocity, especially on highways. Furthermore, the direction of travel is limited
by the road layout.

A global path planner is often used in cooperation with a local planner [19]. Global path
planning is a slow and deliberative process in which long-distance paths are planned to reach
the final destination. The much faster local path planner, on the other hand, is concerned
with short-distance planning, dealing with tasks that are closer at hand, like vehicle stability,
obstacle avoidance, and safety. It is much more reactive and runs in real time. Local path
planning is the topic of this thesis, aiming at generating paths that are consistent with
the kinematic vehicle constraints, on top of having comfortable, safe, and human-driver-like
motion.

Figure 2-1 gives a detailed view of the different technologies in the complicated system of an
autonomous vehicle and how they are related. Roughly said, the overall autonomous system
consists of three different modules, with each their own task to complete. These are:

1. Sensing – To provide data of the environment that can be used for planning;

2. Planning – To generate safe and feasible paths from data from the sensing module; and

3. Control – To operate the vehicle to follow the desired path from the planning module.

The navigation control, which consists of tracking a predefined trajectory, is usually divided
into a hierarchical structure of planning and control [20]. In this scheme, the path planner
uses the data from the perception module to plan a path. The controller than calculates
and applies the required steering, throttle, and/or braking action to follow the desired path.
As was mentioned before, the APF-method is capable of unifying the two modules of path
planning and tracking.

Passive ADAS systems are designed to give auditory, visual, or haptic feedback in order to
inform the driver. Active ADAS approaches are developed to increase safety while working
cooperatively with the driver. Both ADAS technologies have their own trade-offs and advan-
tages. Passive systems are easier to implement because the final responsibility still lies at
the driver, who is required to respond to the given warning. In the case of active systems,
however, the possibility of human errors is eliminated, which comes at the cost of having a
much more complicated system because it needs to have a higher degree of robustness. This
prevents these type of ADAS solutions from being readily taken into production [8].
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10 Autonomous driving

2-2 Driver behavior

A study on human lane-change driving, concludes that the steering wheel angle during the
maneuver resembles a sine function [21]. To be more precise, four different phases can be
discerned in the movement of the steering wheel. In the first phase, the initial steering action
is to the left, after which in phase two the steering returns to its central position. This position
is reached when the heading angle approximately attains its maximum value. In the third
phase, the steering wheel is turned to the right, and the last phase entails the stabilizing part
at the end of the maneuver [22].

The steering wheel angle can be controlled in two ways. In the first way, a motor is directly
coupled to the steering column, that is used to provide the torque. This configuration is used
for steering aid in lane-keeping ADAS systems, for example. The second way is an example
of the so-called ’by-wire’ actuation systems. In these systems, no mechanical connection
exists between the driver input and the actuators, but instead the desired steering angle
is commanded by a digital controller. Steer-, brake-, and throttle-by-wire are examples of
systems that are currently found in production vehicles [8]. Most steering control modules are
developed on the assumption that drivers steer their vehicle in closed-loop fashion. However, it
is commonly accepted that driving does not require continuous error correction or permanent
visual feedback, because sometimes attention is paid to other aspects, that may not be related
to driving [22].

The lateral acceleration and the associated jerk should not exceed 0.12 g ≈ 1.18 ms−2 and
0.24 g/s ≈ 2.35 ms−3, respectively, for a comfortable driving experience [21]. The maximum
values of these dynamic properties are relevant and good indicators for comfort and safety
perceived by the driver [23]. The observed lateral accelerations on highways from [24] were
less than 3.5 ms−2, with most lower than 1.8 ms−2.

The total reaction time of a driver varies from 0.5 to 4 seconds. This large range can be
explained by realizing that the four contributions to the total reaction time greatly differ
from person to person [25]. The four contributions from the so-called PIEV theory are:

• Perception: the time required to transmit the sensation to the brain;

• Intellection: the time required to understand the situation;

• Emotion: the time elapsed during emotional sensation; and

• Volition: the time taken for the final action.

2-3 Highway environment

The structure and relative simplicity of highways offer great opportunity to develop ADAS
for vehicles. Complicated scenarios associated with driving in urban environments, like traffic
lights, stop signs, crossing traffic, and tight turns, are not found on highways. Furthermore,
because of the high vehicle speeds on highways, avoiding collisions is of even greater impor-
tance. While many ADAS systems have been realized, the responsibility for avoiding collisions
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still remains with the driver [16]. The research from the National Motor Vehicle Crash Cau-
sation Survey, conducted from 2005 to 2007 on light vehicles, concluded that driver error was
the most critical factor in 94% of the crashes [11]. So the opportunity and need for increased
driver assistance on highways is both obvious and desired.

The geometric design of a highway is concerned with the dimensions and layout of visible
features such as alignment, sight distance, and radius of curve. The main goal of geometric
highway design is to maximize the comfort and safety of the traffic in operation, while min-
imizing the costs and environmental impacts [25]. Superelevation, also referred to as cant
or banking, is an important aspect in the geometric design of road infrastructures. It is the
ratio of the height of the outer edge of a curved road with respect to the width of the road.
Superelevation is added by raising the outer edge of the road. This is done to reduce or
counteract the effect of the centrifugal force, which has the tendency to make the vehicle turn
over or skid outwards, when driving along a horizontal curve [25].

Table 2-1 shows the minimum horizontal lane curve radii for different design speeds and
cants conform Richtlijn Ontwerp Autosnelwegen 2014 from Rijkswaterstaat [26]. It should
be noted that curves with a radius smaller than 300 m should have a minimum cant of 5.0%
to counteract the centrifugal forces, which explains the Not Applicable (N/A) entries in the
Table. Furthermore, highway curves are designed without discontinuous road curvatures such
that the curvature gradually increases or decreases.

Table 2-1: Minimum horizontal lane curve radii in [m] for different design speeds and cants

Minimum horizontal curve radii in [m]

Different design
speeds in [kmh−1]

Cant in [%] 120 90 70 50

0 4, 000 2, 000 800 300
2.5 1, 500 700 350 N/A
3.0 1, 350 630 315 N/A
3.5 1, 200 560 N/A N/A
4.0 1, 050 490 N/A N/A
4.5 900 420 N/A N/A
5.0 750 350 180 85
5.5 340 175 85
6.0 330 170 85
6.5 165 85
7.0 160 85

2-4 Sensors

Sensors are essential for retrieving meaningful information about the environment. The choice
of sensors developed for autonomous vehicles is big, amongst which the most common are
infrared sensors, ultrasonic sensors, sonar, LiDAR, laser range finder, and camera [15]. Path
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planning in an unknown environment greatly relies on having reliable sensor measurements,
since the positions, directions, and velocities of the surroundings are updated using sensor
data. The difficulty is that these sensors alone are unable to independently provide the
system with all the necessary information. As a result, for example, processing techniques
are necessary to determine the distance to an object through triangulation and to predict the
future motion of moving obstacles, based on current and past observations.

The sensors in this control framework are most important for lane detection. The approaches
that are commonly used to handle this problem are either feature-based or model-based [27].
The former uses image segmentation to detect the lanes. The problem with this method is
that it does not impose constraints on the lane shapes, which may lead to wrong detection
due to occlusion or noise. The model-based method uses mathematical models to represent
the lanes.

TNO has a modified Toyota Prius car at its disposal for real-life experiments on test tracks.
The car is equipped with a rapid control prototyping system that controls the steering angle
with an electric power steering motor. Furthermore, a Mobileye camera is used to obtain line
information from the road. The line representations that are obtained from this are used as a
basis for the path-planning problem. The position of other nearby vehicles is obtained from
the fused camera and radar data. Figure 2-2 shows an illustration of the sensor measurements
of the environment, where measurements 1 to 3 are related to the lane centers and 4 to 6 to
the obstacle vehicle.

Figure 2-2: Sensor measurements of the environment: 1) lateral lane-center distance, 2) lane
heading, 3) lane curvature, 4) longitudinal obstacle distance, 5) lateral obstacle distance, 6)
longitudinal velocity difference

The three differently colored vehicles are interpreted as follows. The gray car depicts the host
vehicle at its initial position, the black car is the host vehicle in its current position, and the
red car is the obstacle vehicle. Furthermore, three different coordinate frames can be seen.
The yellow coordinate frame denotes the global road coordinate frame. It is fixed to the road
in the right lane center of the starting position, with its x-axis aligned in the longitudinal road
direction. The green coordinate frame is the local road coordinate frame. It moves along with
the host vehicle, such that the host vehicle is always located at Xl = 0 m. Again, the x-axis
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is aligned with the road. Finally, the red coordinate frame is the local host vehicle coordinate
frame, of which the axes are fixed to the vehicle Center of Gravity (CoG), coinciding with
the host vehicle lateral and longitudinal axes. In the remainder of this thesis, the subscripts
g, l, and h will be used to indicate that the variables are expressed in the global road, local
road, or host vehicle coordinate frame, respectively. The Mobileye sensor measurements from
Figure 2-2 are represented as follows:

1 →
Yℓc,ℓ − Yh,ℓ

cos (ψℓc,ℓ − ψh,ℓ)
,

2 → ψℓc,ℓ − ψh,ℓ,

3 → 1/2ρ,

4 → ∆Xo,h,

5 → ∆Yo,h,

6 → ∆Vo,h.

(2-1)

It should be noted that the measurements are originally expressed in the local host vehicle
frame, since the sensors are mounted on the host vehicle. However, the first three measure-
ments from Eq. (2-1) are expressed in the local lane frame, since that is how they are used in
the developed algorithm. The last three measurements from Eq. (2-1) are still expressed in
the local host vehicle frame. The symbols from Eq. (2-1) are summarized in Table 2-2.

Table 2-2: Symbols from the Mobileye sensor measurements

Description Symbol Value Unit

Lateral lane center position in local road frame Yℓc,ℓ 0 or 3.5 [m]
Lateral host vehicle position in local road frame Yh,ℓ [m]
Lane center heading in local road frame ψℓc,ℓ 0 [rad]
Host vehicle heading in local road frame ψh,ℓ [rad]
Road curvature ρ

[
m−1

]

Longitudinal distance to obstacle vehicle in host frame ∆Xo,h [m]
Lateral distance to obstacle vehicle in host frame ∆Yo,h [m]

Velocity difference between obstacle and host vehicle ∆Vo,h
[

kmh−1
]

The Mobileye sensor measurements of the road, which are given by number 1 to number 3
from Eq. (2-1), are used to determine the lateral position of the lane center expressed in the
local road frame with the following equation:

Yℓc,ℓ = c2X
2
ℓ + c1Xℓ + c0, (2-2)

with c2 the quadratic coefficient, representing the Mobileye lane curvature through the relation
c2 = 1/2ρ, c1 the linear coefficient, representing the initial lane heading, and c0 the scalar term,
representing the initial lateral lane offset, all expressed in the local road frame. The symbols
from Eq. (2-2) are summarized in Table 2-3.

The Mobileye sensor distance measurements of the obstacle vehicle, which are given by number
4 and number 5 from Eq. (2-1), are used to determine the Inter-Vehicle Distance (IVD)
expressed in the local road frame as follows:

Xo,ℓ = cos (ψh,ℓ) ∆Xo,h + sin (ψh,ℓ) ∆Yo,h,

Yo,ℓ = − sin (ψh,ℓ) ∆Xo,h + cos (ψh,ℓ) ∆Yo,h + Yh,ℓ.
(2-3)
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Table 2-3: Symbols from the lateral lane center position equation

Description Symbol Value Unit

Mobileye lane curvature c2
1
2ρ

[
m−1

]

Initial lane heading in local road frame c1 0 -
Initial lateral lane offset in local road frame c0 0 or 3.5 [m]
Longitudinal position in local road frame Xℓ [m]

Finally, the velocity difference between the host and obstacle vehicle, which is the last mea-
surement from Eq. (2-1), can be calculated in the longitudinal direction of the local road
frame like:

∆Vo,h = Vo cos (ψo,ℓ − ψh,ℓ) − Vh. (2-4)

The symbols used in calculating the obstacle information from the sensor measurements are
summarized in Table 2-4.

Table 2-4: Symbols from the obstacle information calculations

Description Symbol Value Unit

Longitudinal host vehicle position in local road frame Xo,l [m]
Lateral obstacle vehicle position in local road frame Yo,l [m]
Obstacle vehicle heading in local road frame ψo,ℓ [rad]

Obstacle vehicle velocity Vo
[

kmh−1
]

Host vehicle velocity Vh
[

kmh−1
]

2-5 Vehicle maneuvers

Path planning is one of the most challenging tasks in autonomous driving. However, when
driving in a structured environment it can be generalized and simplified by breaking it down
into two basic vehicle maneuvers, namely lane keeping and lane changing [28]. With lane
keeping, the vehicle follows and stays in its current lane by continuously adjusting its distance
and orientation to the lane center.

The single lane change is the most common vehicle maneuver, from which other more complex
maneuvers can be composed, like vehicle overtaking, obstacle avoidance, and road departure.
Lane changing also has a significant effect on the traffic throughput and traffic safety [29].
However, it is not a safe and straightforward maneuver. Statistics show that many accidents
occur during a lane change. This can be explained by the fact the maneuver requires high
driver cognitive workload and skill [30]. Besides, there are many different ways of how to
realize the corresponding trajectory. It is therefore one of the most extensively researched
automated driving operations.

Figure 2-3 shows of a flow chart with the reasoning behind the decision making of which
maneuver to perform for different highway-driving scenarios.
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Figure 2-3: Flow chart of vehicle maneuvers for highway driving

2-6 Collision avoidance

Human error is the main cause for traffic accidents, as confirmed by statistics. According to
the World Health Organization, with more than 1.3 million road accidents fatalities occurring
world-wide every year, it was the 9th leading cause of death in 2004 and expected to be
in the top 3 by 2020 [31]. Among the main causes of traffic accidents are: weather and
road conditions, dangerous traffic participant behavior, and the inability of human drivers to
correctly predict and quickly react to collision threats.

The main requirement for collision avoidance is that the executed maneuver is safe and
comfortable, for which there are two options. These options are illustrated in Figure 2-4.
When a vehicle encounters an obstacle vehicle it can either find an alternative path or adjust
its velocity. The first option is the topic of this research and the second option is handled by a
longitudinal controller. These two options of changing lanes or braking in a comfortable way
can only be performed if the obstacle is sensed at a large distance. In case of an emergency,
when the obstacle is too close, safety considerations predominate over comfort and the vehicle
brakes or steers as much as possible. However, in these circumstances, longitudinal control is
less effective at preventing collisions. Aggressive lateral control is more appropriate in that
case, since a steering maneuver can be completed in a shorter distance than the distance
require for coming to a full stop [32]. However, as was previously mentioned, these emergency
scenarios are not taken into consideration in this research. Changing lanes is the preferred
maneuver, since this will permit the vehicle to continue driving at the same reference speed.
It also disturbs the traffic flow the least. In the limiting case, when a safe lane change is
no longer possible to avoid collision, the ACC module will take over control by reducing the
vehicle speed or by even stopping the vehicle completely in situations of imminent danger.
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Figure 2-4: Two options for collision avoidance: 1) comfortable lane change, 2) normal braking

There are several methods to estimate the required safety spacing if the leading vehicle slows
down or performs a stopping maneuver. If there is no information exchange between the
involved cars, a worst-case assumption has to be made by taking a large safety margin.
Otherwise, if the vehicle class and braking capabilities are communicated, this can be used
to significantly reduce the safety margin. Possibly even to the minimum spacing distance for
longitudinal vehicle following [33].

The ability of a vehicle to avoid collisions is predominantly determined by the friction poten-
tial of its tires. A collision avoidance system typically operates close to the limits of vehicle
handling, which are governed by the nonlinear tire-road friction properties. The environ-
mental conditions that affect these properties may change abruptly, whereas properties like
vehicle mass and inertia vary slowly with time and are therefore more easily estimated. The
development of a friction estimator that functions properly under a wide range of operating
conditions still requires further research [34].

Some simplifying assumptions were made during the design of the APF-algorithm:

• The research is limited to highway scenarios, with low road curvatures, a speed limit of
130 km/h, and lanes of width ℓw = 3.5 m;

• The host vehicle, defined as the vehicle controlled by the developed approach, is equipped
with a steering controller capable of following the commanded steering angle input;

• The longitudinal velocity of the host vehicle is assumed to be constant, which in practice
is regulated by the ACC;

• Only a single obstacle vehicle appears in front of the host vehicle, with a constant speed,
driving in the center of the lane; and

• Reliable host and obstacle vehicle data, like position, speed, heading, etc., is available.
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Chapter 3

Controller design

This Chapter describes the design of the developed APF-controller. It has the following
outline. Section 3-1 explains about MPC, which is the control method that was chosen to be
integrated with the APF-method. After that, Section 3-2 gives the equations behind the used
vehicle model, namely the bicycle model, and discusses the benefits and drawbacks of this
model. Next, Section 3-3 treats the design of the employed PF functions, consisting of the road
PF and the obstacle PF, which are superimposed to yield the final APF. Finally, Section
3-4 talks about how the APF-method is combined with the MPC-method. The governing
equations defining the MPC cost function are presented, which form the fundamental base of
the developed APF MPC method.

3-1 Model predictive control

Dynamic controllers have the advantage of taking the vehicle dynamics into account, either
by directly deriving a control law from the dynamic model or by incorporating some of
the dynamic properties. Optimal controllers compute the desired control input by solving
a Quadratic Programming (QP) problem, which results in a simple control law. However,
most optimal controllers are designed based on a linear model of the system, which limits
their operating range. Adaptive controllers have good robustness against disturbances and
uncertainties. This is especially desirable in applications with unknown system properties or
changing operation conditions. However, their design usually requires a lot of effort, since
the intelligent algorithms need to be trained or programmed with the right knowledge. The
properties of dynamic, optimal, and adaptive controllers are combined in MPC. The method
uses a model-based controller that is involved in the optimization step of the predicted states
of the model to generate the optimal control input. It is similar to adaptive control because it
is capable of adjusting itself to changing conditions. It handles input and output constraints
explicitly by solving an optimization problem at each control interval. These properties make
MPC a suitable candidate for the APF path-planning and -tracking method. The proposed
APF MPC controller is seen in the autonomous vehicle block diagram of Figure 3-1.
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Figure 3-1: Simplified block diagram of autonomous vehicle system with APF MPC controller

In MPC, a model is used to predict the future states of the system. It involves an optimization
step in order to determine the optimal control input to the model, based on optimizing a
certain cost function subject to some constraints. By using a model of the system and its
corresponding constraints, the method guarantees that only those control inputs leading to
feasible trajectories will be generated. The first sample of the optimal control input is then
applied to the system at time t while keeping it constant over the sampling time interval.
The prediction horizon is then shifted, after which a new optimization problem is solved.
This concept is known as Receding Horizon Control (RHC), which essentially is the same
as a repeated optimal control scheme performed. The RHC approach is very attractive for
several reasons. Firstly, the cost function is continuously updated with the latest sensor
measurements of the vehicle configuration, road parameters, and obstacle information [32].
This accommodates for the limited range of the sensors. Secondly, updating and solving
the problem incrementally introduces a feedback-mechanism, offering the possibility to re-
plan the paths to account for sudden changes in the environment [4]. Thirdly, the use of a
limited horizon reduces the computational burden in path planning [35]. Lastly, the method
based on RHC is similar to how humans drive [36]. MPC-controllers are sometimes seen
as adaptive controllers, because of the RHC, which also accommodates for the rejection
of disturbances. Adaptability is a desirable property in order to deal with various road
conditions. Furthermore, an adaptive controller can also compensate for speed variations,
inaccurate vehicle parameters, unmodeled frictions, and other unexpected circumstances. So
the RHC principle also provides MPC with some robustness.
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The application of MPC has been (and is still being) actively researched since there has been
a big increase in the availability of systems that can process complex algorithms [5]. The high
computational demand for solving the optimization problem can be decreased by reducing
the prediction horizon or by taking larger time steps. However, this comes with a loss in
the accuracy and reliability of the controller. A longer prediction horizon, on the other hand,
allows for early, anticipatory actions in the present to avoid dangerous situations in the future.

3-2 Vehicle model

The vehicle model plays a crucial role in two aspects of the controller design. The first aspect
is the control law derivation, which can be based on the mathematical representation of the
vehicle model. The second aspect is the system simulation, where the vehicle model is used
to simulate the vehicle behavior and the performance of the proposed controller.

The vehicle dynamics involve coupled lateral and longitudinal dynamics. It is common to
assume that these dynamics are decoupled in highway-driving applications, where the road
curvature is low, the lateral velocity can be neglected compared to the longitudinal velocity,
and the traffic is usually driving steadily. Furthermore, the steering angles are small and the
longitudinal velocity changes slowly. The coupling becomes more apparent when driving at
high speeds, with high accelerations on tightly curved roads and can therefore no longer be
ignored in these situations. The advantage of decoupling the dynamics is that it allows for
independent design of the lateral and longitudinal controller. The longitudinal controller, in
this case, delivers the speed reference and accelerates or decelerates accordingly, either to
limit the centripetal acceleration or to drive at the maximum allowed speed.

It is crucial to include the vehicle dynamics into the path-planning method in order to generate
feasible paths that satisfy the non-holonomic constraints and the other system limitations of a
vehicle. There exist several vehicle models for simulating different types of driving behavior.
The complexity of these models depends on the purpose of the model and the available
information of the vehicle. This can range from a simple point-mass model to a very detailed
multi-body model. The construction of these models is based on a certain set of assumptions.
The validity of these assumptions in the specific case determine whether using a simple linear
or a complex non-linear vehicle model gives sufficiently reliable results.

The bicycle model, also called the single-track model, is the most popular model to describe
the lateral vehicle dynamics and to design a path-tracking controller. In this model, shown
in Figure 3-2, the left and right tires are assumed to behave equally and are therefore merged
and represented by a single tire at both the front and rear axle of the vehicle. This approach
comes with the weakness of leaving out significant differences in the left and right tire response
during sharp cornering [5].

Additionally, the self-aligning moments of the wheels are neglected. Furthermore, the vehicle
body is assumed to be a rigid body with concentrated mass at the CoG, without suspension
movements. The vertical motion of the vehicle is not of interest and is left out of consider-
ation by assuming a flat road surface [5]. The aerodynamics are also neglected, so the most
influencing external forces come from the interaction between the tire and the road surface.
The deformation of the tires generates forces in both the lateral and longitudinal direction
and are calculated from a non-linear function that is usually linearized.
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Figure 3-2: Transformation from car to bicycle model

The bicycle model describes the lateral dynamics of the vehicle in the local coordinate frame
Oh attached to the host vehicle CoG. The host frame has its axes aligned with the longitudinal
and lateral axis of the host vehicle. The kinematic vehicle model is used to express the motion
in the global road coordinate frame Og that is fixed to the right lane center of the road [37].
The rotation matrix that is a function of the vehicle heading angle ψh is needed for this.
Furthermore, there is the local road coordinate frame Ol that is attached to the right lane
center of the road. Both the global and the local road frame have their x-axis aligned along the
longitudinal direction of the road. These different coordinate frames can be seen in Figure 3-3.

Figure 3-3: Different coordinate frames used in simulation

The governing equations of the bicycle model can be derived by using Newton’s laws of
motion on the free-body diagram of the bicycle model from Figure 3-4. Appendix A gives a
detailed derivation of the linear equations of motion for the lateral dynamics of the bicycle
model. The linearized model is based on assuming linear tire response and using small angle
approximations, which greatly simplifies the equations. Using a nonlinear model gives higher
accuracy at the expense of being more complex.
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Figure 3-4: Free-body diagram of the bicycle model

The vehicle dynamics of the bicycle model are described by two states: the vehicle yaw rate ψ̇h
and the lateral velocity vy of the CoG. These are the most important variables of the lateral
dynamics that form the Degrees of Freedom (DoF) together with the longitudinal velocity of
the vehicle CoG, given by vx. The total velocity of the host vehicle CoG is represented by Vh.
The input to the system is the front wheel steering angle δ. A nonlinear vehicle model can
be derived from the free-body diagram of Figure 3-4. This leads to the following equations,
where the accelerations of the vehicle CoG in the longitudinal, lateral, and yaw direction, v̇x,
v̇y, and ψ̈h, respectively, are nonlinear functions of the tire forces:

m(v̇x − ψ̇hvy) = Fxf
cos(δ) − Fyf

sin(δ),

m(v̇y + ψ̇hvx) = Fxf
sin(δ) + Fyf

cos(δ) + Fyr ,

Izψ̇h = ℓf
(

Fxf
sin(δ) + Fyf

cos(δ)
)

− ℓrFyr ,

(3-1)

Here, m is the vehicle mass, Iz is the mass moment of inertia around the vehicle CoG, and
ℓf and ℓr are the distance from the front and rear axle to the vehicle CoG, respectively.
Furthermore, Fxf

is the longitudinal force at the front tire, and Fyf
and Fyr , are the lateral

forces at the front and rear tire, respectively. Having a proper model for the tire behavior is
important, since the generated tire forces are the main forces acting on the vehicle.

For highway driving, where the speed is high and the road curvature is low, the front wheel
steering angle is small. Therefore, it is reasonable to make use of the small-angle approxima-
tion. The angles that are assumed to satisfy the small angle approximation are: the vehicle
body slip angle β, the front and rear tire slip angles, αf and αr, respectively, and the steering
angle δ. At high speed cornering, the tires must produce significant lateral forces to counter-
act the lateral acceleration. The lateral forces from the front and rear tires are generated as
a result of the tire slip with the road. The tire slip angle is defined as the angle between the
heading of the vehicle and its travel direction, that can be obtained from the velocity vector.
The lateral forces increase with the slip angle. The linearized version of the bicycle model
assumes a linear tire response, which greatly simplifies the dynamic equations. The linear
lateral forces are calculated as follows:

Fyf
= Cfαf ,

Fyr = Crαr.
(3-2)
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A positive slip angle produces a negative lateral force, so the rear and front cornering stiff-
ness Cr and Cf , respectively, are negative. The front and rear tire slip angles, αf and αr,
respectively, are defined as the angle between the heading and the velocity vector of the cor-
responding wheel. The velocity vectors of the rear and front wheel are given by ~vr and ~vf ,
respectively. The tire slip angles are calculated as:

αf = δ − βf = δ −
vy + ℓf ψ̇h

Vh
,

αr = −βr = −
vy − ℓrψ̇h

Vh
.

(3-3)

The linearization of the tire response limits the applicability of the model to vehicle accelera-
tions lower than 0.5 g [8] and lateral slip angles lower than 5 degrees [5]. Outside these driving
conditions, the linear tire model fails to predict the real tire behavior correctly. The nonlin-
ear empirical Pacejka tire model, that uses tire measurements and identification algorithms,
improves the accuracy of the model at high accelerations significantly [38]. In highway driv-
ing scenarios, only emergency maneuvers involving hard braking and sharp cornering require
the use of a nonlinear model. Since these maneuvers are not considered here, the use of the
simplified linear model is justified.

By using a small angle approximation for the vehicle body slip angle β, it is assumed that the
lateral velocity is much smaller than the longitudinal velocity. Furthermore, the longitudinal
velocity is assumed to be constant, which means that v̇x = 0, causing the dynamical model to
only give reasonable approximations when the longitudinal velocity is changing slowly. These
assumptions are justified when using the model in steady-state highway-driving scenarios.

The resulting linear vehicle model is given by:


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δ. (3-4)

The longitudinal velocity vx, which is approximately equal to the host vehicle speed Vh, is a
coefficient in the state matrix of the bicycle model. This vehicle speed is controlled by the
vehicle powertrain which generates the rotational speeds of the wheel axles. Since this speed
appears in the denominator of the fractions in the equations of motion, the bicycle model
becomes invalid at very slow speeds [39]. In this research, it is assumed that the longitudinal
velocity is constant.

The influence of using a motion controller based on the linearized bicycle model was evaluated
in [37] by comparing the outputs of the nonlinear model to the outputs of the linear model.
The simulation results of doing challenging lane-change maneuvers show small differences
between the controller outputs. This means that classical control theory can be applied, since
that is developed for linear systems.
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3-3 Potential field functions

The concept of using APFs for path planning was first introduced by Oussama Khatib [40].
It was originally developed to move some of the slow, high-level planning tasks to the lower,
faster level of control in robotics. This was done by directly coupling sensing to actuation,
which leads to a fast and instinctive response to immediate hazards, by providing a level of
restoring force corresponding to the gradient of the PF [16].

The literature on APFs reports several examples of applications to the control of passenger
vehicles. In many cases, however, the vehicle dynamics were not incorporated. The vehicle was
rather treated as a particle, thereby assuming the vehicle could perfectly track the resulting
trajectories [16]. However, in doing so, the vehicle path became unstable in the high-speed
region where the vehicle dynamics cannot be overlooked [41]. In practice, this has a negative
impact on the tracking performance.

Analogies The effect of using APFs for path planning, control, and obstacle avoidance
resembles the framework of using virtual bumpers around the vehicle for this purpose. An
example to show what this looks like can be seen in Figure 3-5. Here the vehicle behaves
as if imaginary springs and dampers are attached to its CoG [42]. Lane-keeping is achieved
by having the other end of the spring attached to the lane center and obstacle avoidance by
having a virtual bumper around the obstacle. If the vehicle were to deviate from the lane
center, the potential hazard of the field increases. As a result, the controller will provide a
restoring force towards the safe lane center in order to prevent the vehicle from departing the
lane.

Figure 3-5: Spring and damper analogy for the APF method

Another analogy for the APF method is the principle of how an electron moves through
a charged field, where it is being attracted by regions of positive charge and repulsed by
negative charges. The virtual control force in these analogies is applied to the vehicle and can
be realized by controlling the tire forces. The combination of longitudinal forces and steering
can be represented as a virtual force, by creating an equivalent force system that consists of
longitudinal and lateral forces on the vehicle [8].

The result is a simple and computationally favorable method. Furthermore, the method is
capable of assigning different PF to different types of obstacles and road structures, which can
be very useful. Nevertheless, several shortcomings have been identified as inherent problems
of the method [43].
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Drawbacks The approach suffers from getting trapped in local minima, that arise from the
workspace configuration and the selection of weight coefficients for the different PFs [44].
Besides, the method is known to have the disadvantage of yielding oscillatory motion plans
in the presence of multiple obstacles or in narrow passages, where the attractive forces cancel
the repulsive ones when they are almost equal and collinear but in the opposite direction [45].

Luckily, these drawbacks mostly apply to robotics and do not occur for the approach in this
thesis. Robots use the PF to reach a goal location, so getting stuck in a local minimum
is a relevant problem. In this research, the APF is specifically constructed for lateral path
planning and control, leaving the longitudinal control to the ACC system. Therefore, any
minimum in the APF represents an acceptable driving corridor, namely the two lane centers.
Whenever the road is entirely blocked by obstacles, the ACC controller makes sure the vehicle
brakes.

A lateral controller that steers the vehicle along a fixed path typically exhibits large control
effort. Besides, this approach ignores the path smoothness and the importance of strictly
following the planned path. One of the benefits of using PFs is that this concept allows
a driving corridor with some tolerance, that results in more smoothly steering and a much
smaller control effort. This better approximates real driving, since small tracking errors are
accepted by human drivers. Moreover, since obstacles can be naturally incorporated into
the APF method there is no need for explicit collision avoidance trajectory planning and a
connection between planning and control is provided. A controller based on APFs is able to
assess how serious a tracking error is and to adapt its response accordingly [46].

One disadvantage of the APF method is that it usually complicates the analysis of the closed-
loop control system [46]. This motivates the choice for a simple PF, like a quadratic. How-
ever, the gradient of a quadratic function, which is the driving force in the APF method, is
equivalent to a proportional gain, which is not sufficient to stabilize the vehicle that can be
approximated by a second order system.

Design requirements The individual PFs were designed such that each fulfills a particular
role, after adding them together to construct the final APF. The mathematical functions of
the PFs should possess the following properties:

• The PFs should have continuous gradient everywhere, to prevent a discontinuous change
in the system dynamics;

• The PFs are constructed based on the information from the sensors;

• The shape of the PFs should be easily adjustable to account for changing traffic situa-
tions, like varying obstacle vehicle speeds and road curvatures; and

• The calculation of the PF must be efficient.

The mathematical definition of a general PF function is that of a real-valued non-negative
function V (x) : Rm → R, with x ∈ R

m the state of a dynamical system. The function V (x)
represents the artificial energy associated with the dynamical system, where the local minima
correspond to desired equilibrium states of the system. As a rule of thumb, the boundaries
of the PF function go to infinity when corresponding to restricted regions of the state space.
Furthermore, the PF function usually becomes constant for states approaching an irrelevant
region of the state space [47].
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Morse potential field The following Morse PF function was proposed to be used in CACC
by TNO to describe the performance of gap closing, vehicle following, and collision avoidance:

UM (xi) = k1

(

k3 − e−k2 (xi − ce)
)2

, (3-5)

with the following expression for ce:

ce =
log (k3)
k2

, (3-6)

and with:
xi = e1,i + cde2,i, (3-7)

where e1,i is the position error, e2,i is the velocity error of vehicle i, and cd determines the
amount of nonlinear damping [47]. Figure 3-6 shows the shape of PF UM from Eq. (3-5)
together with its Quadratic Approximation (QA) plotted for k1 = 0.3, k2 = 0.042, and
k3 = 15.5. The influence of the tunable parameters k1, k2, and k3 on the shape of the
Morse-like PF function can be derived from looking at the original Morse PF function. That
function, often used in atom physics to describe inter-atomic interaction, is given by:

UM (xi) = aM

(

1 − e−bM (xi − cM )
)2

. (3-8)

The aM defines the depth of the dip, bM governs the width of the potential (the smaller bM ,
the wider the dip), and cM equals the xi where the function should be equal to zero. This
global minimum of the function is located at the desired inter-vehicle distance for platooning.
The gradient of the PF function (see Figure 3-7) is used to derive the nonlinear applied control
gain. The nonlinear control law used for the acceleration input of vehicle i in the platoon is:

qi =
∂UM
∂xi

+ ui−1, (3-9)

with ui−1 the (delayed) acceleration of the preceding vehicle. The feedback control from
Eq. (3-9) in combination with the PF from Eq. (3-5) achieves the desired vehicle behavior.
When the vehicle i approaches the preceding vehicle i − 1, the acceleration is gradually
increased in order to close the gap between the two vehicles. This gradient of the PF drives
the vehicle towards its goal, acting as the attractive part of the function. At the desired
inter-vehicle distance, automatic vehicle following, i.e. nominal CACC, should take place.
When the controlled vehicle comes too close, the strongly increasing PF pushes back by
applying a negative acceleration, which can be seen as the repulsive part of the function that
aims at avoiding collisions. For gap closing, the APF controlled vehicle closes the gap less
aggressively than the vehicle with the PD controller from TNO. This comes at the expense
of a longer maneuver but with more comfortable accelerations. For vehicle following it is
concluded that the APF strategy results in a performance equivalent to a PD strategy. For
collision avoidance, the APF controlled vehicle shows better performance compared to the
PD controlled vehicle. It keeps a safer distance to the leading vehicle and heavily decelerates
in a shorter time [47].
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Figure 3-6: Morse PF UM , with k1 = 0.3, k2 = 0.042, and k3 = 15.5
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Figure 3-7: Gradient of Morse PF UM , with k1 = 0.3, k2 = 0.042, and k3 = 15.5
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The Morse PF proves to be very suitable for designing a controller that integrates multiple
nonlinear control objectives in a single mechanism. These results sparked the original interest
of TNO to further investigate the use of APFs in autonomous driving. Furthermore, the
described Morse PF was the inspiration for the design of the road PF function that will be
treated in the next Section.

3-3-1 Road potential field

The road PF prevents the vehicle from departing the main road and driving too close to the
borders, because of the related high accident risk. The road PF therefore has maximum value
at the road boundaries. Additionally, the slope arriving at this maximum value is maximum
as well, which provides a maximum restoring force, since driving there needs to be avoided
at all cost. Furthermore, a resistance to changing lanes is incorporated by having a peak at
the location of the lane divider line, which encourages the vehicle to stay in its current lane.
However, the vehicle has to be able to overcome this resistance, in case changing lanes is
necessary. This places a certain constraint on the height of the peaks. Furthermore, the road
PF is equal to zero and locally symmetric at the lane center. This guides the vehicle towards
the lane center, which is the preferred position in the absence of other traffic or obstacles.

To summarize: the PF goes to infinity at the locations of the solid lane markings, indicating
the road boundaries, with a local maximum at the location of the (crossable) dashed lane
marking and one local minimum related to the centerline of each of the two lanes. So the
configuration of the road PF is fixed by basing it on the lane center measurements coming
from the Mobileye sensor, which was described in Section 2-4.

The mathematical representation of the road PF is expressed in the local lane frame and
consists of the superposition of two lane PFs, one for each lane. A modified version of the
Morse PF from Eq. (3-8) is used to represent the lane and road PFs. The function for the
total road PF for straight roads is given by:

Ur,sr = Ar

(

1 − e−br(Yh − Yrℓc,sr)
)2

︸ ︷︷ ︸

Right lane PF Urℓ,sr

+Ar

(

1 − ebr(Yh − Yℓℓc,sr)
)2

︸ ︷︷ ︸

Left lane PF Uℓℓ,sr

, (3-10)

The only difference between the right and left lane PF, Urℓ,sr and Uℓℓ,sr, respectively, is the
minus sign in front of br and the different right and left lateral lane center positions:

Yrℓc,sr = 0 m,

Yℓℓc,sr = 3.5 m,
(3-11)

respectively. Figure 3-8 shows the resulting 3D plots of the lane PF for a straight road, with
the right and left lane from the angled view in Figure 3-8a and Figure 3-8b, respectively.
Figure 3-9 shows the resulting 3D plots of the total straight road PF, from the diagonal
and top view in Figure 3-9a and Figure 3-9b, respectively. The colors are a measure for the
potential value of the functions, so the height of the PF, with dark blue corresponding to the
lowest value and yellow corresponding to potential values of 5 and above. This was done to
clearly show the shape around the lane divider. These Figures were created using Ar = 0.5,
and br = 1. Table 3-1 shows an overview of the symbols from the straight road PF function.
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(a) Angled view of right lane PF Urℓ,sr for a straight road

(b) Angled view of left lane PF Uℓℓ,sr for a straight road

Figure 3-8: Right and left lane potential fields Urℓ,sr and Uℓℓ,sr for a straight road, with Ar = 0.5
and br = 1
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(a) Angled view of straight road PF Ur,sr

(b) Top view of straight road PF Ur,sr

Figure 3-9: Straight road potential field Ur,sr, with Ar = 0.5 and br = 1
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Table 3-1: Symbols from the straight road PF function

Description Symbol Value Unit

Straight road PF value Ur,sr -
Right lane straight road PF value Urℓ,sr -
Left lane straight road PF value Uℓℓ,sr -
Road PF depth Ar 0.5 -
Parameter controlling road PF width br 1 -
Longitudinal position host vehicle CoG in local road frame Xh [m]
Lateral position host vehicle CoG in local road frame Yh [m]
Lateral position right lane center straight road Yrℓc,sr [m]
Lateral position left lane center straight road Yℓℓc,sr [m]

The equation for the right lane PF for curved roads is different than the right lane PF equation
for straight roads, Urℓ,sr from Eq. (3-10). It is given by the following equation:

Urℓ,cr = Ar










1 − e

−br sign (Yh − Yrℓc,cr)

√
√
√
√

(

Yh − by
my

− (Xh + δXh)

)2

+ (Yrℓc,cr − Yh)2










2

.

(3-12)

The construction of Eq. (3-12) is explained by using Figure 3-10, which shows the future local
road frame at (Xl, Yl) expressed in the current local road frame. The exponential term after
br in Eq. (3-10) stands for the distance to the right lane center. This distance is also included
in the exponential of Eq. (3-12), but now for the curved road.

Figure 3-10: Curved road PF computation
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The distance to the right lane center of a curved road is calculated as:
√
√
√
√

(

Yh − by
my

− (Xh + δXh)

)2

+ (Yrℓc,cr − Yh)2. (3-13)

Here, Yrℓc,cr is the lateral position of the right lane center of the curved road, given by:

Yrℓc,cr = c2 (Xh + δXh)2 + c1 (Xh + δXh) + c0,rℓc. (3-14)

The following change of variable was made for numerical reasons:

Xh → Xh + δXh = Xrℓc,cr. (3-15)

The reason for this becomes clear from the equation for the slope of the line perpendicular
to the lane center, which is equal to the y-axis of the future local road frame from Eq. (??):

my = −
1

2c2 (Xh + δXh) + c1
. (3-16)

It can be seen that the Xh + δXh term is located in the denominator of the fraction used
in the calculation of of my. The addition of δXh is needed, because otherwise the outcome
of my would go to infinity for Xh = 0. The y-intercept of the line perpendicular to the lane
center is obtained as follows:

by = Yrℓc,cr −my (Xh + δX) . (3-17)

The first term of the first squared term from Eq. (3-13) is obtained by rewriting Eq. (3-17):

Yrℓc,cr − by
my

= Xh + δX, (3-18)

but then with Yh instead of with Yrℓc,cr to cover all the lateral positions Yh. It should be
noted that the c1-term drops out of Eq. (3-14) and Eq. (3-16), because the lateral positions of
the curved lane centers are expressed in the local road frame, which is always aligned with the
road, meaning that c1 is always equal to zero. Finally, the sign (Yh − Yrℓc,cr) term is added
such that the right lane PF goes to infinity on one side of the right lane center Yrℓc,cr and
towards its asymptote on the other side. Finally, the total road PF is constructed from:

Ur,cr = Urℓ,cr + Uℓℓ,cr. (3-19)

The left lane PF for curved roads Uℓℓ,cr can be obtained from Eq. (3-12) by substituting −br
for br and substituting Yℓℓ,cr for Yrℓ,cr, where c0,ℓℓc is used instead of c0,rℓc. Figure 3-11 shows
the resulting 3D plots of the curved road PF, from the diagonal and top view in Figure 3-11a
and Figure 3-11b, respectively. Yellow corresponds to potential values of 5 and above. This
was done to clearly show the shape around the lane divider. These figures were created using
Ar = 0.5, br = 1, c2 = 5e−6 m−1, c1 = 0, c0,rrb = 0 m, c0,lrb = 3.5 m, and δXh = 1.0e−10 m.
Table 3-2 shows an overview of the symbols from the curved road PF function.
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(a) Angled view of curved road PF Ur,cr

(b) Top view of curved road PF Ur,cr

Figure 3-11: Curved road potential field Ur,cr, with Ar = 0.5, br = 1, and c2 = 5e−6 m1
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Table 3-2: Symbols from the curved road PF function

Name Symbol Value Unit

Right lane potential value of curved road Urℓ,cr -
Left lane potential value of curved road Uℓℓ,cr -
Curved road potential value Ur,cr -
Lateral position of right lane center of curved road Yrℓc,cr [m]
Lateral position of left lane center of curved road Yℓℓc,cr [m]
Longitudinal position of right lane center of curved road Xrℓc,cr [m]
Infinitesimal small longitudinal offset δXh 1.0e−10 [m]
Slope of line normal to lane center my -
y-intercept of line normal to lane center by [m]

3-3-2 Obstacle potential field

The construction of the obstacle PF Uo, but more specifically the tuning of its parameters,
is identified as being very important and more complex than the construction of the road
PF. The shape of the obstacle PF can namely be used to appropriately encourage the host
vehicle to perform a lane-change maneuver if it is nearing in on the obstacle vehicle. This
means that the obstacle PF can incorporate the structure and protocol of highway-driving
[48]. The vehicle should change to the left in order to overtake slower preceding vehicles.
So the obstacle PF should force the vehicle into a lane change whenever the distance to the
obstacle vehicle becomes too small. This could also be employed to change lanes to the right
in order to let faster trailing vehicles pass, but this is not necessarily desired behavior. To
achieve this, the obstacle PF is built around the measured position of the obstacle vehicle.
Furthermore, the obstacle PF parameters are a function of the relative and absolute velocity
of the host and obstacle vehicle, and the road curvature. This will be explained in more detail
in Section 4-3 that talks about how the obstacle PF was to tuned in order to obtain good
performance. The position of the obstacle PF is based on the available sensor measurements
of the obstacle. However, these measurements do not include the heading of the obstacle
vehicle. The only information available is the longitudinal and lateral distance between the
obstacle and the host vehicle expressed in the local vehicle frame, given by Xo,h and Yo,h,
respectively, from Section 2-4. So an assumption has to be made regarding the heading of
obstacle, which is done by taking the heading angle of the closest lane center. Additionally,
if the obstacle vehicle has some deviation from the lane center, the location of the obstacle
PF is translated towards that same closest point in one of the lane centers, as illustrated in
Figure 3-12. This is done such that the host vehicle always always approaches the obstacle
PF in the same way, thereby guaranteeing predictable trajectories.

A rectangular shape is probably the best approximation of the outline of an obstacle vehicle.
However, an ellipsoid is better suited to describe the repulsive field around any encountered
vehicle, because it has a less complicated mathematical representation and still describes the
vehicle shape well enough [11]. Furthermore, in order to avoid gradient discontinuities in the
APF, continuous functions are needed to represent the potential values. Therefore, rectangles
are unsuitable candidates and ellipses are chosen instead. It should be noted that close prox-
imity maneuvers can probably not be performed with ellipses, since the approximated shape
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Figure 3-12: Obstacle projection to lane center

lacks accuracy, compared to the true vehicle shape. A two-dimensional Gaussian function,
with the longitudinal and lateral coordinates as its variables, is proposed to fulfill the function
of the obstacle PF. The power to which the exponential of the Gaussian function is raised is
any negative-definite quadratic form. As a consequence, its level sets are ellipses. However,
it is not a convex function, since the used Gaussian is pointing upwards. This means that the
potential value of the obstacle PF increases exponentially when the distances to the obstacle
decreases. When this happens, the optimization will try to find a solution that keeps the
vehicle away from the obstacle. The size of the Gaussian function can easily be extended by
increasing its standard deviation in either direction of its principal axes. This can be used
to model the prediction uncertainty of the moving obstacle. The Gaussian equation for the
obstacle PF is given by:

Uo = Aoe
−
(

aψ (Xh −Xo)
2 + 2bψ (Xh −Xo) (Yh − Yo) + cψ (Yh − Yo)

2
)

, (3-20)

with the rotation parameters defined as follows:

aψ =
cos2 ψo

2σ2
x

+
sin2 ψo

2σ2
y

,

bψ = −

(

−
sin (2ψo)

4σ2
x

+
sin (2ψo)

4σ2
y

)

,

cψ =
sin2 ψo

2σ2
x

+
cos2 ψo

2σ2
y

,

(3-21)

and the obstacle vehicle heading angle:

ψo = arctan(2c2Xo + c1), (3-22)

where the argument of the arctan-function in the last line of Eq. (3-22) is obtained from:

dYℓc
dXℓ

∣
∣
∣
∣
Xℓ=Xo

= 2c2Xo + c1, (3-23)
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which is the derivative of the lateral position Yℓc,l of the lane center of the current lane,
in which the obstacle vehicle is driving, from Eq. (2-2) with respect to Xℓ, evaluated at
Xℓ = Xo. Now, the derivation of the longitudinal and lateral standard deviations, σx and σy,
respectively, is given. These are computed from the Gaussian equation without rotation:

f(X,Y ) = Ao exp

(

−

(

(X −Xo)
2

2σ2
x

+
(Y − Yo)

2

2σ2
y

))

(3-24)

Substituting Y = Yo and into Eq. (3-24) gives the following expression:

f(X) = Ao exp

(

−
(X −Xo)

2

2σ2
x

)

. (3-25)

After that, the next change of variables is applied xσ = X −Xo. Furthermore f(X) is set to
0.01. Rewriting Eq. (3-25) gives the expression for σx:

σx =

√

−
x2
σ

2 ln (0.01/Ao)
. (3-26)

The expression for σy is obtained similarly. In the tuning phase it was discovered that xσ
is a function of the host vehicle velocity Vh, the velocity difference between the obstacle and
host vehicle ∆Vo,h, and the curvature c2. The yσ is chosen as yσ = 3/4 ℓw, with lw the lane
width of 3.5 m. This is done such that the obstacle PF has some overlap with the next lane if
the obstacle vehicle is driving in the lane center, but not too much. The host vehicle should
namely not be influenced by the obstacle PF from vehicles passing in the next lane.

Table 3-3 shows an overview of the symbols from the obstacle road PF function. Figure 3-13
shows the resulting 3D plots of the obstacle road PF, from the diagonal and top view in
Figure 3-13a and Figure 3-13b, respectively. These figures were created using Ao = 1,
(Xo, Yo) = (375, 0) m, xσ = 375 m, and σy = 0.865 m. Table 3-4 shows an overview of
the symbols from the obstacle road PF rotation coefficients.

Table 3-3: Symbols from the obstacle PF function

Description Symbol Value Unit

Obstacle obstacle potential value Uo -
Obstacle PF peak Ao 1 -
First obstacle PF rotation coefficient aψ -
Second obstacle PF rotation coefficient bψ -
Third obstacle PF rotation coefficient cψ -
Longitudinal position obstacle vehicle CoG in local road frame Xo [m]
Lateral position obstacle vehicle CoG in local road frame Yo [m]
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(a) Angled view of obstacle PF Uo

(b) Top view of obstacle PF Uo

Figure 3-13: Obstacle potential field Uo, with Ao = 1, (Xo, Yo) = (375, 0) m, xσ = 375 m,
and σy = 0.865 m
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Table 3-4: Symbols from the obstacle PF rotation coefficients

Description Symbol Value Unit

Heading angle obstacle in local road frame ψo [rad]
Parameter controlling obstacle PF σx xσ [m]
Obstacle PF longitudinal standard deviation σx [m]
Lane width ℓw 3.5 [m]
Parameter controlling obstacle PF σy yσ 2.625 [m]
Obstacle PF lateral standard deviation σy 0.865 [m]

3-3-3 Artificial potential field

The superposition principle of the individual PFs allows for the design of various assistance
systems that can easily be integrated with the APF-method [16]. This is also the case with
the presented design. The final APF is namely constructed from the superposition of the
road PF and the obstacle PF, that take care of lane keeping and road staying, and vehicle
avoidance and passing, Ur and Uo, respectively:

Utot = λrUr + λoUo (3-27)

Figure 3-14 shows the resulting 3D plots of the total APF on a curved road with two obstacles,
from the diagonal and top view in Figure 3-14a and Figure 3-14b, respectively. Yellow corre-
sponds to potential values of 25 and above. This was done to clearly show the shape around
the lane divider. These figures were created using the same values of the previously illustrated
PFs. The positions of the two obstacle PF are given by (Xo,1, Yo,1) = (375, 0.7031) m and
(Xo,2, Yo,2) = (775, 6.5031) m, for the first and second obstacle vehicle, respectively. The
lateral obstacle positions Yo were obtained from:

Yo = c2X
2
o + c1Xo + c0. (3-28)

It should be noted from Eq. (3-27) that both PFs from Figure 3-14 are plotted by being
scaled with their corresponding weights. As a result, the PF values come to lie in the same
range, which is an important instrument in the tuning process of the PF weights, which will
be addressed in Section 4-3. The values used for the road and obstacle PF weights are λr = 1
and λo = 25, respectively.
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(a) Angled view of total APF

(b) Top view of total APF

Figure 3-14: Total artificial potential field of curved road with two obstacles, with λr = 1, Ar =
0.5, br = 1, c2 = 5e−6 m−1, λo = 25, Ao = 1, (Xo,1, Yo,1) = (375, 0.7031) m, (Xo,2, Yo,2) =
(775, 6.5031) m, xσ = 375 m, and σy = 0.865 m
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3-4 Combining APF with MPC

Model discretization The continuous vehicle model needs to be discretized to obtain a
discrete-time model that can be implemented into the MPC-controller. Proper discretization
influences the accuracy of the predicted motion. The Zero-Order Hold (ZOH) method assumes
the input is constant between subsequent time steps, which typically matches lower-level con-
trollers [20]. This method works well for short time steps, since the constant input signal
will then accurately reflect the actual input [49]. The First-Order Hold (FOH) discretization
method assumes linear variation between two time steps, which is a more accurate interpola-
tion that gives better results for long time steps. The sampling time should be chosen small
enough to accurately capture the system dynamics. However, short time steps in combination
with a long prediction horizon can make it difficult to solve the optimization in real-time.

The sampling time and prediction horizon chosen for this MPC-problem are 0.1s and 10 steps,
respectively, yielding a 1s prediction horizon.

To have constant throttle and brake input, and therefore constant vehicle longitudinal speed,
over the prediction horizon of 1s is moderately reasonable, since the longitudinal dynamics
typically have bandwidth less than 1 - 2 Hz [50]. Using a sampling time of 0.1s seems valid,
since the total reaction time of a driver varies from 0.5s to 4s, as was explained in Section
2-2 with the PIEV theory [25]. Consequently, the update rate of the controller is equal to the
MPC sampling time of 10 Hz, which means that any changes in the states, speed, and input
are taken into account within 0.1s. This sampling time leads to good handling of these slowly
varying parameters [50].

The prediction horizon was set by using two guide-lines. The first guideline is that the vehicle
dynamics are fast enough to capture most of the initial vehicle response in the prediction hori-
zon of 1s [50]. The second guideline is that the prediction horizon cannot be made arbitrarily
large, since the prediction errors grow as the model is extended into the future. Because of
the simplified bicycle model, the MPC-predictions are most accurate at the beginning of the
horizon and less accurate when the states move away from the initial conditions.

The bicycle model given by Eq. (3-4) from Section 3-2 is appended with some extra states,
namely Ẍh, Ẋh and ψh. This results in the following continuous-time state equation:












Ẍh

Ẋh

Ẏh
v̇y
ψ̈h
ψ̇h












︸ ︷︷ ︸

ẋ

=












0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 Vh
0 0 0 A11 A12 0
0 0 0 A21 A22 0
0 0 0 0 1 0












︸ ︷︷ ︸

Ac












Ẋh

Xh

Yh
vy
ψ̇h
ψh












︸ ︷︷ ︸

x

+












0
0
0
B1

B2

0












︸ ︷︷ ︸

Bc

u. (3-29)

The bicycle model can be recognized to be included in the state matrix Ac from Eq. (3-29)
as follows:

[

v̇y
ψ̈h

]

=

[

A11 A12

A21 A22

] [

vy
ψ̇h

]

+

[

B1

B2

]

u, (3-30)
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with the entries of the bicycle model state matrix given by:

A11 =
Cf + Cr
mVh

,

A12 = −Vh +
ℓfCf − ℓrCr

mVh
,

A21 =
ℓfCf − ℓrCr

IzVh
,

A22 =
ℓ2fCf + ℓ2rCr

IzVh
,

(3-31)

and the entries of the bicycle model input matrix by:

B1 =
−Cf
m

,

B2 =
−ℓfCf
Iz

.
(3-32)

The extra states from Eq. (3-29) on top of the bicycle model states vy and ψ̇h were added
to incorporate the kinematic equations of the vehicle into the state-space equation. These
kinematic constraints are represented by the next equations:

Ẍh = 0;

Ẋh = Vh cos(ψh + β) ≈ Vh = Ẋh,

Ẏh = Vh sin(ψh + β) ≈ Vhψh,

ψ̇h = ψ̇h,

(3-33)

where the small angle approximation is used in the kinematic expressions for Ẋh and Ẏh:

cos(ψh + β) ≈ 1,

sin(ψh + β) ≈ ψh.
(3-34)

The first line of Eq. (3-33) indicates that the host vehicle has zero longitudinal acceleration,
because it is driving at constant speed. This constant longitudinal velocity is given by Ẋh,
which is simply selected from the state vector x, as can be seen from the second line of
Eq. (3-33). It should be noted that the fact that Ẋh is approximately equal to V is reflected
in the initial state of Ẋh and not in the state matrix of Eq. (3-29). Furthermore, the expression
for Ẏh is a simple trigonometric relation and ψ̇h is selected from x, just as Ẋh. It may not
appear to be very meaningful to have Ẋh = Ẋh and ψ̇h = ψ̇h in the state-space equation.
However, these variables are definitely need in order to include Xh and ψh, the latter of which
is needed for the expression of Ẏ )h and therefore Yh. Having the longitudinal and lateral host
vehicle position, Xh and Yh, respectively, in the state vector will be necessary to calculate the
corresponding PF values. The road and obstacle PFs that were designed in Section 3-3 are
namely functions of the new host vehicle state vector entries Xh and Yh.
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The related continuous-time output equation is defined as:






vy
ψ̇h
ψh






︸ ︷︷ ︸

y

=






0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1






︸ ︷︷ ︸

Cc












Ẋh

Xh

Yh
vy
ψ̇h
ψh












︸ ︷︷ ︸

x

, (3-35)

where vy, ψ̇h and ψh were chosen as the output variables, because these variables will have
reference values assigned to them in the eventual MPC cost function formulation. Next, the
discrete-time matrices Ad, Bd, and Cd are determined by applying the ZOH discretization
method on their continuous-time counterparts Ac, Bc, and Cc, respectively, with a sampling
time of 0.1s. The discrete-time state-space matrices are calculated as follows:

Ad = eActh ,

Bd =
∫ th

0
eAcτdτ ·Bc,

Cd = C.

(3-36)

For a host vehicle speed of Vh = 130 km/h and a sampling time of th = 0.1 s this gives:











vX(k + 1)
Xh(k + 1)
Yh(k + 1)
vy(k + 1)
r(k + 1)

ψh(k + 1)












︸ ︷︷ ︸

x(k+1)

=












1 0 0 0 0 0
0.1 1 0 0 0 0
0 0 1 0.0089 0.1423 3.6111
0 0 0 0.4234 −1.6777 0
0 0 0 0.1027 0.3736 0
0 0 0 0.0066 0.0682 1












︸ ︷︷ ︸

Ad












vX(k)
Xh(k)
Yh(k)
vy(k)
r(k)

ψh(k)












︸ ︷︷ ︸

x(k)

+












0
0

0.2071
0.2133
2.9964
0.1649












︸ ︷︷ ︸

Bd

u(k),

(3-37)

where the notation for Ẋh and ψ̇h is changed to their equivalent discrete-time counterparts
vX and r, respectively. The used values for the host vehicle parameters, which correspond
to the values of the available test vehicle at TNO, are found in Table 3-5. The following
statements can be made about the extended bicycle model from Eq. (3-37):

• The discrete-time open-loop state matrix Ad has five poles: two poles from the vehicle
dynamics, λ1,2 = 0.3985 + 0.4143i and three poles from the added kinematic equations,
λ3,4,5 = 1, showing that the vehicle is stable;

• The poles related to the vehicle dynamics change with changing longitudinal velocity,
making it a linear parameter-varying system;

• The system (Ac, Bc) is controllable, since the corresponding controllability matrix has
full rank; and

• The matrices Ac and Bc depend on the vehicle mass, inertia, and axle cornering stiffness,
that change with load, tire wear, and road and environmental conditions, etc.
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Table 3-5: Parameters of the host vehicle

Name Symbol Value Unit

Vehicle mass m 1625 [kg]

Vehicle yaw moment of inertia Iz 2865.61
[

kgm2
]

Distance between front axle and ℓf 1.108 [m]
Distance between rear axle and vehicle CoG ℓr 1.592 [m]
Wheel base Lwb 1.700 [m]

Negative front tire cornering stiffness Cf −98 389
[

Nrad−1
]

Negative rear tire cornering stiffness Cr −198 142
[

Nrad−1
]

Cost function The discretized model from Eq. (3-36) is used to construct the MPC-controller,
which consists of a cost function that defines an optimization problem of conflicting demands.
It is solved by evaluating the future dynamics over a prediction horizon. Unfortunately, due to
the increase in dimension with every time step, the method is limited to small-order systems.
In order to obtain efficient solutions, the MPC-problem is formulated as a quadratic, convex
cost function with linear time-varying constraints.

By ensuring the optimization is a convex programming problem, standard QP-solvers can be
used. A convex environment is analogous to a marble inside a bowl, which will always settle at
the bottom of the bowl, which can be seen as the global minimum of the convex optimization
problem. Numerical approaches for solving nonlinear and non-convex MPC-problems are
available, but these techniques are not supported by the standard QP-solvers [51]. These
solvers do not need any iterations or initial starting guess, so only a single QP-problem needs
to be solved at each time step [18]. This reduces the speed of the optimization dramatically,
allowing fast solutions with little computational effort and efficient real-time implementation.
These properties make MPC a highly favorable path-planning method with high-frequency
re-planning capabilities.

As always, special attention needs to be paid to the size of the sampling time. If the sampling
time is too short, the computational power may limit the use of a long prediction horizon,
since it will involve too many time steps. Using a small prediction horizon instead, fails to
effectively incorporate future information. A too large sampling time, on the other hand, will
not capture all of the relevant vehicle dynamics.

The cost function can easily be extended by adding different performance qualifying terms.
In this research, it embodies the trade-off between tracking the reference values, ensuring
vehicle stability, and avoiding collisions. This means that the optimization is aimed at mini-
mizing the tracking error between future desired and predicted outputs, the inputs, and the
input increments. The input increments stand for the rate of change of the steering angle,
which is connected to the lateral stability of the vehicle. Abrupt transitions in the generated
trajectory lead to rapidly varying steering angles, which may negatively affect the stability
[52]. Therefore, it is important to have smooth paths. Weighting factors are introduced to
prioritize in the multi-objective cost function, since the cost function objectives are generally
conflicting.

The functionality of obstacle avoidance can be included into the MPC-framework in two
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different ways [53]. The first is to use additional constraints to the state values that define
the safe distance that should be kept with respect to the obstacle. The second way is to simply
change the reference trajectory to overtake the obstacle. The approach used in this thesis, is
to modify the cost function, by using an additional cost associated to obstacle proximity.

In order to incorporate the contribution of the PFs into the cost function, while keeping the
optimization problem quadratic and convex, the nonlinear PFs are converted into quadratic
functions by using the second order Taylor approximation. Appendix B contains the mathe-
matical background of this method and shows some figures that relate to the consequences of
this approximation. Although the QA of the PFs increases the calculation time, the added
time is negligible compared to the time needed for solving a nonlinear optimization problem.

The cost function of the optimization problem over the prediction horizon Np is given by:

J(k) =
Np∑

i=1

(y(k + i|k) − yref(k + i|k))T λy (y(k + i|k) − yref(k + i|k))
︸ ︷︷ ︸

Vehicle dynamics

+

λu (u(k + i− 1|k) − uref(k + i− 1|k))2

︸ ︷︷ ︸

Input

+λ∆∆u(k + i− 1|k)2

︸ ︷︷ ︸

Input increment

+

λrUr (k + 1|k)
︸ ︷︷ ︸

Road potential

+ λoUo (k + 1|k)
︸ ︷︷ ︸

Obstacle potential

,

(3-38)

with the following output weight matrix:

λy =






λvy 0 0
0 λψ̇ 0
0 0 λψ




 . (3-39)

The notation y(k + i|k) from Eq. (3-38) is used to indicate the output at future time k + i
predicted at current time k. The scalar cost function from Eq. (3-38) has the following
equivalent vector notation:

J(k) = (ỹ − ỹref)
T λy (ỹ − ỹref)

︸ ︷︷ ︸

Vehicle dynamics

+ (ũ− ũref)
T λu (ũ− ũref)

︸ ︷︷ ︸

Input

+

∆ũTλ∆∆ũ
︸ ︷︷ ︸

Input increment

+ λrŨr
︸ ︷︷ ︸

Road potential

+ λoŨo
︸ ︷︷ ︸

Obstacle potential

.
(3-40)

The terms with a ∼ on top of them are vectors containing predictions of their future values,
with the exception of Ũr and Ũo, which are scalar terms consisting of the summed predicted
potential values of the road and obstacle PF, respectively. The standard formulation of the
QP-problem is given by:

min
ũ
J = min

ũ
1/2 ũTHũ+ cT ũ subject to Ãineqũ ≥ b̃ineq, (3-41)

with the Hessian matrix H and the linear vector c of the cost function. Since there are no
equality constraints, the Ãeq and b̃eq are defined to be appropriately dimensioned matrices
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Table 3-6: Symbols from the cost function

Description Symbol Value Unit

Cost function value J -
Discrete time instance k -
Summation index i -
Prediction horizon Np 10 -
Output vector y -
Input u [rad]
Input increment ∆u [rad]
Output weight λy -

Lateral velocity weight λvy 0
[(

ms−1
)−1

]

Yaw rate weight λψ̇ 1000
[(

rads−1
)−1

]

Heading angle weight λψ 1000
[

rad−1
]

Input weight λu 10
[

rad−1
]

Input increment weight λ∆ 10
[

rad−1
]

Road PF weight λr 1 -
Obstacle PF weight λo -

equal to zero. Table 3-6 shows an overview of the symbols from the cost function and some
fixed values, that were already determined or obtained in the tuning phase.

Appendix C shows how Eq. (3-40) is written out in detail. The quadratic terms resulting
from that are grouped under H and the linear terms under c:

H = 2
(

C̃B̃
)T

λy
(

C̃B̃
)

︸ ︷︷ ︸

Vehicle dynamics

+ 2λuINp

︸ ︷︷ ︸

Input

+ 2ÃTuλ∆Ãu
︸ ︷︷ ︸

Input increment

+

λr
(

C̃XY B̃
)T

Ũr,2
(

C̃XY B̃
)

︸ ︷︷ ︸

Road potential

+λo
(

C̃XY B̃
)T

Ũo,2
(

C̃XY B̃
)

︸ ︷︷ ︸

Obstacle potential

,

c = 2
(

C̃Ãx(k) − ỹref

)T
λy
(

C̃B̃
)

︸ ︷︷ ︸

Vehicle dynamics

− 2λuũref
T

︸ ︷︷ ︸

Input

+

λr

((

Ũr,1 +
(

C̃XY Ãx(k)
)T

Ũr,2

)(

C̃XY B̃
))

︸ ︷︷ ︸

Road potential

+

λo

((

Ũo,1 +
(

C̃XY Ãx(k)
)T

Ũo,2

)(

C̃XY B̃
))

︸ ︷︷ ︸

Obstacle potential

.

(3-42)

For the derivation of the extended MPC-matrices with the tilde notation from Eq. (3-42), the
reader is referred to Appendix C. The extended inequality matrix Ãineq and corresponding
vector b̃ineq are also derived in that same Appendix.
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Reference values The equations that represent the reference values for the output y and
input u from Eq. (3-40) are given next. The output reference at time instance k+ 1, given by
yref(k + 1|k), consists of the reference values for the lateral velocity vy, the yaw rate r, and
the heading angle ψ of the host vehicle at time instance k + 1. This is denoted by:

yref(k + 1|k) =






vy,ref(k + 1|k)
rref(k + 1|k)
ψref(k + 1|k)




 . (3-43)

The output reference extended up to the prediction horizon Np is given by:









yref(k + 1|k)
yref(k + 2|k)

...
yref(k +Np|k)









︸ ︷︷ ︸

ỹref

=






















vy,ref(k + 1|k)
rref(k + 1|k)
ψref(k + 1|k)
vy,ref(k + 2|k)
rref(k + 2|k)
ψref(k + 2|k)

...
vy,ref(k +Np|k)
rref(k +Np|k)
ψref(k +Np|k)






















. (3-44)

The lateral velocity reference from Eq. (3-43) is defined in the following way:








vy,ref(k + 1|k)
vy,ref(k + 2|k)

...
vy,ref(k +Np|k)









︸ ︷︷ ︸

ṽy,ref

= Vh sin (βss)









1
1
...
1









, (3-45)

with the steady-state body slip angle for driving along a curvature ρ at velocity Vh [32]:

βss =

(

ℓr −
mℓfV

2
h

LwbCr

)

ρ, (3-46)

with the path curvature ρ being equal to 2c2, which is the lane center curvature, assuming
the host vehicle is keeping to its lane. The path curvature is calculated analytically from:

ρ =

d2Xh

dY 2
h

(

1 +
(
dXh

dYh

)2
) 3

2

. (3-47)

The yaw rate reference from Eq. (3-43) for driving along a curvature ρ at velocity Vh is [32]:








rref(k + 1|k)
rref(k + 2|k)

...
rref(k +Np|k)









︸ ︷︷ ︸

r̃ref

=
ρVh

cos(βss)









1
1
...
1









. (3-48)
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The vehicle heading angle reference from Eq. (3-43) is calculated as:








ψref(k + 1|k)
ψref(k + 2|k)

...
ψref(k +Np|k)









︸ ︷︷ ︸

ψ̃ref

= arctan (2c2Xp + c1), (3-49)

with the predicted longitudinal host vehicle positions given by:

Xp = Xh









1
1
...
1









+ Vh cos (ψh + βss)









th
2th
...

Npth









. (3-50)

The input reference vector, representing the steering wheel angle δ, is defined as follows:








uref(k|k)
uref(k + 1|k)

...
uref(k +Np − 1|k)









︸ ︷︷ ︸

ũref

=

(

Lwb
R

+
mg

Lwb

(

ℓr
Cf

−
ℓf
Cr

)

ay
g

)









1
1
...
1









, (3-51)

which is the steady-state cornering solution for the steering wheel angle for driving along a
curve with radius R.

Constraint equations The constraints of the optimization problem are set up to consider
the vehicle limitations, the aspects of human driving behavior, and the roadside boundaries.
These constraints can be easily integrated into the optimization, as long as they are written
in terms of the optimization variable, which is the system future input vector ũ.

The following set of output constraints is used, so for the lateral host vehicle position Yh, the
lateral velocity vy, the yaw rate r, and the vehicle heading ψh:

Yrrb ≤ Yh ≤ Yℓrb,

−vy,max ≤ vy ≤ vy,max,

−rmax ≤ r ≤ rmax,

ψmin ≤ ψh ≤ ψmax,

(3-52)

The lateral positions of the road boundaries, Yrrb and Ylrb from Eq. (3-52), are given by:

Yrrb = c2,rrbX
2
p + c1,rrbXp + c0,rrb,

Yℓrb = c2,ℓrbX
2
p + c1,ℓrbXp + c0,ℓrb,

(3-53)

with c2, c1, and c0 as defined previously in Section 2-4, for both the right and left road
boundary, denoted by the subscripts rrb and lrb, respectively.
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The predicted longitudinal host vehicle positions Xp are obtained from Eq. (3-50). The
maximum lateral velocity from Eq. (3-52) is calculated as:

vy,max = Vh sin (βmax) (3-54)

with the maximum body slip angle βmax taken as 3/180 π rad such that the small angle approx-
imation remains valid. The maximum vehicle yaw rate rmax from Eq. (3-52), representing the
lateral stability, is defined from the maximum lateral acceleration ay,max and the longitudinal
host vehicle speed Vh:

rmax =
ay,max

Vh
, (3-55)

with ay,max = 4 ms−2. Instead of having ay,max in the numerator of rmax, other yaw rate
constraints expressions use µg, with µ being the tire-road friction coefficient and g the gravity
constant. The friction coefficient µ is approximately 0.4 for wet roads and 0.7 for dry roads
[54]. Combined with a g of 9.81 ms−2 this gives 3.92 ms−2 and 6.87 ms−2, respectively. So
using ay,max = 4 ms−2 is similar to using the friction coefficient µ = 0.4, corresponding to
driving on a a wet road. This puts a tighter constraint on the maximum allowed yaw rate,
by also guaranteeing that the vehicle response is stable for driving on wet roads.

The maximum lane-change angle ψℓc equal to 5/180 π rad is determined from looking at the
attained vehicle heading angles while changing lanes on a straight road. This ψℓc is combined
with the heading angle of the current lane at the predicted longitudinal positions Xp to yield
the minimum and maximum vehicle heading, ψmin and ψmax, respectively, from Eq. (3-52):

ψmin = arctan (2c2Xp + c1) − ψℓc,

ψmax = arctan (2c2Xp + c1) + ψℓc.
(3-56)

The steering actuator has mechanical limits that put bounds on the control input and variation
of the control input, also called the control increment. The physical limit for the front wheel
steering angle of a traditional vehicle is commonly taken as |δmax| = 30° [55]. However, the
maximum steering wheel angle input is calculated from:

umax =
Lwbay,max

V 2
h









1
1
...
1









, (3-57)

by using the maximum allowable lateral acceleration ay,max. This leads to the following input
inequality equation:

− umax ≤ u ≤ umax. (3-58)

Appendix C describes how these constraint equations are included into the optimization.

It should be remarked that the presented algorithm does not take into account the dynamics
of the moving obstacles in the MPC cost function. Only the current position measurements
of the obstacle vehicle are substituted into the function of the obstacle PF. If the sampling
time is small enough, though, this does not pose any problem. This is similar to the human
visual system not being able to perceive separate images as long as the displayed frame rate is
high enough [17]. However, it might improve the performance of the algorithm if the position
of the obstacle PF is also properly extended into the future.

Master of Science Thesis E.Y. Snapper



48 Controller design

Initial states The initial host vehicle states defining the initial conditions are given by:

Vx,0 = V0 cos (ψ0 + β0),

X0 = 0,

Y0 = c2X
2
0 + c1X0 + c0,

vy,0 = V0 sin (β0),

r0 = 2c2V0,

ψ0 = arctan (2c2X0 + c1),

(3-59)

with the initial body slip angle β0 equal to the steady-state body slip angle βss from Eq. (3-46).
These are the initial conditions from which the APF MPC optimization algorithm is started
at each time step iteration of the simulation, which is addressed in the next Chapter.
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Chapter 4

Simulations

This Chapter analyzes the performance of the developed APF MPC controller. The outline is
as follows. Section 4-1 treats the theoretical background of the lateral controller from TNO.
Next, Section 4-2 describes the properties of QP-problems and the available MATLAB functions
to solve the related quadratic optimization. Section 4-3 gives some insight into the tuning
process of the APF MPC controller, which can be done through the cost function weights and
the shape of the PFs. After that, Section 4-4 presents the simulation results and discusses
some of the encountered challenges and limitations of the proposed APF-method. Finally,
Section 4-5 offers some thoughts on future experimental testing. Unfortunately, no real-world
tests could be done during this graduation research.

4-1 TNO controller

The lateral controller from TNO is used to compare its performance with the performance
of the APF MPC controller in simulation. Reference [56] gives the theoretical analysis and
results of simulations and vehicle experiments of the generic lateral controller. It was shown
to be able to handle different modes of lane keeping and vehicle following. The controller
switches between using a feedback control loop based on either path or single point preview
information, depending on the available measurements. For example, if the lanes can be
detected by the on-board camera, path information is available. From this information, the
lateral and heading error of the vehicle with respect to the center of the lane can be obtained.
The single point preview following approach is used in vehicular platooning, when the line of
sight of the camera is blocked by the preceding vehicle and lane information is unavailable.
Since platooning is not the aim of this thesis, this control method is excluded from the
comparison.

The objective of the lateral controller is to let the vehicle CoG track the planned path.
This means that the vehicle either keeps to the center of the lane or performs a lane-change
maneuver, when driving behind a slower obstacle vehicle. The controller aims to minimize the
lateral path deviation and simultaneously tries to align the longitudinal axis of the vehicle
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with the tangent of the path. However, it should be noted that this second objective is
generally infeasible, since the direction of the vehicle’s velocity Vh rarely coincides with its
longitudinal axis, due to the body sideslip βh. Nevertheless, this objective is commonly used,
since no good methods exist to accurately obtain the sideslip angle.

The graphical representation of the tracking errors from the two control objectives are depicted
in Figure 4-1. The lateral position error ye is defined as the distance from the vehicle CoG to
the path, perpendicular to the vehicle orientation. The heading angle error ψe is defined by
the difference between the actual heading of the vehicle ψh and the desired path heading angle
ψp, both expressed in the global coordinate frame Og. A steady-state heading angle error will
remain, equal to the steady-state body sideslip angle, because it is the vehicle velocity vector
and not its longitudinal axis that should be parallel to the tangent of the path.

Figure 4-1: Graphical representation of tracking error definitions used by TNO

The control input from the path controller consists of a feedback and feedforward steering
angle, δfb and δff , respectively. The system can be stabilized by using feedback control only,
but to remove the undesirable steady-state errors in the corners for good tracking performance,
appropriate feedforward is applied as well. The control law is given by:

δ =
2
(
Lwb + ηV 2

h

)

d2
LA

(ye + xLAψe)
︸ ︷︷ ︸

δfb

+
(

Lwb + ηV 2
)

ρ

︸ ︷︷ ︸

δff

,

=
(

Lwb + ηV 2
h

)
(

ρ+
2
d2
LA

(ye + xLAψe)

)

,

(4-1)

with the understeer gradient η that is calculated as follows:

η =
mg

Lwb

(

ℓr
Cf

−
ℓf
Cr

)

. (4-2)
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Both xLA and dLA denote the distance to the virtual look-ahead point, with xLA being
measured from the vehicle CoG and dLA from the rear axle. They are related by:

dLA = ℓr + xLA = ℓr + VhtLA, (4-3)

where tLA is the look-ahead time. The applied feedforward term consists of the steering angle
solution of the bicycle model for driving a curve with radius R at a speed Vh in steady-state
conditions [56]. The advantage of the path controller is that it uses a clear error definition with
a lateral tracking error that is regulated to zero. Furthermore, only one tuning parameter is
used, namely the look-ahead time, which limits the tuning effort considerably. The described
lateral controller from TNO needs to have a reference curvature ρ from the planned path, as
can be seen from Eq. (4-1). Quintic polynomials are used for this, which can appropriately
represent the vehicle trajectory with its six DoF. The DoF are given by the six coefficients
of the fifth order polynomial function:

f(X) = α0 + α1X + α2X
2 + α3X

3 + α4X
4 + α5X

5. (4-4)

The drawback of using a single quintic polynomial to generate lane-change paths is that it
results in a point-symmetric lateral velocity profile. This does not agree with human driver
behavior, where the lateral acceleration is higher at the beginning of the lane change when
steering out of the initial lane and lower when steering back into the target lane [23]. The
coefficients αi can be determined uniquely from the following six boundary conditions:

f(X0) = Y0, f(X1) = Y1,

df

dX

∣
∣
∣
∣
X0

= Y ′
0 ,

df

dX

∣
∣
∣
∣
X1

= Y ′
1 , (4-5)

d2f

dX2

∣
∣
∣
∣
∣
X0

= Y ′′
0 ,

d2f

dX2

∣
∣
∣
∣
∣
X1

= Y ′′
1 ,

where (X0, Y0) is the initial position of the host vehicle and (X1, Y1) the desired final position.
The first and second order position derivatives make sure that the trajectory has a smooth
transition at the initial and final position. The second order derivative boundary condition is
directly related to the curvature of the path and therefore also to the centripetal acceleration.
Overall, curvature continuity is an important requirement to smoothly follow the planned
path. The curvature at the starting position of the path should be equal to zero [52]. The
curvature at the end of the trajectory should be equal to the curvature of the destination lane.
The boundary equations from Eq. (4-5) are used to formulate the matrix equality constraints:















1 X0 X2
0 X3

0 X4
0 X5

0

0 1 2X0 3X2
0 4X3

0 5X4
0

0 0 2 6X0 12X2
0 20X3

0

1 X1 X2
1 X3

1 X4
1 X5

1

0 1 2X1 3X2
1 4X3

1 5X4
1

0 0 2 6X1 12X2
1 20X3

1















︸ ︷︷ ︸

AX















α0

α1

α2

α3

α4

α5















︸ ︷︷ ︸

xα

=















Y0

Y ′
0

Y ′′
0

Y1

Y ′
1

Y ′′
1















︸ ︷︷ ︸

bY

. (4-6)
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where AX represents the boundary condition matrix in Eq. (4-6), xα the polynomial coeffi-
cient vector, and bY the vector with boundary values. The polynomial coefficients are then
obtained, under the assumption that AX is non-singular, with the following calculation:

xα = A−1
X bY , (4-7)

which fixes the polynomial trajectory from Eq. (4-4). The curvature of this planned trajectory
is then passed to the lateral TNO controller that commands the steering angle to minimize
the tracking error, according to Eq. (4-1)

4-2 Quadratic programming

Convex optimization problems are much easier to solve than general nonlinear optimization
problems. The explanation for this lies in the fact that convex functions do not contain local
minima, but have only one global minimum, whereas nonlinear functions can have both. This
special property of convex functions can be employed to efficiently solve QP-problems that
are also convex. A quadratic function is only convex if it is positive semi-definite. The same
applies to n-dimensional quadratic functions, where a positive semi-definite Hessian matrix is
a sufficient (but not necessary) condition to guarantee convexity. Checking this condition can
be done by looking at the eigenvalues of the Hessian matrix H from the quadratic function
xTHx. The necessary and sufficient condition for H to be positive semi-definite, is that all
its eigenvalues are non-negative. Effectively, this means the quadratic function is greater or
equal to zero everywhere. The cost function is formulated as a convex quadratic function,
since by doing so, it is non-negative for any given input vector ũ, which is the unique property
that allows for efficient solutions.

Every symmetric matrix with real entries has real eigenvalues. The formulation of the Hessian
matrix, however, does not guarantee that it is symmetric. Luckily, any asymmetric matrix H
from the quadratic equation xTHx+ xT c can be made symmetric with the next operation:

Hsym = 1/2
(

H +HT
)

. (4-8)

This means that every Hessian matrix can be converted into a symmetric matrix with real
eigenvalues. If additionally these eigenvalues are greater than (or equal to) zero, the Hessian
is also positive (semi)definite, which will result in fast optimization solutions.

MATLAB solvers The quadprog function from MATLAB [57] is a solver that finds the minimum
for the QP-problem specified by the following formulation:

min
x

1/2xTHx+ cTx such that







Aineqx ≤ bineq,
Aeqx = beq,

xmin ≤ x ≤ xmax.
(4-9)

The syntax to call the function to solve the preceding problem is:

x = quadprog(H,c,Aineq,bineq,Aeq,beq,xmin,xmax,x0,options).
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The Hessian matrix H represents the quadratic in the cost function and must be positive
definite for there to be a finite minimum. The vector c stands for the linear term in the
cost function. The quadratic optimization is solved by starting from the initial solution x0.
The problem is subject to restrictions, where the matrix Aineq and the vector bineq come
from the linear equality constraints, the matrix Aeq and beq come from the linear inequality
constraints, and xmin and xmax are lower and upper bound vectors, respectively. The input
argument option is used to set specific solver options, for example which of the two algorithms
is used in solving the problem.

The interior-point-convex algorithm tries to arrive at the solution by following a path that
stays within the constraints. It removes redundancies and solves for the easy components
first, in order to simplify the problem. The trust-region-reflective algorithm is a subspace
trust-region method based on the interior-reflective Newton method. It employs the method
of preconditioned conjugate gradients to approximately solve a large linear system iteratively.

The output argument is the solution vector x that minimizes the problem subject to all bounds
and constraints. The quadprog can both handle non-convex and convex problems. In the
former case, x can be a local minimum, and in the latter case, x is a global minimum.

The mpcqpsolver function from MATLAB [58] is another QP-solver. The main difference with
quadprog is that it uses the so-called KWIK algorithm that was built to solve online QP-
problems in a more efficient way. The biggest advantage of using mpcqpsolver over quadprog,
apart from its computational efficiency, is its support of C-code generation with MATLAB Coder.
This is very useful since it allows the function to be used inside a MATLAB Function block for
simulation in the Simulink environment. The syntax for using this function is:

[x,iA] = mpcqpsolver(Linv,c,Aineq,bineq,Aeq,beq,iA0,options).

The most important difference with quadprog, is that instead of using the Hessian matrix H

directly, the mpcqpsolver uses the inverse of the lower-triangular Cholesky decomposition of
H, denoted by Linv. It is computed with the following MATLAB command [59]:

[L,p] = chol(H,’lower’).

The Cholesky decomposition of a matrix A is given by:

A = LL∗, (4-10)

where L is the lower triangular matrix with real and positive diagonal entries output from
chol, and L∗ denotes the conjugate transpose of L. For the chol function to work, and the
KWIK algorithm, consequently, it is required that the Hessian is positive definite. This can
be checked by looking at the output p, which is equal to zero when H is positive definite,
or equal to a positive integer when it is not. The Cholesky decomposition is approximately
twice as efficient as the LU-decomposition, making it very useful for solving systems of linear
equations in numerical solutions [60]. Another difference with quadprog is that the inequality
constraints used here are not in the form of Aineqx ≤ bineq, but rather the inverted version of
this, namely Aineqx ≥ bineq. The former can easily be converted into the latter, by switching
the inequality sign by simply multiplying the left and right side of the equation by minus
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one. This leads to a different expression for both A and b. Furthermore, no lower and upper
bounds appear explicitly as input arguments. However, these can still be included into the
optimization problem by integrating them into A and b, which is done in Appendix C

The input argument iA0 represents the initial active inequalities. Active inequalities are in-
equalities that have their equality part of the inequality satisfied. To ’cold’ start the solver,
all inequality constraints are defined as inactive. The active inequalities at the found solution
x are given by the output iA. The initial guess of KWIK is the analytic solution to the un-
constrained MPC-problem. If this solution satisfies the constraints, it is the optimal solution
and the solver terminates. Otherwise, KWIK uses an efficient, numerically robust strategy
to find the inequality constraints that are satisfied at equality. A ’warm’ start is used where
the active constraints of the previous step are the initial guess in the next step.

The advantage of using quadprog as a solver, is that it is even capable of solving non-
convex optimization problems. Since real-time implementation is only possible with the
mpcqpsolver, due to its superior efficiency and support of C-code generation, the remainder
of this report only elaborates on the approach and results of using that specific solver.

4-3 Weight tuning

Initially, tuning the APF MPC controller was a lengthy and complicated process. This can
be attributed to the numerous adjustable parameters in the cost function.

First, the weight factors that appear directly in the cost function can be tuned. The most
important requirement that must be satisfied by all weight factors, is that they must be
greater than (or equal to) zero, which will result in a cost function with a Hessian matrix
that is positive (semi)definite. Otherwise, the mpcqpsolver will not work. Increasing the
weights will result in higher contributions to the cost function by the terms associated with
the respective weights. These particular terms will be minimized first, if admissible by the
constraints. This can be used to set priorities in the controller performance. For example, if
tracking the reference value is more important, the corresponding weight should be set to a
higher value. The weights that determine the importance of minimizing any deviations from
the reference values are given by the yaw rate, heading angle, and input signal weights.

Secondly, the shape of the PFs can be modified by changing the values of the PF parameters.
It is difficult to identify the parameters of each PF in a systematic way for the dynamic
highway environment. The parameters of the road and obstacle PF need to be carefully
selected to obtain the appropriate desired vehicle trajectories. The heights of the PFs should
be calibrated such that lane keeping is preferred in the absence of an obstacle in the same
lane. This means that the obstacle PF cannot extend too far laterally. Otherwise, the host
vehicle would also be affected by the obstacle PF if it is driving in the next lane. Whenever
the vehicle closes in on an obstacle, the PF in between the lanes should be low enough to
allow crossing over to the next lane. The resulting lane-change maneuver should furthermore
take place in a manner qualitatively similar to how a human driver would operate the vehicle.
Scaling the height of the road or obstacle PF relative to its valleys corresponds to a bigger
dominance in the cost function which results in greater lane-keeping or obstacle-avoiding
action, respectively [16].
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The MPC weight factors were chosen through repeated tuning. The main difficulty was to
find an adequate combination of weights. After some time, however, the weights could be set
by using the heuristic knowledge gained from experience. The values for the PF weights λr
and λo were chosen such that the range of the road and obstacle PF is comparable, as seen
by the diagonal view of the total APF from Figure 3-14a. The values for the weight λo were
determined at c2 = 0 km−1 and were kept fixed for all other values of c2 to simplify the tuning.
Whenever the host vehicle speed Vh, the speed difference between the obstacle and host vehicle
∆Vo,h, or the curvature of the road c2 changes, however, the obstacle PF parameter xσ needs
to be changed accordingly. Higher values for xσ need to be selected for higher ∆Vo,h because
then the obstacle PF needs to have a larger range in the longitudinal direction. This can be
used to let the host vehicle initiate its lane change at the right Time To Collision (TTC). The
TTC is defined as the time it would take for two vehicles to collide if they would continue
to drive at their current speed on their current path. The lane change should be initiated
at TTC = 5s. Five seconds after lane-change initiation, the host vehicle passes the obstacle
vehicle, having already reached the center of the left lane. Furthermore, the host vehicle
should have crossed the lane divider halfway through the lane-change maneuver. These TTC
instances used as indicators in the lane-change tuning process are seen in Figure 4-2.

TTC tuning for host vehicle lane-change response

Figure 4-2: TTC-instances for tuning the host vehicle lane change, with Vh = 120 kmh−1,
∆Vo,h = −20 kmh−1, and c2 = 5e−6 m−1

The tuning results for the obstacle PF weight λo and parameter xσ are seen in Appendix E.
The considered values for Vh range from 20 to 130 km/h, for ∆Vo,h from −5 to −20 km/h.
The considered values for c2 are ± [0, 1e−6, 5e−6, 1e−5, 5e−5, 1e−4, 2.5e−4] m−1. A positive
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c2 corresponds to a left-curving road and a negative c2 to a right-curving road. The road
curvature of c2 = 2.5e−4 m−1 corresponds to the minimum horizontal road curve radius
of 4, 000 m for the design speed of 120 km/h without cants from Table 2-1. These values
were chosen to have good coverage of the road scenarios that are possibly encountered. The
obstacle PF λo and xσ were determined off-line and are stored in a Simulink look-up table.
The look-up table linearly performs a linear interpolation to determine the required obstacle
PF weight and parameter, in case the attained values for Vh, ∆Vo,h and c2 fall in between the
fixed discretization points of the look-up table. It is desirable to perform the tuning process
in a more structured way in order to avoid inaccuracies and errors.

The main challenge of tuning the APF MPC is that the rotated obstacle PF can block the
other lane, which results in an overtaking maneuver from the wrong side. This becomes more
evident at roads with high curvatures when driving at large speed differences with respect to
the obstacle vehicle. In these cases, the obstacle PF should have a large longitudinal range,
extending far to the back, which is governed by xσ. However, due to the curving road and the
PF rotation angle being equal to the direction of the lane center, this may block the correct
lane-change side. It remains to be discussed whether a lance change is even desirable in
these circumstances. Figure 4-3 shows the described scenario, with the plotted APF being an
exaggerated version of the actual APF, with xσ = 130 m instead of 32 m, to better illustrate
the scenario. A different rotation angle for the obstacle PF could be used, like the angle
between the line connecting the obstacle and host vehicle CoGs. However, this would involve
the use of an additional calculation step, so the heading of the current lane is still being used.
In that way, the PF points in the direction of the lane, which is the most logical situation.

Figure 4-3: Angled view of total APF with obstacle PF blocking the left lane, with Vh =
120 km/h, ∆Vo,h = −20 km/h, c2 = −0.00025 m−1, xσ = 130 m, and σy = 0.865 m.
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4-4 Results

The developed Simulink model is used to analyze the performance of the control algorithm
from Chapter 3 in a predefined environment without uncertainties in the vehicle parameters,
road layout, or sensor measurements and without any disturbances. TNO already had an
existing Simulink model to test their lateral controller, but this model was limited to straight
roads only. Since the TNO Simulink model was not able to do simulations on curved roads,
it had to be extended in order to also support curved roads. The used simulation model
consists of three main subsystems. The World Model imitates the vehicle sensors and
defines the simulation environment, like the obstacle vehicle dynamics and the road layout.
The Host Vehicle subsystem contains the host vehicle dynamics, like the drive line dynamics,
the bicycle model, and the kinematic coordinate transformations. The Control System is
where the host vehicle is controlled, either by the APF MPC controller or the TNO controller.
The obstacle vehicle is always controlled by the TNO controller and is forced to follow and
stay in its lane. The described Simulink model and its subsystems are found in Appendix D.

Next, the lane-change simulation results are discussed. The difficulty with evaluating the
quality of a lane change is that there are many possible optimization parameters for the
trajectory of a single lane-change maneuver. Moreover, many studies use different definitions
for the initiation and completion of the lane change. Reference [61] defines the lane-change
initiation as the moment the vehicle begins to move laterally. The maneuver is completed
once the vehicle CoG has reached the next lane. Using these definitions, the mean duration
of a lane change on the highway was found to be 6.3s with a standard deviation of 2.0s. Once
a certain trajectory is driven, its quality can be evaluated on two main aspects: the risk of
collision and the comfort level of the maneuver. The first aspect is related to the position,
velocity, and heading of the host vehicle with respect to the avoided obstacle vehicle. The
second aspect is related to the mean and maximum value of the lateral acceleration and jerk.
The characteristics used to evaluate the lane-change maneuvers are given by:

1 Rise time tr in [s];

2 Lane-change duration td in [s];

3 Settling time tse in [s];

4 Longitudinal IVD dx in [m];

5 Lateral IVD dy in [m];

6 Overshoot do in [m];

7 Lateral acceleration ay in [ms−2];

8 Lateral jerk jy in [ms−3].

These lane-change characteristics are also shown graphically in Figure 4-4. Other lane-change
characteristics that cannot be seen in Figure 4-4 are the simulation time and the control effort.
The simulation time is the total time it takes for the simulation to run, which is used as
measure for the computational demand of the algorithm. The control effort is represented by
the steering wheel input, which involves a trade-off for the lane-change performance. A large
steering input causes a large lateral accelerations, associated with discomfort and instability.
On the other hand, a small steering input results in a lane change with long duration, which
is also undesirable. However, the control effort was eventually left out because its mean value
is almost equal to zero in all simulations. This indicates that the vehicle steers equally to the
left as to the right.
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The lane-change initiation is defined as the first moment the host vehicle deviates from the
lane center by 0.1 m. All lane-change time characteristics are determined from this moment.
The rise-time instance is when the host vehicle crosses the lane divider. The lane change is
completed when the host vehicle passes the center of the new lane, from which the duration
is determined. The settling-time instance is defined as the first moment the host vehicle
stays within a 0.1 m margin from the new lane center. These time instances are illustrated
in Figure 4-5 for a simulation with Vh = 120 kmh−1, ∆Vo,h = −20 kmh−1, and c2 = 5e−6
m−1. The longitudinal IVD is equal to the IVD at the lane-change initiation. The lateral
IVD is equal to the IVD when both vehicles are passing. The overshoot is the maximum
outward deviation from the new lane center. The mean lateral acceleration is calculated from
the lateral accelerations during the lane change by using ay = ρV 2

h . The mean lateral jerk is
then obtained from the time derivative of the lateral accelerations.

Figure 4-4: Characteristics to evaluate the lane-change performance: 0) lane-change initiation,
1) rise time: tr, 2) lane-change duration: td, 3) settling time: tse, 4) longitudinal IVD: dlo, 5)
lateral IVD: dla, 6) overshoot: do, 7) lateral acceleration ay, 8) lateral jerk jy

Table 4-1 gives an overview of the lane-change simulation results of the APF MPC controller
and the TNO controller, only for c2 = 0 m−1, c2 > 0 m−1, and c2 < 0 m−1. The simulation
results for each separate value of c2 are found in Table E-1 to Table E-8 from Appendix F.
For all simulations corresponding to black table entries, the host vehicle performs the lane
change in a feasible and desirable way. After reaching the center of the next lane, it stays
there for the rest of its course, giving also proof of good lane-keeping capabilities.

Looking at the simulation results, there are some noticeable differences between the vehicle
response for roads curving to the left and to the right, which is supported by literature.
The average value for the duration of lane changes to the left from [61] is higher than when
changing lanes to the right, with a difference of about 0.3s. This is explained by noting that
for a left lane change, the driver has to merge with traffic driving in the fast lane. This makes
the lane change more difficult which is why it takes longer to complete.
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Host vehicle lane-change time characteristics

Figure 4-5: Time characteristics of lane-changing host vehicle, with Vh = 120 kmh−1, ∆Vo,h =
−20 kmh−1, and c2 = 5e−6 m−1

Table 4-1: Mean lane-change characteristics of APF MPC and TNO controller

Mean lane-change characteristics for APF MPC and TNO controller

c2 = 0 m−1 c2 > 0 m−1 c2 < 0 m−1

Characteristic APF MPC TNO APF MPC TNO APF MPC TNO

Rise time in [s] 2.23 1.69 2.63 2.50 2.30 2.14
Duration in [s] 5.34 3.19 5.91 3.99 4.69 3.67
Settling time in [s] 15.10 11.41 23.52 17.73 16.24 14.40
Overshoot in [m] 0.10 0.36 0.10 0.41 0.20 0.35
Long. IVD in [m] 17.74 14.51 20.77 16.40 14.87 16.16
Lat. IVD in [m] 3.39 3.82 3.38 3.81 3.32 3.80
Min. IVD in [m] 3.37 3.78 3.37 3.78 3.28 3.76
ay in [ms−2] −0.01 −0.03 0.06 0.03 −0.09 −0.11
Max. ay in [ms−2] 1.20 0.85 1.05 0.91 1.18 0.83
jy in [ms−3] 0.00 −0.01 0.00 −0.01 0.00 −0.01
Max. jy in [ms−3] 0.32 0.10 0.24 0.11 0.36 0.10
Sim. time in [s] 5.32 1.62 6.30 1.79 5.34 1.81
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Another difference between the simulated lane changes is observed. Better lane-change per-
formance results are obtained whenever the lane change is in the same direction as the curve
of the road. This can be explained by noting that the vehicle motion can more easily be
restored to the lane center if the lane change is towards the lane on the inside of the curve.
In that case, in order to overtake the obstacle vehicle, the host vehicle namely steers in the
direction of the curving road. If the lane change is towards the lane on the outside of the
curving road, the associated steering wheel angle ’conflicts’ with the required steering angle
to stay on the road. Consequently, a larger lateral acceleration is needed to bring the host
vehicle back to the lane center. The less-challenging lane-change maneuvers are illustrated
in Figure 4-6 and the more challenging in Figure 4-7. This result is confirmed by the car
crash study from [62], which found a higher crash rate on right-curving roads. Overtaking
maneuvers on right-curving roads are shown to be more sensitive to the curve radius, whereas
on left-curving roads they are more sensitive to the superelevation. Furthermore, the speed
and lateral accelerations are higher on right-curving roads.

(a) Left lane change on left-curving road (b) Right lane change on right-curving road

Figure 4-6: Less challenging lane-change maneuvers towards the inside of the curve

(a) Right lane change on left-curving road (b) Left lane change on right-curving road

Figure 4-7: More challenging lane-change maneuvers towards the outside of the curve

Figure 4-8 shows an example of the simulated paths driven by the host vehicle controlled
by the APF MPC and TNO controller and the obstacle vehicle. Figure 4-10 shows the host
vehicle states that are reached while driving along the paths from Figure 4-8, together with
their corresponding constraints. Figure 4-9 shows the results for the lateral acceleration ay
and lateral jerk jy of the host vehicle for both controllers, along the same simulated path.
These figures were created using Vh = 120 kmh−1, ∆Vo,h = −20 kmh−1, and c2 = 5e−6 m−1.
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Lateral positions vs. longitudinal positions

Figure 4-8: Host and obstacle vehicle path results, with Vh = 120 kmh−1, ∆Vo,h = −20 kmh−1,
and c2 = 5e−6 m−1

Host lane-change characteristics

Figure 4-9: Lateral acceleration and jerk for c2 = 5e−6 m−1, Vh = 120 kmh−1, Vo = 100 kmh−1
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Host vehicle states

Figure 4-10: Host vehicle states for c2 = 5e−6 m−1, Vh = 120 kmh−1, Vo = 100 kmh−1

Many of the subplots from Figure 4-9 and Figure 4-10 are related to the steering angle and
therefore have the same shape. The initial steer action to the left is larger than the subsequent
steering to the right, as can be seen in the corresponding subplot from Figure 4-10. This is
desirable steering behavior, since it leads to good vehicle stability. It also means that the
first phase of the obstacle avoidance or lane-changing maneuver is performed at higher lateral
accelerations, after which a more comfortable return towards the lane center with lower lateral
accelerations takes place. It should be remarked that the lateral jerk subplot from Figure 4-9
briefly crosses the comfort boundary of 2.35 ms−3. This is possible since it is not included
into the MPC-constraints. All the other constraints are seen to be satisfied, despite the large
peak in the steering angle subplot from Figure 4-10.

Based on the performed simulations, it can be concluded that the APF MPC controller has
similar performance as the TNO controller. Good lane-changing and lane-keeping results
were obtained that showed some minor differences with the results from the TNO controller.
The main difference between the two is that the APF MPC controller can more flexibly be
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adapted by changing either the MPC-weights or the shape of the PFs. This property can
be used to alter the shape of the trajectories in endless ways. Furthermore, the APF MPC
controller is more elegant than the TNO controller, because it unifies the path-planning and
-tracking processes. The performance of the TNO controller, on the other hand, can more
easily be analyzed from a mathematical point of view, since it is based on a clear control law
and polynomial trajectories. This is more difficult in the case of the APF MPC controller.

4-5 Experimental considerations

Unfortunately, no real-life experiments could be done. The reason for this, is that the models
by TNO have been developed with MATLAB version 2014a, whereas the mpcqpsolver, which is
at the core of the APF MPC algorithm, was first introduced in the 2015b release of MATLAB.
This compatibility issue could not be resolved in time for any real-life experiments to be per-
formed with the available test vehicle from TNO. The back-up plan was to use the miniature
vehicle model built at the TU Delft under supervision of dr.ir. M. Alirezaei. However, there
were some setbacks with its sensor implementation, causing it to not be finished before the
end of this graduation work. So in the end, no experiments took place.

However, after simulation, it remains to be seen whether the controller will also function
properly in real life, after implementation on an actual vehicle. So it is really important that
the algorithm is tested for different weather conditions, road scenarios, and traffic situations.
The main challenge in the field of path-tracking controllers, namely, is the development of a
controller that is able to navigate different road curvatures, at different speeds, under different
road conditions. Furthermore, the APF MPC control system needs to be robust and guarantee
safety in the face of disturbances, model uncertainties, and parameter variations. This was
not put to the test in simulation. Next, some other experimental considerations are named.

A vehicle state estimator to estimate the current state x of the vehicle is required for the vehicle
model employed by the APF MPC controller. The vehicle speed can then be calculated from
the rear wheel velocity, since it is assumed that the rear wheels are free rolling, because the
vehicle is front-wheel driven. A Kalman filter should additionally be used to correct the
vehicle speed for the accelerometer bias [34].

Furthermore, it is important to have an explicit lane availability check to ensure that the
neighboring lane is in fact available, whenever a lane change is about to be initiated. Returning
to the rightmost lane center can be achieved by placing a slower virtual vehicle at a certain
distance in front of the host vehicle. These functionalities have not yet been implemented
into the APF MPC algorithm, but certainly have to be added before doing road testing.
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Chapter 5

Conclusions

The aim of this research was to design a unified path-planning and -control method for au-
tonomous vehicles using APFs. The MPC-framework is chosen to formulate the path-planning
problem as a quadratic cost function. This choice was motivated by the easy integration of
the vehicle dynamics and system constraints into the MPC-optimization. The linear equa-
tions from the bicycle model, which give a good representation of the vehicle dynamics for
highway-driving, are used by the model-based MPC-controller.

The cost function that is related to the MPC-problem consists of several different terms
that each play their own role in controlling the host vehicle motion. The desired vehicle
behavior is achieved by including the developed APF into this cost function. Two different
PFs were constructed for this purpose, namely the road and obstacle PF, which control
the lane-following and lane-changing maneuvers, respectively. The road PF is represented
by a modified Morse PF and the obstacle PF by a Gaussian function. Their shapes can
be modified to give the desired vehicle response for each encountered traffic situation. The
nonlinear PFs are incorporated into the MPC cost function by making use of their quadratic
Taylor approximations. The designed APF MPC algorithm can be solved efficiently since the
cost function is expressed as a convex QP-problem. This was done to make sure real-time
implementation is possible.

The performance of the APF MPC controller is simulated in the Simulink model from TNO,
that was extended in order to also support simulations on curved roads. The results were
compared with the previously developed path planner and lateral controller from TNO. The
main difference is the challenging tuning process for the APF MPC controller. This is at-
tributed to the numerous adjustable parameters in the cost function, namely the MPC weight
factors and the parameters that determine the shape of the PFs. On the other hand, these
tuning options allow for greater design flexibility than the TNO controller. Other than that,
it is concluded that the APF MPC controller shows good performance, comparable to the
performance of the TNO controller and resulting in desirable and feasible paths. The differ-
ences that were noticed for driving on roads curving in different directions correspond to the
results from studies on human driving behavior.
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One shortcoming of the presented algorithm is that it assumes constant longitudinal velocity
and that it is only capable of planning lateral trajectories. In order to also deliver longitudinal
control action, however, the model can be connected to an ACC application. The performed
simulations only consider a single leading obstacle vehicle. In theory, the approach will work
for any number of obstacles. Unfortunately, no experiments with real vehicles were done.
The final conclusion is that the devised approach of using the APF-method in combination
with MPC has great potential to simplify the complex system of an autonomous vehicle.
Furthermore, the re-planning nature of the APF MPC method adds some robustness and
adaptability, which makes it suitable for navigational control in a wide range of operation
conditions. However, real-life experiments have to be done in the future to validate the
performance of the method.

5-1 Recommendations

A hardware-in-the-loop simulation is the first recommended next step to validate the algo-
rithm. After an extensive simulation phase it is important to do real-world experiments. In
that phase, the stability and robustness of the method should be examined thoroughly, where
the planned paths should be insensitive to uncertain measurements. On the other hand, the
vehicle should be reactive to certain measurements, leading to consistent vehicle behavior
without unnatural fluctuations.

In order to combine the proposed lateral control method with longitudinal and vertical control,
an integrated control approach should be developed and tested. Only if the steering, throttle
and braking, and suspension control inputs are issued in a coordinated fashion, can the
autonomous vehicle navigate successfully through a wide range of different environments.

Set up a hierarchical control system, where the higher-level controller selects the cost function
weights or modifies the shape of the PF to influence the lower-level APF MPC controller.
This could be done by using machine learning techniques.

Another approach would be to find a functional relation between the PF parameters and
weights that yields good driving behavior in a great range of driving scenarios. This would
be a big improvement, because tuning the controller still requires a lot of work, even though
it is very intuitive. This relation can possibly be found by identifying the PF parameters
from analyzing driving data. The related identification problem can be formulated as an
optimization problem, where the cost function is defined as the sum of the sine of the angle
between the observed velocity and the computed gradients of the APF. Minimization of the
sine of this angle is desired, because when equal to zero, the direction of the vehicle is aligned
with the gradient of the APF. By doing so, it is expected that the identified APF generates
paths that are similar to the originally driven trajectories, as was done in [63].

Use analytic functions to define the curve of the trajectory and formulate a simple quadratic
PF around that curve, instead of using APFs to generate the paths. The Bézier curve is
a good suggested candidate. It has been widely used to generate feasible paths, because of
its quick and efficient path-planning solutions [52]. The most important property of Bézier
curves is that the starting and ending segments of the curve are tangent to the initial and
final heading, respectively. However, online generation and evaluation of analytic lane-change
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trajectories increases the computational demand. This can be overcome by using an offline
trajectory table that contains detailed trajectory descriptions for many different scenarios.

Introducing slack variables to soften some of the constraints and avoid infeasibility issues.
These slack variables are included into the cost function as additional optimization variables.
They are assigned with relatively large weights to make them dominate the cost function,
even though the slack variables have relatively low values. This method is used to penalize
the violation of the constraints. On the other hand, stricter road boundary constraints can
be used to prevent the vehicle from performing an overtaking maneuver from the wrong side
of the obstacle vehicle, whenever the right side is blocked by the corresponding obstacle PF.
Furthermore, the dimensions of the vehicle can be accounted for by reducing the boundary
on both sides of the road by half of the vehicle width. The current road boundary constraints
prevent the vehicle CoG from crossing the road boundary, but the entire body of the vehicle
should not cross these lines.

To deal with the trade-off between model accuracy and computational demand, different-sized
time steps can be used. Using a short time step at the beginning of the prediction horizon
gives an improved discrete-time model approximation for better tracking and stabilization. A
larger time step, on the other hand, better suits the end of the prediction horizon to include
the future implications of collision avoidance. To compensate for the far-term modeling
inaccuracy, a FOH discretization can be used, instead of a ZOH.

The vehicle dynamics can more accurately be captured by using a nonlinear vehicle model.
Therefore, it is recommended to investigate the use of nonlinear MPC. This control method
is somewhat understood, with some existing solution algorithms [39]. This could add a slight
burden to the computation, but it might also improve the overall performance. An efficient
meta-heuristic optimization algorithm like particle swarm optimization may prove to meet
the real-time requirements of solving the resulting nonlinear optimization problem [5].

Equip the system with a motion prediction model to better predict the dynamics of the
surrounding traffic, such as a simple curve fitting or regression method, a stochastic Markov
model, or a Kalman filter. However, equipping the approach with trajectory prediction comes
at the expense of increased computational power requirement, since the trajectories need to
be calculated at each time step.

Instead of using a controller that commands the steering wheel angle or curvature, it is better
to make use of torque-based steering controller, which will lead to smoother steering and less
control effort. A position controller, for example, will fight the external forces acting on the
steering wheel that have a self-aligning effect, during a turning maneuver. A large control
input will be exerted to keep to the exact angles of the trajectory, whereas a human driver
would exploit these restoring forces to align the vehicle at the end of the turn. Besides, human
drivers deviate from the lane center if this leads to smoother and continuous steering [18].
Furthermore, a steering wheel controller will eventually need to determine the torque that
should be applied to turn the wheels. By using torque control, this extra computation step,
which only makes it more complicated, is already integrated into the controller.

The last recommendation is motivated by the personal expectation that the first fully au-
tonomous vehicles on the road are still far away. In order to still profit from the advantages
of the APF-method, it is recommended to research its application with the driver still in the
loop. In that way, a drivable system is created where the high-level tasks remain with the
driver, while the APF-controller provides a certain level of steering assistance.
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Appendix A

Bicycle model derivation

The dynamic equations of the bicycle model are derived in this Appendix.

First, the kinematic model is derived, which is used to express the vehicle motion in different
coordinate frames. Figure A-1 shows the orientation of the bicycle model with respect to a
local and a global frame. The free-body diagram of the bicycle model is shown in Figure A-2.

Figure A-1: Bicycle model configuration expressed in global road coordinate frame

Figure A-2: Free-body diagram of the bicycle model
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The stationary global road coordinate frame Sg = {Og, ~e gx , ~e
g
y } from Figure A-1 is fixed to the

world, with the vector ~e gx oriented in the initial driving direction of the road. The body-fixed
local host-vehicle coordinate frame Sh = {Oh, ~ehx , ~e

h
y } is located at the host vehicle CoG, with

the vector ~ehx directed forward along the longitudinal axis of the vehicle, as can be seen in
both Figure A-1 and Figure A-2. The position vector of the origin of the local vehicle frame
Oh, expressed in the global road frame Og using ~e g, can then be written as:

~rOh/Og =
[

Xh Yh
]
[

~e gx
~e gy

]

=
[

Xh Yh
]

~e g. (A-1)

Transforming a position vector from being expressed in the global frame to the local frame
can be done by using the rotation matrix Rψh

around the vector ~e gz = ~e gx × ~e gy as follows:

~e g = Rψh
~eh =

[

cos(ψh) − sin(ψh)
sin(ψh) cos(ψh)

]

~eh, (A-2)

where ψh is the heading angle of the vehicle, defined as the angle between ~e gx and ~ehx . The
transpose of this transformation matrix is equal to its inverse and can be used to transform
the position vector from the local frame to the global frame in a similar way:

~eh = RTψh
~e g =

[

cos(ψh) sin(ψh)
− sin(ψh) cos(ψh)

]

~e g. (A-3)

The velocity vector of Oh with respect to Og is then obtained by differentiating Eq. (A-1)
with respect to time, where ~̇e g = 0. The result is expressed in the body-fixed frame with ~eh,
by using the local longitudinal and lateral velocities of the vehicle, vx and vy, respectively,
instead of their global counterparts Ẋh and Ẏh. The described steps are seen below:

~̇rOh/Og =
[

Ẋh Ẏh
]

~e g =
[

vx vy
]

~eh. (A-4)

In order to derive the kinematic expressions for Ẋh and Ẏh in terms of vx and vy, the coordinate
frame transformation from Eq. (A-3) is applied to the last line of Eq. (A-4), which yields:

~̇rOh/Og =
[

vx vy
]
[

cos(ψh) sin(ψh)
− sin(ψh) cos(ψh)

]

~e g,

=
[

vx cos(ψh) − vy sin(ψh) vx sin(ψh) + vy cos(ψh)
]

~e g.

(A-5)

From comparing the first line of Eq. (A-4) with the last line of Eq. (A-5), the following
kinematic relations for the motion of the vehicle CoG in the global frame are obtained [2]:

Ẋh = vx cos(ψh) − vy sin(ψh),

Ẏh = vx sin(ψh) + vy cos(ψh).
(A-6)

where:

vx = Vh cos (β) ,

vy = Vh sin (β) .
(A-7)
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The derivation of the equations of motion for the bicycle model starts by obtaining the
acceleration vector from differentiation of the velocity vector ~̇rOh/Og from Eq. (A-4) with
respect to time, which results in:

~̈rOh/Og =
[

vx vy
]

~̇eh +
[

v̇x v̇y
]

~eh. (A-8)

The expression for ~̇eh in the above equation is derived from Eq. (A-3) as follows:

~̇eh = ṘTψh
~e g,

= ψ̇h

[

− sin(ψh) cos(ψh)
− cos(ψh) − sin(ψh)

]

~e g,

= ψ̇h

[

0 1
−1 0

] [

cos(ψh) sin(ψh),
− sin(ψh) cos(ψh)

]

~e g,

=

[

0 ψ̇h
−ψ̇h 0

]

RTψh
~e g =

[

0 ψ̇h
−ψ̇h 0

]

~eh.

(A-9)

This expression for ~̇eh can then be substituted in Eq. (A-8), giving:

~̈rOh/Og =
[

vx vy
]
[

0 ψ̇h
−ψ̇h 0

]

~eh +
[

v̇x v̇y
]

~eh,

=
[

v̇x − ψ̇hvy v̇y + ψ̇hvx
]

~eh.

(A-10)

Using this, the equations of motion of the vehicle CoG at Oh are constructed from:

m~̈rOh/Og = ~FOh =
[

Fx Fy
]

~eh, (A-11)

by equating the terms corresponding to the vectors in the longitudinal direction ~ehx and the
lateral direction ~ehy . The lateral tire force Fy is generated as a result of the tire slip with the
road surface. The lateral forces from the front and rear tire, Fyr and Fyr , respectively, can
be calculated from the linear tire response approximation:

Fy = Fyf
+ Fyr = Cfαf + Crαr. (A-12)

with the negative front and rear tire cornering stiffness, Cf and Cr, respectively. These tire
forces Fyf

and Fyr can directly be added to calculate the total lateral tire force Fy, because
the steering angle from Figure A-2 is assumed to small enough to satisfy the small angle
approximations:

cos(δ) ≈ 1,

sin(δ) ≈ δ.
(A-13)

The slip angles αf and αr are defined as the angle between the orientation of the wheel
and the velocity vector of the wheel. Since both wheels are located on the longitudinal axis
of the vehicle in the bicycle model, their velocity component in the direction ~ehx equals the
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72 Bicycle model derivation

longitudinal velocity vx of the vehicle CoG. The lateral velocity component of the front and
rear wheel, however, consists of a combination of the lateral velocity vy of the vehicle CoG and
the tangential velocity induced by the yaw rate ψ̇h. This is incorporated into the definition
of the slip angles, where again the small angle approximation is applied:

αf =
vy + ℓf ψ̇h

vx
− δ,

αr =
vy − ℓrψ̇h

vx
.

(A-14)

The lateral, longitudinal, and rotational equations of motion from Eq. (A-11) are given by:

m(v̇x − ψ̇hvy) = Fx,

m(v̇y + ψ̇hvx) = Fyf
+ Fyr ,

Izψ̈h = ℓfFyf
− ℓrFyr ,

(A-15)

respectively, where the last line is obtained by taking the sum of the moments around the
vehicle CoG at Oh, with ψ̈h being the yaw acceleration. Furthermore, notice that:

ax = v̇x − ψ̇hvy,

ay = v̇y + ψ̇hvx.
(A-16)

Rewriting Eq. (A-15) after substitution of the expressions from Eq. (A-12) and Eq. (A-14)
results in the following dynamic equations of the bicycle model [2]:

v̇x = ψ̇hvy +
Fx
m
,

v̇y =
(
Cf + Cr
mvx

)

vy +
(

−vx +
ℓfCf − ℓrCr

mvx

)

ψ̇h −

(
Cf
m

)

δ,

ψ̈h =
(
ℓfCf − ℓrCr

Izvx

)

vy +

(

ℓ2fCf + ℓ2rCr

Izvx

)

ψ̇h −

(
ℓfCf
Iz

)

δ.

(A-17)

It is assumed that the longitudinal velocity of the vehicle is constant, so that means that
v̇x = 0. The end result is the state-space notation of the bicycle model, where the first line
of Eq. (A-17) was dropped:










v̇y

ψ̈h










=










Cf + Cr
mvx

−vx +
ℓfCf − ℓrCr

mvx

ℓfCf − ℓrCr
Izvx

ℓ2fCf + ℓ2rCr

Izvx



















vy

ψ̇h










+










−Cf
m

−ℓfCf
Iz










δ. (A-18)
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Appendix B

Quadratic Taylor approximation

This Appendix elaborates on the QA of the nonlinear PFs.

The quadratic Taylor approximation is an extension of local linearization and gives a bet-
ter approximation since it is constructed to have the same first and second order partial
derivatives as the original function at the point of approximation. The general vector form of
the quadratic Taylor approximation of a scalar-valued function f with the multidimensional
vector input x around x0 is given by:

Qf (x) = f(x0) + ∇f(x0) · (x − x0) + 1/2 (x − x0)THf (x0)(x − x0), (B-1)

where ∇f (x0) is the gradient of f evaluated at x0, Hf (x0) is the Hessian matrix of f evalu-
ated at x0, and · is the dot product. In scalar notation, the quadratic Taylor approximation
of a two-dimensional function f(x, y) around the point (x0, y0) looks like this:

Qf (x, y) =f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0) +
1/2 fxx(x0, y0)(x− x0)2 + fxy(x0, y0)(x− x0)(y − y0) +
1/2 fyy(x0, y0)(y − y0)2,

(B-2)

with the subscripts denoting the partial derivative variables. The vectors from Eq. (B-1) are:

∇f(x0, y0) =

[

fx(x0, y0)
fy(x0, y0)

]

,

(x − x0) =

[

x− x0

y − y0

]

,

Hf (x0, y0) =

[

fxx(x0, y0) fxy(x0, y0)
fyx(x0, y0) fyy(x0, y0)

]

.

(B-3)

The approximation of the PF U around (Xh, Yh) = (Xh(k), Yh(k)) is given by:

U(k+ 1|k) ≈ U0(k) +U1(k)

[

Xh(k + 1|k)
Yh(k + 1|k)

]

+ 1/2

[

Xh(k + 1|k)
Yh(k + 1|k)

]T

U2(k)

[

Xh(k + 1|k)
Yh(k + 1|k)

]

.

(B-4)
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74 Quadratic Taylor approximation

With the following expressions for U0, U1, and U2:

U0(k) = U (Xh(k), Yh(k)) − UXh
Xh(k) − Uy,hYh(k) + 1/2UXhXh

Xh(k)2 +

UXhYh
Xh(k)Yh(k) + 1/2UYhYh

Yh(k)2,

U1(k) =

[

UXh
− UXhXh

Xh(k) − UXhYh
Yh(k)

Uy,h − UXhYh
Xh(k) − UYhYh

Yh(k)

]T

,

U2(k) =

[

UXhXh
UXhYh

UYhXh
UYhYh

]

.

(B-5)

The above expressions were obtained symbolically with MATLAB in terms of Xh and Yh, for
both the road and obstacle PFs, Ur and Uo, respectively. So instead of having to compute
the QA at each time step, only the updated host vehicle positions have to be inserted into
the symbolic expressions to obtain the new QA values.

The selection of Xh(k + 1|k) and Yh(k + 1|k) from Eq. (B-4) from the state vector x:

[

Xh(k + 1|k)
Yh(k + 1|k)

]

︸ ︷︷ ︸

yXY (k+1|k)

=

[

0 1 0 0 0 0
0 0 1 0 0 0

]

︸ ︷︷ ︸

CXY












Vx(k + 1|k)
Xh(k + 1|k)
Yh(k + 1|k)
vy(k + 1|k)
rh(k + 1|k)
ψh(k + 1|k)












︸ ︷︷ ︸

x(k+1|k)

. (B-6)

The end result is the equivalent notation of Eq. (B-4) with substitution of Eq. (B-6):

U(k + 1|k) ≈ U0(k) + U1(k)

[

Xh(k + 1|k)
Yh(k + 1|k)

]

+ 1/2

[

Xh(k + 1|k)
Yh(k + 1|k)

]T

U2(k)

[

Xh(k + 1|k)
Yh(k + 1|k)

]

,

≈ U0(k) + U1(k)yXY (k + 1|k) + 1/2 yXY (k + 1|k)TU2(k)yXY (k + 1|k).
(B-7)

Figure B-1 to Figure B-4 show some of the QAs of the road and obstacle PFs. These figures
can be used to deduce and explain how the host vehicle will react when it encounters these
PFs. Black car icons are added to clarify the perspective of the plots and to illustrate the
position of the host or obstacle vehicle.

Figure B-1 shows the lateral QAs of the straight road PF at Xl = 0 m. The displayed car
represents the host vehicle driving in the center of the left lane.

Figure B-2a and Figure B-2b show the longitudinal QAs of the curved road PF at Xl = 0 m in
the right lane and left lane, respectively. Again, the displayed car represents the host vehicle
driving in the center of the lane.

Figure B-3a and Figure B-3b show the lateral QAs of the obstacle PF at Xl = 375 m and
Yl = 0 m, respectively. Here, the displayed car represents the obstacle vehicle associated with
the obstacle PF driving in the center of the right lane at (Xl, Yl) = (375, 0) m.

Figure B-4a and Figure B-4b show the longitudinal QAs of the obstacle PF at Xl = 375 m
and Yl = 0 m, respectively. Again, the displayed car represents the obstacle vehicle associated
with the obstacle PF driving in the center of the right lane at (Xl, Yl) = (375, 0) m.
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76 Quadratic Taylor approximation

Longitudinal QAs of U
r,cr

 in right lane at X
l
 = 0 m - Side view

(a) Longitudinal QAs of Ur,cr in the right lane

Longitudinal QAs of U
r,cr

 in left lane at X
l
 = 0 m - Side view

(b) Longitudinal QA of Ur,cr in the left lane

Figure B-2: Longitudinal QA of curved road PF Ur,cr
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Lateral QAs of U
o
 at X

l
 =  375 m - Front view

(a) Lateral QAs of Uo along Xl = 375 m

Lateral QAs of U
o
 at Y

l
 =  0 m - Front view

(b) Lateral QAs of Uo along Yl = 0 m

Figure B-3: Lateral QA of obstacle PF Uo
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Longitudinal QAs of U
o
 at X

l
 =  375 m - Side view

(a) Longitudinal QAs of Uo along Xl = 375 m

Longitudinal QAs of U
o
 at Y

l
 =  0 m - Side view

(b) Longitudinal QAs of Uo along Yl = 0 m

Figure B-4: Longitudinal QA of obstacle PF Uo
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Appendix C

MPC matrix derivation

A detailed derivation of the MPC matrices is given in this Appendix.

The cost function of the optimization problem over the prediction horizon Np is given by:

J(k) =
Np∑

i=1

(y(k + i|k) − yref(k + i|k))T λy (y(k + i|k) − yref(k + i|k))
︸ ︷︷ ︸

Vehicle dynamics

+

λu (u(k + i− 1|k) − uref(k + i− 1|k))2

︸ ︷︷ ︸

Input

+λ∆∆u(k + i− 1|k)2

︸ ︷︷ ︸

Input increment

+

λrUr (k + 1|k)
︸ ︷︷ ︸

Road potential

+ λoUo (k + 1|k)
︸ ︷︷ ︸

Obstacle potential

,

(C-1)

The summation from Eq. (C-1) has the following equivalent vector notation:

J(k) = (ỹ − ỹref)
T λy (ỹ − ỹref)

︸ ︷︷ ︸

Vehicle dynamics

+ (ũ− ũref)
T λu (ũ− ũref)

︸ ︷︷ ︸

Input

+

∆ũTλ∆∆ũ
︸ ︷︷ ︸

Input increment

+ λrŨr
︸ ︷︷ ︸

Road potential

+ λoŨo
︸ ︷︷ ︸

Obstacle potential

.
(C-2)

The terms with a ∼ on top of them are vectors containing extended predictions of their future
values, with the exception of Ũr and Ũo, which are scalar terms consisting of the summed
predicted potential values of the road and obstacle PF, respectively. The predictions of x(k)
up to the prediction horizon Np are obtained from:








x(k + 1|k)
x(k + 2|k)

...
x(k +Np|k)









︸ ︷︷ ︸

x̃

=









Ad
A2
d

...

A
Np

d









︸ ︷︷ ︸

Ã

x(k) +










Bd 0 . . . 0

AdBd Bd
. . .

...
...

. . . . . . 0

A
Np−1
d Bd . . . AdBd Bd










︸ ︷︷ ︸

B̃









u(k|k)
u(k + 1|k)

...
u(k +Np − 1|k)









︸ ︷︷ ︸

ũ

.

(C-3)
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80 MPC matrix derivation

The expressions for matrices Ã and B̃ in Eq. (C-3) can be derived from repetitive substitution
and subsequent expansion of the discrete time state equation:

x(k + 1|k) = Adx(k) +Bdu(k|k),

x(k + 2|k) = Adx(k + 1|k) +Bdu(k + 1|k),

= Ad (Adx(k) +Bdu(k|k)) +Bdu(k + 1|k),

= A2
dx(k) +AdBdu(k|k) +Bdu(k + 1|k),

x(k + 3|k) = Adx(k + 2|k) +Bdu(k + 2|k),

= Ad
(

A2
dx(k) +AdBdu(k|k) +Bdu(k + 1|k)

)

+Bdu(k + 2|k),

= A3
dx(k) +A2

dBdu(k|k) +AdBdu(k + 1|k) +Bdu(k + 2|k),
...

(C-4)

Gathering the right terms after continuing this substitution and expansion until the prediction
horizonNp is reaches gives the resulting Eq. (C-3). The predictions of y(k) up to the prediction
horizon Np are obtained in a similar way, yielding the following equation:









y(k + 1|k)
y(k + 2|k)

...
y(k +Np|k)









︸ ︷︷ ︸

ỹ

=










Cd 0 . . . 0

0 Cd
. . .

...
...

. . . . . . 0
0 . . . 0 Cd










︸ ︷︷ ︸

C̃









x(k + 1|k)
x(k + 2|k)

...
x(k +Np|k)









︸ ︷︷ ︸

x̃

. (C-5)

Considering the optimization problem is solved for the input sequence vector ũ, the expression
for the state vector x̃ from Eq. (C-3) needs to be inserted in Eq. (C-5) in order to write the
cost function in terms of ũ. This gives an equivalent notation of Eq. (C-5), after substitution
of Eq. (C-3) for x̃, like this:

ỹ = C̃x̃ = C̃
(

Ãx(k) + B̃ũ
)

= C̃Ãx(k) + C̃B̃ũ. (C-6)

The predictions of input increments ∆u(k) up to the prediction horizon Np are given by:








u(k|k)
∆u(k + 1|k)

...
∆u(k +Np − 1|k)









︸ ︷︷ ︸

∆ũ

=










1 0 . . . 0

−1 1
. . .

...
...

. . . . . . 0
0 . . . −1 1










︸ ︷︷ ︸

Ãu









u(k|k)
u(k + 1|k)

...
u(k +Np − 1|k)









︸ ︷︷ ︸

ũ

. (C-7)

The vector notation of the PF contribution Ũ to the cost function from Eq. (C-2) can be
obtained by substituting the expression for U(k + i|k) from Eq. (B-7) in the following way:

Ũ =
Np∑

i=1

U(k + i|k),

≈

Np∑

i=1

U0(k) + U1(k)yXY (k + i|k) + 1/2 yTXY (k + i|k)U2(k)yXY (k + i|k),

≈ Ũ0 + Ũ1ỹXY + 1/2 ỹTXY Ũ2ỹXY ,

(C-8)
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The extended notations of the approximated PF contributions from Eq. (C-8), given by Ũ0,
Ũ1, and Ũ2, are as follows:

Ũ0 = U0(k)Np,

Ũ1 =
[

U1(k) U1(k) . . . U1(k)
]

,

Ũ2 =










U2(k) 0 . . . 0

0 U2(k)
. . .

...
...

. . . . . . 0
0 . . . 0 U2(k)










,

(C-9)

with the extension of CXY for the predictions of yXY (k) up to the prediction horizon Np:









yXY (k + 1|k)
yXY (k + 2|k)

...
yXY (k +Np|k)









︸ ︷︷ ︸

ỹXY

=










CXY 0 . . . 0

0 CXY
. . .

...
...

. . . . . . 0
0 . . . 0 CXY










︸ ︷︷ ︸

C̃XY









x(k + 1|k)
x(k + 2|k)

...
x(k +Np|k)









︸ ︷︷ ︸

x̃

.
(C-10)

Eq. (C-10) is rewritten in terms of ũ, as was done previously for Eq. (C-6), through substitu-
tion of Eq. (C-3) for x̃:

ỹXY = C̃XY x̃ = C̃XY
(

Ãx(k) + B̃ũ
)

= C̃XY Ãx(k) + C̃XY B̃ũ. (C-11)

Finally, the approximated PF contribution from the last line of Eq. (C-8) are obtained in
terms of ũ after substitution of Eq. (C-11) for ỹXY :

Ũ ≈ Ũ0 + Ũ1ỹXY + 1/2 ỹTXY Ũ2ỹXY

≈ Ũ0 + Ũ1

(

C̃XY Ãx(k) + C̃XY B̃ũ
)

+

1/2
(

C̃XY Ãx(k) + C̃XY B̃ũ
)T

Ũ2

(

C̃XY Ãx(k) + C̃XY B̃ũ
)

,

≈ Ũ0
︸︷︷︸

no ũ

+ Ũ1

(

C̃XY Ãx(k)
)

︸ ︷︷ ︸

no ũ

+ Ũ1

(

C̃XY B̃ũ
)

︸ ︷︷ ︸

...ũ

+

1/2
(

C̃XY Ãx(k)
)T

Ũ2

(

C̃XY Ãx(k)
)

︸ ︷︷ ︸

no ũ

+
(

C̃XY Ãx(k)
)T

Ũ2

(

C̃XY B̃ũ
)

︸ ︷︷ ︸

...ũ

+

1/2
(

C̃XY B̃ũ
)T

Ũ2

(

C̃XY B̃ũ
)

︸ ︷︷ ︸

ũT ...ũ

.

(C-12)

The terms marked in red do not contain ũ and can therefore not be influenced by the system
input ũ in the eventual expression for the cost function. These terms are excluded from the
cost function, since they will not alter the solution ũ.
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Next, Eq. (C-2) is expanded after substitution of Eq. (C-6) for ỹ and Eq. (C-7) for ∆ũ, giving:

J(k) = (ỹ − ỹref)
T λy (ỹ − ỹref) +

(ũ− ũref)
T λu (ũ− ũref) + ∆ũTλ∆∆ũ+ λrŨr + λoŨo,

=
(

C̃Ãx(k) + C̃B̃ũ− ỹref

)T
λy
(

C̃Ãx(k) + C̃B̃ũ− ỹref

)

+

(ũ− ũref)
T λu (ũ− ũref) +

(

Ãuũ
)T

λ∆

(

Ãuũ
)

+ λrŨr + λoŨo,

=
(

C̃Ãx(k)
)T

λy
(

C̃Ãx(k)
)

︸ ︷︷ ︸

no ũ

+
(

C̃B̃ũ
)T

λy
(

C̃B̃ũ
)

︸ ︷︷ ︸

ũT ...ũ

+ ỹTrefλyỹref
︸ ︷︷ ︸

no ũ

+

2
(

C̃Ãx(k)
)T

λy
(

C̃B̃ũ
)

︸ ︷︷ ︸

...ũ

− 2
(

C̃Ãx(k)
)T

λyỹref
︸ ︷︷ ︸

no ũ

−

2
(

C̃B̃ũ
)T

λyỹref
︸ ︷︷ ︸

...ũ

+ ũTλuũ
︸ ︷︷ ︸

ũT ...ũ

+ ũTrefλuũref
︸ ︷︷ ︸

no ũ

− 2ũref
Tλuũ

︸ ︷︷ ︸

...ũ

+

(

Ãuũ
)T

λ∆

(

Ãuũ
)

︸ ︷︷ ︸

ũT ...ũ

+ λrŨr
︸ ︷︷ ︸

Road potential

+ λoŨo
︸ ︷︷ ︸

Obstacle potential

.

(C-13)

The final step is to gather the right terms, including both the expressions for the road and
obstacle PF contribution, denoted with the subscripts r and o, respectively, with the associ-
ated weights λr and λo, from Eq. (C-12). The red terms can again be omitted because they
do not contain ũ. The light-blue quadratic terms from Eq. (C-12) and Eq. (C-13) are grouped
under the Hessian matrix H and the dark-blue linear terms under the linear vector c:

H = 2
(

C̃B̃
)T

λy
(

C̃B̃
)

︸ ︷︷ ︸

Vehicle dynamics

+ 2λuINp

︸ ︷︷ ︸

Input

+ 2ÃTuλ∆Ãu
︸ ︷︷ ︸

Input increment

+

λr
(

C̃XY B̃
)T

Ũr,2
(

C̃XY B̃
)

︸ ︷︷ ︸

Road potential

+λo
(

C̃XY B̃
)T

Ũo,2
(

C̃XY B̃
)

︸ ︷︷ ︸

Obstacle potential

,

c = 2
(

C̃Ãx(k) − ỹref

)T
λy
(

C̃B̃
)

︸ ︷︷ ︸

Vehicle dynamics

− 2λuũref
T

︸ ︷︷ ︸

Input

+

λr

((

Ũr,1 +
(

C̃XY Ãx(k)
)T

Ũr,2

)(

C̃XY B̃
))

︸ ︷︷ ︸

Road potential

+

λo

((

Ũo,1 +
(

C̃XY Ãx(k)
)T

Ũo,2

)(

C̃XY B̃
))

︸ ︷︷ ︸

Obstacle potential

.

(C-14)

The results from Eq. (C-14) define the QP problem as follows:

min
ũ
J = min

ũ
1/2 ũTHũ+ cT ũ subject to Aineqũ ≥ bineq. (C-15)
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The optimization problem from Eq. (C-15) is not subject to any equality constraints, so
Aeq and beq are defined to be appropriately dimensioned matrices equal to zero. Now, the
expressions for Aineq and bineq from Eq. (C-15) are derived. The output constraints are given
by:

Yrrb ≤ Yh ≤ Yℓrb,

−vy,max ≤ vy ≤ vy,max

−rmax ≤ rh ≤ rmax,

ψmin ≤ ψh ≤ ψmax.

(C-16)

For a more detailed description of these constraints, the reader is referred to the main text
in Section 3-4. The constraint equations from Eq. (C-16) are rewritten in vector notation,
where the equations containing the ≥ symbol are multiplied by minus one to rewrite them
with the ≤ symbol:

















Yh(k + 1|k)
−Yh(k + 1|k)
vy(k + 1|k)

−vy(k + 1|k)
rh(k + 1|k)

−rh(k + 1|k)
ψh(k + 1|k)

−ψh(k + 1|k)

















︸ ︷︷ ︸

yineq(k+1|k)

≤

















Yℓrb(k + 1|k)
−Yrrb(k + 1|k)
vy,max(k + 1|k)
vy,max(k + 1|k)
rmax(k + 1|k)
rmax(k + 1|k)
ψmax(k + 1|k)

−ψmin(k + 1|k)

















︸ ︷︷ ︸

fineq(k+1|k)

, (C-17)

The left side of the inequality from Eq. (C-17) is then rewritten with the aid of the state
vector x(k + 1|k) in the following way:

















0 0 1 0 0 0
0 0 −1 0 0 0
0 0 0 1 0 0
0 0 0 −1 0 0
0 0 0 0 1 0
0 0 0 0 −1 0
0 0 0 0 0 1
0 0 0 0 0 −1

















︸ ︷︷ ︸

Cineq












Vx(k + 1|k)
Xh(k + 1|k)
Yh(k + 1|k)
vy(k + 1|k)
rh(k + 1|k)
ψh(k + 1|k)












︸ ︷︷ ︸

x(k+1|k)

≤

















Yℓrb(k + 1|k)
−Yrrb(k + 1|k)
vy,max(k + 1|k)
vy,max(k + 1|k)
rmax(k + 1|k)
rmax(k + 1|k)
ψmax(k + 1|k)

−ψmin(k + 1|k)

















︸ ︷︷ ︸

fineq(k+1|k)

. (C-18)

The predictions of yineq(k+1) up to the prediction horizon Np are then written in the compact
form using the tilde-notation:









yineq(k + 1|k)
yineq(k + 2|k)

...
yineq(k +Np|k)









︸ ︷︷ ︸

ỹineq

≥









fineq(k + 1|k)
fineq(k + 2|k)

...
fineq(k +Np|k)









︸ ︷︷ ︸

f̃ineq

. (C-19)
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Equivalently, for the alternative expression from Eq. (C-18) in terms of x̃:









Cineq 0 . . . 0

0 Cineq
. . .

...
...

. . . . . . 0
0 . . . 0 Cineq










︸ ︷︷ ︸

C̃ineq









x(k + 1|k)
x(k + 2|k)

...
x(k +Np|k)









︸ ︷︷ ︸

x̃

≥









fineq(k + 1|k)
fineq(k + 2|k)

...
fineq(k +Np|k)









︸ ︷︷ ︸

f̃ineq

. (C-20)

As has been done multiple times before already, Eq. (C-20) is worked out with substitution
of Eq. (C-3) for x̃.

C̃ineqx̃ ≤ f̃ineq,

C̃ineq

(

Ãx(k) + B̃ũ
)

≤ f̃ineq,

C̃ineqB̃
︸ ︷︷ ︸

Ãx,ineq

ũ ≤ f̃ineq − C̃ineqÃx(k)
︸ ︷︷ ︸

b̃x,ineq

,
(C-21)

yielding the state inequality matrix Ãx,ineq and the corresponding vector b̃x,ineq from the right
side of the inequality. Next, the same procedure is repeated, but this time to compute the
input inequality matrix Ãu,ineq and the corresponding vector b̃u,ineq. The input inequality
constraint is given by:

− umax ≤ u ≤ umax. (C-22)

Again, the constraint equations from Eq. (C-22) are rewritten in vector notation, where the
equations containing the ≥ symbol are multiplied by minus one to rewrite them with the ≤
symbol:

[

u(k)
−u(k)

]

≤

[

umax

umax

]

,

[

1
−1

]

︸ ︷︷ ︸

Au,ineq

u(k) ≤

[

umax

umax

]

︸ ︷︷ ︸

bu,ineq

.
(C-23)

Extending Eq. (C-23) by including the predictions of u(k) up to the prediction horizon Np:









Au,ineq 0 . . . 0

0 Au,ineq
. . .

...
...

. . . . . . 0
0 . . . 0 Au,ineq










︸ ︷︷ ︸

Ãu,ineq









u(k|k)
u(k + 1|k)

...
u(k +Np − 1|k)









︸ ︷︷ ︸

ũ

≤









bu,ineq

bu,ineq
...

bu,ineq









︸ ︷︷ ︸

b̃u,ineq

. (C-24)

Finally, Eq. (C-21) and Eq. (C-24) are combined into the total inequality equation that is in
the correct form to be used by the QA solver from MATLAB:

[

Ãx,ineq

Ãu,ineq

]

︸ ︷︷ ︸

Ãineq

ũ ≤

[

b̃x,ineq

b̃u,ineq

]

︸ ︷︷ ︸

b̃ineq

. (C-25)
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Appendix D

Simulink model

This Appendix shows the used Simulink model and its different subsystems.

Figure D-1 gives the overview of the Simulink model, showing the different subsystems of
the World Model, the Control System, and the Host Vehicle. Figure D-2 shows the inside
of the World Model, where the vehicle sensors are imitated and the environment is defined,
like the obstacle vehicle dynamics and the road layout. Furthermore, it is shown how the
relevant data is logged. Figure D-3 gives an insight into the Host Vehicle block, with the
vehicle dynamic equations as its contents, like the drive line dynamics, the bicycle model, and
the kinematic coordinate transformations. Figure D-4 and Figure D-5 display the Control
System architecture, where the host vehicle is controlled by the TNO and APF MPC con-
troller, respectively, whereas the obstacle vehicle is always controlled by the TNO controller.
Figure D-6 shows the main contribution of this research: the APF MPC controller structure.

Host Vehicle

World Model Control System

Plotting and logging

[WM]

[ContrObj]

[Host]

[WM]

[ContrObj]

[Host]

<Host>

Figure D-1: Simulink model
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Appendix E

Tuned obstacle PF parameters

The tuned obstacle PF parameters λo and xσ are reported in this Appendix.

Figure E-1 shows the tuned values for the obstacle PF weight λo against Vh for different
∆Vo,h, where ∆Vo,h stands for the velocity difference between the host and object vehicle

in
[

kmh−1
]

. Clearly, the plotted values of λo and Vh are seen to be following a certain
functional relationship, which is left to be determined in future research. The plotted values
are displayed in Table E-1. It should be noted that these values only change for changing
∆Vo,h and stay the same for different values of c2.

Figure E-1: Obstacle PF weight λ0 versus Vh for different ∆Vo,h for all c2
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92 Tuned obstacle PF parameters

Table E-1: λo in [-] against Vh and ∆Vo,h in [kmh−1] for all c2

Obstacle PF weight λo

∆Vo,h

Vh −5 −10 −15 −20

20 4100 3000 3200 5000
30 260 390 390 470
40 100 160 230 290
50 38 60 75 90
60 23 37 47 54
70 15 25 31 36
80 10 17 22 25
90 7.5 12 16 19

100 5.5 9.5 12 14.5
110 4.5 7 9 11
120 3.4 5.7 7.5 9
130 3 5 6 8

Table E-2 contains the values of xσ for c2 = 0 m−1. Figure E-2 and Figure E-3 show the
results of the tuned values of xσ against Vh, for different ∆Vo,h and the inspected positive
and negative values of c2, respectively. Again, the plotted values indicate the existence of
some analytic relation, this time between xσ and Vh. Table E-3 to Table E-8 list the rest of
the plotted xσ data for the positive and negative values of c2. Red table entries indicate that
even though the lane change is successfully performed for the corresponding σx, it somehow
did not satisfy the tuning requirements completely. Empty table entries mean that no values
for σx leading to good lane-changing behavior could be found at all.

Table E-2: xσ in [m] against Vh and ∆Vo,h in [kmh−1] for c2 = 0 m−1

Obstacle PF σx measure xσ

∆Vo,h

Vh −5 −10 −15 −20

20 12 26 39 49
30 14 27 42 54
40 14 28 40 51
50 15 30 45 60
60 15 30 45 60
70 16 32 47 60
80 16 31 48 63
90 16 33 50 65

100 16 33 50 65
110 16 35 50 70
120 17 35 50 67
130 17 33 55 66
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Obstacle potential field 
x
 measure x  for c

2
  0

Figure E-2: Obstacle PF σx-measure xσ versus Vh for different ∆Vo,h with c2 ≥ 0
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94 Tuned obstacle PF parameters

Obstacle potential field 
x
 measure x  for c

2
  0

Figure E-3: Obstacle PF σx-measure xσ versus Vh for different ∆Vo,h with c2 ≤ 0
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Table E-3: xσ in [m] against Vh and ∆Vo,h in [kmh−1] for c2 = 1.0e−6 and 5.0e−6 m−1

(a) For c2 = 1.0e−6 m−1

Obstacle PF σx measure xσ

∆Vo,h

Vh −5 −10 −15 −20

20 12 25.5 37.5 46.5
30 14 27 41.5 52.5
40 14.5 28 39 50
50 16 31 45.5 58
60 16 31 46 59
70 16 31.5 47 60
80 16.5 32 48 62
90 17 33 49 63.5

100 17.5 34 50 65
110 17 35 51 67
120 18 36 52 67.5
130 18 35 54 66

(b) For c2 = 5.0e−6 m−1

Obstacle PF σx measure xσ

∆Vo,h

Vh −5 −10 −15 −20

20 11.5 24.5 36 44
30 14 26 39 49
40 14.5 27 37 47
50 16.5 30.5 44 55
60 16.5 30.5 44 57
70 17 31 45 58
80 18 32.5 46 59
90 18.5 33.5 47 61

100 20 34 48 62
110 20 37 51 64
120 22 38 52 66
130 24 39 53.5 64

Table E-4: xσ in [m] against Vh and ∆Vo,h in [kmh−1] for c2 = 1.0e−5 and 5.0e−5 m−1

(a) For c2 = 1.0e−5 m−1

Obstacle PF σx measure xσ

∆Vo,h

Vh −5 −10 −15 −20

20 11.5 24 35 43
30 13.5 25 37.5 47
40 14 26.5 36 46
50 16 30 42 52
60 16.5 31 43 56
70 17 31 43 56
80 18 32 44 57
90 19.5 33 46 58

100 22 34 47 59
110 25.5 36 48 60
120 33 38 49 61
130 29.5 40 51 62

(b) For c2 = 5.0e−5 m−1

Obstacle PF σx measure xσ

∆Vo,h

Vh −5 −10 −15 −20

20 11 22 32 39
30 13 23 34 42.5
40 13.5 25 33 41
50 15.5 28 37 47
60 16.5 28 38 48
70 19.5 28.5 38.5 48.5
80 23.5 30 39 49
90 27.5 31 40 50

100 33 33.5 42 51
110 38 37.5 44 52
120 47.5 43.5 46 53
130 56 47 50 54
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96 Tuned obstacle PF parameters

Table E-5: xσ in [m] against Vh and ∆Vo,h in [kmh−1] for c2 = 1.0e−4 and 2.5e−4 m−1

(a) For c2 = 1.0e−4 m−1

Obstacle PF σx measure xσ

∆Vo,h

Vh −5 −10 −15 −20

20 10.5 21 30.5 37.5
30 12.5 22 32 40
40 13 22 29 36.5
50 15 24 32.5 40.5
60 17 25 32.5 41
70 20.5 26 33.5 42
80 24.5 28 35 43
90 29 31 36.5 44

100 34 34 39 45
110 39.5 39 42 47.5
120 47 44.5 46 50
130 53 50.5 51 52.5

(b) For c2 = 2.5e−4 m−1

Obstacle PF σx measure xσ

∆Vo,h

Vh −5 −10 −15 −20

20 10 20 28.5 35.5
30 12 21 30 37.5
40 12.5 20.5 27.5 34
50 14.5 22.5 30 37.5
60 17 23 30.5 38.5
70 20 24.5 31.5 39
80 23 27 33.5 40.5
90 26 31 36 42

100 28.5 35 38.5 45
110 30 40.5 43.5 48
120 31.5 45 49 52.5
130 32.5 49.5 56 58

Table E-6: xσ in [m] against Vh and ∆Vo,h in [kmh−1] for c2 = -1.0e−6 and -5.0e−6 m−1

(a) For c2 = -1.0e−6 m−1

Obstacle PF σx measure xσ

∆Vo,h

Vh −5 −10 −15 −20

20 12 23
30 14 28 45
40 14.5 29 42 50
50 16 32 49 69
60 16 32 48 66
70 16 31.5 49 68
80 16.5 33 49 69
90 16 34 50 69

100 17 34 52 70
110 17 35 53 73
120 17 36 54 73
130 17 35 55 73

(b) For c2 = -5.0e−6 m−1

Obstacle PF σx measure xσ

∆Vo,h

Vh −5 −10 −15 −20

20
30 15
40 14.5 24
50 16 32 30
60 16 35 35 35
70 16 34 40 39
80 16 34 43 43
90 16 35 44 44

100 16 35 45 44
110 16 36 48 44
120 16 36 49 46
130 16 35 56 50
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Table E-7: xσ in [m] against Vh and ∆Vo,h in [kmh−1] for c2 = -1.0e−5 and -5.0e−5 m−1

(a) For c2 = -1.0e−5 m−1

Obstacle PF σx measure xσ

∆Vo,h

Vh −5 −10 −15 −20

20
30 14.5
40 14.5
50 16 24
60 15 28 26
70 16 31 31
80 15 34 33 34
90 16 37 35 36

100 16 36 37 38
110 15 35 38 40
120 15 34 44 43
130 15 33 46 43

(b) For c2 = -5.0e−5 m−1

Obstacle PF σx measure xσ

∆Vo,h

Vh −5 −10 −15 −20

20
30
40 11
50 14.5
60 15 18
70 14 20
80 14 26 24
90 13 29 27 27

100 13 31 31 29
110 12 29 33 33
120 12 27 38 36
130 12 25 41 39

Table E-8: xσ in [m] against Vh and ∆Vo,h in [kmh−1] for c2 = -1.0e−4 and -2.5e−4 m−1

(a) For c2 = -1.0e−4 m−1

Obstacle PF σx measure xσ

∆Vo,h

Vh −5 −10 −15 −20

20
30
40
50 14
60 14 16
70 13 20
80 12 24 23
90 12 27 25 26

100 11.5 26 29 29
110 11 25 33 32
120 11 23 34 34
130 11 22 40 37

(b) For c2 = -2.5e−4 m−1

Obstacle PF σx measure xσ

∆Vo,h

Vh −5 −10 −15 −20

20
30
40
50 11.5
60 13 14
70 12 17
80 11 20 21
90 10 23 24

100 10 24 24 27
110 9.5 24 27 30
120 9.5 22 30 32
130 9.5 21 32
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ρ ψ δ αf αr β βf βr ∆Vo,h δXh σx σy λy λvy λψ̇ λψ λu λ∆ ∆u λr λo η λi τ ψℓc ψe αi ∇f

Utot Rψ AX xα bY dLA xLA tLA ye a r vi+1 di+1 c2 c1 c0 Lwb X Y Ar br aM bM cM Og V
vx vy m Iz ℓf ℓr Fx Fxf

Fxr Fy Fyf
Fyr Cf Cr my by Uo Ao xσ yσ aψ bψ cψ J i Np O

h Ol F
ka kr cd ψp A B C k t tr td tse j do dx dy x y H c R g yineq Cineq Aeq beq Aineq bineq Ax,ineq

bx,ineq Au,ineq bu,ineq fineq Qf U U0 U1 U2 yXY CXY th Mz u Um ki ce xi ui−1 qi f ℓw Vx Xp

L Hf fx fy
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Appendix F

Lane-change characteristics results

This Appendix presents the simulation results for the lane-change characteristics.

Figure F-1 is repeated as a reminder of how the used lane-change characteristics are defined.
Table F-1 contain the mean values of the lane-change characteristics for the simulations at
c2 = 0 m−1, with the corresponding data displayed in the box plots of Figure F-2. Further-
more, Table F-2 to Table F-7 list the mean values of the lane-change characteristics for the
simulations at all other values for c2. Figure F-3 to Figure F-14 show the respective box plots.

Figure F-1: Characteristics to evaluate the lane-change performance: 0) lane-change initiation,
1) rise time: tr, 2) duration: td, 3) settling time: tse, 4) longitudinal IVD: dlo, 5) lateral IVD:
dla, 6) overshoot: do
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Table F-1: Mean lane-change characteristics for c2 = 0 m−1

Mean lane-change characteristics

Controller

Characteristic APF MPC TNO

Rise time in [s] 2.23 1.69
Duration in [s] 5.34 3.19
Settling time in [s] 15.10 11.41
Overshoot in [m] 0.10 0.36
Long. IVD in [m] 17.74 14.51
Lat. IVD in [m] 3.39 3.82
Min. IVD in [m] 3.37 3.78
ay in [ms−2] −0.01 −0.03
Max. ay in [ms−2] 1.20 0.85
jy in [ms−3] 0.00 −0.01
Max. jy in [ms−3] 0.32 0.10
Sim. time in [s] 5.32 1.62

Lane-change characteristics box plots for c
2
 = 0 m

-1

Figure F-2: Lane-change characteristics box plots for c2 = 0m−1
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Table F-2: Mean lane-change characteristics for c2 = 1.0e−6 and 5.0e−6 m−1

(a) For c2 = 1.0e−6 m−1

Mean lane-change characteristics

Controller

Characteristic APF MPC TNO

Rise time in [s] 2.27 1.68
Duration in [s] 5.42 3.19
Settling time in [s] 15.43 11.40
Overshoot in [m] 0.10 0.36
Long. IVD in [m] 18.30 14.49
Lat. IVD in [m] 3.40 3.82
Min. IVD in [m] 3.39 3.78
ay in [ms−2] −0.01 −0.03
Max. ay in [ms−2] 1.16 0.85
jy in [ms−3] 0.00 −0.01
Max. jy in [ms−3] 0.30 0.10
Sim. time in [s] 5.58 1.59

(b) For c2 = 5.0e−6 m−1

Mean lane-change characteristics

Controller

Characteristic APF MPC TNO

Rise time in [s] 2.37 1.68
Duration in [s] 5.59 3.19
Settling time in [s] 16.68 11.36
Overshoot in [m] 0.09 0.36
Long. IVD in [m] 19.13 14.50
Lat. IVD in [m] 3.41 3.82
Min. IVD in [m] 3.40 3.78
ay in [ms−2] 0.00 −0.03
Max. ay in [ms−2] 1.10 0.85
jy in [ms−3] 0.00 −0.01
Max. jy in [ms−3] 0.27 0.10
Sim. time in [s] 5.91 1.69

Lane-change characteristics box plots for c
2
 = 1e-06 m

-1

Figure F-3: Lane-change characteristics box plots for c2 = 1.0e−6 m−1

Master of Science Thesis E.Y. Snapper



102 Lane-change characteristics results

Lane-change characteristics box plots for c
2
 = 5e-06 m

-1

Figure F-4: Lane-change characteristics box plots for c2 = 5.0e−6 m−1

Table F-3: Mean lane-change characteristics for c2 = 1.0e−5 and 5.0e−5 m−1

(a) For c2 = 1.0e−5 m−1

Mean lane-change characteristics

Controller

Characteristic APF MPC TNO

Rise time in [s] 2.45 1.69
Duration in [s] 5.77 3.19
Settling time in [s] 20.61 11.32
Overshoot in [m] 0.08 0.36
Long. IVD in [m] 19.58 14.51
Lat. IVD in [m] 3.41 3.82
Min. IVD in [m] 3.40 3.78
ay in [ms−2] 0.00 −0.02
Max. ay in [ms−2] 1.06 0.86
jy in [ms−3] 0.00 −0.01
Max. jy in [ms−3] 0.26 0.10
Sim. time in [s] 6.75 1.93

(b) For c2 = 5.0e−5 m−1

Mean lane-change characteristics

Controller

Characteristic APF MPC TNO

Rise time in [s] 2.74 1.69
Duration in [s] 6.19 3.20
Settling time in [s] 28.76 20.08
Overshoot in [m] 0.08 0.37
Long. IVD in [m] 21.98 14.54
Lat. IVD in [m] 3.42 3.82
Min. IVD in [m] 3.41 3.78
ay in [ms−2] 0.05 0.03
Max. ay in [ms−2] 0.99 0.90
jy in [ms−3] 0.00 −0.01
Max. jy in [ms−3] 0.23 0.10
Sim. time in [s] 7.14 2.17
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Lane-change characteristics box plots for c
2
 = 1e-05 m

-1

Figure F-5: Lane-change characteristics box plots for c2 = 1.0e−5 m−1

Lane-change characteristics box plots for c
2
 = 5e-05 m

-1

Figure F-6: Lane-change characteristics box plots for c2 = 5.0e−5 m−1
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Table F-4: Mean lane-change characteristics for c2 = 1.0e−4 and 2.5e−4 m−1

(a) For c2 = 1.0e−4 m−1

Mean lane-change characteristics

Controller

Characteristic APF MPC TNO

Rise time in [s] 2.91 2.81
Duration in [s] 6.33 4.30
Settling time in [s] 30.42 24.94
Overshoot in [m] 0.11 0.40
Long. IVD in [m] 21.98 16.16
Lat. IVD in [m] 3.40 3.81
Min. IVD in [m] 3.39 3.77
ay in [ms−2] 0.11 0.08
Max. ay in [ms−2] 1.02 0.95
jy in [ms−3] 0.00 0.00
Max. jy in [ms−3] 0.22 0.11
Sim. time in [s] 6.70 1.75

(b) For c2 = 2.5e−4 m−1

Mean lane-change characteristics

Controller

Characteristic APF MPC TNO

Rise time in [s] 3.10 5.50
Duration in [s] 6.22 6.94
Settling time in [s] 30.50 27.51
Overshoot in [m] 0.17 0.59
Long. IVD in [m] 24.04 24.34
Lat. IVD in [m] 3.27 3.78
Min. IVD in [m] 3.26 3.75
ay in [ms−2] 0.22 0.18
Max. ay in [ms−2] 0.98 1.07
jy in [ms−3] -0.00 -0.00
Max. jy in [ms−3] 0.17 0.13
Sim. time in [s] 5.79 1.60

Lane-change characteristics box plots for c
2
 = 0.0001 m

-1

Figure F-7: Lane-change characteristics box plots for c2 = 1.0e−4 m−1

E.Y. Snapper Master of Science Thesis



105

Lane-change characteristics box plots for c
2
 = 0.00025 m

-1

Figure F-8: Lane-change characteristics box plots for c2 = 2.5e−4 m−1

Table F-5: Mean lane-change characteristics for c2 = -1.0e−6 and -5.0e−6 m−1

(a) For c2 = -1.0e−6 m−1

Mean lane-change characteristics

Controller

Characteristic APF MPC TNO

Rise time in [s] 2.15 1.68
Duration in [s] 5.06 3.19
Settling time in [s] 14.40 11.41
Overshoot in [m] 0.11 0.36
Long. IVD in [m] 17.11 14.05
Lat. IVD in [m] 3.45 3.82
Min. IVD in [m] 3.43 3.78
ay in [ms−2] −0.01 −0.03
Max. ay in [ms−2] 1.21 0.85
jy in [ms−3] 0.00 −0.01
Max. jy in [ms−3] 0.31 0.10
Sim. time in [s] 6.61 1.88

(b) For c2 = -5.0e−6 m−1

Mean lane-change characteristics

Controller

Characteristic APF MPC TNO

Rise time in [s] 1.99 1.68
Duration in [s] 4.62 3.19
Settling time in [s] 13.92 11.45
Overshoot in [m] 0.13 0.36
Long. IVD in [m] 12.20 13.74
Lat. IVD in [m] 3.22 3.82
Min. IVD in [m] 3.20 3.77
ay in [ms−2] −0.02 −0.04
Max. ay in [ms−2] 1.31 0.84
jy in [ms−3] 0.00 −0.01
Max. jy in [ms−3] 0.40 0.10
Sim. time in [s] 6.59 1.98
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Lane-change characteristics box plots for c
2
 = -1e-06 m

-1

Figure F-9: Lane-change characteristics box plots for c2 = -1.0e−6 m−1

Lane-change characteristics box plots for c
2
 = -5e-06 m

-1

Figure F-10: Lane-change characteristics box plots for c2 = -5.0e−6 m−1
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Table F-6: Mean lane-change characteristics for c2 = -1.0e−5 and -5.0e−5 m−1

(a) For c2 = -1.0e−5 m−1

Mean lane-change characteristics

Controller

Characteristic APF MPC TNO

Rise time in [s] 1.96 1.68
Duration in [s] 4.56 3.20
Settling time in [s] 13.44 11.52
Overshoot in [m] 0.14 0.36
Long. IVD in [m] 10.60 13.15
Lat. IVD in [m] 3.10 3.82
Min. IVD in [m] 3.06 3.77
ay in [ms−2] −0.03 −0.04
Max. ay in [ms−2] 1.30 0.84
jy in [ms−3] 0.00 −0.01
Max. jy in [ms−3] 0.43 0.10
Sim. time in [s] 5.96 1.83

(b) For c2 = -5.0e−5 m−1

Mean lane-change characteristics

Controller

Characteristic APF MPC TNO

Rise time in [s] 2.00 1.67
Duration in [s] 4.35 3.20
Settling time in [s] 19.98 16.09
Overshoot in [m] 0.19 0.35
Long. IVD in [m] 9.59 12.80
Lat. IVD in [m] 3.02 3.81
Min. IVD in [m] 2.97 3.76
ay in [ms−2] −0.09 −0.10
Max. ay in [ms−2] 1.28 0.77
jy in [ms−3] 0.00 −0.01
Max. jy in [ms−3] 0.47 0.10
Sim. time in [s] 5.46 1.78

Lane-change characteristics box plots for c
2
 = -1e-05 m

-1

Figure F-11: Lane-change characteristics box plots for c2 = -1.0e−5 m−1
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Lane-change characteristics box plots for c
2
 = -5e-05 m

-1

Figure F-12: Lane-change characteristics box plots for c2 = -5.0e−5 m−1

Table F-7: Mean lane-change characteristics for c2 = -1.0e−4 and -2.5e−4 m−1

(a) For c2 = -1.0e−4 m−1

Mean lane-change characteristics

Controller

Characteristic APF MPC TNO

Rise time in [s] 1.68 1.68
Duration in [s] 3.30 3.30
Settling time in [s] 18.15 18.15
Overshoot in [m] 0.31 0.31
Long. IVD in [m] 23.28 23.28
Lat. IVD in [m] 3.75 3.75
Min. IVD in [m] 3.75 3.75
ay in [ms−2] −0.15 −0.15
Max. ay in [ms−2] 0.70 0.70
jy in [ms−3] 0.00 0.00
Max. jy in [ms−3] 0.10 0.10
Sim. time in [s] 1.59 1.59

(b) For c2 = -2.5e−4 m−1

Mean lane-change characteristics

Controller

Characteristic APF MPC TNO

Rise time in [s] 5.15 5.23
Duration in [s] 6.87 6.74
Settling time in [s] 20.86 21.75
Overshoot in [m] 0.44 0.32
Long. IVD in [m] 16.89 23.36
Lat. IVD in [m] 3.33 3.77
Min. IVD in [m] 3.21 3.73
ay in [ms−2] −0.36 −0.37
Max. ay in [ms−2] 1.30 0.99
jy in [ms−3] 0.00 0.00
Max. jy in [ms−3] 0.48 0.13
Sim. time in [s] 4.95 1.66
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Lane-change characteristics box plots for c
2
 = -0.0001 m

-1

Figure F-13: Lane-change characteristics box plots for c2 = -1.0e−4 m−1

Lane-change characteristics box plots for c
2
 = -0.00025 m

-1

Figure F-14: Lane-change characteristics box plots for c2 = -2.5e−4 m−1
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ℓw Lane width of 3.5 m
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C Output matrix

c Gradient vector of cost function J

c0 Mobileye lane offset in [m]

c1 Mobileye lane heading in [-]

c2 Mobileye lane curvature in
[
m−1

]

cd Nonlinear damping in [ x]

ce Morse potential field parameter

Cf Negative front tire cornering stiffness in
[

Nrad−1
]

cM Parameter defining Morse potential field zero

Master of Science Thesis E.Y. Snapper



120 Glossary

Cr Negative rear tire cornering stiffness in
[

Nrad−1
]

Cineq Matrix to obtain left-hand side of inequality constraint equation from x

cψ Third obstacle potential field rotation coefficient

CXY Matrix with position coordinate selection coefficients

do Overshoot in [m]

dx Longitudinal inter-vehicle distance in [m]

dy Lateral inter-vehicle distance in [m]

di+1 Communicated distance to leading vehicle of vehicle i+ 1 in [m]

dLA Distance to look-ahead point measured from vehicle rear axle in [m]

F Artificial force in [N]

f Function

Fx Sum of longitudinal tire forces in [N]

fx Partial derivative of f with respect to x

Fy Sum of lateral tire forces in [N]

fy Partial derivative of f with respect to y

fineq Vector with linear inequality constraint values of state x

Fxf
Longitudinal force at front tire in [N]

Fxr Longitudinal force at rear tire in [N]

Fyf
Lateral force at front tire in [N]

Fyr Lateral force at rear tire in [N]

g Standard gravity of 9.81 ms−2

H Hessian matrix

Hf Hessian matrix of f

i Index

Iz Vehicle mass moment of inertia around vehicle CoG in
[

kgm2
]

J Cost function

j Jerk in
[
ms−3

]

k Discrete time instance

ka Positive gain of attractive potential field

ki Morse potential field tunable parameters

kr Positive gain of repulsive potential field

L Lower triangular matrix from Cholesky decomposition

Lwb Wheel base in [m]

m Vehicle mass in [kg]

my Slope of line normal to lane center

Mz Sum of moments around vertical z-axis in [Nm]

Np Prediction horizon

Og Global road coordinate frame attached to road

Oh Local host-vehicle coordinate frame attached to vehicle CoG

Ol Local road coordinate frame attached to right lane center of road

E.Y. Snapper Master of Science Thesis



121

Qf Quadratic Taylor approximation of f

qi Input of platoon vehicle i in
[
ms−1

]

R Curve radius in [m]
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d Discrete time

e Error

g Indicating variable expressed in global road coordinate frame

h Indicating host vehicle parameter or variable expressed in local host-vehicle co-
ordinate frame

o Indicating obstacle parameter or variable

p Predicted

x Longitudinal

y Lateral

ℓℓc Left lane center

ℓc Lane center

ℓrb Left road boundary
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eq Equality

ineq Inequality

max Maximum

min Minimum

ref Reference
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rb Road boundary

re Repulsive

rrb Right road boundary
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Xh
Partial derivative with respect to Xh

Yh
Partial derivative with respect to Yh

0 Initial

∆ Input increment

u Input

y Output

x Vector input to f

x0 Point of quadratic Taylor approximation
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ψ̇ Vehicle yaw rate in
[
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]
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[
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˙ Time derivative of variable

∼ Indicating extended model predictive control notation
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]
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