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Continuous monitoring with unobtrusive wearable social sensors is becoming a popular method to assess individual affect
states and team effectiveness in human research. A large number of applications have demonstrated the effectiveness of
applying wearable sensing in corporate settings; for example, in short periodic social events or in a university campus.
However, little is known of how we can automatically detect individual affect and group cohesion for long duration missions.
Predicting negative affect states and low cohesiveness is vital for team missions. Knowing team members’ negative states
allows timely interventions to enhance their effectiveness. This work investigates whether sensing social interactions and
individual behaviors with wearable sensors can provide insights into assessing individual affect states and group cohesion. We
analyzed wearable sensor data from a team of six crew members who were deployed on a four-month simulation of a space
exploration mission at a remote location. Our work proposes to recognize team members’ affect states and group cohesion as
a binary classification problem using novel behavior features that represent dyadic interaction and individual activities. Our
method aggregates features from individual members into group levels to predict team cohesion. Our results show that the
behavior features extracted from the wearable social sensors provide useful information in assessing personal affect and team
cohesion. Group task cohesion can be predicted with a high performance of over 0.8 AUC. Our work demonstrates that we
can extract social interactions from sensor data to predict group cohesion in longitudinal missions. We found that quantifying
behavior patterns including dyadic interactions and face-to-face communications are important in assessing team process.
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1 INTRODUCTION
Assessing team cohesion and effectiveness with pervasive sensing technologies in real-life settings is a growing
field in human research [25, 37, 40]. Wearable social sensing platforms, such as Sociometric Badges [36, 48], have
been developed to augment ID tags with multiple sensors, such as accelerometers, microphones and optical
sensors. These platforms are unobtrusive tools to examine group behaviors and interactions in naturalistic
environments without disrupting ongoing tasks.
Prior works demonstrated the effectiveness of using wearable badges to mine social networks in large multi-

disciplinary teams, e.g., in corporate settings [15, 36, 48]. Social network structures have been shown to link to
team productivity [48], creativity and team performance [15, 28, 36]. The majority of these studies focused on
large scale and complex organization settings.
Besides studying groups in large scale corporate settings, long-term wearable recordings also provide an

attractive opportunity to study the dynamics of team process, especially for small teams working in confined
and isolated long duration missions [25]. Understanding long-term team cohesion and affect states is important
as the team must remain together during the entire mission. It is vital to examine team processes and detect
their critical states so that potential team dysfunctions can be anticipated. Prior works demonstrated that small
groups have inherently different dynamics compared to large groups [13]. This paper focused on small team
collaborations for long duration missions in confined spaces.

This paper studies whether individual behavior and social interactions provide useful information in assessing
affective states and group cohesion. The topic is well known in social psychology that individual affect is
influenced by peers’ emotion [20] and the strength of social links in groups [27, 31]. Unlike prior studies focused
on tracking individuals with mobile sensing [1, 3, 29, 47], here we focus on the problem of analyzing the affective
state of team members in isolated, confined and extreme conditions [25]. Specifically, we analyze a team of six
crew members who were in a four-month space exploration simulation mission. Group cohesion is critical in
these settings, as a breakdown in the team can cause catastrophic consequences for the success of a mission,
and waste years of planning and resources. Unlike typical scenarios in the wild, confined teams are unable to
obtain help from outside to moderate their conflicts or to assess demotivation or frustrations of team members.
Therefore, being able to infer these states from sensor data is highly desirable.

In such scenarios, the team effect on individual affective state is a bigger factor than can be observed from
individual behavior alone. Our work proposes a method that treats team member’s affect states and group
cohesiveness as a two-class detection (negative vs. non-negative) problem. It takes into account of both the social
interactions between team members and the individual behavior features extracted from wearable Sociometric
Badges. We analyzed the team behaviors at both individual and group levels. At the individual level, we examined
whether there exists any links between wearable social sensor features and personal affect and perceived
cohesiveness. We first correlated different types of features to individuals’ affect and cohesion ratings collected
with experience sampling methods (ESM). We further performed a classification experiment to validate the
effectiveness of our approach for detecting personal affect. At the group level, we generated group representations
by aggregating features extracted from each teammember. Finally, we conducted another classification experiment
to validate the performance of detecting group cohesion.
The contributions of this paper are:

• A novel approach for extracting behavior features from wearable social sensors to assess team states.
We extracted novel features at the individual level to capture communication and individual activities.
The features include 1) f 2f : amount of face-to-face interactions, which represents the strength of one’s
social link with other team members; 2) Individual : intrinsic features about individual’s physical and vocal
activities; and 3) Dyadic : interaction features which indicate how one person is influenced by and responds
to their interaction partners. The features are for quantifying mirroring and influence interaction patterns.
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We further constructed group-level features to capture team behaviors. Our approach is validated on a
four-month recording of a realistic confined mission conducted in the wild.

• We found that equal number of features representing face-to-face communications and dyadic interactions
are predictive for all three dimensions of affect, while less features representing individual activities are
found to be predictive for valence compared to arousal. Furthermore, group-level f2f communications
demonstrated to be the most significant factor in predicting both task and social cohesion. In sum, we
advanced the understanding of group behaviors in small teams with wearable social sensing. We recom-
mend to capture group interaction patterns in sensor design and quantify these behaviors in developing
computational models for ubiquitous computing applications.

• To the best of our knowledge, this is the first work that quantifying behavior and interaction patterns
from wearable social sensors are applied in assessing longitudinal team processes. Our results provided
the initial evidence that predicting personal affect and group cohesion by quantifying behavior features
outperformed the baseline methods.

2 RELATED WORK

2.1 Longitudinal Group Interaction Analysis with Social Sensing
Mobile phones have been adopted to study human social interactions in workplace and social events [8, 10, 11].
Eagle and Pentland [10] proposed the Serendipity system which used the Bluetooth in mobile phones to detect
and identify people who are close by. Their system exploits the proximity information between two mobile
phones to infer relationships among users. A Gaussian mixture model was trained to detect proximity patterns
between users and then correlate these patterns with relationship types of users. Do and Gatica-Perez [8] proposed
the GroupUs system which uses a probabilistic model to infer types of interaction such as whether the user is
interacting with families or colleagues from longitudinal bluetooth data. However, bluetooth has a large scan
radius of within 10 meters which does not provide reliable information for studying face-to-face social interactions
at small spatial and temporal resolutions [9].
Wearable sensors such as the Sociometric badge are another type of tools for analyzing team interactions

and group performance [6, 36, 46, 49]. Nguyen et al. applied unsupervised method to discover participants’
affiliations and friendship information using the reality mining dataset that was collected by the MIT media
Lab from over 100 people wearing Sociometric badges [35]. In these studies, social network analysis based on
networks and graph theory is widely used. Waber et al. conducted an experiment that collects data from 22
employees wearing the Sociometric badges from a bank in Germany for a month [46]. They correlated temporal
changes in social network patterns with individual and groups’ performance obtained from e-mail logs and
individual self-reports. Their results show that summary statistics computed from their data can only capture ten
percent of the variance of responses. They further suggest that a fine level of analysis is needed to discover the
important factors from the data. Similar studies were conducted with a group of 67 nurses in a hospital for 27
days and 52 employees from three branches of a bank in the Czech Republic for 20 working days [36]. Through
analyzing social network structures and individual behaviors, they identified a negative correlation between
amount of face-to-face communication and job satisfaction, and a negative correlation between centrality and
group interaction satisfaction.

Tripathi and Burleson studied the relationship of face-to-face interaction strength and individual movement in
relation to creativity in teams [44]. In their experiments, 3 teams of 5 to 7 member’s movement and interaction
data were recorded with sociometric badges and a daily survey for two to four work weeks. They found that
average movement is significantly higher for creative days than non-creative days. Using average movement and
frequency of face-to-face interactions can predict creativity with 87.5% and 91% accuracy respectively. Another
related study from Gloor et al. [15] collected sociometric data from 14 graduate students and their instructor
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during a one-week seminar. They extract each participant’s social network position represented with three
metrics: degree centrality, betweenness centrality and contribution index. These metrics were aggregated over
the entire five-day period and correlated with individual personality, trust between members and creativity of
the team. Their results indicate that more interactions with central people and more members facing each other
might predict openness and higher creativity. Recent works applied machine learning to mine longitudinal team
interaction data. Zhang et al. used topic models to extract social interaction routines from Sociometric badges
and identified correlations between team interaction events and their perceived affect and cohesion [49].

2.2 Detecting Affective States in Pervasive Computing
Different methods have been proposed to assess affective states (i.e., stress, emotion and mood), including using
biosignals, acoustic, visual and human activities analysis [5]. The majority of these systems rely on sensing
biosignals such as Electrodermal Activity (i.e., skin conductance), heart rate and blood flow [22, 41]. The biosignals
are usually measured with wearable sensors that are close to human body. Recent works have proposed multi-
modal approaches to detect affect states such as depression by combing both visual appearances and dynamics
from faces captured at a distance with video cameras [7] or the combination with microphones [33].
In uncontrolled out of lab settings, recent works investigated how daily activities are linked to people’s

emotional states through continuous unobtrusive sensing via digital traces (e.g., device usage, email, social media,
locations) [2, 3, 16, 29, 47]. The majority of these studies focus on assessing mental health such as depression.
Hernandez et al. studied computer usage in offices to determine stress levels [16]. A number of studies found
that mobile phone usage patterns such as calls, GPS location and application usage are correlated to people’s
depression states [1, 30, 45, 47]. The StudentLife study collected smartphones data from 48 Dartmouth students
over 10 weeks to assess their mental health [47]. They analyzed how academic activities have an effect on
students’ affective mood. Breda et al. [45] compared different classification methods for predicting short-term
mood from mobile phone data, e.g., number of calls. They found out that contextual data about individuals are
useful and can increase predictive performance. Another closely related work is that from [31]. Their study linked
the overall sociability (co-locations detected via mobile phone’s bluetooth proximity) of 54 participants in the
same residential complex to their daily mood. They found that people who exhibited poor mood are the group
who have lower overall sociability in that community. However, they did not find correlations between daily
variation in sociability and poor mood. They concluded that individual’s overall sociability is more important
than daily variations in its effect on mood.
Besides using digital traces from mobile phones, Bogomolov et al. [3] used behavioral metrics obtained from

seven month of 111 subject’s mobile phone activities, personality traits and additional context indicators, such
as weather information, to recognize daily stress levels. Their model of using the combination of all features
achieved a person-independent accuracy of 72.28% for a binary classification of daily stress. Suhara et al. [43]
investigated predicting depression with self report histories using Recurrent Neural Networks. They used 345,158
total days of logs collected from more than 2,382 users over 22 months. The results show that long-term historical
information of a user can improve the prediction accuracy for detecting depression.

2.3 Cohesion Estimation in Teams
From the organizational psychology domain, many studies have been carried out to analyze cohesion. See the
review by Salas et al. for a recent review [39]. Cohesion in teams has been studied extensively because of its
link with team effectiveness and performance, particularly when conceptualized in terms of the task and social
components [39]. In terms of computational approaches, we are aware of three. The first by Olguin-Olguin and
Pentland [36], proposed a framework to perform organizational design engineering using the sociometric badge
to measure frequency of face to face interaction in combination with other sources such as emails, surveys and
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performance data. They define cohesion to be how well acquaintances are connected together based on the
frequency of infrared sensing. Therefore the frequency of observation of face to face interactions acted as a
proxy of cohesion. We argue in this paper that the concept of cohesion may be more complex. That is aside from
frequency of interaction, a number of features related to the coordination of conversational behavior such as
turn-taking (as shown by Hung and Gatica-Perez [17]) or paralinguistic mimicry (as shown by Nanninga et al.
[34]) during meetings are indicative of social or task cohesive behavior. Both works used third party perceptions
of cohesion on time slices of 2-5 minutes during a meeting.

In sum, our work differs from existing research in that: firstly, little work investigated the link between affect
and face-to-face social interactions in longitudinal team missions. There are no prior studies that apply machine
learning for detecting affect states from combining both social interactions and individual activities. Secondly,
we are focusing on a small team longitudinal context which has a much smaller scale group structure compared
to existing applications in corporate[36], hospital and campus settings [47]. Lastly, compared to analyzing social
network structure in complex organizations, our study focuses on the quality of dyadic human-human interactions
as an indicator of individual affect and team perceptions of cohesion. Unlike prior work typically using only
frequency of face-to-face interactions, we proposed a novel approach of using mimicry features to quantify
interaction quality extracted from dyadic interactions.

3 RESEARCH QUESTIONS
The main objective of this work is to explore the value of monitoring long-term team behaviors with wearable
social sensors. Conventionally, teams use self-report measures and video recordings. The logged data were
usually analyzed off-line. Extensive evidence from behavior research in group studies showed that team states
are associated with unique patterns of individual behaviors and social interactions, despite of the tasks that team
members are involved in [26]. Maintaining healthy affective states and cohesion within the team are vital for a
high performance team. Our aim is to quantify behaviors using proxy extracted from wearable social sensors and
conduct empirical evaluations on to what extent we can make inferences about team processes (i.e., individual
affective states and group cohesion).
Our work focuses on three types of behavior: strength of face-to-face communications, individual activities

and dyadic interaction patterns. The frequency counts of face-to-face interactions – a proxy for the strength of
face-to-face communications – were demonstrated to relate to several group concepts. For example, the amount
of face-to-face interactions were shown to infer personal relationships [11], roles within groups and group
performance in prior works [15, 36]. The second type of behaviors is related to individual activities, i.e., physical
and vocal activities. A high base level of physical and vocal activities are typically associated with being excited
and interested. Variations in physical and vocal activities usually correspond to fluctuations in people’s mood
[36]. Recent works have showed initial evidence that individual’s daily physical and vocal activities are linked to
depression for mental health monitoring [29, 47] and creativity in teams [3]. The last behavior patterns reflect
the dyadic social interactions (i.e., mimicry and influence). For example, it is well studied that more mimicry
behavior would improve engagement and lead to positive effect in human-human interactions [18, 38, 42]. The
mimicry behavior is related to the emotion contagion phenomenon that emotion can be shared among groups
[20]. Although it is a crucial criterion in examining group activities rely on unconscious interaction patterns
between team members, researchers seldom explored such dyadic interaction patterns as computational models.
Our research questions are: 1) whether the behavior features extracted from the wearable social sensors are

linked to personal affect and perceived cohesiveness; 2) at individual level, how accurate and which behavior
features are effective for assessing different dimensions of personal affective states; 3) at group level, how we can
predict group cohesion by aggregating individual behavior features based on within-team variations?
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4 THE SPACE EXPLORATION SIMULATION DATASET
Team cohesion is considered to be a dynamic phenomenon rather than a stable construct [23]. However, currently,
research have focused on short period of team collaborations, e.g., meetings [34]. Team cohesion has rarely been
investigated for longitudinal settings (such as months or years) [23, 24, 40]. To investigate team cohesion in such
settings, the space exploration simulation dataset was collected from a team of six members over four months.

4.1 Subjects
The team is a set of volunteers which were selected from a pool of candidates as we would select for a functional
team, that is they were screened on personality, skills and abilities, and an interview process. While in the habitat,
they perform a variety of team-oriented research tasks. For example, they complete team missions out of the
habitat where they must work together to complete assigned objectives, while working under an approximation
of the constraints which would be faced by a Mars flight crew. For example, any outside communication is set to
a 20 minute time delay to simulate the communication delays between Earth and Mars. Crews also have some
more unstructured personal time where they can work on their own research, or engage in social activities as a
group. This more unstructured time occurs more in the evenings.

Crews have a formal structure assigned prior to the mission by the lead scientists on site. Roles are designed to
approximate what would be expected on a six person flight crew. They include a formal commander, medical
officer, engineer, science officer, architect and biologist. The commander is the one generally to keep the crew on
schedule and task, as well as monitor the general state of the crew and liaison with mission control. The medical
officer takes the lead on monitoring and maintaining the physical health of the crew. The engineer is tasked
with addressing any physical problems with the habitat, such as plumbing leads, electrical outages, etc. The
science officer liaisons with the various outside researchers collecting data in the habitat to ensure equipment
and protocols are working correctly.
The original six individuals in the crew range in age from 26-60, with a mean of 34. They were 2 males, 4

females, all identified as white and have at least a bachelor’s degree. Two individuals indicated some minor
prior experience in ICE (Isolated, Confined, and Extreme) conditions (8 months and a half month respectively).
Participants completed informed consents for all relevant parties prior to beginning the study. One participant
was forced to retire from the experiment early for personal reasons.

Table 1. The space exploration simulation dataset collected over a 4-month mission

User ID Start - End date Days Entries ESM
1 03-31 to 07-24 107 32308 193 (165)
2 03-31 to 07-24 101 29856 197 (182)
3 03-31 to 07-24 94 43980 151 (150)
4 03-31 to 07-24 54 10868 140 (113)
6 03-31 to 07-24 95 32270 190 (177)

4.2 Data Collection
The data for this study were collected from a team of six individuals who were placed in isolation for a period
of four months (see Table 1), with ID 1, 2, 3, 4 and 6. Subject 5 is identified from the face-to-face interactions,
while the associated data is not available due to early withdrawal from the study. The team members live within
a confined, shuttle-like structure. The structure is simulating the environment that a crew would inhabit during
short-duration space flight. The structure is similar to a container three stories tall and around 6 meters in
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Fig. 1. ESM affective states responses on daily average feelings (1 - strongly disagree; 9 - strongly agree).

diameter. Participants wore badges from Sociometric Solutions during waking hours whenever engaged in
potentially social activities (therefore not while exercising, or showering) for multiple hours every day.
The experience sampling method (ESM) was used to collect daily reports. The subjects were asked to fill in

the survey twice a day, once in the morning and once in the evening. There are a few times that users provide
more than two responses within a day. Due to the schedule of team tasks, the majority of the responses were
submitted in the evening. The mornings and afternoons for the team were largely taken by mandatory tasks on
more rigid timelines which may not always have left time for filling out the survey at the ideal time. While in the
evenings, the team was more free to structure their own time and complete general tasks. In addition, the team
is largely autonomous once in the habitat and is not under direct supervision by outside researchers. This is a
form of non-compliance from our standpoint, and is a decided limitation with this data set. However, we feel this
would represent a clearer problem if we were attempting to reach a level of granularity where we were predicting
morning and evening responses separately rather than an aggregate day measurement due to potential issues
with recall accuracy when trying to rate their feelings from that morning. In aggregating to the day level, we
receive a more global picture of their assessment for the day regardless of when they ratings occurred.

4.3 ESM Data
During the 4 month mission, all members were asked to fill in surveys about their average feelings and experiences
with their team mates.

4.3.1 Affective States. The ESM questionnaire asked the participants three questions (9-item scales) that are
related to average daily feelings, which measure affect using the Positive and Negative Affect Schedule PANAS
survey [14]. The first question of tense arousal is whether the subject feel "very relaxed, calm or very nervous and
stressed". The second question of energetic arousal is asking whether they feel "very sluggish, dull or very active
and bright". The last one of valence is about feeling "very sad, low or happy and pleased". Figure 1 illustrates the
distribution of each subject’s responses.

4.3.2 Team Cohesiveness. The ESM questionnaire asked about members’ experiences with the team over the
last hour whether they felt cohesive in terms of "being mutually committed to our work" and "maintaining our
interpersonal relationships" (5-item scales). Figure 2 illustrates the distribution of each subject’s responses on
perceived cohesion. The correlations between these two variables is 0.4 in our data set. This indicates a moderate
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Fig. 2. ESM cohesive responses about perceived cohesion with teammates (1 - strongly disagree; 5 - strongly agree).

correlation between the two types of cohesion, but is not high enough to suggest that they are the same variable.
When assessing distributions this distinction is masked as individuals tend to have the same response patterns for
these variables across their time in the habitat, but from day to day their ratings on the two fluctuate somewhat,
but not completely, independently.

4.4 Wearable Sociometric Badge Data
During the data collection, each participant was wearing a Sociometric Badge (SS Badge) around their neck that
records data about movements, audio and social interactions [36].

• Movement: The SS badge consists of an accelerometer that computes information on body movement. The
accelerometer data is sampled at 20 Hz. The raw data is processed online and only the average values of
features computed over a configured time resolution are logged.

• Audio: Similar to the accelerometer, the badge has a microphone which samples the audio data at a frequency
of 8kHz. The microphone is used to record vocal features, but not the conversation content. The average
values of features within the time resolution are saved.

• Face-to-face interaction: The badge has an infrared sensor facing outwards with a unique identifier. The
number of infrared detections of an id corresponds to the number of seconds (at a configured time resolution)
that one subject is within the face-to-face interaction range.

• Location: The bluetooth in the badge measures received signal strength to estimate proximity and location
information of people nearby wearing a SS badge.

5 METHOD

5.1 Preprocessing the ESM Data
Figure 3 illustrates the steps of preprocessing the ESM data on a daily level. We merge and take the average of
ratings submitted within a day to represent daily responses. We consider responses submitted after midnight
referred to their experiences in the previous day as some subjects were often active in the late evening. In total,
we have 451 days of sensor recordings and the corresponding ESM data from 5 subjects.

Affect and cohesiveness at individual levels: for affect state responses, we denote the three survey answers as
{A1,A2,A3}: A1 (tense arousal) refers to average feelings from very stressed to relaxed, A2 (energetic arousal)
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Twice a day:
- Morning survey 
- Evening survey

Daily ESM surveys

Affect
- A1 Tense arousal
- A2 Energetic arousal
- A3 Valence

Cohesion - Ctask Task cohesion
- Csocial Social cohesion

Mean

Labels at individual level

Group task cohesion

Group social cohesion

Labels at group level
Mean

Fig. 3. Preprocessing the ESM data collected daily from each team member.

refers to feelings from very sluggish to bright, and A3 (valence) refers to feelings from very sad to pleased.
We inverted the scores in the "relaxed to stressed" question so that all responses have consistent negative to
positive (scores from low to high) directions. The cohesive responses are denoted as {Ctask ,Csocial } where
Ctask represents task cohesion in "mutually committed to our work" and Csocial represents social cohesion in
"interpersonal relationships". The final measurements are the average of all responses submitted in a day.

Cohesiveness at group levels: Figure 4 illustrates the daily fluctuations of group task and group social cohesion
of the team over the entire mission. The group task and social cohesion are aggregated from the team members’
daily responses ofCtask andCsocial respectively. The group cohesion is determined by taking the average of data
from days that at least 4 or 5 members’ data are available. From the histogram plot of group cohesion distributions
(see Figure 4), we can observe that variations exist around their mean values and the average cohesion is high. In
total, we obtained 95 days of sensor recordings and the corresponding group cohesion ratings.

Fig. 4. Group task and social cohesion over the entire mission (left) and their distributions (right).

5.2 Feature Extraction from the Sociometric Badges
We extract three types of features including face-to-face interactions, individual activities and dyadic interactions.
The features were first computed every minute from the raw sensor log data. The daily representation for
each subject is a vector that concatenates the mean of each feature over the entire day. Figure 5 illustrates our
processing pipeline for feature extractions from the wearable sensor data.
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f2f  [#1, #2, … #6, #total]
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Fig. 5. Extraction of behavior features from the badges wore by each participant.

5.2.1 Strength of Face-to-Face Interactions. Although the sociometric badges are bluetooth-enabled and can
detect approximate location information such as a device’s MAC address and RSSI, bluetooth signals have a large
range of 10 meters which are not reliable for inferring face-to-face social interactions [4, 9]. Dyads might be
detected in neighboring rooms as the bluetooth range might be greater than the room distance. The bluetooth
information is not suitable in this study as the team lived within a confined, shuttle-like structure that is less than
6 meters in diameter. Instead, the sociometric badges use IR transmissions as a proxy for face-to-face interactions
[6]. The infrared sensors on the badge face outwards and transmit IR signals with a cone of height 1 to 2 meters
and a radius of ±15 degrees. For one badge to be detected, two badges must have a direct line of sight within the
IR signal cone range [46].
For each subject, we extracted the infrared detections that consist of another’s badge ID being detected

u ∈ {1, 2, 3, 4, 5, 6} and its associated timestamp t . We used the number of detected pings from another badge to
represent the frequency of face-to-face interactions. We constructed face-to-face social strength features using
an adjacency matrix similar to previous works [37, 44]. The matrix exploits all interaction links at certain time
points. Interactions within a sliding window (W = 1min) are grouped together. The number of pings detected
for every pair of subjects represents strength of communications similar to the network edge strength in the
social network structure. For each subject, the face-to-face communication strength is represented using a 6x1
row vector of the adjacency matrix to indicate all possible pairwise interactions. The number of total pings with
id ui detected is represented as #ui . Besides examining the communication strength between each pair of team
members, we also include total amounts of face-to-face interactions denoted as #total .

5.2.2 Individual Activities. We extracted individual vocal and movement activities and consistency level
features that are shown to be good features in previous works using sociometric badges [35, 36, 44]. The
sociometric badge logged the vocal activity features [Samplitude , Sstddev ] for every 0.25 s from the audio data. We
extracted the mean and standard deviation of these two vocal features to represent the distribution of the vocal
activity levels, resulting in four features [Samplitude_avд , Samplitude_std , Sstddev_avд , Sstddev_std ]. The movement
features [Menerдy ,Mconsistency ] representing physical activities were generated every 0.5 s. The movement
energy is computed from the amplitude over three axes of the accelerometer which corresponds to motion
intensities. The consistency values are the stability of the movement energy. It has a range between 0 and 1,
where 1 indicates no change and 0 indicates maximum variance. Similar to vocal activity features, we computed
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the mean and standard deviation of two movement features indicating the distribution of physical activity levels
denoted as [Menerдy_avд ,Menerдy_std ,Mconsistency_avд ,Mconsistency_std ].

5.2.3 Dyadic Interactions. Mimicry is one of the most important cues in signaling emotions in dyadic interac-
tions and plays an important role in enabling effective communication and collaboration. People naturally mimic
via either verbal content or nonverbal cues, such as postures, facial expressions and aligning movement or speech
patterns [18, 42]. We propose to use mimicry features as a proxy to capture the quality of dyadic interactions.
Mimicry features are usually measured in two ways: event-based and correlation-based [32, 34]. The event-based
measure is commonly adopted in applications that focus on recurring events of pre-defined behaviors, such as
laughter, head nodding and hand gestures. The correlation-based measures examine recurrence and similarities
between two time series in raw signal and feature space without explicit event detections.
We computed the correlation metrics for quantifying mimicry [12]. For every pair of time series data from

all subjects, we segmented dyadic interactions based on the face-to-face events detected from the IR sensors. A
sliding window of 10 minutes was used to classify the time series segment into dyadic interaction if face-to-face
interactions were detected within the window. Then we computed the minute by minute Pearson correlations
using the time series data from the two interaction partner, denoted as themirroring Mir feature. TheMir feature
is used to quantify the similarity of two individuals’ behavior patterns over time. The second metric we proposed
is the influence In f feature where we compute the minute by minute cross correlations between two time series
data using Fourier transform. The In f feature represents whether one individual’s behavior would lead another
individual to follow and exhibit similar behaviors. The resulting dyadic interaction features were computed
from all pairwise individual activities including vocal activities [Samplitude , Sstddev ] and movement activities
[Menerдy ,Mconsistency ].

5.3 Group Feature Extraction
We extracted group level features to capture distributions of individual behaviors within the team. From the
badge data, we used the combined feature set (f2f, Individual, Dyadic). In the f2f category, we used only the #total
feature that represents the total amount of face-to-face interactions. A vector of size 17x1 was generated per
day for each team member. From all team members, the daily representation of group feature was extracted by
computing the max, min, median, mean and standard deviation per feature category. This resulted in a group
feature vector of size 85x1 from the badge data. For the baseline method that uses ESM affect ratings, the group
level feature was generated by using the daily responses {A1,A2,A3} from all team members. Similar to using
the badge data, we computed the max, min, median, mean and standard deviation in each affect rating category.
The final group feature vector size is 15x1 for the ESM affect baseline.

6 EVALUATIONS

6.1 RQ1: Which Features are Linked to Personal Affect and Cohesion?
The first experiment examines whether the proposed behavior feature representations are linked to individual
affect and perceived cohesion. This is achieved by correlating the average daily representation of each feature
to self-reported ratings obtained from the ESM data. We obtained in total of 451 samples from all 5 subjects.
This includes 451 daily ESM ratings on affect {A1,A2,A3} and cohesion {Ctask ,Csocial } and features of three
categories as described in the previous section: 1) strength of face-to-face interactions (7 variables); 2) individual
activities (8 variables) and 3) dyadic interactions (8 variables).
We used the Pearson correlation coefficients to identify important features that are correlated to each ESM

rating. For face-to-face interaction features from subject ui , the correlations were only computed using number
of interactions with other team members, because #ui is zero for that subject. We also removed samples for days
that interactions do not exist in computing correlations for interaction related features. For each ESM rating, we
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Fig. 6. Correlations between daily ESM responses (y axis) and proposed individual behavior and interaction features (x axis).
Blue: positive correlation; Yellow: negative correlation; White: no significant correlations.

computed a list of correlation and p-values generated from independent tests of a single feature. We applied the
Benjamini-Hochberg procedure to control the False Discovery Rate (FDR) for multiple hypothesis tests at level
α = 0.05. The correlation results are shown in Figure 6. We explain the details of our findings as below:

Affect: The correlations between each feature and the three affect categories show consistent relationships. There
are weak positive correlations (r ∈ (0.1, 0.3),p < 0.05) between the total number of face-to-face interactions
#total , interactions with three members (#1, #2, #3) in the team and affective states. In contrast, amount of
interactions with team member #6 has a significant weak negative correlation (r ∈ (−0.2,−0.1),p < 0.05) with
individual’s affect. There is no correlations found for the amount of interactions with subject 5, who withdrew
early from the study. We note that the majority of individual activity variables are correlated to affect but with
different effects. The average of movement energy and consistency are negatively correlated to affect, while the
rest of the individual activity features are positively correlated to affect. In particular, average daily movement
energy is negatively correlated (r = −0.46,p < 0.001) to A2 of feelings from very sluggish to bright. The average
fluctuations of vocal activities Sstddev is found to be positively correlated to A1 of feelings from very stressed to
relaxed (r = 0.27,p < 0.001) and A2 of feelings from very sluggish to bright (r = 0.35,p < 0.001). In terms of the
dyadic interaction features, mirroring in vocal activitiesMirS are consistently shown to be negatively correlated
(r ∈ (−0.3,−0.1),p < 0.001) to affect. Another feature In fM representing influences in movement Menerдy is
shown to be weakly and negatively correlated (r ∈ (−0.2,−0.1),p < 0.05) to affect.

Individual perception of cohesion: Task cohesionCtask showsweak and negative correlation (r ∈ (−0.2,−0.1),p <
0.05) to the amount of face to face interactions with two team members and the total amounts (#1, #2, #total ). Two
individual activity features are positively correlated (r ∈ (0.1, 0.3),p < 0.05) to task cohesion Ctask , including
mean movement energy and vocal variations. All four In f features and oneMir feature extracted from dyadic
interactions are positively correlated (r ∈ (0.1, 0.3),p < 0.05) to Ctask .

Similar to task cohesion, the strength of social interaction in total and with four subjects are found to be weakly
negatively correlated (r ∈ (−0.2,−0.1),p < 0.05) to social cohesion. For individual activities, movement levels
play an important role. All four features are found to have positive correlations especially the average movement
energy (r = 0.29,p < 0.001). Only one out of eight dyadic interaction features, influence in movement energy
In f _M_enerдy, is weakly and positively correlated (r = 0.17,p < 0.01) to social cohesion Csocial .
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Table 2. Affect classification results of mean accuracies using our methods and the baseline method. The Majority Classifier
(MC) assigns all predictions to the majority class.

Our method Baseline

Category Combined f2f Individual Dyadic MC

A1: tense arousal 84.05%∗ 83.57% 83.09% 83.04% 82.78%
A2: energetic arousal 73.20% 70.52% 76.32%∗ 70.10% 70.59%
A3: valence 71.88% ∗ 68.54% 66.88% 69.13% 69.05%
Notes: ∗p < .05, ∗∗p < .01, ∗∗∗p < .001

Table 3. Affect classification results of F1 values using different feature sets and the baseline Majority Classifier (MC) method.
Besides results indicated as ∗∗p < .01, all differences between the best and the MC classifier are significant with p < .001

Our method Baseline

Category Combined f2f Individual Dyadic MC

A1: tense arousal 0.771 0.772∗∗ 0.764 0.762 0.763
A2: energetic arousal 0.696∗∗∗ 0.642 0.690 0.645 0.599
A3: valence 0.628∗∗∗ 0.602 0.597 0.619 0.574
Notes: ∗p < .05, ∗∗p < .01, ∗∗∗p < .001

In this analysis, we are interested in whether there are general effects between the wearable sensor features
and affect and perceived cohesion. We want to screen the extracted sensor features using all the data and have
an initial idea whether it is sensible to explore further to perform predictions. In our correlation analysis, we
pooled all the feature data from different subjects and estimated a single ESM rating. Our assumptions are that
all individuals from this team share similar characteristics and work towards a common team goal, as they have
been trained to form a highly cohesive team. The limitation of this assumption is that we consider subjects to
be sampled from the same distribution and ignore any variations among the subjects. This approach might be
limited in groups where individuals share no similarity and therefore should be treated independently.

6.2 RQ2: Can We Detect Individual Affect States with These Features?
In the second experiment, we investigate whether the proposed behavior and interaction features are effective in
assessing daily affective states. We conducted a classification experiment to evaluate the detection performance
of person-dependent affect states. The affect data was split into two classes of negative and non-negative groups.
The affect state A of negative class include all cases with scores < 5.

We compared four feature sets based on information described in Section 5.2. The first feature set f 2f (7x1)
includes information only from the infrared detections that represent the strength of face-to-face interactions.
The second feature set Individual (8x1) includes information only from individual activities. The third feature
set Dyadic (8x1) contains allMir and In f features detected from dyadic interactions. The fourth set Combined
(23x1) uses all features from the previous three sets. A feature vector is extracted for each day per subject.

To evaluate the classification performance, we compared three supervised learning methods including logistic
regression classifier using the ’sag’ solver, support vector machine (SVM) with a linear kernel and random forest
trees. The dataset is split into 70% for training and 30% for testing for each subject. During the training process,
the input feature vectors were preprocessed and standardized by the mean and standard deviation on the training
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Table 4. Affect classification results of AUC values using different feature sets and the baseline random classifier.

Our method Baseline
Category Combined f2f Individual Dyadic

A1: tense arousal 0.564 0.576∗∗∗ 0.542 0.543 0.5
A2: energetic arousal 0.556∗∗ 0.531 0.536 0.542 0.5
A3: valence 0.527 0.540∗∗∗ 0.526 0.521 0.5
Notes: ∗p < .05, ∗∗p < .01, ∗∗∗p < .001

set. The same transformation is applied on feature vectors in the testing set using mean and standard deviation
obtained from the training set. A feature selection procedure was performed to remove features with zero variance.
For SVM, C parameter was selected from {10−2, 10−1, . . . , 103}. For random forest classifier, the maximum depth
of the tree was selected from {3, 10, None}. The model parameters were selected with fivefold cross validations on
the training data by grid search. We conducted 50 iterations of randomly sampling the training and testing sets.

Table 2 presents the mean classification accuracies over all subjects using support vector machine which gives
the best results. We did not evaluate the classification performance for subject 6 due to extremely small number
of negative samples (less than 1) in his data. We used the majority classifier (MC) that assigns all predictions to
the majority class as the baseline. The baseline accuracy is very high because the class distributions are highly
imbalanced. From the results, we can see that using all the features combined achieved highest accuracies in
classifying A1 tense arousal and A3 valence. Interestingly, using only individual activity feature set achieves the
highest accuracy in classifying A2 energetic arousal. We also computed the weighted F1 scores from two classes
using different feature sets as shown in Table 3, where F1 score conveys the balance between the precision and
the recall. The F1 scores confirmed that the Combined feature set achieved better or comparable performance
compared to each individual feature set. Remarkably, detectingA2 energetic arousal achieved the best performance
with both higher accuracy (76.32% vs 70.59%) and F1 score (0.696 vs 0.599) compared to the baseline MC classifier.
The AUC values of using different feature sets are shown in Table 4, compared to a baseline random guessing
classifier (AUC = 0.5). To compare the performance of the best results of our approach with the baseline method,
we used the paired t-test to compare the differences of classification results with exactly the same training data
and test with the same data during the random sampling.

6.3 RQ3: Can We Classify Group Cohesion States with Aggregated Group Features?
The previous two experiments examined how effective the proposed features perform at individual levels. Our
last experiment evaluates whether aggregated group level features are effective in assessing team cohesion.
Specifically, we are interested in group cohesion over the entire mission and how individual’s behavior has an
effect on the team process. In total, we have 95 days of samples after preprocessing.
Experimental setup: We conducted a classification experiment to assess the effectiveness of the group level

features in assessing group cohesive states. The class label is assigned based on the mean of task cohesion and
social cohesion: negative if the group cohesion is less than the mean values and positive if greater than the
mean values. Besides using the majority classifier as a baseline, we also compared the performance of using
self-reported affect ratings. This is motivated by correlations found between affect and cohesive ratings. We
compared three classifiers: logistic regression classifier using the ’sag’ solver, a linear SVM and random forest
trees. The model parameters were selected with 5 fold cross-validation on the training data by grid search. The
final performance was evaluated using the leave-one-out (LOO) cross-validation strategy that takes all the days
except one for training and tests on the one day sample being left out.
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Table 5. Classification accuracies and F1 values for group task and social cohesion using group level features extracted from
the badge data and the baseline method that uses self-reported ESM affect ratings and the Majority Classifier (MC).

Ratio Category Accuracy F1

Badge ESM affect Baseline MC Badge ESM affect

100% data Task cohesion 74.68% 69.62% 59.49% 0.748 0.694
Social cohesion 64.05% 49.44% 51.69% 0.640 0.496

80% data Task cohesion 80.30% 62.12% 51.52% 0.803 0.621
Social cohesion 64.62% 56.92% 50.77% 0.647 0.569

Fig. 7. Classification results of AUC-ROC for group task and social cohesion. Top row: 100% data; bottom row: 80% data

Results: Table 5 summarizes the accuracies and weighted F1 values from two classes for our proposed method
and the baseline methods. The logistic regression classifier was used as it achieved the best performance in this
task. We presented results of evaluations on using 100% of the samples and removing 20% of the samples around
the mean values. Similar to previous works that removed 50% of the samples around the mean [17, 34], removing
part of the samples in the middle would make the task easier by eliminating ambiguous data points. Our results
show that using the group level features extracted from the badge data outperforms the baseline methods in both
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Fig. 8. Top 15 predictive features among the total 85 features for group task and social cohesion. The relative feature
importance is normalized by the maximum of the feature coefficient values and multiplied by 100.

group task and social cohesion. If using 80% of samples, the top 40% (positive class) and bottom 40% (negative
class) divided by the mean value, there is a huge improvement in both accuracy (over 80%) and F1 values. We plot
the ROC curves for using the badge data and ESM ratings in Figure 7. The badge features achieve an AUC of
0.8 in classifying task cohesion using 100% samples, much higher than random guessing (AUC = 0.5) and using
ESM affect (AUC = 0.71). The AUC value increases to 0.84 when using 80% of data, much higher than using ESM
affect (AUC = 0.68). The badge features achieve an accuracy of 64% when using 100% of data in classifying social
cohesion, much higher than using ESM affect (49.44%) and MC (51.69%). The performance is similar when using
80% of the data. The accuracy results are consistent with the other two evaluation metrics: the F1 values (Table 5)
and the AUC values (Figure 7). Overall, these results confirmed that behavior and interaction features extracted
from group levels are effective in assessing team cohesion compared to the baseline methods.
We examined the importances of the proposed group level features that contribute to the task and social

cohesion. The feature importances are ranked using the coefficient values of the logistic regression with L2
penalty, which implicitly sets some of the weak features weights to close to zero. Figure 8 illustrate the top 15
predictive features among the total 85 group level features. The relative feature importance is computed by first
taking the absolute value of the feature coefficient and then normalized by the maximum of the feature coefficient
values multiplied by 100. As shown in Figure 8, the minimum number of #total communications among all team
members is shown as the most important feature in both task and social cohesion. In particular, the minimum
number of #total communications plays a significant role compared to other features in predicting task cohesion,
while this effect is less apparent in predicting social cohesion.

7 DISCUSSION

7.1 Affect Estimation
When examining the three aspects of affect, we found that the proposed features are most effective in predicting
A2 energetic arousal. Surprisingly, individual activities achieved the best accuracy. When combined with other
feature sets, the classification accuracy decreased, and there was little improvement in F1 values. These results
suggest that the A2 energetic arousal level is most related to individual behaviors. The prediction results are
consistent with the correlation analysis shown in Figure 6, which shows larger correlations with individual
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activity features compared to the other two affect dimensions. When examining the performance in detecting
A3 valence, social interaction features (f2f and Dyadic) achieve better accuracy than individual behaviors. The
accuracy and F1 values are best when combining all three feature sets. However, the AUC value is not the best for
the combined category, which indicates that the classifier can achieve good performance if only a good threshold
is chosen. Our method provides minimum advantages in detecting the A1 tense arousal compared to the baseline
method, although the majority of features were identified to correlate with A1 (see Figure 6). This is likely due to
the reason that the class distributions are highly imbalanced (baseline MC accuracy 82.78%), thus making the
classification task challenging. Nevertheless, the f2f features achieve the best F1 values and AUC scores, which
suggest high importance in assessing A1 tense arousal.
Previous studies have only reported the correlations between digital traces from mobile phone usage and

depression states [2, 3, 16, 29, 47]. Our work provides both correlation analysis and machine learning prediction
results on three dimensions of affective states. We observed that valence and tense arousal are more challenging
dimensions to predict compared to the energetic arousal. The correlation between the valence variable (sad-
pleased) and the tense arousal (calm-nervous) variable in the raw data is -0.78, which indicates these two
dimensions measure similar constructs in our data. To improve the predictions of these two dimensions that are
related to human internal feelings, we suggest using physiological signals to gather additional information, for
instance, heart rate and skin conductance (i.e., perspiration). On the other hand, the energetic arousal referring
to fatigue level (tired-awake) is closely related to physical activities, as shown in our results that the individual
activity feature set achieved the best accuracy.
Our results confirm that combining both social interaction and individual behavior features benefits the

detection of personal affective states. Our results also suggest that social interactions can infer affective states.
These results contribute novel insights to existing findings in affect detection. For example, Moturu et al. [31]
used Bluetooth co-location as a proxy for social contacts and carried out their study with a large community
of 54 participants in a residential complex. They did not find a link between daily sociability and mood. Our
results show that the link between the amount of daily social interactions and affect existed in a small team. One
possible explanation for the difference is that the team members in our study remained within a confined space
for a longer duration, which compelled frequent social contacts. Another possible explanation is that Bluetooth
co-location information is too coarse to infer precise social interactions. The infrared detections of the sensors
used in our study measure fine grained face-to-face communications, thus a more accurate proxy for representing
social interactions.

7.2 Group Cohesion Estimation
Table 5 shows that exploiting the behavioral features outperforms both the majority classifier baseline, as well as
the ESM affect baseline. This suggests that the group perception of both social and task cohesion is influenced
by the mirroring features extracted from the Sociometric data. Surprisingly, when we make the task easier by
removing 20% of the data, estimation of task cohesion improves while there is no difference for social cohesion.
This is likely to be caused by the narrow distribution of samples for the team’s social cohesion compared to the
task cohesion. When considering the strong correlation between the group aggregated ESM affect ratings and
cohesion, we see that our proposed method outperforms the more competitive baseline classifier.
We can explore the relation between the group aggregated ESM affect ratings and social and task cohesion

ratings in more detail in Figure 7. The top row shows the results with 100% of the data while the bottom row
shows the results for 80% data. In terms of task cohesion, the higher AUC of the badge extracted features show
the importance of the badge extracted features in the case of our data. Interestingly, when considering the easier
task with 80% of the data, the difference between using the ESM affect and the badge data increases. This suggests
that the group-level badge features are indeed more indicative of the perception of group cohesion compared to
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the affect ratings alone. For the case of social cohesion, the analysis is more nuanced as the ROC when using the
badge data does not consistently outperform the ESM affect data.
The observation that the social cohesion is easier to predict than task cohesion is surprising, as past studies

have shown that social cohesion tends to be easier to detect [17, 34]. One possible explanation of this could be
related to the cohesion of the team itself. Unlike the teams in prior work, in our data, the members have worked
together before the mission and many steps have been taken to maximize team performance and cohesion. This
could mean that team members are more motivated by the task and therefore exhibit more coordinated social
behavior when team tasks are going well compared to the social cohesion.
As shown in Figure 8, the minimum of face-to-face communications among team members turns out to be

the most important feature. This can be caused by anomaly behaviors that individual members lost motivations
or opportunities to engage with other members, which suggest an alarm for intervention to maintain team
cohesion. We also observe the top 15 features in estimating task cohesion consist of dyadic interaction patterns
from movements only. This indicates that quantifying non-verbal patterns is crucial in assessing task cohesion in
scenarios where tasks require complex coordinations compared to prior works in short-term meeting setups
[17, 34]. On the other hand, the top 15 features in estimating social cohesion are linked to a range of different
factors. Our results further show that using affect states collected from the ESM data in the team can infer team
process such as cohesion. Our results suggest that the variations and consistency of affective states at the group
level play an important role in assessing team states, in contrast to the majority of previous works focusing
on individual affect [1, 29, 47]. In particular, the effect is larger in social cohesion compared to task cohesion.
One possible reason could be that positive mood increase people’s ability to be more open to collaboration and
communication, while persistent negative mood can deteriorate interactions between team members [19]. Task
cohesion, on the other hand, appears to be closely attributed to the coordination of operations in specific practice
[39] and is less easy to be predicted by team members’ affect states.

7.3 Small Groups in Short-term versus Longitudinal
One major difference in estimating short-term and longitudinal group cohesion is the availability of sensing
modalities. High resolution video-audio data can be easily recorded in short-term settings (i.e., meetings or
workshops) where the environments are instrumented with cameras and microphones. Research to understand
team process commonly examines explicit behaviors such as facial expressions, gestures, postures and verbal
communications [13, 17, 33, 34]. However, continuously measuring team processes for a long duration with
these modalities becomes impossible. Wearable social sensors, such as the Sociometric badges used in this study,
provide the opportunity to measure spontaneous behaviors among team members in longitudinal settings. Our
results show that estimating task cohesion achieves better performance in our longitudinal settings compared to
existing works in short-term meeting setups [17, 34]. One of the main reasons for this effect is that we captured
long-term face-to-face communications which might correspond to not only explicit conversations but reflect
a more general level of social contexts of individuals within the team. Another factor can be that we included
dyadic interaction features that quantify the non-verbal dyadic interaction patterns. For example, the movement
mimicry patterns are found to be among the top predictive features. This result demonstrates the usefulness of
using wearable social sensors to measure team activities that involve non-verbal coordinations.
The link between affect and social cohesion suggests designing interventions on the individual affect level

can be a possible way to improve team process. If one member is experiencing a negative mood, other members
could use social closeness to mitigate his/her mood. Task cohesion appears to be closely related to the nature
of team activities so that appropriate feedback on tasks can be provided. For instance, professional training
in communication and coordination can be provided when task cohesion is low. In short-term small group
settings, such as meetings or brainstorm workshops, verbal activities are good indicators of task cohesion. Hence,
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feedback on turn-taking patterns could act as a group-level intervention [21]. It still remains an open challenge
to estimate cohesion for team activities which involve little verbal communications. For instance, in a hospital,
the interactions between the doctors and assistants are extremely critical for successful surgeries. These tasks
consist of a large amount of implicit non-verbal behaviors and coordinations among team members. Measuring
non-verbal behavior using wearable sensors is one promising way to capture and quantify these implicit signals.

7.4 Limitations and Generalization of the Results
The simulation in which this data was collected is specifically designed for the findings to generalize to deep
space flight crews, particularly for missions to Mars. The habitat was developed given the known plans from
NASA for a mission to Mars and what that would entail, and as such has received funding from the agency to
study such teams. We do expect the general findings to generalize to other teams that may find themselves in
high stakes settings for extended periods of time, during which they must rely heavily on one another. These
directly include scientific teams sent to Antarctica and mountain climbing teams. Some principles that emerge
from this research are also likely to apply to military teams, such as special forces groups, but more research will
be needed given the kinds of situations that such groups are likely to encounter.
This work verified behavior markers inspired from existing social psychology research. Our ultimate goal

is to develop a system that allows the team to function automatically when critical situations happen. This is
particularly important in scenarios when no instant external intervention is available. The sensing system should
be as un-intrusive as possible, so that they do not disrupt ongoing work flow of the team members. Especially
in high-stake industry, such as the military, aviation and health care, every second counts and can make a
huge difference. Moreover, teams are the fundamental components nested in organizations. The success of large
organizations including the space industry, corporations and academic institutions all depend on performing
teams [39]. Although our method is applied to assess affect and cohesion, the behavior features are holistic and
can be applied to understand how social interactions and individual behavior patterns influence other team
outcomes, such as performance, creativity, productivity and employee satisfaction.

8 CONCLUSION
We used wearable sensors to analyze how social interactions and individual behaviors have an effect on personal
affect and group cohesion in a small team. Our study found that individuals’ affective states are not only correlated
to their own activities but also linked to social interactions within the team. By combing both individual and social
interaction features, we achieved better classification performance in detecting personal affect states compared to
the baseline methods. Our results also demonstrated that behavior features extracted from individuals’ wearable
data can be aggregated to group level and are effective in assessing group cohesion. Our work provided empirical
evidence to predict individual affect and group cohesion with wearable sensors. Open challenges still exist; we
need to design sensors that measure team constructs for their particular applications. Finally, our results provide
some indicators of link between individual affect and team cohesion to mitigate team breakdown.
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