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A B S T R A C T

The emergent hazards of chemical process systems cannot be wholly identified and are highly uncertain due to
the complicated technical-human-organizational interactions. Under uncertain and unpredictable circumstances,
resilience becomes an essential property of a chemical process system that helps it better adapt to disruptions
and restore from surprising damages. The resilience assessment needs to be enhanced to identify the accident's
root causes on the level of technical-human-organizational interactions, and development of the specific resi-
lience attributes to withstand or recover from the disruptions. The outcomes of resilience assessment are va-
luable to identify potential design or operational improvements to ensure complex process system functionality
and safety. The current study integrates the Functional Resonance Analysis Method and dynamic Bayesian
Network for quantitative resilience assessment. The method is demonstrated through a two-phase separator of an
acid gas sweetening unit. Aspen Hysys simulator is applied to estimate the failure probabilities needed in the
resilience assessment model. The study provides a useful tool for rigorous quantitative resilience analysis of
complex process systems on the level of technical-human-organizational interactions.

1. Introduction

1.1. Resilience

The technology is moving forward, and the process safety measures
are increasingly becoming automated to facilitate the safe environment
in the chemical process plants. However, automation has also led to
complexities and accident occurrence due to technical-human-organi-
zational interactions. Nowadays, the safety goal of industrial plants is
not only preventing accidents but also dealing with the daily

disturbances and variabilities to sustain the system in the normal op-
erational state. To achieve this goal, the industrial system management
should be more flexible and resilient [[18],[43]]. Resilience en-
gineering application in the process plants is particularly important
because of the high level of complexity that arises from the non-linear
interconnections and high level of variability and uncertainty which
arises from this complexity [9].

In scientific literature, the term resilience first appeared in materials
engineering to describe the ability of the material to return to the initial
shape after deformation (Trautwine,1907). Then this term was used in
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the ecological domain as the ability of the ecosystem to sustain the
original species by absorption of the changes and disturbances [15].
Later, this term started to be used in organizational [[6],[26]], psy-
chological ([32]; Bananno, 2004), economical [[14],[38],[40]], social
[1], and social-ecological domains (Gumming et al., 2005; [28]).

In the engineering domain, resilience has been used in various fields
such as water management [[30],[45]], transportation management
[[3],[3],[13],[20]], infrastructure engineering [[5],[34],[46]] and
process industries [[2],[8],[11],[22],[42]]. In all of those, the resi-
lience was defined as the intrinsic property of the system to respond and
adjust the functioning before or after a mishap or disturbance so as to
sustain the normal operational performance of the system [43]. Ac-
cording to Hollangel et al. (2007), a resilient system should:

(1) Provide a secure or flexible response to instant or continuous dis-
turbances;

(2) Conduct self-monitoring of its performance;
(3) Predict risks and risk development opportunities; and
(4) Learn from past events.

1.2. Dynamic Bayesian network (DBN) for resilience assessment

Yodo et al. [24] developed a DBN model for resilience assessment.
They viewed resilience as a constant value though a probabilistic resi-
lience metric was used. Cai et al. [7] considered the performance and
time-related properties in resilience assessment, in which high avail-
ability and a short time to recovery characterized the system's high
resilience. They applied DBN to predict the future values of availability
and their temporal variation by employing the data available at the
current state. However, they evaluated resilience as a parameter de-
pendent on the failure and repair rates of the system components (i.e.,
the technical factors). Tong et al. [44] proposed to measure resilience
using system functionality. A DBN model was developed to quantify the
probabilities of system functionality states based on the four attributes
of resilience, namely absorption, adaptation, restoration, and learn.
Zinetullina et al. [48] used a bow-tie (BT) diagram to support the de-
velopment of the DBN model and applied it to analyze the resilience of
a two-phase separator operating in a harsh environment. In both ap-
proaches, resilience is defined as the ability of the system to sustain
high functionality under disruptive effects or restore the low func-
tionality state to a high functionality state. Kammouh et al. [25] also
used DBN for resilience assessment, where resilience was defined in
terms of fast recoverability, reduced vulnerability, reduced failure
likelihood, robustness, or reduced failure consequences. Kammouh
et al. [25] measured resilience at pre-, intra-, and post-disruption
stages.

The majority of the previous studies considered resilience as a static
property of the system. It is an oversimplified assumption for compli-
cated process systems when interacting with human operators, orga-
nizational factors, and various disruptions.

1.3. Functional resonance analysis method (FRAM) for resilience
assessment

FRAM, firstly introduced by Hollnagel [17], can qualitatively model
how a complex system functions considering socio-technological in-
teractions [35]. Sawaragi et al. [41] conducted a FRAM analysis for the
aircraft accident in Columbia in 1995 and investigated the main reasons
and conditions behind that accident. De Carvalho [10] used FRAM to
analyze the reasons behind the mid-air collision between two aircraft in
Amazonian Sky in 2006. Later, FRAM was employed in other domains.
Shirali [42] exploited FRAM for the identification of the emergent risk
in a process plant. Rosa et al. [39] used FRAM for identifying the ha-
zards associated with the performance variability of the couplings in
the construction industry. The couplings are the interconnections be-
tween the main functions (or activities) of the system that contribute to

the accomplishment of the main goal of the system. Patriarca et al. [35]
presented a semi-quantitative approach for FRAM analysis with the
employment of Monte Carlo Simulation (MCS) for air traffic manage-
ment systems. Having a quantitative FRAM model facilitates the iden-
tification of the most critical coupling that needs prominent attention.

Furthermore, it helps to maintain the safe state of complex systems
effectively and cost-efficiently. Before Patriarca et al. [35], Rosa et al.
[39] proposed to quantify FRAM and identify critical couplings with the
employment of AHP and Subject Matter Expert's (SME) judgment.
However, the limitation still exists in the subjectivity of the judgements
for the variability of the function parameters. This limitation could be
mitigated to some extent by the application of MCS to the variables.

The existing resilience assessment methods are ineffective in mod-
eling emergent disruptions and complicated technical-human-organi-
zational interactions. The nonlinear interactions among the system
components, human and organizational factors, and their inter-
dependencies with function variabilities are not well treated in the
resilience assessment models (Andersson et al., 2002; Levenson, 2004;
[43]). Conducting FRAM analysis at the initial stage of the quantitative
resilience assessment of a complex system could facilitate a more rig-
orous analysis of the system's operational state and identify concrete
solutions to enhance system safety [39].

FRAM could be considered as a viable method for resilience as-
sessment due to two main reasons:

(1) FRAM identifies the root causes on the level of non-linear technical-
human-organizational interactions [43].

(2) A FRAM model consists of activities performed both on and by the
system. The resilience parameters can better be characterized by
actions of the objects rather than by their presence ([35]b).

1.4. Objecitve of the study

The present study aims to develop a quantitative resilience assess-
ment method for chemical process systems, in which technical-human-
organizational interactions are considered. To the authors’ knowledge,
this paper will, for the first time, integrate FRAM and DBN to facilitate
the assessment of the ability of a chemical process system, its operators,
and associated organization to respond to unprecedented disruption,
recover from unexpected damages, and learn from those events.

In this paper, the FRAM is mainly applied to describe system
functions and identify potential variabilities and their critical coupling.
This study helps to advance the knowledge of the approaches where the
FRAM has been applied with other methods for the resilience en-
gineering of chemical process systems. The DBN is used to quantify the
dynamic resilience of process systems. The DBN includes nodes to re-
present the absorption, restoration, adaptation, and learning para-
meters. Nodes are structured according to the outcomes of the FRAM
analysis. The main steps of the methodology will be described, and its
application will be demonstrated on a two-phase separator.”

2. Methodology

Fig. 1 describes the methodology employed in this study. First, the
FRAM analysis on the process system will be accomplished in con-
junction with the MCS. Resultantly, the critical coupling will be iden-
tified. For the critical coupling, the attributes of the resilience will be
developed, and the DBN model will be built. The conditional prob-
ability tables of the nodes in the DBN will be filled with probabilities of
failures (PoF) collected from the literature and Subject Matter Experts
(SMEs), and calculated with the Aspen Hysys simulation. DBN model
will be updated with additional safety measures, and the generated
resilience curve will be compared with the previous resilience profile.
After that, the first developed DBN model will undergo sensitivity
analysis to identify the most influential safety measures. The following
sections describe the main steps of the proposed method.
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Fig. 1. The proposed methodology for dynamic resilience assessment.
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2.1. Step I. FRAM modeling

At the beginning of the FRAM analysis, it is necessary to identify the
goal of the FRAM analysis, specifically whether it is accident in-
vestigation analysis or the risk assessment [35].

2.1.1. Step I.1: develop FRAM model for the system
Firstly, the main activities or functions performed by or on the

system to reach a particular outcome are defined. Functions are inter-
connected via the aspects placed in the corners of the hexagon, ac-
cording to the Structured Analysis and Design Technique (SADT) [35].
Each function consists of six aspects: input, output, precondition, re-
sources, time, and control. The output of one function (upstream
function) serves as one of the five aspects of the other function
(downstream function) in a coupling. The other function is the down-
stream function. The six aspects of a function are as follows [35]:

■ Input (I)- the aspect that initiates the function
■ Output (O)- the outcome of the function, which serves as the input

for the downstream function
■ Precondition (P)- the condition that should be performed before the

initiation of the downstream function
■ Resource (R)- that the function needs to produce the output
■ Time (T)- temporal requirements or constraints obliged to the

function, such as start time or finish time.
■ Control (C)- what performs the control and monitoring of the

function to achieve the set outcome.

2.1.2. Step I.2: identify critical coupling using MCS

(1) Step I.2.1 Identify the variability

Each function has its variability. Variability could be classified as
positive if it reduces the risk of possible accident development or ne-
gative, otherwise. According to Hollangel [19], variability could be
classified based on multiple phenotypes, such as time, precision, flow
rate, speed, duration, direction, object, and force. In this study, varia-
bility manifestation based on time and precision will be used. The
reasons are user-friendliness and readability of the analysis and the
universal application of those phenotypes for any function.

The variabilities of “time” are classified as on time, too late, too
early, and not at all. Not at all is used for the cases when the function is
performed that late that its outcomes are no longer attractive. For
“precision”, the variabilities are classified as precise, acceptable, im-
precise, and wrong. Based on the SME's judgment, those classifications
are ranked with numbers and further used in MCS [35].

(2) Step I.2.2 Aggregate the variability

This step deals with the variability of the couplings. Variability of
the couplings may arise as a result of each function's internal vari-
abilities or the impact of the upstream function. When the coupling
produces large negative variability, this results in the resonance of the
connected functions and identifies the critical path. These couplings are
called critical. The critical coupling defines the leading cause of the
accident in the accident investigation scenario, or the main factors
contributing to the hazard development in risk assessment.

If the upstream function generates positive variability, this results in
the dampening of the variability of the downstream function [35]. In
step I.2.4, the MCS is integrated to identify the exact critical coupling,
which results in the malfunction of the two-phase separator of the acid
gas sweetening unit.

(3) Step I.2.3 Manage the variability

This step aims to suggest measures to increase positive variabilities

and decrease negative variabilities. Improvement recommendations
need to be made for the identified critical coupling to avoid the acci-
dent from happening, or in case of an accident, to restore the system to
the high functional state. Based on the critical coupling identified in the
next step, we will develop the DBN model consisted of the absorption,
adaptation, and restoration parameters for resilience assessment.

(4) Step I.2.4 MCS analysis

MCS is the tool for the mathematical modeling of multiple systems
using random sampling to obtain outcomes as close as possible to
reality (Zio, 2013; [31]). MCS method is mostly employed for solving
complicated and multidimensional problems and equations. For in-
stance, it is used for estimating differential and integral equations, for
addressing the deterministic and stochastic problems, for simulating the
random case development scenarios. One of the frequent applications of
the MCS is in reliability and risk analysis of the engineering systems.
The outcome of the MCS analysis facilitates the estimation of the
probability of failures (PoFs) [[12],[29],[33],[47]].

In this research work, the MCS is used to estimate cumulative
variabilities in the FRAM model. The idea of MCS for estimating the
cumulative variability in the FRAM Model was taken from the work of
Patriarca et al. [35]. In their work, they identified the critical couplings
as ones with a high tendency to cause an accident. They also provided
the resonant path that emerges as a result of the variability accumu-
lation for the neighboring functions to the critical couplings. The cri-
tical couplings were determined by setting the critical cumulative
variability value and the confidence level of 95%. The couplings for
which 5% of the cumulative variabilities were greater than the setpoint
value, equal to 24, was classified as critical. Hence, the corresponding
recommendations were provided by Patriarca et al. [35] to avoid ac-
cident occurrence.

In this paper, a similar approach of MCS for cumulative variability
estimation is employed to identify the critical couplings in FRAM.
However, in this paper, MCS also serves as a bridge between the FRAM
model and the DBN model for the quantitative resilience assessment of
the process unit.

From the SMEs’ judgment in the work of Patriarca et al. [35], the
discrete probability for each of the four variability states based on the
timing and precision were defined (Tables 1–3).

In this study, the variability of timing was assumed to be too late,
and variability of precision was assumed to be of acceptable precision.
For illustrative purposes, the random samples from normal distribution
were assigned to the values of the variabilities based on timing and
precision.

The amplification factors are distributed based on the timing ( )ij
T

and precision ( )ij
P relations of the upstream and downstream couplings.

The output of a function may vary with respect to timing (e.g., being
too early, on time, too late, or omitted). It may also vary for precision
(e.g., being precise, imprecise, or acceptable). Based on the effect of the
variability of the upstream function conveyed to the downstream
functions, the amplification for both timing and precision are assumed
in the ranges in Table 4. Amplification factors describe the impact that

Table 1
Variability scoring based on Timing and Precision [35].

Variability Score

Timing On-Time 1
Too Early 2
Too Late 3
Not at all 4

Precision Precise 1
Acceptable 2
Imprecise 3
Wrong 4
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the upstream function has on the downstream function connected to it.
For example, if the amplification factor on “timing” is equal to 0.5 (i.e.,
the dampening effect applies), the time aspect of the upstream function
being “too late” may result in the downstream function to be on time. If
the amplification factor is equal to 10, then the upstream function that
is too late will result in the downstream function being too late either. If
the amplification factor is equal to 1, the upstream function will not
affect the variability of the downstream function.

For illustrative purposes, the normal distributions were assigned to
the values of amplification factors.

The overall variability is defined as a product of the variabilities of
upstream functions based on timing (Vj

T) and precision (Vj
P) (Eq (1))

=OV V V*j j
T

j
P (Eq 1)

To calculate the overall variability, each value of too late timing
(Table 2) and acceptable precision (Table 3) were multiplied corre-
spondingly.

The cumulative variability (CVij) is the joint variability of the cou-
pling. It is estimated by multiplication of the overall variability and
amplification factors for timing and precision assigned for the corre-
sponding coupling.

=CV OV * *ij j ij
T

ij
P (Eq. 2)

In this study, we conducted the MCS in Excel to estimate the OV and
CV. For the variables, including timing, precision, and associated am-
plification factors, we assumed they follow normal distributions. We
derived the mean and standard deviation values for the scores of “too
late timing” and “acceptable precision” based on Tables 2 and 3. First,
using Eq. (1), the OVs were calculated based on randomly generated
samples of variability values of timing and precision. Then, using Eq.
(2), the CVs were obtained based on a random sampling of the ampli-
fication factors. 1000 iterations were applied. It is worth noting that the
number of iterations may affect the results. This aspect should be in-
vestigated in future work.

At the next stage, the set-point and the confidence level are assigned
in Excel for 1000 generated random numbers with normal distribution
using Eq. (2). The confidence level in this work is set to be equal to
95%. After the generation of 1000 random numbers, five percentiles
value of those random numbers is compared with the predefined set-

point (in the case study, a set-point of CV = 24 was assigned). If the
five-percentile number is higher than the set-point, the corresponding
coupling is set as the critical. The critical value of 24 can be customized
by the model user, and the confidence level of 95%. It depends on the
user's requirement for the criticality level. It is also worth investigating
how the choice of CV and confidence level may affect the results of the
entire resilience assessment model.

The further recommendations and work on risk prevention or ac-
cident recovery are prioritized, starting from the coupling with the
highest five percentile number.

2.2. Step II Hysys simulation

The PoFs are obtained from Aspen Hysys Dynamics simulation for
the process unit using the strip charts for the parameters characterizing
the performance of the process system of interest [21]. From the strip
chart, the time range of the system malfunction or being in the out of
normal operating range is divided by the total time range of operations.

=PoF Malfunction time range
Total operational time (Eq. 3)

The PoF characterizing the functioning of the process system could
also be extracted from Aspen Hysys Sensitivity analysis. In this case,
simulation is run at the specified range of the several input parameters.
The output is monitored for the number of scenarios out of the normal
range scope. Then, the PoF is estimated as the ratio of the amount of the
abnormal outcomes to the total number of outcomes.

=PoF No of abnormal outcomes
Total no of outcomes
.

. (Eq. 4)

The estimated PoFs are then inputted into the corresponding nodes
of the DBN model developed in the next step.

2.3. Step III generate DBN parameters

DBN is a probabilistic graphical model. It has the same structure and
principles as the Bayesian network, with an exception that it allows
estimating the joint probabilities of the variables with time. Thus, using
DBN allows estimating the joint probabilities at time t, t + 1, t + 2, and
so on ([23]; Neapolitan, 2004). It consists of the nodes (variables) and
arcs that link the nodes and allow deriving the interdependencies of the
nodes based on the conditional probabilities. The nodes are classified as
the parent nodes, child nodes, and the root nodes. The root nodes are
assigned for marginal probabilities. The rest are assigned for the con-
ditional probabilities. The joint probability of conditional nodes is
calculated at the child node dynamically (Eq. (1)) [23].

= …

= …
=

P X P X X X X

P X X pa X pa X pa X pa X

( ) ( , , , )

( , ( ), ( ) ( ) ( ))

t t t t
n
t

i

n

i
t

i
t

i
t

i
t

i
t

i

1 2 3

1

1 1 2 0

(Eq. 5)

In DBN and BN, the joint probability could be updated with the addition of new nodes.

= =P X E P X E
P E

P X E P X E( | ) ( , )
( )

( , )/ ( , )
x (Eq. 6)

Having these characteristics, DBN enables predicting the spatial and
temporal evolutions of systems probabilistically [27]. In resilience

Table 2
Discrete probabilities for Timing variabilities [35].

1 2 3 4

Probability of being too early 0.15 0.7 0.1 0.05
Probability of being On-time 0.7 0.15 0.1 0.05
Probability of being too late 0.15 0.05 0.7 0.1
Probability of not at all 0.1 0.05 0.15 0.7

Table 3
Discrete probabilities for Precision variabilities [36].

1 2 3 4

Probability of being Precise 0.7 0.2 0.05 0.05
Probability of being Acceptable 0.05 0.7 0.2 0.05
Probability of being Imprecise 0.05 0.2 0.7 0.05
Probability of being Wrong 0.1 0.1 0.1 0.7

Table 4
The ranges for amplification factors [37].

Value of or( )ij
T

ij
P Description

>1 The variability of the downstream function is amplified by the output of the upstream function
=1 The variability of the downstream function is not affected by the output of the upstream function
<1 The variability of the downstream function is dampened by the output of the upstream function
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engineering, it was first applied by Yodo et al. (2016) for the assessment
of the reliability and restorative properties of the system. However,
their study was limited to an estimation of restoration only; however,
resilience consists of four parameters, which are absorption, adaptation,
restoration, and learning. Furthermore, in their research, the resilience
was considered as a constant term. In contrast, the resilience is a
characteristic that changes following the changes of variabilities of
components and either internal or external disturbances [44].

2.3.1. Step III.1 establish linkages between the identified critical couplings
and the attributes of resilience

The Absorption, Adaptation, and Restoration nodes are com-
plemented with the nodes corresponding to the most critical coupling
obtained as a result of the FRAM and MCS. For example, if the identi-
fied most critical coupling are the inaccurate performance of the level
controllers and interlock system and late or incorrect response of the
operator in the control room, the nodes for Absorption, Adaptation and
Restoration can be selected corresponding to only the performance of
the level controllers and interlock system and the performance of the
operator in the control room.

2.3.2. Step III. 2 develop conditional probability tables (CPTs)
The CPTs of the nodes can be filled based on the outcomes of the

simulations, historical data, and data from the surveys.
For the nodes in DBN, two states were assigned in the CPTs, “High

Functionality” and “Low Functionality”. As for assigning the marginal
probabilities, the “Low Functionality” section in CPT was filled with the
PoF values, estimated from Aspen Hysys simulation, historical data, and
data from the surveys. “High Functionality” section was filled by sub-
tracting the estimated probabilities (in the corresponding “Low
Functionality” section of the CPT) from 1.

As for the parent nodes of “Absorption”, “Adaptation” and
“Restoration”, consisting of the different combinations of the func-
tionality states of the corresponding nodes, the conditional probabilities
were assigned based on the expert judgment for each separate scenario.
They are starting from the highest conditional probability when all

constituting nodes have a high functionality and finishing with the
lowest conditional probability for the case when each constituting node
has a low functionality state.

2.4. Steps IV and V resilience assessment before and after improvement

The DBN model will be developed based on the Absorption,
Adaptation, Restoration, and Learning parameters for the most ha-
zardous case identified by the FRAM model.

For Absorption, Adaptation, and Restoration nodes, additional
safety nodes are added. Then the resilience profile is compared with the
previous one. The updated resilience model should present the en-
hanced resilience properties for a longer time until the functionality
drops. A higher value of the functionality should be attained after the
restoration stage.

2.5. Step VI sensitivity analysis for identification of the most influential
nodes in DBN model

Sensitivity analysis facilitates identifying the nodes that have a high
impact on the state of the system's functionality. This will assist in the
application of the specific safety measures for the system. First, the
sensitivity analysis was conducted in GeNie (https://www.bayesfusion.
com/genie). As a result, the most influential nodes for the “State of
Functionality” target node are identified. Next, for each influential
node, the evidence was changed to the low functionality state for the
ten-time steps sequentially. Based on the obtained results, the para-
meters having the highest impact on the system's resilience reduction of
the system are identified.

3. Case description

This case study will focus on the quantitative resilience assessment
of a two-phase vertical separator of the acid gas sweetening unit. Sour
gas treating unit is a part of the oil and gas preliminary treating plants.
It accomplishes the absorption of the sour gasses (mainly carbon

Fig. 2. Acid gas sweetening unit modeled in Aspen Hysys [21].
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dioxide (CO2) and hydrogen disulfide (H2S)) with diethanolamine
(DEA) from the gas coming after the crude oil stabilization. Crude oil
stabilization is the process during which oil coming from the well is
separated into three phases (mainly gas, oil, and water). The pressure is
reduced in the stabilizer from the high upstream pressure to the normal
operating pressures not to harm gas, oil, and water treating process
units.

Fig. 2 presents the process flow diagram of the acid gas sweetening.
Aspen Hysys, a chemical process simulator, was used to simulate this
process. First, sour gas is depleted from process hydrocarbons in the
two-phase separator FWKO TK. Then, dehydrated sour gas goes to the
absorption column, where it is scrubbed using the DEA solution and
leaves the column as a sweet gas for further production of the sales gas.
The rich DEA stream, with CO2 and H2S, then is separated from the
hydrocarbons in the separator Flash TK and passes to the regenerator
column, where the products, lean amine and acid gas are produced.
Lean amine stream is refluxed to the absorption column and acid gas
serves as the feed for the Sulfur Recovery Unit [21]. In this study, the
simulations were conducted with a focus on the analysis of the valve
failure scenarios. Based on the simulation results, the PoFs of valve
actuator failure (as a node contributing to the internal disruption of the
system) were estimated.

4. FRAM-DBN model development

The resilience assessment was conducted on a two-phase oil and gas
separator located before the coalescing filter and acid gas contactor
column. The two-phase separator has the level controllers and interlock
system for the liquid outlet stream, pressure controller and interlock
system for the gas outlet, pressure safety valves activating in case of the
overpressure, alarms interconnected with 2-out-of-3 alarm counting
mechanism. Methanol is injected at the inlet of the feed stream to avoid
the hydrates forming in the pipes. The performance indicators are
monitored and controlled distantly by an operator in the control room
and by an operator at the unit area.

4.1. FRAM analysis

The FRAM analysis was developed according to the steps described
in the methodology part (Section 2). First, the functions connected with
the operational functions of the two-phase separator was listed. Then,
the functions listed in Table 5 were interconnected with each other with
the assistance of the six aspects. The values of the amplification factors
in Table 5 were assigned based on expert judgment. For example,
coupling “Pressure indicators” being an input parameter to the “Pres-
sure Safety Valves” has an amplification factor based on the timing of
60 ± 10, where 60 is the mean value and 10 is the standard deviation.
The values of mean and standard deviation were applied in MCS to
define the normal distribution formula in the Excel file. The value of the
amplification factor based on timing, in this example, means that the
function of “pressure indicators” acts “too late”. This results in the
output of the “pressure safety valve” being “too late”.

Then the MCS method was employed following the process de-
scribed in the work of Patriarca et al. [35] with the application of
myFRAM (https://functionalresonance.com). The scenario of having
too late response of the acceptable precision was assumed. Next, the
variabilities for each of the function couplings and amplification factors
were assigned for each coupling. The cumulative variabilities have been
estimated for each coupling according to the Eq. (2).

For each of the variables in Eqs. (1) and (2), including V ,j
T V ,j

P ,ij
T

and ,ij
P 1000 random positive numbers were generated by sampling

from the normal distributions with the parameters defined in Table 5 to
compute the cumulative variability. Setting the 95% confidence level
and set-point value of 24 for the overall variability, the outcome of each
of 31 couplings was compared with the set-point value. If the 5-per-
centile value of the given coupling was greater than 24, it was

considered as critical (Fig. 3 developed using the FMV, https://
functionalresonance.com). In the following case, the coupling of the
highest criticality was considered, which is the coupling of the operator
of the control room controlling the level and interlock system, resulting
in the cumulative variability value at 5 percentiles of 38. Thus, im-
precise and/or too late a response of the operator at the control room to
the level alarms and indicators has the highest potential to cause an
accident. Furthermore, the imprecise performance or too late response
of the level alarm and interlock systems has the highest potential to
result in the accident or two-phase separator failure.

4.2. DBN model

Based on the outcome of the FRAM analysis, the DBN model is de-
veloped for the coupling with the highest criticality. The node
"Disruption" lists the potential malfunctions that may cause accident
development. The nodes "Absorption" and "Adaptation" contain the
current safety absorption and adaptation measures applied for the two-
phase separator. "Restoration node" includes the recommendations for
the enhancement of the 2-phase separator performance.

4.3. Application of simulation for extraction of PoFs

The PoF for the “2-phase separator performance” node was esti-
mated using the sensitivity analysis module in the Aspen Hysys simu-
lator. The sensitivity analysis is a one-at-a-time (OAT) method. The
input parameters were the ranges of the pressure, temperature, and
flow rate of the feed. The “Nested” state-input type was specified for the
input parameters. Thus the sensitivity analysis was automatically run
throughout the specified ranged first for pressure, then for temperature
and finally for flow rate. The monitored parameter for each simulation
run was the dihydrogen sulfide concentration in the "Sweet Gas" stream,
leaving the amine contactor. As a failure, the case of having the H2S
concentration higher than 4 ppm was assumed. Consequently, the PoF
equivalent to 0.122 was estimated using Eq. (4). A total of 700 simu-
lation runs were carried out, which was the maximum number of runs
that the program allowed to perform for the specified ranges. It was a
pragmatic decision to stop at 700 iterations due to the software lim-
itation and may affect the accuracy of the results. It is worth noting that
the users may consider conducting a sensitivity analysis of the number
of simulation runs to identify an appropriate number. The PoFs of the
other nodes were identified using Aspen Hysys Dynamic simulation
scenarios.

Scenario 1. Valve actuator Failed Open.

The Aspen Hysys Dynamic simulation for estimation of PoF was
completed for the two-phase separator located before the absorption
column (Fig. 5). The separator products were the sour gas routing to the
absorption column and processed hydrocarbons routing to the stabili-
zation unit. The PoF evaluation was accomplished with the strip charts
generated as a result of the dynamic simulation (Fig. 6). For filling the
disruption node "Valve actuator Failed Open", the valve VLV-102 fail-
open scenario was simulated in Aspen Hysys Dynamic (Fig. 5). The
normal liquid percent level was set to the value of 20–50%. However,
the level of liquid in the tank dropped to 4.13% when the valve VLV-
102 failed open (Fig. 6). Employing Eq. (3) the PoF for the node “Valve
actuator failed Open” was estimated:

= = =

=

PoF Malfunction time range
Total operational time

min
min

min
min

56540 min 56301
56540 min 55340

239
1200

0.199

1

Scenario 2. Valve actuator Failed Close.

For the node “Valve Actuator Failed Shut” the Aspen Hysys
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Dynamics Simulation was run given the Actuator has Failed Shut sce-
nario for valve VLV-102. After the valve VLV-102 failed close, the liquid
level in the tank reached 95.35%. The outcome is displayed in the form
of the strip chart. Based on the obtained results and Eq. (3), the PoF was
estimated as:

= = =

=

PoF Malfunction time range
Total operational time

min
min

min
min

57480 min 57180
57480 min 57080

300
400

0.75

2

Scenario 3. Selecting the wrong switch for the application

For the node “Selecting the wrong switch for your application”, the
action of the level controller of valve VLV-102 was set to reverse instead
of the direct. Resultantly the liquid level in the separator dropped from
30% to 4.18%. The PoF for this scenario was then estimated and the
result was inserted into the CPT of the corresponding node in the DBN
model.

= = =

=

PoF Malfunction time range
Total operational time

min
min

min
min

60 888 min 60366
60888 min 59689

522
1199

0.435

3

Scenario 4. Heat introduction and fire mitigation scenario

In this scenario, the PoF is estimated for node “Adding valve and
interlock at the inlet stream of the separator” given fire in the two-
phase separator (Fig. 7). The heat was introduced to the vessel. With the
employment of the event scheduler and cause and effect matrix, the
closing of all valves during the fire extinguishing was simulated with
subsequent fire relief via the pressure safety valves before the pressure
is returned to the normal operating pressure. After that, the closed
valves were opened, and the operation continued at the recovered
conditions.

The normal operating pressure range for this scenario was the
pressure range of 490–520 kPa. The valves VLV-100, VLV-101, and
VLV-102 were set to close at the pressure of 655 kPa. Based on the

Table 5
The FRAM couplings with indicated amplification factors.
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Fig. 3. FRAM Model for the activities related to the 2-phase separator [[16],[35]].

Fig. 4. Developed DBN model for the identified critical coupling.
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analysis of the obtained strip charts, the disruption is seen to start at
100,499 s and finishes at 111,904 s. In contrast, the whole operation
starting and ending time is 96,297 s and 117,014 s, respectively.

= = =

=

PoF Malfunction time range
Total operational time

sec sec
sec sec

sec
sec

111904 100499
117014 96297

11405
20717

0.551

4

Given the PoFs obtained from the simulation, the resilience curve
for the 2-phase separator is obtained. Fig. 8 presents the resilience of
the separator given the disruption in terms of the malfunctions that may
occur due to inaccurate performance or too late a response of the level
alarm and interlock systems or the operator working in the control
room. It takes 9 h for disruption to bring the separator to the lowest

level of resilience, i.e., 0.48. Furthermore, it takes 56 h for the system to
restore to 0.94 - the highest resilience after the adaptation and re-
storation measures applied to the separator.

Additional nodes were considered for “Absorption”,” Adaptation”
and “Restoration” (Table 6). A new DBN model (Fig. 9) for the two-
phase separator was built. With the additional nodes, the resilience
profile is expected to enhance. The resilience profile displays stronger
“Absorption”, “Adaptation” and “Restoration” characteristics, the
structure of the DBN model can be validated.

From a comparison of the results presented by Table 7, it is observed
that the lowest value of resilience has increased from 48.34% to 50.00%
with the addition of the new parameter for the "Absorption" node. This
designated a slightly more robust absorption properties of the system.

Fig. 5. Process diagram of the 2-phase separator [21].

Fig. 6. Liquid percentage in the tank when Valve-102 actuator has failed open.
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The final resilience state is slightly increased at the updated DBN
model, and the time for 90% recovery is shorter than in the initial DBN
model. Both characteristics are evidence of the strengthening of the
"Adaptation" and "Restoration" parameters of the system. Thus, the DBN
model is partially validated.

It is worth noting that the obtained results (regarding the safety
measures recommendation) are for demonstration purposes because no
independent validation was performed.

4.4. Sensitivity analysis for identification of the most influential nodes in
DBN model

Sensitivity analysis was carried out to identify the nodes having the
highest impact on the state of system resilience. Identification of the
critical nodes assists in the allocation of specific safety measures to the
system. Table 8 lists 11 scenarios that may contribute to the variation of
the resilience of the system and the results of the sensitivity analysis.

Table 8 indicates that the highest impact on the resilience drop
occurs at low absorption conditions. However, with the strong adap-
tation and restoration characteristics, the system restores to the normal
operational state (90% of recovery) in the shortest time. The most
significant impact on the resilience drop is caused by the effect of the

poor operator skills and not functioning alarm and interlock system.
Scenarios 4–11 show the resilience reduction to the value of around
40% in approximately 9 h, representing the strong absorption proper-
ties or well-thought inherent safety design of the developed model.

4.5. Methods comparison

In this section, the previous work on the quantitative resilience
assessment [48] is compared with the current study. In the previous
work, the elements of BT were developed based on their association
with the resilience attributes, namely, absorption, adaptation, and re-
storation. The developed BT was then converted into the DBN model
with the nodes of absorption, adaption, and restoration as the im-
mediate parent nodes linked to the node of “state of functionality”,
which was used to measure the system resilience. In the present study,
instead of subjectively identifying the factors, FRAM was applied to
identify the critical factors affecting the system resilience. It is a more
objective approach.

Initially, it was assumed that disruption occurs due to the electricity
outage and subsequent malfunction of the electric heat tracing of the
three-phase separator operating under the harsh cold conditions.
Comparatively, in this study, the possible reason for the separator
malfunction was not assumed but found through the FRAM analysis
with the MCS approach. Thus, the current research enables identifying
the causes of the possible accidents, inventing and applying the parti-
cular measures for either avoiding the accident from happening or in
case the accident occurred to adapt to it or recover from it in a fast
manner. With this approach, the safety measure currently applied and
newly proposed could be analyzed for their effectiveness for the specific
failures with the employment of this method. Thus, the approach offers
both a practical and cost-efficient approach to ensure safe operations in
the plant.

Furthermore, some studies (e.g., Kammouh et al. [25]) did not de-
velop DBNs for disruption and recovery attributes. They did not con-
sider the system's learning capability as an attribute of its resilience.
The present work identifies the most vulnerable technical-human-or-
ganizational interactions within the system to support DBN develop-
ment, which involves the sub-networks for modeling disruptions and
recovery and considers learning to be one of the attributes of resilience.
Moreover, the present work enables investigating the effectiveness of
the supplementary safety measures to enhance the resilience attributes.

Bellini et al. [4] have developed a Q-FRAM approach that quantifies
the system's resilience at a specified time by using the System Resilience
Index (SRI). SRI is estimated by applying the Choquet integral for the
capacitive variabilities assigned for the function couplings, referring to
the corresponding resilience “cornerstones” (anticipate, respond,
monitor, learn). The value of SRI > 1 designates the risk of accident

Fig. 7. Fire in the 2-phase separator simulation.

Fig. 8. The resilience curve of the system.

Table 6
Additional safety measures for DBN model.

Absorption Additional Operator at the control room
Adaptation Bypass Valves

Relief Valves
Restoration Replacement of the damaged valves

The pay bonus system for the safe month
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development as a result of the resonance in the poor performance of the
functions, and thus characterizes the system as non-resilient.

With the integration of FRAM and DBN, the present study provides
the opportunity to obtain the resilience profile as a probabilistic and
time-dependent evolution of a system's functionality state, affected by
the critical function couplings.

5. Conclusions

Dynamic quantitative resilience assessment is a research problem of
great interest in the sphere of resilience engineering for process sys-
tems. This requires the rigorous analysis of the root causes of the ac-
cidents and mishaps, and the resilience attributes of the process systems
on the level of technical-human-organizational interactions. The cur-
rent study demonstrated the applicability and effectiveness of the in-
tegration of the FRAM and DBN for the quantitative resilience assess-
ment of complex process systems consisting of the technical-human-
organizational aspects. The proposed approach can identify the root
causes of an accident with the employment of FRAM. The essential
resilience attributes strongly associated with these causes are con-
sidered in the development of the DBN to assess the temporal changes
of the resilience of a complex process system. The most important safety
measures can also be identified with sensitivity analysis. This study

supports that resilience should be assessed in both probabilistic and
temporal terms. It investigates the usefulness of process simulators as a
process data source for the estimation of failure probabilities. For future
work, we are planning to investigate the opportunity of learning the
structure of the Bayesian network from various data (e.g., process data,
management and organizational data, operational environmental data)
for dynamic resilience assessment.
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