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Abstract
The table constraint is a fundamental component of constraint programming (CP), used to explicitly define

valid value combinations for variables. In modern Lazy Clause Generation (LCG) solvers, constraints rely on
explanations to justify value removals and enable efficient conflict analysis through nogood generation. How-
ever, table constraints have primarily been implemented using direct SAT encodings, such as the state-of-the-art
Bacchus method, rather than explanation-based approaches. This paper introduces two types of explanation-
based propagators for table constraints: eager explanations, generated during propagation, and lazy explanations,
which adapt explanations to specific conflicts for more general nogoods. Experiments on MiniZinc benchmarks
show that Optimized (Lazy) explanations reduce conflicts by an average of 23% across all problems and up to
64% for specific instances compared to the Bacchus encoding, while also reducing learned clause length by 46%.
Although the current implementations incur a runtime penalty of up to 2x, these findings highlight the potential
of explanation-based propagators to improve conflict resolution and search efficiency with further optimizations.

1 Introduction
Constraint Programming (CP) is a powerful technique for solving combinatorial problems in many areas. It
works by exploring the space of possible solutions and using logical inference, facilitated by propagators, to rule
out values that cannot be part of any valid solution. CP is widely used because of its flexibility and effectiveness
in solving real-world problems.

A major advancement in constraint programming is Lazy Clause Generation (LCG) [18, 8], which enhances
CP by combining it with techniques from SAT solving—a method for determining whether a logical formula
can be satisfied. In LCG, propagators not only remove invalid values from variable domains but also generate
explanations. Explanations justify why certain values are removed and enable the solver to dynamically encode
parts of the problem into SAT form. More importantly, explanations are used during conflict analysis to construct
nogoods, which are additional constraints that prevent the solver from revisiting the same conflict. This technique,
originally adapted from SAT and formally knows as Conflict-Driven Clause Learning (CDCL)[15], uses nogoods
to improve solver efficiency by pruning large portions of the search space without removing valid solutions.

The quality of explanations is crucial to solver performance. Better explanations produce more general no-
goods—nogoods that rule out larger regions of the search space, making the solver more efficient. Explanations
can be generated either eagerly, at the time a value is removed during propagation, or lazily, at the time of conflict
[7]. An interesting observation is that, since lazy explanations are generated at the time of conflict, they have
access to the nogood that is being generated. This presents the opportunity to adapt the explanation in such a way
that it creates a more general nogood.

This paper focuses on the table constraint, which explicitly defines valid combinations of values for a group of
variables. The table constraint is widely used because of its versatility: it can model a broad range of combinatorial
and real-world problems which would otherwise be difficult to express using logical relationship[13]. However,
while propagators for other global constraints, such as alldifferent[6] and cumulative[19], have been designed to
exploit LCG’s capabilities, table constraint propagators have received little attention. Instead, table constraints are
often handled by direct SAT encodings [2], which fail to take full advantage of LCG’s explanation mechanisms.

To illustrate the role of explanations for table constraints, consider the following example.

Example 1.1. Suppose in the current state of the solver we have three variables x ∈ {1, 2}, y ∈ {3}, and
z ∈ {1}, and the valid combinations of values are explicitly defined in the table below:

x y z
1 1 2
1 2 3
2 3 1

Looking at the table of valid combinations, we see that no valid combination allows x = 1. The first
valid combination, (1, 1, 2), requires y = 1 and z = 2, but these values are not in the current domains.
Similarly, the second valid combination, (1, 2, 3), requires y = 2 and z = 3, which are also unavailable.
Since both supporting tuples for x = 1 are invalid, x = 1 is removed. We can come up with four equally
valid explanations to justify this removal by identifying combinations of literals over y and z that invalidate
the two supporting tuples:

(1) [y ̸= 1] ∧ [y ̸= 2], (2) [z ̸= 2] ∧ [z ̸= 3], (3) [y ̸= 1] ∧ [z ̸= 3], (4) [z ̸= 2] ∧ [y ̸= 2].
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Later, when the solver encounters a conflict, the choice of explanation directly affects the quality of the
nogood generated. At the time of propagation, eager explanations are generated without knowledge of future
conflicts, limiting their generality. By generating explanations lazily during conflict analysis, the solver can
adapt explanations to the current nogood, producing more general nogoods.

In this paper, we address the lack of specialized LCG propagators for table constraints by developing two
eager explanation algorithms (Naive and Greedy) and one lazy explanation algorithm (Optimized). The Naive
approach constructs explanations by arbitrarily adding literals until all supporting tuples are invalidated. The
Greedy approach improves on this by selecting literals that invalidate the largest number of tuples, reducing the
size of explanations. The Optimized (Lazy) approach further refines this process by prioritizing literals that do not
increase the size of the nogood, adapting explanations to the current conflict during conflict analysis.

Experiments on the MiniZinc benchmark suite [20] demonstrate that lazy explanations significantly improve
solver performance. Compared to the state-of-the-art Bacchus encoding, lazy explanations reduce conflicts by an
average of 23% across all problems and up to 64% for specific instances, while also reducing average nogood
(learned clause) length by 46%. However, these benefits come at the cost of runtime, with Bacchus encoding
being up to 2x faster in some cases. These results highlight the potential of explanation-based propagators to
improve solver efficiency while identifying runtime as a key area for future optimization.

The remainder of the paper is structured as follows: Section 2 covers the preliminaries. Section 3 reviews re-
lated work on table constraints and explanation generation. Section 4 details the proposed eager and lazy explana-
tion algorithms. Section 5 presents the experimental setup and results. Section 6 discusses ethical considerations.
Finally, Section 7 summarizes the findings and outlines future research directions.

2 Preliminaries

2.1 Constraint Satisfaction Problems
A constraint satisfaction problem (CSP) is defined as a triple P = (X,D,C), where X is a finite set of variables,
D is a set of domains where each D(x) specifies the finite set of values that variable x ∈ X can take, and C is a
finite set of constraints that restrict the values that a subset of variables S ⊆ X can take simultaneously.

The goal of solving a CSP is to find an assignment of values to all variables X , such that each variable x ∈ X
is assigned a value in its domain D(x), and all constraints c ∈ C are satisfied. If such an assignment exists, the
problem is satisfiable; otherwise, it is unsatisfiable.

A related class of problems is the constraint optimization problem (COP), where the objective is to find a
satisfying assignment that also optimizes a given objective function. For example, a COP may require finding the
assignment that minimizes the total cost or maximizes a utility function.

CSPs provide a general framework for modeling a wide range of combinatorial and real-world problems,
including scheduling, planning, and resource allocation.

2.2 Constraint Programming
Constraint Programming (CP) is a computational framework for solving constraint satisfaction problems (CSPs)
and constraint optimization problems (COPs). It combines recursive search with propagation to systematically
reduce the search space while maintaining consistency across constraints.

Constraints in CP are enforced through propagators, which are functions that reduce the domains of variables
by removing values that cannot participate in any valid solution satisfying the constraint. For example, a propa-
gator for the constraint x+ y ≤ 10 might remove values from the domains of x and y that violate this condition,
given the current domains.

A central concept in CP is generalized arc consistency (GAC). A constraint is considered GAC if, for every
variable in the constraint, each value in its domain participates in at least one valid solution to the constraint, given
the current domains of the other variables [12]. Propagators are designed to enforce GAC (or a weaker form of
consistency), thereby simplifying the problem by systematically reducing variable domains while preserving all
solutions.

2.3 Table Constraint
The table constraint is a global constraint that explicitly defines the allowed combinations of values for a subset of
variables S ⊆ X in a CSP. It is represented by a set of valid tuples, where each tuple specifies a valid assignment
of values to the variables in S that satisfies the constraint.
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Formally, let S = {x1, x2, . . . , xk}, where each variable xi ∈ S has a domain D(xi). A table constraint is
defined by a set of tuples T ⊆ D(x1)×D(x2)× · · · ×D(xk). Each tuple t = (v1, v2, . . . , vk) ∈ T represents a
valid assignment x1 = v1, x2 = v2, . . . , xk = vk. If a tuple is not in T , it is considered invalid.

2.3.1 Supports

For each variable-value pair (xi, v), a support is a tuple t ∈ T that includes xi = v and satisfies the table constraint
[12]. The set of all supports for (xi, v) is denoted as:

Supports(xi = v) = {t ∈ T | t[xi] = v},

where t[xi] represents the value assigned to xi in tuple t. During propagation, supports are used to determine
whether a value can remain in the domain of a variable. If all supports for (xi, v) are invalid due to changes in the
domains of other variables in S, the value v is removed from D(xi).

2.3.2 GAC Propagator

Propagators for table constraints enforce generalized arc consistency (GAC). A table constraint is GAC if, for
every variable xi ∈ S and every value v ∈ D(xi), there exists at least one support t ∈ T such that t[xi] = v and t
satisfies the table constraint given the current domains of the other variables. If no such support exists for (xi, v),
v is removed from D(xi).

Example 2.1. Consider a table constraint over three variables x, y, and z, where S = {x, y, z}, with the
following domains:

D(x) = {1, 2}, D(y) = {3}, D(z) = {1}.

The table constraint is defined by the set of valid tuples:

T = {(1, 2, 1), (1, 3, 2), (2, 3, 1)}.

For x = 1, the supporting tuples are (1, 2, 1) and (1, 3, 2). However:

• The tuple (1, 2, 1) requires y = 2, which is not in D(y) = {3}.

• The tuple (1, 3, 2) requires z = 2, which is not in D(z) = {1}.

Since both supporting tuples for x = 1 are invalid, x = 1 is removed from D(x) to ensure GAC. The
updated domain becomes D(x) = {2}.

2.4 SAT
The Boolean satisfiability problem (SAT) is a specialized form of a constraint satisfaction problem (CSP) where
variables are Boolean. The goal of SAT is to find an assignment of truth values to variables that satisfies all given
constraints or to determine that no such assignment exists.

In SAT, constraints are typically expressed in conjunctive normal form (CNF), where the formula is a con-
junction (logical AND) of clauses, and each clause is a disjunction (logical OR) of literals. A literal is either a
Boolean variable x or its negation ¬x.

Example 2.2. The formula: (x1∨¬x2)∧ (¬x1∨x3) is a SAT instance in CNF with two clauses: (x1∨¬x2)
and (¬x1 ∨ x3).

2.4.1 Unit Propagation

SAT solvers use unit propagation, a technique analogous to propagation in CP. A clause becomes a unit clause
when all but one of its literals are assigned values that make the clause false. In this case, the remaining unassigned
literal must be assigned a value that satisfies the clause.

Example 2.3. Consider the clause (x1 ∨ x2) and assume x2 is false. If x1 is unassigned, the clause reduces
to (x1), requiring x1 = true to satisfy it. Unit propagation iteratively simplifies the formula by assigning
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values to variables until no further inferences can be made.

2.5 Lazy Clause Generation (LCG)
Lazy Clause Generation (LCG)[18] combines the global propagator capabilities of constraint programming (CP)
with the SAT-style clause representation, enabling the lazy encoding of problems into SAT[8]. Additionally, LCG
incorporates conflict-driven[15] learning by dynamically generating and adding nogoods—clauses that represent
conflicts—to the solver. These nogoods enhance the solver’s ability to prune the search space effectively.

2.5.1 Atomic Constraints

At the core of LCG is the representation of atomic constraints, which are logical conditions of the form ⟨x ⋄ v⟩,
where x is an integer variable, v is a constant, and ⋄ ∈ {≤,≥,=, ̸=}.

2.5.2 Integer Variable Encoding

In LCG, integer variables are encoded as Boolean literals representing their atomic constraints. For a variable x
with domain D(x) = {1, 2, . . . , n}, the encoding introduces:

• Boolean literals [x = v] for each v ∈ D(x), representing x = v,

• Boolean literals [x ≤ v] for each v ∈ D(x), representing x ≤ v.

Example 2.4. The domain D(x) = {1, 2, 3} is represented by the literals:

[x = 1], [x = 2], [x = 3], [x ≤ 1], [x ≤ 2], [x ≤ 3].

Different assignments of true or false to these literals correspond to different possible states of the domain.
For instance, setting [x = 1] = true, [x = 2] = false, and [x = 3] = false represents the domain D(x) = {1}.

2.5.3 Eager (Forward) Explanations

When a propagator removes a value from a variable’s domain, it generates an explanation to justify the removal.
Explanations describe the conditions under which the removal occurred in terms of Boolean literals representing
variable domains. Formally, an explanation for the removal of x = v is represented as:∧

r∈R

r =⇒ [x ̸= v],

where R is the set of Boolean literals (from now on referred to as reasons) responsible for the removal, and [x ̸= v]
is shorthand for ¬[x = v], indicating that x = v is no longer valid.

When an explanation is generated, it is added to the underlying SAT solver in clause form and used for unit
propagation.

Example 2.5. Continuing the example 2.1, with D(x) = {1, 2}, D(y) = {3}, D(z) = {1}, and valid tuples
T = {(1, 2, 1), (1, 3, 2), (2, 3, 1)}, the value x = 1 was removed. The two supporting tuples for x = 1,
(1, 2, 1) and (1, 3, 2), are invalid because (1, 2, 1) requires y = 2 (not in D(y)) and (1, 3, 2) requires z = 2
(not in D(z)). The explanation for this removal is thus:

[y ̸= 2] ∧ [z ̸= 2] =⇒ [x ̸= 1].

This explanation ensures that the removal of x = 1 is logically justified in terms of the invalidation of its
supporting tuples.

2.5.4 Nogood Generation

When a conflict is detected—where no assignment satisfies all constraints—the solver performs conflict analysis
to generate a nogood. Suppose a conflict arises between the following two literals:

[x ̸= 1] and [z < 4].
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Starting with these conflicting literals, the solver uses the 1-Unique Implication Point (1UIP)[17] algorithm to
recursively expand the nogood by substituting literals in the nogood with their explanations. The explanation for
[x ̸= 1] is [x ̸= 2] ∧ [z ̸= 2]. Substituting this explanation into the nogood gives:

[x ̸= 2] ∧ [z ̸= 2] ∧ [z < 4].

The resulting nogood is minimal yet sufficient to prevent the conflict from reoccurring. This nogood is added to
the SAT solver in clause form, ensuring the conflicting region of the search space is avoided in future exploration.

2.6 Lazy (Backwards) Explanations
Lazy explanations (also referred to as backwards explanations) are an alternative explanation method to eager
explanations. While eager explanations are produced immediately when values are removed during propagation,
lazy explanations are generated after a conflict occurs. This deferred approach enables the solver to generate
explanations that lead to more optimal nogood generation. [7]

2.6.1 Strength of Backwards Explanation Algorithms

Any algorithm for generating lazy explanations must be as strong as the propagator that initially removed a value.
This means that any value removal during propagation must be explainable lazily at the time of conflict. For the
table constraint, the eager propagation algorithm ensures generalized arc consistency (GAC) by guaranteeing that
every value in the domain of a variable is supported by at least one valid tuple. Consequently, any lazy explanation
algorithm for the table constraint must be able to generate an explanation for a value that was removed by a GAC
propagator.

2.6.2 Nogood Simplification (Subsumption)

In the process of generating nogoods, nogood simplification [7] (also referred to as subsumption) plays a crucial
role in improving their quality. Nogood simplification reduces the size of a nogood while preserving its logical
correctness. A smaller nogood generalizes better, prunes larger portions of the search space, and improves solver
efficiency.

Formally, a nogood is simplified when one or more literals can be removed or replaced without changing its
logical effect. Simplification generally occurs in two cases:

1. Combining literals: If a literal [y ̸= d] is added to the nogood and d = v, where [y ≤ v] is already in the
nogood, the two literals can be combined into [y ≤ v − 1], reducing the range of valid values for y without
increasing the nogood size.

2. Subsumed literals: If d > v, adding [y ̸= d] is redundant because it is subsumed by [y ≤ v], which already
excludes d.

This ability to simplify nogoods is particularly advantageous when explanations are generated lazily during
conflict analysis. If multiple explanations are possible, lazy explanation algorithms can choose those that take ad-
vantage of simplification opportunities, ensuring that the generated nogood is as compact and general as possible.

The key observation that facilitates our focus on creating explanations that minimize the number of literals in
the nogood is that this strengthens the unit propagation of the underlying SAT solver. Since a clause can only unit
propagate if all but one of its literals are assigned values, the fewer literals there are in the clause, the more likely
it is to propagate.

Figure 1: An example of nogood simplification where the literal [y ̸= 3] is subsumed by [y ≤ 2], and [z ̸= 4] is combined
with [z ≤ 4] to form [z ≤ 3].
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Figure 1 demonstrates an example of nogood simplification. Starting with the nogood [x ̸= 3]∧ [y ≤ 2]∧ [z ≤
4], the literal [x ̸= 3] is explained as [y ̸= 3] ∧ [z ̸= 4]. After substitution and simplification, the resulting nogood
becomes [y ≤ 2] ∧ [z ≤ 3], reducing its size and increasing its generality.

2.7 SAT Encoding for Table Constraints
For table constraints, current state-of-the-art Lazy Clause Generation (LCG) solvers, instead of using propaga-
tors that utilize explanations to dynamically add clauses to the underlying SAT solver, directly encode the entire
constraint into SAT clauses at the start of solving using the Bacchus encoding method [2].

2.7.1 Boolean Variables

On top of the [xi = a] variables introduced by LCG for each variable xi and each value a ∈ D(xi), the Bacchus
encoding introduces auxiliary variables τj (j ∈ {1, . . . ,m}) for each of the m tuples in the table. τj represents
whether the j-th tuple is currently valid.

2.7.2 Clauses in the Encoding

The encoding then ensures consistency between variable assignments and tuple validity by introducing two types
of clauses:

1. For each tuple τj and for every variable xi in the scope of the constraint, we ensure that tj becomes false if
any xi does not match the value specified by τj :

∀j,∀i, [[xi = τj [i]]] ∨ ¬tj .

Here, τj [i] represents the value of xi in tuple τj .

2. For each variable xi and each value a ∈ D(xi), we ensure that [xi = a] becomes false if all tuples supporting
xi = a are invalid:

∀i,∀a, ¬[[xi = a]] ∨
∨
{tj |τj [i] = a}.

This ensures that [[xi = a]] is true only if there is at least one valid tuple τj where xi = a.

2.7.3 Strengths and Limitations

The Bacchus encoding offers several significant strengths that make it a robust method for handling table con-
straints. One of its key advantages is its compact representation of tuple validity. By introducing a single auxiliary
variable τj for each tuple, the encoding allows nogoods to directly reference and invalidate specific tuples con-
cisely, resulting in a highly efficient SAT representation.

However, the Bacchus encoding also has notable weaknesses. By encoding all clauses upfront, it cannot
dynamically guide the solver toward promising parts of the search space during solving, as it lacks the flexibility
of explanation-based methods. The order in which clauses propagate via unit propagation is arbitrary and does
not adapt based on solver state. Additionally, the use of tuple variables (τj) in nogoods can limit their generality
compared to explanation-based approaches, which use [xi = a] literals. While τj variables are specific to a single
table constraint, [xi = a] literals can capture interactions across multiple constraints, enabling nogoods to prune
larger portions of the search space.

The Bacchus encoding remains a strong baseline for evaluating the explanation-based propagators developed in
this paper. Its compactness, simplicity, and widespread adoption underscore its effectiveness, while its limitations
provide a valuable benchmark to assess the potential benefits of explanation-based methods in reducing conflicts
and improving nogood generality.

3 Related Work
In this section, we group related work into three main categories: (1) finite domain (FD) propagators for table
constraints, (2) lazy clause generation (LCG) propagators for other global constraints, and (3) SAT encodings for
table constraints. We conclude by positioning our work as addressing the unexplored intersection of LCG and
table constraint propagation.
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3.1 Finite Domain Propagators for Table Constraints
The table constraint is a fundamental and versatile constraint in constraint programming, as it explicitly enumer-
ates valid combinations of values for a group of variables. Extensive research has been conducted on finite domain
(FD) propagators that enforce generalized arc consistency (GAC) by efficiently filtering values unsupported by
any valid tuple.

Various FD-based propagators have been developed to achieve GAC with different trade-offs between memory
usage and filtering speed. STR2 improves upon earlier techniques using bitwise filtering and compact support
data structures, enabling efficient and incremental propagation [11]. Compact-Table focuses on achieving GAC
through the use of bitwise operations and efficient support data structures, optimizing the filtering process without
compressing the table representation itself [5]. Smart-Table, on the other hand, enhances the representation of
table constraints by employing a compact encoding where multiple tuples are compressed into smart tuples. This
reduces memory usage and can improve propagation efficiency by minimizing the size of the table representation
[14].

While these FD-based propagators have proven highly effective in traditional CP solvers, they are not directly
compatible with lazy clause generation (LCG) solvers, which require explanations for value removals. Explana-
tions are critical for conflict-driven clause learning, as they enable the solver to construct nogoods that guide the
search process and prevent redundant exploration. Thus, adapting table propagators to generate explanations is
necessary for integrating their benefits into LCG solvers.

3.2 LCG Propagators for Other Global Constraints
Lazy clause generation combines CP’s global constraint propagation with conflict-driven clause learning tech-
niques from SAT solving. Propagators in LCG are enhanced to generate explanations for value removals, which
are later used to produce nogoods during conflict analysis. This approach has been applied to various global
constraints, such as alldifferent, where explanations are generated using Hall intervals and matching theory to
justify value removals [6], and cumulative, where explanations are derived from reasoning over resource usage
and scheduling conflicts [19].

These propagators demonstrate the power of explanation-based propagation in LCG, where dynamically gen-
erated nogoods improve search efficiency by pruning the search space. A notable advancement is the use of lazy
explanations (or backward explanations), where explanations are generated during conflict analysis rather than at
propagation, which allows adapting explanations to the current nogood.

While lazy explanations have been successfully applied to various constraints, their application to the table
constraint remains unexplored, representing a key gap in the current state of the art[7].

3.3 SAT Encodings for Table Constraints
In the absence of dedicated LCG propagators, table constraints are often handled through SAT encodings. Bac-
chus introduced a widely adopted method for encoding table constraints into SAT by representing valid tuples
as auxiliary Boolean literals and maintain consistency between variable assignments and valid tuples via clause
constraints [2]. This approach has been integrated into state-of-the-art solvers such as Chuffed [4], which rely on
efficient unit propagation and conflict-driven clause learning to solve the SAT-encoded problem.

While SAT encodings provide a simple and effective method for handling table constraints, they encode the
entire constraint upfront, missing the opportunity to dynamically generate explanations during solving. In contrast,
LCG propagators allow explanations to be produced on demand, enabling more flexible approach.

3.4 Positioning Our Work
This paper addresses the unexplored intersection of LCG propagators and the table constraint. While LCG has
shown significant success with other global constraints, no explanation-based propagators exist for table con-
straints. In this work, we explore both eager explanations, which are generated immediately during propagation,
and lazy explanations, which are generated at the time of conflict with access to the current nogood. By introduc-
ing these two explanation-based propagators, we aim to evaluate whether lazy explanations can take advantage of
the conflict context to produce more general nogoods and improve solver performance over direct SAT encoding.
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4 Main Contribution
In this section, we focus on developing explanation algorithms for table constraints in a LCG solver. The goal is
to produce explanations that minimize the size of resulting nogoods, enabling more efficient conflict resolution
and better pruning of the search space.

The remainder of this section details these contributions. We begin by constructing a base propagator (Sec-
tion 4.1) that enforces generalized arc consistency (GAC) without generating explanations. Next, we introduce an
algorithm to generate naive eager explanations (Section 4.2), which provides explanations for all values removed
by the base propagator. To improve on this, we propose a greedy eager explanation algorithm (Section 4.3) that
focuses on reducing the size of individual explanations. Finally, we present an optimized lazy explanation algo-
rithm (Section 4.4), which builds on the greedy explanation algorithm and utilizes the current nogood to generate
explanations that directly minimize the size of the nogood itself.

4.1 Base Propagator
As a foundation for our explanation-generating methods, we introduce the base propagator, whose purpose is to
enforce generalized arc consistency (GAC) for table constraints by removing invalid values from variable domains.
Its role is solely to ensure that only consistent values remain, and it does not generate explanations for the removals
it performs. Instead, the explanation algorithms introduced in later sections will build upon this propagator to
provide justifications for value removals. The base propagator operates in two steps. First, it removes all tuples
from the table that are invalidated by the current variable domains. A tuple is considered invalid if it contains
any value that no longer exists in the corresponding variable’s domain. Second, for each variable and each value
in its domain, the propagator checks whether at least one valid tuple supports that value. If no supporting tuple
exists, the value is removed from the variable’s domain. A key property of this base propagator is that it achieves
GAC in a single pass. A value is removed only if it has no supporting tuples, and such removals cannot invalidate
other supporting tuples—since no such tuples exist. Thus, after the propagator completes, all remaining values
are guaranteed to participate in at least one valid tuple, ensuring that GAC is achieved. While the base propagator
is sufficient to enforce GAC, it forms the groundwork for the explanation algorithms developed in subsequent
sections. These algorithms extend the functionality of the base propagator to generate explanations for value
removals, enabling their use in lazy clause generation solvers.

4.2 Naive Explanations
To integrate the base propagator into a lazy clause generation (LCG) solver, we need to generate explanations
for each value removal. For a value a removed from the domain of a variable x by the base propagator, the
solver requires a conjunction of conditions—referred to as an explanation—that justifies the removal. The naive
eager explanation algorithm systematically identifies and records the variable-value pairs that invalidate all tuples
supporting [x = a], providing the required explanation.

4.2.1 Explanation Framework

All explanation algorithms introduced in this paper will rely on the following shared structures:

• valid tuples: The set of all valid tuples defined by the table constraint.

• supports: The subset of valid tuples that initially includes all tuples where [x = a]. These tuples are
progressively invalidated during the explanation process.

• table domains[y]: The set of all values that variable y can take in valid tuples.

• invalid domains[y]: The set of values in table domains[y] that are no longer valid in the current
domain of y.

• reasons: A buffer that collects the conditions justifying the removal of [x = a]. The explanation is the
conjunction of all conditions in reasons.

4.2.2 Naive Explanation Algorithm

The algorithm is defined as follows:
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Algorithm 1 Naive Explain

1: for all y ∈ variables \ {x} do
2: for all b ∈ invalid domains[y] do
3: if ∃t ∈ supports such that t[y] = b then
4: reasons← reasons ∪ {[y ̸= b]}
5: supports← supports \ {t ∈ supports | t[y] = b}
6: end if
7: end for
8: end for

The algorithm iterates over each variable y ̸= x and each invalid value b ∈ invalid domains[y]. For each b,
it checks whether any tuple in supports contains t[y] = b. If such tuples exist, the condition [y ̸= b] is added to
reasons, and all such tuples in supports are removed.

This process continues until all invalid values contributing to the removal of [x = a] have been accounted for.
By the end of the algorithm, supports is guaranteed to be empty, as the base propagator removes [x = a] only
when all tuples supporting [x = a] are invalid. The conditions in reasons provide a complete explanation for
why [x = a] was removed.

4.2.3 Correctness of the Naive Explanation Algorithm

The correctness of this algorithm is a direct consequence of the properties of the base propagator. Since the base
propagator removes [x = a] only when there are no valid tuples supporting [x = a], each tuple in supports must
rely on at least one variable-value pair [y = b] such that b /∈ domain[y]. The algorithm systematically identifies
these invalid values, ensuring that the collected reasons fully and correctly explain the removal of [x = a].

4.3 Greedy Explanations
The greedy explanation algorithm improves upon the naive approach by selecting reasons that explain the invali-
dation of the largest number of tuples in supports for [x = a]. At each step, it adds the condition [y ̸= b] to the
explanation, aiming to minimize the size of the explanation (i.e., the number of conditions in reasons) compared
to processing values in arbitrary order, as in the naive algorithm.

4.3.1 Greedy Reason Selection

To make the algorithm easier to define and understand, we first introduce the following helper function:

Algorithm 2 Pick Best Greedy Reason
1: Precondition: candidates[y] ⊆ invalid domains[y] for all variables y
2:
3: function PICK BEST GREEDY REASON(candidates)
4: best reason← none
5: best count← 0
6: for all y ∈ variables \ {x} do
7: for all b ∈ candidates[y] do
8: count← number of tuples in supports where t[y] = b
9: if count > best count then

10: best reason← [y ̸= b]
11: best count← count
12: end if
13: end for
14: end for
15: if best reason ̸= none then
16: reasons← reasons ∪ {best reason}
17: supports← supports \ {t ∈ supports | t[y] = b}
18: return true
19: end if
20: return false
21: end function
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This function, given a set of candidates, picks the candidate [y = b] that invalidates the largest number of
tuples in supports, adding the corresponding condition [y ̸= b] to the explanation. It also removes all affected
tuples from supports. If no valid reason can be found, it returns false. The set of candidates refers to invalid
values that can be used to explain the removal of tuples in supports. For this section, candidates are defined as
invalid domains, which contains all values [y = b] where b ∈ table domains[y] \ domain[y]. However, the
algorithm is general and will be used with other subsets of invalid values as candidates in later sections.

4.3.2 Greedy Explanation Algorithm

The greedy explanation algorithm is then defined as:

Algorithm 3 Greedy Explain
1: while supports ̸= ∅ do
2: PICK BEST GREEDY REASON(invalid domains)
3: end while

The algorithm repeatedly invokes pick best greedy reason, using invalid domains as candidates, until
all tuples in supports are explained. At each step, it selects and processes the value [y = b] that invalidates the
largest number of remaining tuples, ensuring that supports is progressively reduced to an empty set.

4.3.3 Advantages and Correctness

The greedy explanation algorithm guarantees correctness because it terminates only when supports is empty,
ensuring that all tuples supporting [x = a] are invalidated and explained. By prioritizing invalid values that
explain the largest number of removals, the greedy approach often produces shorter explanations compared to
the naive algorithm. In the worst case, the explanation length matches that of the naive algorithm, but in most
scenarios, the greedy approach results in a smaller number of conditions in reasons.

4.4 Optimized Lazy Explanations
The previous sections have focused on eager explanation methods, which generate explanations during propaga-
tion. In contrast, lazy explanation methods defer explanation generation until a conflict occurs. At this point, they
can use the current nogood, represented as a conjunction of literals ([l1] ∧ [l2] ∧ · · · ∧ [lk]), to tailor explanations
that directly contribute to nogood minimization. Each literal l = [y ⋄ v] specifies a variable y, a value v, and a
relational operator ⋄ (e.g., ≤,≥,=, ̸=).

The optimized lazy explanation algorithm aims to minimize the size of the nogood, defined as the number of
literals it contains after simplification. By focusing on generating concise explanations during conflict analysis,
the algorithm improves solver performance through better pruning and improved unit propagation strength.

4.4.1 Optimal Candidate Identification

To minimize the nogood size, for each variable y, the algorithm determines a subset S of invalid domains[y]
consisting of values that, when [y ̸= d] (where d ∈ S) is added to the explanation, do not increase the number of
literals in the nogood after simplification. This subset S of values is referred to as subsumed domains[y].

The computation of subsumed domains is as follows:

Algorithm 4 Compute Subsumed Domains

1: for all literal l = [y ⋄ v] in the current nogood do
2: if y is not in the table constraint then
3: continue
4: end if
5: if ⋄ =′≤′ then
6: subsumed domains[y]← subsumed domains[y] ∪ {d ∈ invalid domains[y] | d ≥ v}
7: end if
8: if ⋄ =′≥′ then
9: subsumed domains[y]← subsumed domains[y] ∪ {d ∈ invalid domains[y] | d ≤ v}

10: end if
11: end for
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Note: In the algorithm, the condition ⋄ =′≤′ or ⋄ =′≥′ refers to the operator in the literal being either less-
than-or-equal-to or greater-than-or-equal-to, respectively.

To understand why the algorithm chooses certain values, let’s consider the literal [y ⋄ v] in the nogood
and the case where ⋄ =′≤′. In this case, all values d ≥ v (with d ∈ invalid domains[y]) are added to
subsumed domains[y] because the addition of [y ̸= d] will not increase the size of the nogood. There are
two cases to consider:

• If d = v, adding [y ̸= d] combines with [y ≤ v] to form [y ≤ v − 1], reducing the range of valid values for
y without increasing the nogood size.

• If d > v, adding [y ̸= d] is redundant because it is subsumed by [y ≤ v], which already excludes d.

For ⋄ =′≥′, the logic is equivalent, with d ≤ v being added to subsumed domains[y].
At the end of this process, subsumed domains[y] contains all values that can be added to the explanation

without increasing the number of literals in the nogood.

4.4.2 Optimized Lazy Explanation Algorithm

The explanation algorithm is then defined as:

Algorithm 5 Optimized Lazy Explanation

1: while supports ̸= ∅ do
2: if not PICK BEST GREEDY REASON(subsumed domains) then
3: break
4: end if
5: end while
6:
7: while supports ̸= ∅ do
8: PICK BEST GREEDY REASON(invalid domains)
9: end while

After computing subsumed domains, the algorithm first prioritizes values from subsumed domains. These
values are guaranteed not to increase the size of the nogood after simplification and are added to the explanation
as long as they contribute to invalidating the remaining supports. If subsumed domains is exhausted before all
tuples in supports are explained, the algorithm proceeds to use invalid domains, which contains all invalid
values, as candidates.

By iteratively calling pick best greedy reason with these candidate sets, the algorithm ensures that all tu-
ples in supports are invalidated and explained. The use of subsumed domains prioritizes nogood minimization,
while the fallback to invalid domains guarantees correctness by explaining any remaining tuples.

4.4.3 Advantages and Correctness

The optimized lazy explanation algorithm ensures correctness because it terminates only when supports is
empty, guaranteeing that all tuples supporting [x = a] are invalidated and explained. By prioritizing values
from subsumed domains, it minimizes the number of literals in the nogood while maintaining the same strength
as the base propagator.

In the worst case, the algorithm performs as well as the greedy explanation algorithm, which is at least as
good as the naive explanation algorithm. Since the naive explanation algorithm can justify any removal made by
the base propagator, this algorithm is at least as strong as the base propagator. However, in practical scenarios,
by leveraging nogood simplification, the optimized lazy explanation algorithm often produces shorter and more
efficient explanations.

5 Experimental Setup and Results
The purpose of this experiment is to evaluate the explanation strategies proposed in this paper: Naive (Eager)
(Section 4.2), Greedy (Eager) (Section 4.3), and Optimized (Lazy) (Section 4.4). Additionally, we include the
current state-of-the-art Bacchus SAT encoding (Section 2.7) of the table constraint as a baseline for comparison.
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Section 5.1 describes the experimental setup, including the benchmark problems, evaluation metrics, and
the methodology used to ensure a fair comparison between propagators. Section 5.2 presents the results of the
experiments, analyzing the performance of each explanation strategy in terms of conflicts, clause length, and
runtime.

5.1 Experimental Setup
The three explanation-based propagators, as well as the Bacchus SAT encoding method have been implemented
in the Pumpkin solver [10], an LCG CP solver developed by ConSol Lab at TU Delft, with added support for
table constraints in the Minizinc problem format. For more details on how the algorithms were implemented in
the Pumpkin solver, refer to Appendix A. Pumpkin’s nogood simplification capabilities make it an ideal platform
for evaluating different explanation strategies.

All experiments were run on a ROG Zephyrus G14 with an AMD Ryzen 9 8945HS CPU @ 4.00 GHz and 32
GB of RAM.

5.1.1 Benchmarks and Dataset

The benchmark problems were sourced from the Minizinc Challenge (2009–2024) [20], comprising a selection
of problems tagged as using table constraints. The dataset includes a diverse range of combinatorial and real-
world-inspired problems, with objectives such as minimization, maximization, and satisfiability. Some problems
exclusively use table constraints, while others combine table constraints with additional constraints. This diversity
ensures the experiments evaluate propagators across a wide range of problem types and scenarios.

5.1.2 Objective Threshold

Many problems in the MiniZinc Challenge are minimization or maximization problems designed to test solvers’
ability to find near-optimal solutions within a fixed time limit. To ensure a fair comparison of propagators, we
did not limit solvers by time, as slower explanation algorithms would otherwise explore less of the solution space,
skewing results. Instead, we introduced an objective threshold: the solver halts when a solution with an objective
value below this threshold (for minimization problems) is found. This ensures all propagators explore the same
solution space.

To determine the threshold, each problem instance was first solved using the Bacchus encoding with a 15-
minute timeout. The best objective value obtained served as the threshold for subsequent experiments. This
approach ensures that the results are not biased against slower propagators and provide a fair comparison.

5.1.3 Controlling for Branching Strategy

To ensure a fair comparison, the branching strategy was fixed for each problem based on the recommendations
specified in the Minizinc dataset. This eliminates variability caused by random branching paths and isolates the
effects of the propagators.

5.1.4 Metrics

For each problem instance we recorded the following metrics:

• L - Average Learned Clause Length. Looking at the average length of a learned clause, otherwise known
as the negation of a nogood [8], will help evaluate whether different explanation strategies are effective at
producing explanations that minimize the nogood in the hopes they are more general.

• C - Number of Conflicts. This metric will help assess the efficiency of the solver by measuring the number
of conflicts encountered during solving. A lower number of conflicts indicates better pruning of the search
space.

The above two metrics do not change between runs of the problem instance because of the fixed branching strat-
egy and use of objective thresholds. They will help us evaluate the theoretical performance of the algorithms.
Additionally, we will also look at the practical performance of the current propagator implementations:

• T - Average Run Time. The runtime is averaged over running the same problem instance 10 times.

Additionally since the metrics can vary highly between problem instances we will instead look at normalized
metrics L∗, C∗, T∗. The normalized metric for a specific propagator P was computed by taking the metric of
propagator P and dividing it by the metric produced by our baseline Bacchus encoding.

13



5.2 Results and Analysis
Figure 2 presents all the performance metrics for each technique on each problem instance.

Figure 2: Normalized metrics for each technique across problem instances, visualized with a logarithmic scale for better clarity.

5.2.1 Average Learned Clause Length

Across all problem instances, explanation-based propagators consistently outperform the Bacchus encoding in
reducing the average learned clause length by an average of 46%. For opt-cryptoanalysis and proteindesign12,
explanation-based propagators reduce the average learned clause length by an average of 82%, with Optimized
(Lazy) being 11% more effective than Naive (Eager) approach. However, for black-hole and spot5, there is only
a small 11% reduction for explanation-based approaches over the Bacchus encoding method.

This trend can be explained by the characteristics of the table constraints in these problems. In opt-cryptoanalysis
and proteindesign12, table constraints typically involve 3–9 variables, providing more opportunities for the prop-
agators to use literals in explanations that are subsumed by the nogood, thereby shortening its length. In con-
trast, spot5 and black-hole have simpler table constraints, with only 1–3 variables, limiting the advantages of
explanation-based methods in this regard.

5.2.2 Number of Conflicts

The number of conflicts depends significantly on the problem. On average, the number of conflicts decreases by
11% for explanation-based methods compared to Bacchus. The reduction was most pronounced for problems
opt-cryptoanalysis and proteindesign12 where explanation-based propagators reduced the number of conflicts by
an average of 21%. This is likely the case because these problems utilized larger tables with 100-2400 tuples
per table. With larger table sizes there is more opportunity for explanation-based propagators to pick out only the
literals that matter compared to Bacchus SAT encoding where the order of literals that propagate is arbitrary. For
the two problems, among the explanation-based propagators, the Optimized (Lazy) propagator outperforms both
the Greedy (Eager) and Naive (Eager) propagators, with a performance improvement over Naive (Eager) of 39%
for opt-cryptoanalysis and proteindesign12.

Additionally, explanation-based propagators benefit from their ability to dynamically encode only the relevant
parts of the problem during solving, unlike the Bacchus approach, which statically encodes all constraints up-
front. While this is not the primary factor behind the reduction in conflicts, it provides further support for their
adaptability and effectiveness in larger-scale problems.

However, for problems with smaller table constraints, such as spot5, this advantage is less pronounced. The
spot5 problem used over 10,000 separate table constraints, each containing only 3–63 tuples and 1-3 variables. In
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contrast, other problems consisted of far fewer tables, each with significantly larger numbers of tuples (100–2400).
With constraints divided among many small tables, explanation-based propagators are unable to leverage global
information effectively. As a result, spot5 showed no significant change in the number of conflicts compared to
Bacchus. For such cases, the choice of propagator has minimal impact.

5.2.3 Runtime

In most cases, the Bacchus encoding outperforms explanation-based propagators in terms of runtime by a factor
of 2x on average. Among the explanation-based methods, the Naive (Eager) propagator achieves similar runtime
to the Optimized (Lazy) propagator for black-hole, protein-design12 and spot5, with differences of only 5% in
favor of Naive (Eager) on average. This can be attributed to the computational simplicity of the Naive (Eager)
method, which offsets the runtime gains achieved by reducing conflicts in the Optimized (Lazy) method.

The Greedy (Eager) propagator, on the other hand, is consistently the slowest among the explanation-based
methods. This observation suggests that if a more advanced algorithm is desired to reduce conflicts and runtime,
it is more effective to use the fully-fledged Optimized (Lazy) propagator, which builds upon the Greedy approach.

A notable exception is opt-cryptoanalysis, where the Optimized (Lazy) propagator shows significantly slower
runtime compared to other propagators. Profiling the algorithm with a Rust flamegraph [9] reveals that a sub-
stantial portion of time is spent in the lazy explanation algorithm. This problem involves table constraints with
the highest number of variables, resulting in conflicts with many literals that require lazy explanations. Due to
current solver architecture limitations, the lazy explanation algorithm recomputes the set of optimal explanation
literals for the current nogood individually, even when this information is identical across multiple variables. This
inefficiency leads to up to 70 redundant expensive computations per conflict, significantly impacting runtime for
this problem.

5.2.4 General Analysis

The explanation-based propagators in this study are not fully optimized, as the focus is primarily on theoretical
metrics. Their current implementation involves inefficient nested iterations and frequent rebuilding of propagator
states for each explanation. By contrast, the Bacchus encoding leverages the solver’s already optimized clause
propagation algorithms, giving it a natural runtime advantage. This disparity partially explains why Bacchus
consistently outperforms explanation-based methods in terms of runtime.

However, the explanation-based propagators demonstrate a clear strength in reducing conflicts, Optimized
(Lazy) propagator achieving reduction in the number of conflicts over Bacchus method in all problems by an aver-
age of 23% and up to 64% for opt-cryptoanalysis. This result highlights their potential for future improvements.
By optimizing the explanation algorithms, introducing more efficient data structures, and addressing architectural
limitations—such as enabling shared precomputed nogood data across explanations during a single conflict—it
may be possible to significantly enhance the runtime performance of explanation-based propagators.

While the Bacchus method remains a practical and widely adopted approach due to its simplicity and effi-
ciency, the results suggest that explanation-based propagators could surpass it in runtime performance with further
research and optimization. This makes them a promising direction for advancing the state of the art in solving
problems with table constraints.

6 Responsible Research
This research adheres to the principles outlined in the Netherlands Code of Conduct for Research Integrity[16].
The study has been conducted with a commitment to openness, transparency, and reproducibility, ensuring that all
processes and results are in line with ethical research standards.

To promote accessibility and reproducibility, the MiniZinc Challenge dataset used in this research is publicly
available[20]. Importantly, this dataset does not contain any personal information, ensuring compliance with data
privacy and ethical standards.

The research results have been designed to remain largely hardware independent, with the exception of run-
time, which is not the focus of the research. Furthermore, the runtime has been averaged over multiple instances,
and care was taken to minimize background process interference on the runtime. This approach broadens the
applicability of the findings across various computational environments and aligns with the principle of enabling
equitable access to research findings and tools for the wider academic community.

In the interest of fostering transparency and facilitating further research, the explanation algorithms developed
during this study, as well as the benchmarking scripts used to evaluate them, have been made publicly available[1].
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By providing these resources, this work supports the replication of experiments and encourages other researchers
to build upon these contributions in their own studies.

7 Conclusions and Future Work
This paper presented a study on explanation generation for table constraints in Lazy Clause Generation (LCG)
solvers, introducing and evaluating eager and lazy propagators, including an optimized lazy propagator that lever-
ages nogood knowledge. Experiments using the Pumpkin solver demonstrated that incorporating nogood knowl-
edge into the explanation process produces more general nogoods, significantly reducing both the number of con-
flicts (by 23%) and the average learned clause length (by 46%) over the current state-of-the-art Bacchus method.
These results validate the hypothesis that optimized explanations tailored to the current nogood can enhance the
solver’s ability to prune the search space effectively.

While explanation-based propagators demonstrated clear advantages in reducing conflicts and clause length,
the current implementations come with a notable runtime overhead, with the Bacchus encoding being up to 2x
faster on average. Future work should focus on reducing this runtime penalty by addressing inefficiencies in
explanation generation, such as avoiding redundant computations and leveraging shared precomputed nogood
data. Improving runtime efficiency will be critical for making explanation-based propagators more competitive
and practical in real-world applications.

Additionally, further research could explore how nogood knowledge could be utilized by propagators for other
constraints to optimize their explanations via lazy explanations. This approach has the potential to generalize the
benefits observed for table constraints, enhancing solver performance across a broader range of problems. Another
promising direction is the optimization of other metrics that were not considered in this paper, such as the nogood
literal block distance (LBD) [3], which could further improve conflict resolution and solver performance. By
advancing these areas, explanation-based propagators and lazy explanations could offer not only theoretical but
also practical benefits for solving complex problems.
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Louvain-la-Neuve, Belgium, 2015. Accessed: January 25, 2025.

[14] Jean-Baptiste Mairy, Yves Deville, and Christophe Lecoutre. The smart table constraint. In Laurent Michel,
editor, Integration of AI and OR Techniques in Constraint Programming, pages 271–287, Cham, 2015.
Springer International Publishing.

[15] J. P. Marques-Silva and Karem A. Sakallah. Grasp - a new search algorithm for satisfiability. In Digest
of IEEE International Conference on Computer-Aided Design (ICCAD), pages 220–227, November 1996.
Accessed: January 25, 2025.

[16] N. C. of Conduct for Research Integrity. Netherlands code of conduct for research integrity. Technical report,
Netherlands Organisation for Scientific Research (NWO), 2018. Accessed: January 25, 2025.

[17] Alexander Nadel. Understanding and Improving a Modern SAT Solver. PhD thesis, Tel Aviv University,
August 2009. Accessed: January 25, 2025.

[18] Olga Ohrimenko, Peter J. Stuckey, and Michael Codish. Propagation via lazy clause generation. Constraints,
14(3):357–391, September 2009. Accessed: January 25, 2025.

[19] Andreas Schutt, Thibaut Feydy, Peter J. Stuckey, and Mark G. Wallace. Explaining the cumulative propaga-
tor. Constraints, 16(3):250–282, 2011. Accessed: January 25, 2025.

[20] Guido Tack and Peter J. Stuckey. Minizinc challenge. https://www.minizinc.org/challenge. Accessed:
January 25, 2025.

17

https://www.minizinc.org/challenge


A Propagator Implementation in Pumpkin
In the Pumpkin solver, propagators interact with the solver through the following interface:

• propagate: Called when the domains of variables change, this method must remove invalid values to en-
force GAC. Propagators can either:

– Provide eager explanations for the removed values immediately.

– Defer explanation generation until a conflict occurs, indicating that explanations will be provided
lazily.

• lazy explain: If the propagator deferred explanation generation, this method is called at the time of conflict.
At this point, the propagator has access to the current nogood, which can be used to generate explanations.

Following the interface, the propagators used in the experiments are implemented as follows:

• Naive (Eager) Propagator:

– propagate: Uses the base propagator to remove values and the naive explanation algorithm to imme-
diately generate eager explanations for the removed values.

• Greedy (Eager) Propagator:

– propagate: Uses the base propagator to remove values and the greedy explanation algorithm to im-
mediately generate eager explanations for the removed values.

• Optimized (Lazy) Propagator:

– propagate: Uses the base propagator to remove values and defers explanation generation until the
time of conflict.

– lazy explain: Uses the optimized explanation algorithm to generate explanations that leverage knowl-
edge of the current nogood to produce more general nogoods.
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