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A B S T R A C T   

This study contributes to addressing the challenge of quickly obtaining an effective and accurate nonparametric 
model for describing ship maneuvering motion in three degrees of freedom (3-DOF). To achieve this, an intel
ligent ship dynamics nonparametric modeling method named improved PER-DDPG is proposed. This method 
leverages the deep deterministic policy gradient algorithm (DDPG) and prioritized experience replay mechanism 
(PER) and analyzes the characteristics between the goal of deep reinforcement learning (DRL) and the modeling 
process of the nonparametric model. The PER mechanism is utilized to enhance the agent’s understanding of the 
overall mechanism of ship motion by improving the utilization of samples. The meaning of target value is 
redefined due to transforming DRL aiming at maximizing cumulative rewards into maximizing the set of im
mediate rewards at each time step. To validate the performance of the proposed modeling method, we conduct 
simulation studies using a benchmark ship model i.e., a Mariner cargo ship dynamic model, and experimental 
studies using a real unmanned surface vehicle (USV). In the simulation test, we demonstrate the effectiveness and 
generalization of the proposed method through zigzag and turning circle tests. Furthermore, we verify the 
robustness and applicability of the proposed method by using datasets with uncertain environmental distur
bances and datasets with different sampling frequencies. Additionally, the experimental tests conducted on the 
USV indicate the consistency of the proposed approach.   

1. Introduction 

Building a high-precision ship dynamic model is essential for 
analyzing ship maneuvering motion characteristics, constructing a mo
tion control system, and realizing intelligent navigation. However, 
obtaining such a model is a highly complex process due to the charac
teristics of ship motion systems, which exhibit high coupling, strong 
nonlinearity, and multi-uncertainties. Therefore, it is critical to develop 
a reliable and easy-to-implement ship dynamics modeling method. 
Currently, ship modeling methods are generally classified into two types 
including mechanism-based modeling and data-driven modeling. 
Mechanism-based modeling involves establishing a mathematical model 
that describes ship motion based on traditional kinematics and dynamics 
theories. It considers hydrodynamic forces, control forces, and envi
ronmental disturbance forces acting on the ship (He et al., 2022). The 
unknown parameters of this model are usually determined through 
captive model test, Computational Fluid Dynamics (CFD), and empirical 

formulae or database method. However, these methods have drawbacks 
such as the requirement to identify numerous model parameters and the 
model accuracy being dependent on the experience and prior knowl
edge. To reduce the complexity of the modeling process and mitigate the 
reliance on prior knowledge, data-driven modeling provides an appli
cable solution for constructing ship dynamics in recent years. 

Data-driven modeling is described as a system identification process 
involving the acquisition of input-output data, selection of a model class, 
estimation of model parameters, and validation of the identified model 
(Habib et al., 2021). This method offers advantages of low cost and high 
efficiency for modeling ship dynamics, particularly in the presence of 
time-varying and uncertain environmental disturbances. System iden
tification (SI) presented many successes, and data-driven modeling 
became an enabling factor in modern design methods (Schoukens and 
Ljung, 2019). In ship dynamic model identification, the SI method relies 
on input-output data obtained from free-running model tests or 
full-scale trials. It can be categorized into parametric modeling and 
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nonparametric modeling. Parametric modeling aims to identify the 
unknown parameters of ship dynamic models based on the input-output 
data (Zhu et al., 2018, 2019; Ouyang et al., 2022). This transforms the 
parameter identification problem into a multiple regression problem, 
which can be solved using various methods such as support vector ma
chine (SVM), ridge regression (RR), Gaussian process regression (GPR), 
and their improved versions. The basic idea of these identification 
methods utilizes kernel functions to map the training data to 
high-dimensional feature space, allowing for the construction of ship 
dynamic models through implicit learning. For example, Zhu et al. 
(2017) simplified the 6 DOF model into the speed model and steering 
model to capture ship dynamics in six degrees of freedom (DOF) model 
by reasonable assumptions, and developed support vector machines 
(SVM) method optimized by the artificial bee colony algorithm (ABC) to 
identify the parameters of these two models. Wang et al. (2020) pro
posed a ‘nu’-support vector regression method (v-SVR) with Gaussian 
kernel to establish a robust ship motion model and designed a parameter 
tuning scheme which combined hold-out validation and dynamic pro
cess simulation to prevent overfitting. Chen et al. (2023) proposed the 
LS-SVM with radial basis function and an error-based online modeling 
algorithm to identify an offline black-box model for maritime autono
mous surface ships (MASS) motion under the effect of ocean waves. 
Meng et al. (2023) applied the grey wolf optimized support vector 
regression (GWO-SVR) and nonlinear innovation processed by hyper
bolic tangent function to improve the accuracy of parameter identifi
cation of ship nonlinear motion model. It is important to note that these 
methods mentioned above require assuming a reasonable model in 
advance. However, the selected model structure may no longer be 
applicable due to changes in ship operating conditions (Wang et al., 
2020). Therefore, these methods have significant limitations in practical 
application. 

Nonparametric modeling aims to obtain the optimal mapping be
tween input data and output data without requiring any prior knowl
edge of ship dynamics (Zhang et al., 2022a,b; Ouyang et al., 2023a). The 
accuracy of this method primarily relies on the input-output data 
collected through ship on-board sensors, making it suitable for modeling 
ship dynamics and predicting ship motion. With achievements in clas
sical identification algorithms and neural network technology, 
numerous remarkable academic achievements in nonparametric 
modeling have emerged. For instance, recognizing the significance of 
kernel functions in the modeling of ship dynamics (Chen et al., 2022, 
2023). Ouyang et al. (2023b) introduced an adaptive hybrid-kernel 
function with GPR to enhance its generalization and prediction accu
racy. In addition, Ouyang et al. (2023a) proposed a local Gaussian 
process regression (LGPR) method to model the dynamics in 3-DOF for a 
KVLCC2 tanker ship and a real USV. The method demonstrated desirable 
performance in computational cost through two case studies. The 
aforementioned research works demonstrate notable capabilities in 
terms of model accuracy, generalization ability, and computational ef
ficiency. However, their effectiveness relies heavily on the selection of a 
suitable kernel function, which remains a challenging task that lacks 
clear criteria (Francis and Raimond, 2021). In parallel, the utilization of 
neural network technology has garnered significant attention in ship 
dynamics modeling due to its ease of implementation and flexibility. 
Woo et al. (2018) applied the Long Short-Term Memory (LSTM) 
approach to the nonlinear component of the Nomoto model, albeit 
without considering environmental disturbances. Hao et al. (2022) 
proposed a Recurrent Neural Network (RNN) model for ship maneu
vering motion prediction, highlighting the impact of historical motion 
states by incorporating past velocity values in the inputs. Nonetheless, 
their model solely addressed the linearization of sway and yaw motion, 
simplifying the influence of surge motion on transversal motion. Jiang 
et al. (2022) explored an LSTM-based modeling approach for con
structing a dynamic model of the KVLCC2 ship. They verified the 
model’s robustness against noise by utilizing a training dataset 
contaminated with varying levels of Gaussian white noise. While LSTM 

mitigated the gradient explosion problem of traditional RNNs at the 
algorithmic level, the model’s actual performance still requires valida
tion using experimental data from real ships. In a similar vein, He et al. 
(2022) employed a self-designed fully connected neural network with 
Bayesian optimization for nonparametric modeling of ship motion. They 
incorporated Gaussian processes and lower confidence bounds to esti
mate unobserved validation errors and strike a balance between explo
ration and exploitation. The modeling method was evaluated using both 
simulation and experimental data. However, to enhance the model’s 
persuasiveness, further verification experiments under environmental 
disturbances such as wind, waves, and currents are necessary. Conse
quently, there is a need for further research to develop a nonparametric 
modeling approach that is well-suited for real environments with 
inherent uncertainty while enabling the rapid construction of ship dy
namics models. 

Currently, Deep Reinforcement Learning (DRL) has become one of 
the forefront areas of research in Artificial Intelligence (AI). It is an 
intelligent decision-making theory that emulates human thinking pro
cesses. The core idea of DRL is to obtain an optimal strategy through 
continuous interaction with environment, using trial-and-error and 
feedback learning. Due to its powerful feature learning and decision- 
making abilities, DRL has been extensively studied in domains such as 
autonomous driving, robot control, and intelligent ship control, result
ing in fruitful research achievements (Zhao et al., 2021; Kiran et al., 
2022; Sivaraj and Rajendran, 2022; Sun et al., 2023). Classical DRL al
gorithms are Deep Q Network (DQN) (Mnih et al., 2013) and DDPG 
(Lillicrap et al., 2015). Since the prediction issue in some domains can be 
transformed into a sequential decision problem, researchers have been 
exploring the use of DRL to address these prediction tasks. For example, 
Tang et al. (2021) achieved accurate forecasting of social-economic 
trends and assessment of current decisions by integrating DDPG with 
LSTM and dynamically adjusting the prediction parameters. Chen and 
Liu (2021) developed a dynamic ensemble model based on DQN that 
considered the time-varying characteristics of wind speed series to 
predict wind speed. The proposed dynamic ensemble model out
performed classic intelligent prediction models and six ensemble 
methods when evaluated on actual datasets. In Liang et al. (2023), a 
dynamic noisy proximal policy (DNPP) algorithm, by applying the dy
namic noise exploration and dynamic approximation optimization into 
DDPG, is developed using the actor-critic (AC) frame. The prediction 
results indicate that DNPP has advantages in action exploration and 
network updating compared with other methods. Huang et al. (2023) 
proposed an accurate prediction of required virtual resources (APRR) 
approach based on DQN algorithm through analyzing the real service 
traffic, where the DQN-based matrix factorization designed was used to 
infer the missing elements for minimizing the prediction errors. The 
prediction performance of this approach well demonstrated through 
testing over real-world datasets. 

Inspired by these studies especially the obvious advantages of DRL in 
modeling, DRL-based method is a good alternative to model ship dy
namics with uncertainty induced by environmental disturbances or 
measurement noises without requirement of prior knowledge of ship 
motions. This paper is devoted to developing a novel nonparametric 
modeling approach by introducing DDPG and PER mechanism (Schaul 
et al., 2016) to describe ship dynamics with uncertainty mainly induced 
by disturbances in 3 degrees of freedom. The target value of DDPG is 
modified by analyzing the modeling process of the nonparametric model 
and aligning it with the ultimate goal of DRL. The PER mechanism is 
employed to improve the learning efficiency of the agent. Both the 
simulation tests on Mariner ship and experimental tests on a real USV 
are carried out to comprehensively evaluate the performance of the 
proposed modeling method. From the knowledge of authors, it is the 
first time using PER-DDPG method to investigate nonparametric 
modeling of ship dynamics with uncertainty within the ship dynamic 
modeling research field. 

The structure of this paper is organized as follows. A 3-DOF ship 
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dynamic model is described in Section 2. The improved PER-DDPG 
identification method involving improved DDPG, improved PER- 
DDPG, and evaluation indexes is presented in Section 3. In Section 4, 
two case studies including the simulated Mariner maneuvers and a real 
USV experiment are conducted for comprehensively evaluating the 
performance of the proposed nonparametric modeling method. Finally, 
remarkable conclusions are presented in Section 5. 

2. Problem formulation 

2.1. Ship dynamic model 

Generally speaking, a ship is typically considered as a rigid body with 
6 degrees of freedom (DOF) in motion. However, when it comes to 
controller design for ships in the horizontal plane, the focus is often on 
the three degrees of freedom (3-DOF) ship dynamic model. This selective 
approach is primarily due to the limited benefits of using the full model 
for the development and testing of ship controllers. Notably, controlling 
the heading angle and horizontal translation speed has proven to be 
relatively effective, as highlighted in the works of Zhu et al. (2020) and 
Chen et al. (2021). Therefore, this paper specifically focuses on the 
motions of the 3 DOF (surge, sway, and yaw) in ships. 

Two coordinate systems are utilized to describe the motion state of 
the ship. The first is the earth-fixed coordinate system, which remains 
fixed to the surface of the earth. The second is the body-fixed coordinate 
system, with its origin located at the mid-ship section, as depicted in 
Fig. 1. The ship’s kinematic model is described in accordance with 
Fossen (2011). 

dx0

dt
= u cos ψ − v sin ψ (1-a)  

dy0

dt
= u sin ψ + v cos ψ (1-b)  

dψ
dt

= r (1-c)  

where (x0, y0) is the position coordinates of the origin in the earth-fixed 
coordinate system, ψ is ship heading angle, u is ship surge speed, v is ship 
sway speed, and r is ship yaw rate. 

The motion trajectory of the ship can be predicted through direct 
integration operation on Eqs. (1-a) and (1-b). However, if the predicted 
trajectory is too long, cumulative errors can arise and significantly 
impact the accuracy of the trajectory calculation. In this study, the 
simulated data encompasses a trajectory length of over 1000m as shown 
in Fig. 7. The ratio of the trajectory length to the hull length is 
approximately 22:1, indicating a significant span covered. The 

calculation was performed using a time step of 0.1 s. To address this 
issue, we calculate the measured position coordinates and heading angle 
with the predicted ship speed at the current moment. The calculation 
can be expressed using the following formula 

x(t + 1)= x(t)+ [ut cos(ψt) − vt sin(ψt)]⋅Δt (2-a)  

y(t+ 1)= y(t)+ [ut sin(ψt)+ vt cos(ψt)]⋅Δt (2-b)  

where (x(t+1), y(t+1)) is the position coordinates predicted at the next 
moment; (x(t), y(t)) and ψ t are the position coordinates and heading 
angle measured at the current moment; ut and vt are the predicted value 
of the model at the same time; Δt is the interval time of sampling. 

According to Newton’s second law, the ship kinetic model can be 
written as 

m
(
u̇ − vr − xGr2) = X

m(v̇ + ur + xGṙ) = Y
Izṙ + mxG(v̇ + ur) = N

(3)  

where m is the mass of the ship, Iz is the moment of inertia about the z- 
axis, xG is the longitudinal coordinate of the ship’s gravity center in the 
body-fixed coordinate system, X,Y,N are the components of the hy
drodynamic forces and moments acting on the ship. 

Referring to the Abkowitz model proposed by Abkowitz (1964), the 
hydrodynamic forces and moments acting on the ship can be regarded as 
functions concerning the ship speed and rudder angle, i.e., it is expanded 
by third-order Taylor series about the state of straight-ahead motion 
with constant speed. Then Eq. (3) becomes 

(m − Xu̇)u̇ = f1(u, v, r, δ)
(m − Yv̇)v̇ + (mxG − Yṙ)v̇ = f2(u, v, r, δ)
(mxG − Nv̇)v̇ + (Iz − Nṙ)v̇ = f3(u, v, r, δ)

(4)  

where Xu̇,Yv̇,Yṙ,Nv̇,Nṙ are the hydrodynamic derivatives, f1, f2, f3 are 
the nonlinear functions. 

2.2. Problem statement 

According to the study in (Wang et al., 2015), Eq. (4) can be 
rewritten as a black-box model where u(t+1), v(t+1), r(t +1) can be 
described as functions of u(t), v(t), r(t), δ(t) in the following form 

u(t + 1) = h1[u(t), v(t), r(t), δ(t)]
v(t + 1) = h2[u(t), v(t), r(t), δ(t)]
r(t + 1) = h3[u(t), v(t), r(t), δ(t)]

(5)  

where hi(i= 1, 2,3) are the unknown nonlinear functions. Therefore, the 
black-box model also known as a nonparametric model is derived and 
needs to be identified using the PER-DDPG method to describe ship 
dynamics in the horizontal frame. 

3. Improved PER-DDPG based modeling method 

3.1. DDPG algorithm 

The modeling problem of ship dynamics begins by formulating it as a 
Markov decision process (MDP), followed by the definition and artificial 
design of the state space, action space, and reward function. 

According to Eq. (5), the state space (S) is defined as 

S={u, v, r, δ} (6) 

The action space (A) is defined as 

A={u’, v’, r’} (7) 

The purpose of the reward function (R) is to guide the agent in 
learning the optimal policy which involves minimizing the error be
tween the true speed components and the predicted speed components. 
The specific function is as follows: 

Fig. 1. Reference frame.  
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R= − |u − u′| − |v − v′| − |r − r′| (8)  

where u, v, r represent the true surge speed, sway speed and yaw rate, 
respectively; u’, v’, r’ represent the speed predicted; R represents the 
feedback from the environment on the predicted value of the model 
output. 

DDPG mainly includes three parts: actor-critic structure, target 
network mechanism, and experience replay mechanism. The actor-critic 
structure consists of an execution part and an evaluation part, and each 
part has a neural network. The target network mechanism adds a neural 
network with the same structure in both the execution part and the 
evaluation part to enhance the stability of the algorithm, two neural 
networks in each part are called online network and target network 
respectively. Experience replay mechanism breaks the correlation be
tween sequential data by randomly extracting training samples from the 
replay memory buffer, and thereby improving the convergence of the 
algorithm. The goal is to learn an optimal policy that maximizes the 
cumulative rewards from the start distribution. 

In the DDPG algorithm, the input and the output of online network μ 
of execution part are the current state st and action μ(st

⃒
⃒wμ). The input 

and the output of the target network μ′ are the next state st+1 and action 
at+1. Meanwhile, the exploration ability of the agent is enhanced by 
adding Ornstein-Uhlenbeck (OU) noise (Uhlenbeck and Ornstein, 1930) 
to the actor policy 

at = μ
(
st
⃒
⃒wμ

)
+ N (9)  

where N represents the OU function. 
The inputs of online network η of evaluation part are the state st and 

actions at, and the output is the estimated value Q. The inputs of target 
network η′ are the state st+1 and actions at+1, and its output Q′ is used to 
calculate the target value yt by Eq. (10-a). The loss function L(w) of 
online network is as follows 

yt = rt + γ⋅Q′(st+1, at+1;wη′) (10-a)  

L(w)=
1
n
∑n

i=1
(yi − Q(si, ai;wη))

2 (10-b)  

where rt is the immediate reward, γ is the discount factor, n is the 
number of samples extracted, yi is the target value of the i-th sample. 

The ultimate goal of this paper is to build a nonparametric model 
similar to an end-to-end model. In this model, the ship speed and rudder 
angle at the current moment serve as the input, and the output is the ship 
speed at the next moment. As seen, this process involves only one-step 
interaction, and the optimal strategy can then be characterized as a 
set of optimal solutions for each one-step interaction aligning with the 
goal of DRL, which aims to maximizing the corresponding immediate 
reward for each state-action pair. Therefore, the target value is redefined 
in a way that retains only the first term on the right side of Eq. (10-a). 

yt = rt (11) 

The online network parameters of evaluation part are updated by 
loss function L(w) using the gradient descent method. The online 
network parameters of execution part are updated by the gradient 
derived from the deterministic policy gradient principle with the 
following equation 

∇wμ J(μ)≈ 1
n
∑n

i=1
∇wμ μ

(
s
⃒
⃒wμ

)⃒
⃒

s=st
⋅∇aQ(s, a|wη)|s=st ,a=μ(st|wμ) (12) 

The target network parameters for execution part and evaluation 
part are updated using the soft update method as follows 
{

wμ′←τ⋅wμ + (1 − τ)⋅wμ′

wη′←τ⋅wη + (1 − τ)⋅wη′
(13)  

where τ is the soft update factor. 

3.2. PER mechanism 

The core idea of PER is to improve the learning efficiency of the agent 
by assigning higher priority to important samples, thereby increasing 
their likelihood of being selected during the training phase. The 
importance of the sample is determined by its TD-error, where a larger 
TD-error indicates a greater significance of the sample for the learning 
process of the agent. However, samples with larger TD-error tend to 
occur less frequently during training. By increasing the probability of 
selecting these high TD-error samples, the overall utilization of the 
samples is improved, leading to a higher quality of the learned strategy. 

The TD-error (Te) of the sample (e) is defined as 

Te ≜ rt + γ ⋅ Q′(st+1, at+1;wη′) − Q(st, at;wη) (14) 

To address the limitations associated with using only TD-error such 
as the lack of diversity and bias issue, two methods are introduced, 
including the stochastic sampling method and the importance sampling 
method. The stochastic sampling method ensures that all samples in the 
replay memory buffer have a non-zero probability of being sampled 
while guaranteeing the diversity of training data. Concretely, the 
probability p(e) of the sample (e) is defined as 

p(e)=
pα

e∑
kpα

k
(15-a)  

pe = |Te| + ε (15-b)  

where the exponent α determines the degree of prioritization used, pe is 
the priority of the sample (e) and ε is the small positive constant. 

The importance sampling method is used to correct this bias through 
adding importance-sampling (IS) weights 

wIS e =

(
1
N

⋅
1

p(e)

)β

(16)  

where N is the total number of samples and the exponent β is annealed 
from its initial value to 1 in practice. 

3.3. Improved PER-DDPG identification method 

Due to the varying importance of samples during agent training, 
uniform sampling from the replay memory buffer in the original DDPG 
algorithm often leads to a low utilization rate. To address this issue, the 
combination of the DDPG algorithm and the Prioritized Experience 
Replay (PER) mechanism has been proven effective in enhancing the 
retrieval of valuable samples and delivering superior performance in 
related problem domains (Wu et al., 2018; Mo et al., 2019; Wei et al., 

Fig. 2. Structure of the nonparametric model.  
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2021; Tang et al., 2022; Zhang et al., 2023). Therefore, this paper 
developed an improved PER-DDPG algorithm by taking advantages of 
the aforementioned improved DDPG algorithm and PER mechanism. 
The loss function Eq. (10-b) is also modified as follows 

J(w)=
1
n

∑n

i=1
wIS i(yi − Q(s, a;wη))

2 (17) 

Fig. 2 illustrates the detailed model structure derived from the online 
network of the execution part in the improved PER-DDPG. The model 
comprises an input layer, a hidden layer, and an output layer. The 
hidden layer consists of multiple fully connected (FC) layers with 128 
neurons, while the input and output layers contain four neurons and 
three neurons, respectively. The number of neurons in the input and 
output layers corresponds to the size of the state space and action space, 
respectively. The output layer employs the sigmoid and tanh functions 
as activation functions. Concerning the online network structure of the 
evaluation part, there are seven neurons in the input layer and one 
neuron in the output layer. The hidden layers consist of five fully con
nected (FC) layers, each with the same number of neurons as before. 
Specifically, the state and action information are separately processed 
by two FC layers and one FC layer to extract their features. The features 
from both parts are then concatenated to form a complete feature, which 
is subsequently passed through two FC layers to produce the final Q 
value. In terms of hyperparameters, the replay memory buffer size, 
batch update size, and soft update factor are set to 1000, 128, and 0.005, 
respectively. For the remaining hyperparameters, please refer to the 
works of Lillicrap et al. (2015) and Schaul et al. (2016). In addition, it is 
worth noting that the obtained nonparametric model is a multiple-input 
multiple-output (MIMO) model. This MIMO structure allows for the 
simultaneous prediction of motions across all degrees of freedom 
(DOFs), thus avoiding the accumulation of errors that can occur in 
single-output models incapable of predicting all DOFs simultaneously 
(Zhang et al., 2022a,b). Furthermore, Eq. (5) can be expressed in the 
following form 

u(t + 1) = h1[u(t), v(t), r(t), δ(t)]
v(t + 1) = h2[u(t), v(t), r(t), δ(t)]
r(t + 1) = h3[u(t), v(t), r(t), δ(t)]

⎫
⎬

⎭
⇒Ŷ =

⎡

⎣
u(t + 1)
v(t + 1)
r(t + 1)

⎤

⎦= g(X) (18)  

where Ŷ is the output vector, X is the input vector, and g( ⋅) is the 
nonlinear function. 

Fig. 3 illustrates the step-by-step procedure of applying the improved 

PER-DDPG method to construct the nonparametric model of ship dy
namics. The detailed process is as follows: Firstly, the agent begins 
feature learning once it receives the normalized state. Next, the output 
corresponding to the 3-DOF ship motion is obtained by applying the 
actor policy and undergoing renormalization. Simultaneously, an im
mediate reward is assigned, and a new state is generated for the sub
sequent one-step interaction. Finally, the output is evaluated by the 
evaluation part, which plays a crucial role in the algorithm’s conver
gence. Additionally, the priority of the previous state is calculated. 
Concurrently, the output, previous state, priority, immediate reward, 
and new state are packaged together as a sample and stored in the replay 
memory buffer. Once the number of samples reaches a specified 
threshold, the neural networks are iteratively trained through batch 
updating, employing priority sampling. This iterative training process 
aims to obtain the optimal strategy. 

3.4. Evaluation indexes 

To measure the performance of the proposed method, the cumulative 
rewards, the training time (T-time), the time consumed for prediction 
(P-time), root mean square error (RMSE), and determination coefficient 
(R2) are selected as evaluation indexes. Whether the algorithm con
verges is judged visually by the cumulative rewards curve, the predic
tion accuracy of models is reflected by RMSE and R2 and relative 
formulas as follows 

RMSE(y, ŷ)=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
k

∑k

i=1
(yi − ŷi)

2

√

(19-a)  

R2(y, ŷ)= 1 −

∑k
i=1(yi − ŷi)

2

∑k
i=1(yi − y)2 (19-b)  

where yi is the true value of the i-th data point, ŷi is the corresponding 
predicted value and y is the average value of all data. 

4. Case study 

To demonstrate the effectiveness of the nonparametric model iden
tified using the proposed improved PER-DDPG identification method, 
two case studies including a numerical simulation study on a Mariner 
cargo ship (Fossen, 2011) and an experimental study on a real USV are 

Fig. 3. Procedure of nonparametric modeling of ship dynamics applying the improved PER-DDPG method.  
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carried out. The Mariner case is to verify the performance of the pro
posed method in several aspects, in which a Mariner cargo ship with 
known parameter values is used to simulate a series of zigzag maneuvers 
and turning circle maneuvers for which measure noises and different 
sampling frequencies are considered. The USV case is for more in-depth 
research on the proposed method by using experimental data from real 
sea conditions. 

4.1. Simulation study 

In this subsection, the feasibility of the proposed improved PER- 
DDPG method in identifying the model is proved by employing the 
model of the Mariner cargo ship, among which three groups of simula
tion experiments are conducted. The particulars are set as follows: 
maneuvering indices at a forward speed of 7.7175 m/s, v = 0 m/s, r = 0 
deg/s, rudder deflection limitation δ ∈ [ − 20◦, + 20◦]. The main pa
rameters of the model are listed in Table 1. All simulation studies are 
carried out in a uniform environment running PyCharm 2022 version 
with an Intel(R) Core(TM) i7-12700F, 2.10 GHz CPU. 

The first group of experiments is to verify and validate the effec
tiveness and generalization of the proposed improved PER-DDPG 
method, from which conducting a 20◦/20◦ zigzag test and a 20◦

turning circle test, and comparisons are made with the original simu
lated maneuvers, the improved DDPG and LSTM (Jiang et al., 2022). 
Each test obtained 7000 data points with a time interval of 0.1s, the first 
71.4% of zigzag test data is classified as the training dataset and the 
remaining data is the validation dataset with referencing to (Wang et al., 

2020; Ouyang and Zou, 2021; Ouyang et al. 2023b). The data of turning 
circle test is used as testing dataset to further validate the generalization 
ability of these identified models. 

The second group is designed to test the robustness of the identified 
model against environmental disturbances and measurement noises. To 
simulate these uncertainties, Gaussian white noise with varying levels is 
added to the zigzag test data. This approach is inspired by the method 
used in Wang et al. (2019). 

ζi = ζoi + ζmaxk0kζξi (20)  

where ζi is the noise data, ζoi is the zigzag test data. ζmaxk0kζξi is the 
disturbance term, where ζmax is the maximum absolute value of the 
zigzag test data, kζ is the reduction factor of different responses, which is 
set to 0.03 for u, 0.01 for δ, and 0.25 for other responses. ξi is a randomly 
selected value from Gaussian white noise with the variance of 1 and 
mean of 0. k0 is the reduction factor representing different noise levels, 
which is chosen as 1%, 5%, and 10%, and three cases are referred as 
Noise Level 1 (Nlv1), Noise Level 2 (Nlv2) and Noise Level 3 (Nlv3), 
respectively. The corresponding simulated data and noise data are 
shown in Fig. 4. 

The third group is to prove the applicability of the proposed identi
fication method on the premise of considering the different sampling 
frequencies problem induced by different levels of ships. Besides the 
sampling frequency of 10 Hz, this work plans to additionally set three 
different sampling frequencies in the above zigzag test, i.e. 1 Hz, 5 Hz, 
and 20 Hz. Three sets of data are stemmed from several time-series 
zigzag maneuvers conducted, the number of data points obtained are 
700, 3500, and 14,000 respectively, and we can find that the differences 
of data in quantity and quality are obvious. The division of training 
dataset and validation dataset is set as same as the ones applied in the 
first group. 

In order to solve the negative effects of different dimension caused 
problems such as algorithm instability or model accuracy degradation, 
the “MaxAbs” scaler (He et al., 2022) is used to normalize the dataset 
from the above tests, from which the key point is that this method has 
the advantage of not changing the data distribution. It is defined as 

Xnorm =
X

|Xmax|
(21) 

Table 1 
Main parameters of the Mariner cargo ship.  

Parameters Value Unit 

Length 171.80 m 
Length between perpendiculars 160.93 m 
Breadth 23.17 m 
Design draft 8.23 m 
Design displacement 18,541 m3 

Design speed 15 knots 
Maximum rudder angle ±40 deg 
Rudder rate 5 deg/s  

Fig. 4. Testing dataset with Gaussian white noise of different levels.  
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where Xnorm is the normalized data, X is the input data, Xmax is the 
maximum absolute value of input data. 

In the first group of experiments, after the processing of iterative 
training (700 episodes), the dynamic curves of cumulative rewards, R2, 
and RMSE indexes are obtained with the use of two different identifi
cation methods, as shown in Fig. 5. We can find from Fig. 5a that both 
algorithms reach the convergence at the late stage of training but 
improved PER-DDPG algorithm performs better in terms of the stability 
and the accuracy, and the number of episodes needed is respectively 
about 400 (3.3 h) and 290 (3.1 h), it reveals that the training cost of 
these two different identification methods is considerably small. Fig. 5b 
and c illustrate the predictive effect of models is constantly improving 
because their RMSE value and R2 value are gradually approaching 0 and 
1. 

The prediction results and relevant errors of the LSTM identified 
model, improved DDPG identified model and improved PER-DDPG 

identified model on the training dataset and validation dataset are 
visualized in Fig. 6, from which it can be found that the nonparametric 
model identified by the proposed improved PER-DDPG method ap
proximates well the validation dataset with high accuracy. Besides, 
these three identification methods identify the ship dynamic model well 
with training dataset but the improved PER-DDPG method outperforms 
the other methods since the evaluation indexes presented in Table 2 are 
best except for the T-time, and the increase of its T-time is acceptable. It 
is deserved to be highlighted that the model identified by the LSTM and 
improved DDPG method has slightly larger errors in the surge motion, 
the two reasons for this phenomenon lie in that first the surge motion is 
more sensitive to the direction change of rudder angle, the other is that 
the agent has not learned full ship motion mechanism because the 
training dataset lacks sufficient data containing the surge speed at the 
peak or trough, and this also explains why we introduced PER mecha
nism. Therefore, the higher predictive performance of the improved 
PER-DDPG model is due to capturing more the characteristics of ship 

Fig. 5. Fluctuation of evaluation indexes of ship dynamic models identified by improved DDPG method and PER-DDPG method respectively.  

Fig. 6. Prediction results of 20◦/20◦ zigzag maneuver.  

Table 2 
Accuracy analysis of simulation prediction with zigzag maneuver.  

Methods Cumulative rewards Training dataset Validation dataset T-time (h) P-time (s) 

RMSE R2 RMSE R2 

LSTM – 0.016 0.993 0.017 0.874 0.02↓ 3.00 × 10− 3 

Improved DDPG − 30.523 0.008 0.998 0.005 0.992 5.76 9.24 × 10− 4 

Improved PER-DDPG ¡18.938↑ 0.003↓ 1.000↑ 0.003↓ 0.997↑ 7.48 9.04 £ 10¡4↓  
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motion by learning enough times of important samples. 
Fig. 7 depicts the predictions of ship speed components and trajec

tory using a testing dataset extracted from 30◦ turning circle maneuvers 
for the three identified models. Table 3 records the P-time, RMSE, and R2 

indexes of these models. The LSTM model exhibits outstanding 

performance in terms of ship speed component and trajectory predic
tion, demonstrating low RMSE values of approximately 0.013 and high 
R2 values around 0.998. The superior performance of the LSTM model 
can be attributed to its network structure, which effectively captures 
dependencies between adjacent states. Furthermore, the discrepancy 
between the LSTM model and the improved PER-DDPG model in terms 
of RMSE and R2 indexes is minor. However, the improved PER-DDPG 
model offers higher computational efficiency. In contrast, the 
improved DDPG model’s prediction accuracy is noticeably reduced in 
surge motion. This can be attributed to the training dataset being 
derived solely from single standard zigzag maneuvers, rather than a 
combination of multiple standard maneuvers that cover the entire input 
space of the steering angle. The zigzag tests with varying rudder angles 
encompass diverse ship motion characteristics, as discussed in Wang and 
Zou (2018) and Wang et al. (2019). Nevertheless, the discrepancies in 

Fig. 7. Prediction results of 30◦ turning circle maneuver.  

Table 3 
Results analysis of simulation prediction of turning circle maneuver.  

Methods Cumulative 
rewards 

Testing dataset P-time (s) 

RMSE R2 

LSTM – 0.013↓ 0.998↑ 3.00 × 10− 3 

Improved DDPG − 607.398 0.121 0.907 9.36 × 10− 4 

Improved PER- 
DDPG 

¡230.730↑ 0.052 0.982 9.21 £
10¡4↓  

Fig. 8. Prediction results of the identified model on Nvl1.  
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the training dataset indicate that the improved PER-DDPG model pos
sesses satisfactory reasoning and generalization abilities. 

Therefore, the above results demonstrate the feasibility, effective
ness, and advantages of the improved PER-DDPG method in accurately 
predicting zigzag maneuvers and turning circle maneuvers. This paper 
will further focus on verifying and comparing the method in subsequent 
work. 

In the second group of simulation tests, the ship dynamic model 
identified by the LSTM model and improved PER-DDPG are evaluated on 
the testing dataset with different noise levels. The prediction results, 
along with the corresponding errors, are presented in Figs. 8–10, and the 
evaluation indexes are summarized in Table 4. It can be observed that 
these two identified models accurately predict the ship speeds under 
Noise Level 1 and Noise Level 2 but the improved PER-DDPG model 
outperforms over the other one model since the evaluation indexes 
namely RMSE, R2 and P-time are smallest. For the Noise Level 3 case 
where the noise level is increased, some deviation occurs, but the 

Fig. 9. Prediction results of the identified model on Nvl2.  

Fig. 10. Prediction results of the identified model on Nvl3.  

Table 4 
Results analysis of model identified under the condition of noise with different 
levels.  

Methods Cumulative 
rewards 

Testing dataset P-time (s) 

RMSE R2 

LSTM (Nlv1) – 0.017 0.991 4.00 × 10− 3 

Improved PER-DDPG 
(Nlv1) 

− 47.672 0.004↓ 1.000↑ 8.83 £
10¡4↓ 

LSTM (Nlv2) – 0.019 0.990 2.00 × 10− 3 

Improved PER-DDPG 
(Nlv2) 

− 213.284 0.015↓ 0.998↑ 8.89 £
10¡4↓ 

LSTM (Nlv3) – 0.027 0.987 3.00 × 10− 3 

Improved PER-DDPG 
(Nlv3) 

− 425.248 0.025↓ 0.991↑ 8.92 £
10¡4↓  
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identified models still exhibit acceptable consistent trends of ship speed 
prediction. Comprehensively speaking, in the results, the largest RMSE 
of the improved PER-DDPG model is 0.025 which is small enough and 
demonstrates that the identified dynamic model of the ship is accurate to 
describe ship dynamics under the disturbance condition and the 
improved PER-DDPG based identification method is robust. 

In the third group of simulation tests, the predictions of identified 
ship dynamic model and relevant errors of 20◦/20◦ zigzag maneuvers 
with different sampling frequencies are shown in Fig. 6, Figs. 11–13 and 
their corresponding indexes are listed in Table 5. It can be seen that the 
improved PER-DDPG method enables the construction of high-precision 
ship dynamic models using ship maneuver data with different levels of 
sensors. This illustrates that the method is applicable to both a small 
number of samples (about 500 data points) and a large number of 
samples (about 10,000 data points) and shows applicability. Further
more, as the training dataset becomes more diverse, the T-time cost of 
the model increases significantly since the off-line training mode needs 

to traverse the entire dataset in each training episode but the perfor
mance of the identified models is further enhanced. Comparatively, the 
larger prediction error on two different datasets with low sampling 
frequencies such as 5 Hz, and 1 Hz show that the identified models 
obtained by LSTM method rely on large amounts of data. 

4.2. Experimental study 

Experimental studies are also conducted to further demonstrate the 
effectiveness and robustness of the proposed improved PER-DDPG 
method in identifying the ship dynamics model for a real USV. Fig. 14 
depicted the USV whose main particulars are shown in Table 6. The USV 
is equipped with various sensors such as GPS, IMU, compass, and rudder 
indicator to measure the surge speed, sway speed, yaw rate, and rudder 
angle, from which these data are extracted for the identification of the 
nonparametric model for the USV. The corresponding free-running 
model tests are carried out in the Weihai of China under less than 

Fig. 11. Prediction results of ship dynamic model identified using dataset with 1Hz.  

Fig. 12. Prediction results of ship dynamic model identified using dataset with 5Hz.  
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level 3 sea conditions. Two sets of experimental data are stemmed from a 
time-series maneuver conducted at a steady forward speed varying 
around 2.5 m/s, and the sampling time is 0.1 s. Samples (1240 data 
points) obtained from 15◦/15◦ zigzag maneuver are classified as training 
dataset and validation dataset which are presented in Fig. 15, and the 
division between the two datasets is set as same as before. Samples (400 
data points) obtained from 10◦/10◦ zigzag maneuver are used as testing 
dataset. 

After training the proposed method and LSTM method to acquire two 
nonparametric models of the USV, the experimental results including 
the evaluation indexes, predictions, and relevant errors of 15◦/15◦

zigzag maneuver are obtained, which are respectively presented in 
Table 7 and Fig. 16. From the validation results, it can be observed that 
these two identified models achieve a high level of predictive accuracy 
and have the advantages of low T-time and P-time cost but the improved 
PER-DDPG model is best compared to the LSTM model in terms of core 
evaluation indexes such as RMSE, R2, and P-time, despite the slightly 
larger RMSE value compared to the simulation study with the same 
sampling frequency. This can be attributed to environmental distur
bances caused by factors such as wind, currents, and waves, as well as 
the smaller number of samples in the experimental study. Furthermore, 
slight discrepancies between the prediction results and the validation 
dataset can be observed. However, these discrepancies remain within a 
tolerable range, which further indicates the effectiveness of the 
improved PER-DDPG method in identifying the ship dynamics model for 
the USV while considering uncertain environmental disturbances. 

Fig. 17 illustrates the prediction results and associated errors 

Fig. 13. Prediction results of ship dynamic model identified using dataset with 20 Hz.  

Table 5 
Evaluation indexes of ship dynamic models identified by the LSTM and improved PER-DDPG using datasets with different sampling frequencies.  

Methods Cumulative rewards Training dataset Validation dataset T-time (h) P-time (s) 

RMSE R2 RMSE R2 

LSTM (1Hz) – 0.025 0.973 0.038 0.556 0.005↓ 3.00 × 10− 3 

Improved PER-DDPG (1Hz) − 3.483 0.008↓ 0.999↑ 0.004↓ 0.995↑ 0.52 9.25 £ 10¡4↓ 
LSTM (5Hz) – 0.019 0.992 0.017 0.892 0.01↓ 4.00 × 10− 3 

Improved PER-DDPG (5Hz) − 13.424 0.005↓ 1.000↑ 0.004↓ 0.996↑ 3.27 9.28 £ 10¡4↓ 
LSTM (10Hz) – 0.016 0.993 0.017 0.874 0.02↓ 3.00 × 10− 3 

Improved PER-DDPG (10Hz) − 18.938 0.003↓ 1.000↑ 0.003↓ 0.997↑ 7.48 9.30 £ 10¡4↓ 
LSTM (20Hz) – 0.009 0.998 0.009 0.975 0.04↓ 3.00 × 10− 3 

Improved PER-DDPG (20Hz) − 16.223 0.001↓ 1.000↑ 0.001↓ 0.999↑ 38.79 10.4 £ 10¡4↓  

Fig. 14. The Unmanned Surface Vessel used in the tests.  

Table 6 
Main particulars of the USV.  

Elements Values Unit 

Length 7.6 M 
Width 2.58 M 
Draught 0.37 M 
Revolution 5300–6300 Rpm 
Max power 183.9 kW 
Max speed 39 Knot  
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obtained from two identified USV dynamic models, using experimental 
data from a 10◦/10◦ zigzag maneuver as the testing dataset. The cor
responding performance metrics are recorded in Table 8. It is evident 
from the results that the improved PER-DDPG identified model, trained 

with the 15◦/15◦ zigzag maneuver, is capable of accurately and 
comprehensively predicting the 10◦/10◦ zigzag maneuver. This finding 
confirms the excellent generalization ability of the improved PER-DDPG 
method, particularly when dealing with experimental data that 

Fig. 15. Experimental data of 15◦/15◦ zigzag maneuver.  

Table 7 
Evaluation indexes of the identified USV dynamic model in the 15◦/15◦ zigzag test.  

Methods Cumulative rewards Training dataset Validation dataset T-time (h) P-time (s) 

RMSE R2 RMSE R2 

LSTM – 0.022 0.962 0.026 0.942 0.008↓ 4 × 10− 3 

Improved PER-DDPG − 16.602 0.010↓ 0.992↑ 0.012↓ 0.984↑ 2.29 9.02 £ 10¡4↓  

Fig. 16. Prediction results of 15◦/15◦ zigzag maneuver using identified USV dynamic model.  
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incorporates uncertain environmental disturbances. However, the LSTM 
model exhibits lagged prediction results for each ship motion, failing to 
meet the requirements of real-world applications. 

5. Conclusions 

In this paper, a method of nonparametric modeling based on PER 
mechanism and DDPG algorithm for the ship dynamic model is pro
posed, which is used to capture and predict ship dynamics only using 
maneuver data. Firstly, a ship dynamic black-box model with maneu
vering variables and ship responses is built, which is further modified 
into a form for identification. Then through the training of the improved 
PER-DDPG method with the use of pure data and noise data, the 
nonparametric dynamic models of ships including Mariner ship and a 
real USV are identified, and the model predictions are satisfactory. On 
the whole, the results of ship dynamic prediction are relatively accurate. 
It can be considered that the ship nonparametric dynamic model 
established by the proposed identification method has high robustness 
and can provide the corresponding degree of dynamic prediction for 
ships with different levels of disturbance. 

Compared with the parametric modeling, this nonparametric 
modeling based on the improved PER-DDPG method is convenient and 
robust to capture and describe dynamics of ships with uncertainty 
induced by environmental disturbance or measurement noises. How
ever, it also has certain limitations. The model can only be used for one- 
step deterministic prediction with the speed components and rudder 
angle as input. So it is worthy to test multi-step prediction. Additionally, 
the uncertainty caused by environmental disturbance or measurement 
noises is emulated in this study, but in fact, the variation of ship navi
gation conditions such as loading conditions or navigation speed leads to 

the change of ship dynamic model parameters. This point is deserved to 
be investigated to test the performance of the improved PER-DDPG 
based identification method in the upcoming research work. 
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