
Matching in Multi-Agent Pathfinding using M*

Jonathan Dönszelmann∗

TU Delft

Abstract

Multi-agent pathfinding (MAPF ) is the pro-
cess of finding collisison-free paths for mul-
tiple agents. MAPF can be extended by
grouping agents into teams. In a team,
agents need to be assigned (or matched)
to one of the team’s goals such that the
sum of individual costs is minimised. This
extension is called MAPF with matching
(MAPFM ). M* is a complete and optimal
algorithm to solve MAPF problems. In this
paper, two strategies are proposed which al-
low M* to solve MAPFM problems. These
strategies are called inmatching and pre-
matching. It is shown that prematching is
generally preferable to inmatching, the ben-
efits of different optimisations for M* are
compared, and it is shown that the perfor-
mance of M* performs very comparably to
other A* -derived algorithms.

1. Introduction

A large number of real-world situations require the plan-
ning of collision-free routes for multiple agents.1 For
example, the routing of trains over a rail network [1],
directing robots in warehouses [2] or making sure au-
tonomous cars do not collide on the road [3]. Problems
of this nature are called Multi-agent pathfinding prob-
lems, which will hereafter be abbreviated to MAPF.

In MAPF, each agent has a starting position and a goal
position. For every agent, a route needs to be found
from their start to their goal, without two agents col-
liding. Finding these collision-free routes has been for-
mally proven to be NP-hard [4].

One algorithm to solve MAPF is called M* [5]. M*
is derived from the A* algorithm [6] as described by
Standley [7]. A* generally plans the paths of agents to-

gether. This means that in each timestep, the number of
possible next states grows exponentially with the num-
ber of agents. Contrasting that, in M*, agents follow an
individually optimal path whenever possible. In each
timestep, only the subset of colliding agents is jointly
planned and if necessary, backtracking is performed.

Figure 1: A snapshot of agents solving a MAPFM prob-
lem. Two teams of agents are moving from their starts
to their goals. Squares, flags and circles are starts, goals
and agents respectively. One red agent (at 4 squares
from the left, 3 squares from the top) waits to let the
three other agents pass.

When directing robots through warehouses, there may
be different models of robots with different capabilities.
Some robots may be able to restock shelves while others
collect orders. The MAPF problem can be generalised
to represent such a problem with teams of agents. In
contrast to MAPF, an agent does not have a single goal
in this generalisation. Instead, agents can use any goal
associated with the team it is in, but no two agents can
end at the same goal. An algorithm solving this problem
must assign each agent to a goal. Such an assignment
is called a matching. This problem is therefore named
multi-agent pathfinding with matching (hereafter abbre-
viated to MAPFM ).

In this paper, MAPFM is first defined, after which two
∗Supervised by Jesse Mulderij (j.mulderij@tudelft.nl) and Mathijs de Weerdt (m.m.deweerdt@tudelft.nl)
1An agent is the collective name for a single unit for which a path is calculated. The word ‘agent’ could refer to a single

robot, a train or a car, but can also refer to an abstract or simulated entity. In MAPF, paths are planned for multiple agents.

1

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering



techniques are discussed which extend M* to also solve
MAPFM problems. These two techniques are then com-
pared, to each other, and to a number of other algo-
rithms which also solve MAPFM problems. Apart from
this comparison, a number of extensions to M* are dis-
cussed which improve M* ’s performance. Some of these
extensions can also improve the performance of M* on
plain MAPF problems.

1.1. Prior work

Before this research, a separate study has been per-
formed [8] on a problem called the target-assignment
and pathfinding (TAPF ) problem. The difference be-
tween TAPF and MAPFM is that in TAPF, the
makespan (the cost of the longest path) instead of the
sum of individual costs (the cost of all paths combined)
is minimised. To solve TAPF, [8] uses conflict based
search (CBS ) [9], using a min-cost flow based algorithm
for the lower level. The min-cost flow is used to solve
TAPF for a single team in polynomial time. The higher
level of CBS combines single team solutions to find a so-
lution for all teams. According to [10], such a Min-cost
flow based algorithm can also be used to solve MAPFM
problems.

To the best of the author’s knowledge, solving TAPF
or MAPFM with other algorithms than CBS (such as
M* ) has not yet been explored.

In contrast, a lot of research has been done finding and
improving algorithms that solve MAPF [5, 7, 9, 11–
14]. The current state-of-the-art MAPF algorithms are
Conflict Based Search (CBS ) and Branch-and-Cut-and-
Price (BCP). However, which of the existing algorithms
for MAPF can be adapted such that they also perform
well at solving MAPFM problems is yet unclear.

2. Definitions of MAPF and MAPFM

The definition of multi-agent pathfinding used in this
paper is based on Stern’s definition given in [15]. The
definition is given below.

A MAPF problem P consists of the following elements:
P = 〈G, s, g〉

• G is an undirected graph 〈V,E〉
– V is a set of vertices
– E is a set of unweighted edges between ver-

tices
• s is a list of k vertices where every si is a starting

position for an agent ai
• g is a list of k vertices where every gi is a goal

position for an agent ai
The goal of MAPF is to find a path for all agents ai
from si to gi, without vertex and edge conflicts. This
means that in a timestep t, two agents may not be on
the same vertex, and between two timesteps, two agents
may not travel over the same edge.

The cost ci of a path πi is the number of timesteps until

the last time that agent ai arrives at its goal gi. [15]
defines two primary approaches to define the cost c of
a solution to a MAPF instance. The sum of individual
costs is the sum of the cost of all paths (c =

∑k
n=0 cn).

Alternatively, the makespan is equal to the maximum
cost of all paths (c = maxkn=0 cn). An optimal solution
to aMAPF instance is a set of paths π with the smallest
possible cost c.

Although the algorithms presented in this paper would
work on any graph G, in examples and experiments, G
is simplified to a 4-connected grid. In this paper, this
grid is sometimes called a ’map’, on which agents move
from their start positions to their goal positions.

MAPFM
Now, the concept of matching is added to the defini-
tion of MAPF, to create multi-agent pathfinding with
matching (MAPFM ). The new MAPFM problem adds
two elements to P , as shown below:

P ′ = 〈G, s, g, sc, gc〉
• sc is a list of colours. Each starting vertex si is

assigned a colour sci.
• gc is a list of colours. Each starting vertex si is

assigned a colour sci.
This definition divides all agents into teams. An agent
ai’s team colour is the colour of its starting location sci.
In total there are K teams k1 . . . kn. K is equal to the
number of different colours in sc and gc.

In MAPFM, agents do not have a single goal. Instead,
teams have several goals which all have the same colour
gci. A team has as many goals as there are agents. A
solution to MAPFM is a set of collision-free paths for
each agent, in which every agent travels to a goal with
a colour equal to the colour of that agent.

MAPFM uses the sum of individual costs as an optimi-
sation criterion.

3. A description of M*

M* [5] is a complete and optimal pathfinding algorithm,
similar to A*. However, unlike A*, M* is specifically de-
signed to solve MAPF problems. To use A* for MAPF,
the planning of paths for all agents needs to be coupled
to make sure no states are expanded in which collisions
occur. Coupled planning means that the states used in
A* contain the positions of all agents at the same time,
and every expansion expands new states for all agents
at the same time. The search space is said to be k-
dimensional where k is the number of agents for which
paths are planned.

Unlike in A*, in M* the planning of agents is initially
not coupled. Instead, M* plans agents according to
an individually optimal path. An individually optimal
path is the minimal cost path for an agent to their goal,
not taking into account the location and movement of
other agents. This may therefore lead to the collision
of agents. However, as long as collisions do not occur,

2



this strategy separates the planning of agents, making
the search space one-dimensional.

However, with many map layouts, collisions between
agents following individually optimal paths are bound
to occur. When M* detects the creation of a state s
in which two or more agents do collide, this state is
discarded. Instead, parent states of s are reassessed to
see if the colliding agents can plan differently, in a way
which may not be individually optimal but avoids the
collision in s.

During this reassessment, the planning of only the
agents which collided in s is coupled like in A*. The
search space of M* can therefore be though of as be-
ing one-dimensional, but with a dynamically growing
dimensionality around collisions. Around collisions, the
search space is n-dimensional where n is the number of
colliding agents.

Just like A*, M* uses a priority queue and a heuristic
to prioritise the exploration of states. This finds opti-
mal solutions as long as an admissible heuristic is used
such as the Manhattan- or Euclidean distance to goal
location of each agent.

4. M* and matching

To add matching toM*, this paper proposes two options
which are called "inmatching" and "prematching". In
this section, both are explained and their advantages
and disadvantages are discussed.

4.1. Inmatching

Inmatching is the process of performing matching as a
part of the pathfinding algorithm that is used. To un-
derstand it, it is useful to first look at inmatching in
A*. With A*, the expansion of a state consists of all
possible moves for all agents. A* searches through the
search space, until the goal state has been removed from
the frontier. With an admissible heuristic, A* guaran-
tees that backtracking from this first goal state gives a
shortest path between the start and goal location.

With inmatching, there is not one goal state. Instead,
any state in which all agents stand on a goal of their
own colour is considered a goal state. This means there
is more than one goal state. An admissible heuristic for
inmatching M* is the Manhattan- or Euclidean distance
to the closest goal location for each agent.

Inmatching applied to M*
Inmatching can similarly be used with M*. However, in
M* inmatching is likely to be quite inefficient (an ex-
perimental evaluation of this inefficiency can be found
in Section 7.1). The reason for this inefficiency is that in
M*, agents try to follow an individually optimal path.
In MAPF problems, an agent only has one individu-
ally optimal path because an agent only has one goal

position. However, in MAPFM, agents commonly have
multiple goal positions. With inmatching, the paths to
all goal positions of an agent need to be considered to
guarantee optimality. In a sense, an agent has multi-
ple individually optimal paths. One towards each goal
position of the agent’s team.

In regular M* the branching factor 2 is 1 when agents
do not collide. However, because with inmatching there
are multiple individually optimal paths, the branching
factor of M* may be larger than one even when there
are no collisions.

The upper bound of this branching factor can be ex-
pressed as follows:

k∏
i=1

goals(ai)

Here, the goals function gives the number of goals in
team of agent ai. All agents need to consider moving
towards all goals of the team they are in. A new state
needs to be created for every combination of movements
of agents, because a single state contains the location of
all agents combined. Therefore the upper bound for the
number of expanded states is a product of the move-
ments for a single agent.

inmatching M* will hereafter be abbreviated to imM*

4.2. Prematching

Algorithm 1: prematch M*
Result: Find the matching mbest with smallest

cost
mbest ← ∅;

matchings← find all matchings(starts, goals);
foreach m ∈ matchings do

s← mstar(starts,m) {Evaluate with M*};
mbest ← min(mbest, s);

end

As an alternative to inmatching, there is prematch-
ing. With prematching the MAPFM problem is trans-
formed into a number of MAPF problems. Each possi-
ble matching is calculated in advance, and normal M*
as described by [5] is performed on each matching ex-
haustively. Algorithm 1 shows this exhaustive search.

In Section 5.3 an improvement to prematching M* is
proposed which uses a heuristic to prune some of the
matchings which otherwise needed to be evaluated.

prematching M* will hereafter be abbreviated to pmM*

5. Extensions to M*

M* can be improved upon in various ways. Some of
these extensions are only applicable to M* with match-

2The branching factor is the number of child states which are created from one parent state. A branching factor of 1
means that each parent only creates one child state. In this text, a state refers to an M* state as described in Section 3.

3



ing, while others improveM* itself. In this section these
extensions are described in detail.

5.1. Precomputed paths and heuristics

A part of solving M* instances is finding the individu-
ally optimal path for each agent. This can be done with
conventional pathfinding algorithms such as A*. But to
avoid repeated calculation, it is important to first create
a lookup table of the minimal distance to each goal, for
every open square on the map. This table can be cre-
ated using a breadth-first search from every goal. With
this table, finding in which way an agent should move
to reach the goal in an individually optimal manner be-
comes a constant time operation.

When using prematching, the same goal locations and
start locations are (although in a different permutation)
reused multiple times. The lookup table can remain the
same for all evaluations of matchings.

Using this lookup table, a better heuristic for M* can
be created. Instead of using the euclidean- or Manhat-
tan distance to the goal, the lookup table can be used
to find the exact distance, taking the obstacles on the
map into account.

5.2. Operator decomposition

In [7], Standley describes a technique called operator de-
composition (OD). Operator decomposition is designed
to be an extension to A* that improves the runtime of
solving of MAPF problems.

In MAPF, when an agent moves, it can perform one of
five actions (assuming a grid map is used): wait on the
same square, or move in one of the four cardinal direc-
tions. With A*, the movement of all agents is coupled.
When a state is expanded, every child state contains the
new position of every agent. This means that if there
are 5 agents, which may all perform one of 5 possible
actions, 55 = 3125 child states are created and added to
the frontier. This is called a full expansion.

Operator decomposition can lower this large branching
factor by introducing the concept of partial states. As
the name implies, when a state is removed from the
frontier, it is not fully expanded. Instead, only the 5
possible actions of a single agent are evaluated. These
5 partial states are added to the frontier. When a par-
tial state is removed from the frontier, the actions of
the next agent are evaluated too until the actions of
all agents are evaluated and a full expansion is reached
again.

So in the worst case, OD still performs a full expansion.
However, the advantage of OD is that partial states can
also be prioritised in the frontier. When the expansion
of a subset of agents is found to result in a low heuristic,
the partial state is given a higher priority to be further
expanded. This may lead to finding solutions to MAPF
instances more quickly.

Even though M* tries to avoid the coupled planning
of agents as much as possible, when collisions occur,
branching factors can still become large. OD can help
M* to reduce this branching factor when solving MAPF
problems. [16] In Section 7.2 the benefits OD has on M*
when solving MAPFM problems is evaluated.

5.3. Pruning of matchings

Algorithm 2: prematch M* with pruning
Result: Find the matching mbest with smallest

cost, pruning when possible.
mbest ← ∅

M ← find all matchings(starts, goals);
sort(M) {on heuristic; ascending};
foreach m←M do

if heuristic(m) < cost(mbest) then
s← mstar(starts,m);
mbest ← min(mbest, s);

end
end

pmM*, as previously described, has to evaluate every
matching. However, it is sometimes possible to discard
some matchings without evaluating them with M* at
all, by using heuristics.

To do this, an admissible heuristic (e.g. the sum of dis-
tances between start and goal locations) of the initial
state of every matching is calculated. This represents a
lower bound for the cost of this matching.

Then, when prematching evaluates every matching m,
it keeps track of the best matching mbest which is
the matching with best cost so far. However, when
heuristic(m) ≥ cost(mbest), m can immediately be
pruned, because this matching m can never yield a so-
lution which has a lower cost than mbest.

Sorting
To take maximum advantage of pruning, matchings can
be sorted based on their heuristic. Making sure the
matching with the lowest heuristic is evaluated first can
increase chances that later matchings are pruned. Al-
gorithm 2 shows how pruning with sorting works.

6. Experimental setup

To evaluate the performance of matching M*, a number
of experiments were performed. For each of these ex-
periments, the algorithm used is written in Python 3.9
and benchmarks were run on a virtualized system with
a 12 core Intel Xeon E5-2683 running at 2GHz, which
has 8Gib of RAM.

There are various factors influencing how a MAPFM
solving algorithm performs in benchmarks. Three im-
portant factors are the total number of agents, the num-
ber of teams over which the agents are distributed, and
the layout of the maps on which benchmarks are run.

4



0 2 4 6 8 10 12 14 16
number of agents

0

25

50

75

100

%
 s
ol
ve

d

% solved out of 200 maps

inmatch
prematch

0 2 4 6 8 10 12 14 16
number of agents

0

25

50

75

100

%
 s
ol
ve

d

% solved out of 200 maps

(a) Agents split over 3 teams. Left: 75% wall, right: 25%wall

0 2 4 6 8 10 12 14 16
number of agents

0

25

50

75

100

%
 s
ol
ve

d

% solved out of 200 maps

0 2 4 6 8 10 12 14 16
number of agents

0

25

50

75

100

%
 s
ol
ve

d

% solved out of 200 maps

(b) All agents in 1 team. Left: 75% wall, right: 25%wall

Figure 2: Percentage of maps solved in 2 minutes out of 200 random 20× 20 maps.

Figure 3: A map which is 25% obstacle, with agents
distributed in three teams. This map was one of many
used in the performed experiments.

The experiments are grouped into sets of four scenarios,
to show the differences in performance as these parame-
ters vary. Performance is assessed on maps where either
25% or 75% of the grid is an obstacle, and in situations
where agents are grouped into either 1 or 3 teams.

For these benchmarks, 20×20 grid maps3 are randomly
generated such that they are guaranteed to be solvable
(a proof of which can be found in A). Four sets of maps

were generated for each experiment with the previously
discussed parameters. Agents and goals are uniformly
distributed on this map and teams are assigned ran-
domly. When the team size does not divide the number
of agents, there will be one smaller team. An example of
such a randomly generated map can be found in Figure
3.

Because MAPFM is an NP-Hard problem, it is possible
that finding the solution to an instance of the problem
takes an unreasonable amount of time. Therefore, in
each experiment, a timeout of 2 minutes is used. Ex-
perimental results show the percentage of maps (out of a
set of 200) which the algorithm manages to solve within
this timeout.

7. Results and Discussion

In this section, the results of a number of experiments
is shown. The purpose of this is firstly to show which of
the two matching strategies is superior, and why this is
the case. Secondly, the experiments quantify the bene-
fits of different extensions to pmM*. Lastly, the results
of the experiments are put into context by comparing
M* to other MAPFM algorithms performing the same
experiments.

7.1. Matching strategies

In Section 4, two strategies were proposed for adding
matching to M*. Both strategies were tested following
the experimental setup described in Section 6. In Figure
2 the results of this experiment are shown.

From these graphs, it can be seen that prematching is
generally superior to inmatching in all but one of the

3Maps of different sizes will likely also show differences in performance. However, experiments with other map sizes are
not included in this paper.

5



1 2 3 4 5 6
number of agents

100

102

104

av
er
ag

e 
ex

pa
ns

io
n 
si
ze

average branching factor

inmatch
prematch

1 2 3 4 5 6 7 8 9
number of agents

100

102

104

av
er
ag

e 
ex

pa
ns

io
n 
si
ze

average branching factor

Figure 4: Average branching factor on the same maps as used in figure 2b (i.e. all agents in one team). Left: 75%
wall, right: 25% wall. The blue line in the left figure stops earlier because prematching was not able to solve maps
with more agents.

scenarios. Only in the 75% benchmark of figure 2b in-
matching outperforms prematching slightly.

Branching factor
In Section 4.1, it was hypothesised that this difference in
performance could occur, because of the larger branch-
ing factor.

To demonstrate this is indeed the case, another, sepa-
rate, experiment was performed. Again on 200 random
maps as described in Section 6, but this time showing
the average number of states expanded each expansion.
The exact same maps were used as in Figure 2b.

In Figure 4, the outcomes of this experiment are shown
on a logarithmic scale. Indeed, on average, inmatching
expands many more states.

When inmatching is better
However, in the scenario where 75% of the map is an
obstacle in Figure 2b inmatching does seem to perform
slightly better than prematching. When agents are all
in one team, there are more matchings compared to
when agents are separated into multiple teams. With
prematching, each matching needs to be exhaustively
searched, which is slow.

In contrast, the problem of inmatching expanding so
many states is reduced in this scenario. There are fewer
directions for agents to go because of the large number
of obstacles.

So in general, when there are many matchings, but few
options for agents to move in, inmatching can perform
better.

7.2. Extensions to M*

Various extensions have been proposed in Section 5. To
show the benefits of each extension, they were compared
following the experimental setup described in Section 6.

In Figure 5, the performance of these extensions is
shown. Each line in the graph shows a new extension
added to all of the previous extensions. For example
the line displaying operator decomposition also uses pre-

computed heuristics and all other previous extensions.

Because in Section 7.1, prematching was observed to
generally perform better, only the prematching match-
ing strategy is used in this experiment.

Pruning and sorting
In the experiments where 25% of the maps is filled with
obstacles, pruning and sorting have a large impact on
performance. However, in graphs where 75% is a wall
there is barely a difference at all. The heuristic used
to prune, is the Manhattan distance between the agent
start locations and the closest goal. This does not take
into account the obstacles in the map.

Pruning is only possible when the heuristic is larger than
the best matching found so far (as described in Section
5.3). This does not happen often with this inaccurate
heuristic. Therefore, using the precomputed heuristic
(also shown in Figure 5) makes a large difference.

When there are fewer obstacles in the map, the probabil-
ity of pruning is much higher, explaining the difference
in performance of pruning and sorting between these
two scenarios.

Memory usage
The best variant ofM* can be seen solving maps with 14
agents in Figure 5a. After this, the percentage abruptly
drops to 0. The reason for this is not that finding the
solution takes too long. Instead, attempts were termi-
nated by the operating system because too much mem-
ory was used. Attempts on maps with 15 agents saw
memory usages of over 8GiB to solve a single instance.

7.3. Comparison with other algorithms

This research is part of a set of parallel studies on how to
extend a collection of MAPF algorithms with matching.
All these studies used exactly the same problem defini-
tion but using one of the following base algorithms:

• Extended partial expansion A* (EPEA* ) [12]
(implementation and research by [17])

• A* with operator decomposition and indepen-
dence detection (A*+OD+ID) [7] (implementa-
tion and research by [18])

6



0 2 4 6 8 10 12 14 16
number of agents

0

25

50

75

100

%
 s
ol
ve

d

% solved out of 200 maps

no extensions
pruning
pruning and sorting
precomputed heuristic
operator decomposition

0 2 4 6 8 10 12 14 16
number of agents

0

25

50

75

100

%
 s
ol
ve

d

% solved out of 200 maps

(a) 3 teams. Left: 75% wall, right: 25%wall

0 2 4 6 8 10 12 14 16
number of agents

0

25

50

75

100

%
 s
ol
ve

d

% solved out of 200 maps

0 2 4 6 8 10 12 14 16
number of agents

0

25

50

75

100

%
 s
ol
ve

d

% solved out of 200 maps

(b) 1 team. Left: 75% wall, right: 25%wall

Figure 5: Percentage of maps solved in 2 minutes out of 200 random 20× 20 maps. Each line and extension to M*
is graphed in combination with all previous extensions. For example, the line displaying operator decomposition
also uses precomputed heuristics and all other previous extensions.

• Increasing cost tree search (ICTS) [14] (implemen-
tation and research by [19])

• Conflict-Based Min-Cost-Flow (CBM) [8] (imple-
mentation and research by [10])

Experiments were performed following the experimental
setup described in Section 6. All algorithms were bench-
marked on the same computer to ensure a fair compari-
son. Still, it is hard to compare algorithms well because,
for example, CBM made use of external libraries writ-
ten in C++. But, compared to the exponential nature
of MAPF, such a strategy providing a linear speed-up
is relatively insignificant. Figure 6 shows the results of
this comparison.

In Figure 6b, it may look like an error was made. CBM
solves 100% of the maps up to maps with 25 agents. In
fact, CBM is able to solve maps with many more agents.
CBM makes use of min-cost flow to solve MAPFM
for single teams in polynomial time. Solutions for sin-
gle teams are checked, and modified when conflicts are
found between agents in different teams.

This means that in cases where there is only one team,
CBM is able to solve MAPFM in polynomal time, scal-
ing linearly with the number of agents for which a route
needs to be found.

In the experiments where multiple teams were used (as
shown in Figure 6a), CBM performs more comparably
with other algorithms. Still, when there are few obsta-
cles, CBM excels.

Apart from CBM, all other algorithms (including M* )
show very similar performance characteristics. All these
algorithms use a form of prematching, where all match-

ings are exhaustively searched. This seems to be a factor
which limits the capabilities of all these algorithms.

Only A*+OD+ID performs exceptionally well on maps
25% filled with obstacles, and with 3 teams. The reason
for this is likely due to the way independence detection
works in the implementation described in [18].

It must however be said, that this comparison is not
complete. For example, testing with agents split over
more teams, on larger maps, or with specifically crafted
obstacles such as long corridors may show very different
results.

8. Conclusion

In this paper, a generalisation of multi agent pathfind-
ing (MAPF ) was introduced, called matching. This new
problem is calledMAPFM.M* an algorithm forMAPF,
was modified to solve these MAPFM problems. To do
this, two strategies were explored called inmatching and
prematching. Experimental results showed that in many
cases, prematching is superior to inmatching.

Subsequently, several improvements to prematching M*
were considered and their benefits were experimentally
evaluated. Pruning and sorting of matchings, using pre-
computed heuristics, and independence detection were
shown to have a large effect on performance.

Finally, it was shown that pmM* has very simi-
lar performance characteristics as ICTS, EPEA* and
A*+OD+ID. CBM performed notably better than M*
in experiments performed in this paper.

7



0 3 6 9 12 15 18 21 24
number of agents

0

25

50

75

100

%
 s
ol
ve
d

% solved out of 200 maps

M*
EPEA*
CBM
A*-OD-ID
ICTS

0 3 6 9 12 15 18 21 24
number of agents

0

25

50

75

100

%
 s
ol
ve

d

% solved out of 200 maps

(a) 3 teams. Left: 75% wall, right: 25%wall

0 3 6 9 12 15 18 21 24
number of agents

0

25

50

75

100

%
 s
ol
ve

d

% solved out of 200 maps

0 3 6 9 12 15 18 21 24
number of agents

0

25

50

75

100

%
 s
ol
ve

d

% solved out of 200 maps

(b) 1 team. Left: 75% wall, right: 25%wall. In the right graph, the lines for EPEA* and
A*+OD+ID overlap, and so do the lines for ICTS and M*.

Figure 6: Percentage of maps solved in 2 minutes out of 200 random 20× 20 maps.

9. Future work

Partial Expansion
One problem with the inmatching strategy presented in
Section 4.1 is that the branching factor is very large.
However, a lot of the expanded states are never needed
or accessed again. Even with prematching this was a
problem. For example, while creating the graphs in
Figure 5, the data points where 14 or 15 agents were
involved could use as much as 8GiB of memory.

Partial- or enhanced partial expansion as presented in
[12] and [13] only expands states when they are needed
to reduce memory usage. It is likely that partial expan-
sion can also be applied to M* to improve its memory
performance.

Conflict based search
In this paper, matching M* was compared to several
other algorithms. One of those was CBS [9]. How-
ever, this implementation used a min-cost flow based
approach similar to the one described in [8], but al-
tered to find the sum of individual costs instead of the
makespan.

CBS, without matching and these min-cost flow exten-
sions, is one of the most studied algorithms for MAPF
([9, 20–23]). Comparing M* with inmatching and pre-
matching to CBS using inmatching and prematching as
well, could provide useful data.

Waypoints
In previous research [24–27], MAPF was extended with
waypoints instead of matching. It may be possible to
combine these two extensions. For example, each team

may have a set of waypoints. It does not matter which
agent visits which waypoint as long as all waypoints are
visited. Alternatively, each agent has their own way-
points, but the goals are still shared with a team of
other agents.

Agents and goals
In the definition of matching presented in this paper, in
each team the number of goals was always equal to the
number of agents. However, in real world scenarios this
may not always be the case.

For example, there may be a number of robots who have
a number of tasks to do. Some robots cannot perform
certain tasks so robots are teamed. But there may be
more tasks than robots in each team, and robots will
need to prioritise. Some research has already been done
in this area, but this uses TAPF as a basis [28].

Recursive M*
In [5], an extension to M* is described called recursive
M*. It could increase the performance of M* on reg-
ular MAPF problems. Whether recursive M* makes
a difference combined with matching, has not yet been
verified.

10. Reproducibility

Results in this paper have been generated using an im-
plementation of M* made in Python specifically for this
research. The code for this, together with the maps
and raw experimental results, are publicly available
on Github at https://github.com/jonay2000/research-
project, doubly licensed under the Apache 2.0 and MIT
licenses. Reports of bugs and new additions to this
repository are always welcome.

8

https://github.com/jonay2000/research-project
https://github.com/jonay2000/research-project


Acknowledgements

Thanks to Anna Kaal, Sebastiaan Dönszelmann, Noah Jadoenathmisier, Laura Pîrcălăboiu, Tim Anema and
Jonathan Brouwer for their feedback on this paper. Thanks to Ivar de Bruin, Jaap de Jong, Robbin Baauw and
Thom van der Woude for their feedback, and their experimental results which form an integral part of this paper’s
experiments. And finally thanks to Jesse Mulderij and Mathijs de Weerdt for their feedback and for supervising
this project.

9



References

[1] J. Mulderij, B. Huisman, D. Tönissen, K. van der Linden, and M. de Weerdt, “Train unit shunting and
servicing: A real-life application of multi-agent path finding,” arXiv preprint arXiv:2006.10422, 2020.

[2] J. Li, A. Tinka, S. Kiesel, J. W. Durham, T. Kumar, and S. Koenig, “Lifelong multi-agent path finding in
large-scale warehouses,” arXiv preprint arXiv:2005.07371, 2020.

[3] A. Mahdavi and M. Carvalho, “Distributed coordination of autonomous guided vehicles in multi-agent systems
with shared resources,” in 2019 SoutheastCon, IEEE, 2019, pp. 1–7.

[4] J. E. Hopcroft, J. T. Schwartz, and M. Sharir, “On the complexity of motion planning for multiple independent
objects; pspace-hardness of the" warehouseman’s problem",” The International Journal of Robotics Research,
vol. 3, no. 4, pp. 76–88, 1984.

[5] G. Wagner and H. Choset, “M*: A complete multirobot path planning algorithm with performance bounds,”
in 2011 IEEE/RSJ international conference on intelligent robots and systems, IEEE, 2011, pp. 3260–3267.

[6] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic determination of minimum cost
paths,” IEEE transactions on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[7] T. Standley, “Finding optimal solutions to cooperative pathfinding problems,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 24, 2010.

[8] H. Ma and S. Koenig, “Optimal target assignment and path finding for teams of agents,” arXiv preprint
arXiv:1612.05693, 2016.

[9] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based search for optimal multi-agent pathfind-
ing,” Artificial Intelligence, vol. 219, pp. 40–66, 2015.

[10] R. Baauw, “Adapting cbm to optimize the sum of costs,” 2021.
[11] E. Lam, P. Le Bodic, D. D. Harabor, and P. J. Stuckey, “Branch-and-cut-and-price for multi-agent pathfind-

ing.,” in IJCAI, 2019, pp. 1289–1296.
[12] M. Goldenberg, A. Felner, R. Stern, G. Sharon, N. Sturtevant, R. C. Holte, and J. Schaeffer, “Enhanced

partial expansion a*,” Journal of Artificial Intelligence Research, vol. 50, pp. 141–187, 2014.
[13] A. Felner, M. Goldenberg, G. Sharon, R. Stern, T. Beja, N. Sturtevant, J. Schaeffer, and R. C. Holte, “Partial-

expansion a* with selective node generation,” Proceedings of the 5th Annual Symposium on Combinatorial
Search, SoCS 2012, pp. 180–181, 2012.

[14] G. Sharon, R. Stern, M. Goldenberg, and A. Felner, “The increasing cost tree search for optimal multi-agent
pathfinding,” Artificial Intelligence, vol. 195, pp. 470–495, 2013.

[15] R. Stern, N. Sturtevant, A. Felner, S. Koenig, H. Ma, T. Walker, J. Li, D. Atzmon, L. Cohen, T. Kumar, et
al., “Multi-agent pathfinding: Definitions, variants, and benchmarks,” arXiv preprint arXiv:1906.08291, 2019.

[16] C. Ferner, G. Wagner, and H. Choset, “Odrm* optimal multirobot path planning in low dimensional search
spaces,” in 2013 IEEE International Conference on Robotics and Automation, IEEE, 2013, pp. 3854–3859.

[17] J. de Jong, “Multi-agent pathfinding with matching using enhanced partial expansion A*,” 2021.
[18] I. de Bruin, “Solving multi-agent pathfinding with matching using A*+ID+OD,” 2021.
[19] T. van der Woude, “Multi-agent pathfinding with matching using increasing cost tree search,” 2021.
[20] E. Boyarski, A. Felner, R. Stern, G. Sharon, D. Tolpin, O. Betzalel, and E. Shimony, “Icbs: Improved conflict-

based search algorithm for multi-agent pathfinding,” in Twenty-fourth international joint conference on arti-
ficial intelligence, 2015.

[21] A. Felner, J. Li, E. Boyarski, H. Ma, L. Cohen, T. S. Kumar, and S. Koenig, “Adding heuristics to conflict-
based search for multi-agent path finding,” in Proceedings of the International Conference on Automated
Planning and Scheduling, vol. 28, 2018.

[22] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Meta-agent conflict-based search for optimal multi-
agent path finding.,” SoCS, vol. 1, pp. 39–40, 2012.

[23] J. Li, A. Felner, E. Boyarski, H. Ma, and S. Koenig, “Improved heuristics for multi-agent path finding with
conflict-based search.,” in IJCAI, 2019, pp. 442–449.

[24] N. Jadoenathmisier, “Extending cbs to efficiently solve mapfw,” 2020.
[25] A. Michels, “Multi-agent pathfinding with waypoints using branch-price-and-cut,” 2020.
[26] S. Siekman, “Extending a* to solve multi-agent pathfinding problems with waypoints,” 2020.
[27] J. van Dijk, “Solving the multi-agent path finding with waypoints problem using subdimensional expansion,”

2020.



[28] V. Nguyen, P. Obermeier, T. C. Son, T. Schaub, and W. Yeoh, “Generalized target assignment and path
finding using answer set programming,” in Twelfth Annual Symposium on Combinatorial Search, 2019.

[29] S. M. Johnson, “Generation of permutations by adjacent transposition,” Mathematics of computation, vol. 17,
no. 83, pp. 282–285, 1963.



Figure 7: Agents passing each other on branch vertices

A. Generating feasible maps

By Jonathan Dönszelmann and Jaap de Jong

For experiments in this paper, MAPFM instances
(sometimes called maps) are randomly generated. To
generate these random maps, we created a program
called the Multi-Agent Pathfinding instance generator
(MPIG) which creates these maps. We designed MPIG
to always create maps which are feasible. In this ap-
pendix, we show how MPIG works, and how MPIG
can guarantee that each map is feasible by providing
a generic procedure which can be used to solve any map
generated by MPIG.

To simplify the explanation, we first demonstrate the
process of generating feasible MAPF instances.

A.1. Properties of a feasible MAPF in-
stance

MAPF instances are feasible whenever it is possible for
every agent to reach their goal. MPIG ensures that this
is always possible, by guaranteeing that every generated
map has the following two properties:

1. Every map is connected. There are no discon-
nected subgraphs.

2. Maps with k agents and k goal vertices contain at
least k vertices with three or more neighbours (i.e.
vertices where at least three adjacent vertices are
traversable). From now on, these locations will be
called branch vertices. Branch vertices are impor-
tant because at these locations, agents can pass
each other as can be seen in Figure 7.

To guarantee the first property is satisfied, MPIG starts
generation of maps at a single location, and neigh-
bours of that vertex are recursively expanded (by either
adding obstacles or traversable locations) to generate
the rest of the map. Obstacles are not created when
this would cause a disconnected subgraph to be created.
The second property is guaranteed by simply discard-
ing a map and generating a new map whenever there
are fewer than k branch vertices. Discarding is used be-
cause chances are high that random maps contain more
than k branch vertices.

Some maps which do not have these two properties may
still be feasible, but this can not be guaranteed by the

proof given in Section A.2.

A.2. Proof of feasibility

In this section, it is proven that when maps are con-
nected, and there are at least k branch vertices, they
are feasible. This proof consists of the following three
parts which will be considered separately:

1. Every agent can always travel to a branch vertex
from their starting location

2. When every agent is on a branch vertex, they can
move to reorder themselves such that every agent
can be on any of the branch vertices.

3. There exists a configuration of agents on branch
vertices that allows all agents to go to their goal.

Part 1
Theorem A.1. There is always at least one agent
which can reach a branch vertex without collisions.

Proof of Theorem A.1. Let v be a branch vertex and a1
be the agent with the shortest path to v. Then, a1 can
reach v without collisions.

Theorem A.2. All agents can reach a branch vertex
without collisions.

Proof of Theorem A.2. There are at least k branch ver-
tices. Thus, there are enough branch vertices to accom-
modate all agents. The process for every agent to reach
this branch vertex is as follows:

Step 1: a single agent moves to a branch vertex, which
is possible according to Theorem A.1.

Step 2: an attempt is made to move another agent ai
to a branch vertex. Two situations may occur:

1. Agent ai can move to a branch vertex u without
obstruction.

2. Another agent aj which previously moved to a
branch vertex v obstructs ai from reaching a
branch vertex u.

In the second situation, agent aj can instead move to
vertex u, freeing vertex v for agent ai.

Step 2 can be repeated until all agents reach a branch
vertex thus proving Theorem A.2.



Figure 8: The trivial map with a single branch vertex

Part 2
Theorem A.3. In every map, from every neighbour of
a branch vertex u, there exists a path to a non-branch
vertex that does not traverse u.

Proof of Theorem A.3. A proof by construction follows:

In the trivial map with a single branch vertex (see fig-
ure 8), Theorem A.3 holds, since each neighbour is a
non-branch vertex.

Every possible map with at least one branch vertex can
be derived from the trivial map by adding more open
vertices around it.

Figure 9: Three different ways of connecting vertices.
Red vertices are added to maps.

Adding a new vertex u can have one of three effects on
each neighbour v:

1. v has a single neighbour. Connecting to v makes
v a two-neighbour vertex. Theorem A.3 trivially
holds for v, because v is not a branch vertex.

2. v has two neighbours v1 and v2. Connecting to v
makes v a three-neighbour vertex, i.e. a branch
vertex. If v1 or v2 have fewer than three neigh-
bours, then Theorem A.3 trivially holds. If v1 or
v2 is a branch vertex, then they must already be
part of the map and Theorem A.3 holds for v1
and v2. Since u is a branch vertex, it is possible
to pathfind to one of the remaining neighbours of
u, which are directly or indirectly connected to a
non-branch vertex. Since Theorem A.3 holds for
all neighbours v1, v2 and u of v, it must now also
hold for v.

3. v has three neighbours, v1, v2 and v3. Connecting
to v makes v a four-neighbour vertex. The same
reasoning used in effect 2 can be used to show that
Theorem A.3 still holds for v.

Adding a new vertex u can also have one of the following
effects on u itself:

1. It can create a new two-neighbour vertex u by
connecting two vertices (shown figure 9). Since

u has fewer than three neighbours, Theorem A.3
still holds for u.

2. It can create a new three-neighbour vertex u by
connecting three vertices (shown figure 9). A ver-
tex with which a connection is made (called v),
can be in one of three possible configurations for
which Theorem A.3 holds, as explained in the pre-
vious part of the proof. Since Theorem A.3 holds
for all neighbours of u, it also holds for u itself
since every neighbour is always directly or indi-
rectly connected to a non-branch vertex.

3. It can create a new four-neighbour vertex u by
connecting four vertices (shown in figure 9). A
vertex with which a connection is made (called v),
can be in one of three possible configurations for
which Theorem A.3 holds. The reasoning from the
previous effect can be used to show that Theorem
A.3 also holds in this effect.

For the trivial map from Figure 8, Theorem A.3 triv-
ially holds. Every map with one or more branch vertices
can be constructed from the trivial map by adding ver-
tices to it. Adding vertices to a map for which Theorem
A.3 holds, was shown to exclusively create new maps
for which the Theorem still holds. If a map cannot be
derived from the trivial map, then it does not contain
branch vertices. Theorem A.3 trivially holds for maps
without any branch vertices.

Therefore, Theorem A.3 holds for all generated
maps.

Figure 10: An example of how an agent can pass other
agents even if there is no space between branch vertices

Consider the scenario where each agent is positioned
on a branch vertex. As a result of theorem A.3, each
neighbour of a branch vertex u has a so-called diversion
vertex, which is the non-branch vertex that is reachable
from the neighbour without visiting u.

Theorem A.4. An agent ai on a branch vertex v can
always be passed by another agent aj

Proof of Theorem A.4. The branch vertex v has three
neighbours v1, v2 and v3 (as shown in Figure 8). aj
passing v means that it is coming from one of the neigh-
bours of v (say v1) and needs to travel to another one
of the neighbours (say v2). For aj to travel from v1 to
v2, ai must move out of the way to v3. v3 can either be:



• A non-branch vertex. It is therefore empty be-
cause all agents are on branch vertices. ai can
simply move to v3 and let aj pass.

• A branch vertex. In this case, there may be an
agent ak on v3. If there is an agent on v3, it must
also move out of the way. Theorem A.3 shows
that it is always possible to pathfind to a non-
branch vertex from neighbours of branch vertices.
Since non-branch vertices are empty, this provides
a place for agents to move in to make room for
passing agents. Therefore, ak must move either
onto an empty vertex, or move onto a vertex with
another agent which after possible repetitions will
always find an empty diversion vertex to move
onto. Figure 10 shows how all agents move out
of the way to diversion vertices to allow the lime
agent to pass.

Figure 11: An example of how an agent can pass another
agent.

After having encountered one of these two scenarios,
agent aj has moved to v, and ai has moved out of the
way to v3. For agent aj to now completely pass ai, aj
must continue to v3 (these steps are show in Figure 11).
However, if v3 is another branch vertex, another agent
ak may be on it. Two situations can now occur:

Figure 12: An example of how agents can pass with a
single diversion vertex.

• ak can move out of the way just like aj did. Theo-
rem A.3 shows that this is always possible to find
a diversion vertex. ai can now also move back to
v.

• ak can not move out of the way. Even though
Theorem A.3 shows that there is always a diver-
sion vertex to move out of the way, aj moving out
of the way may have taken up this diversion ver-
tex. However, if both v2 and v3 have the same
diversion vertex, a connection must exist between
v2 and v3. Because the definition of MAPF allows
following, it is now possible for ak to move out of
the way, following agents in front of ak in a chain.

The head of the chain is ai. ai moves back to v, in
a way making v the diversion vertex. This motion
can be seen in Figure 12

After this process, ai is back on v and aj has passed to
v3

Theorem A.5. Any two agents on adjacent branch ver-
tices (i.e. directly connected or connected with a corri-
dor) can swap places, both moving to the branch vertex
where the other agent was standing.

Figure 13: An illustration of two agents swapping by
passing each other.

Proof of Theorem A.5.

Lemma A.6. The swapping of two agents ai and aj,
positioned on branch vertices u and v respectively, is
equivalent to ai passing aj (or vice versa). After the
passing, both agents can move to the vertex where the
other agent used to be without conflict.

Theorem A.4 shows that an agent coming from one
neighbour of a branch vertex can always pass the branch
vertex to move to another neighbour of the branch ver-
tex. Agents ai and aj can swap by one of the agents
passing the other agent on its branch vertex and both
agents moving back to the swapped branch vertices
without collision. This process can be seen in Figure
13. There is always enough space for an agent to pass
another agent because of the diversion squares.

Therefore, two agents on adjacent branch vertices can
swap places.

Theorem A.7. If all agents are assigned to and located
on a branch vertex, they can move to create every other
assignment of agents to branch vertices.

Proof of Theorem A.7. Any permutation of a set of ele-
ments can be created using only pairwise swaps by using
the Steinhaus–Johnson–Trotter algorithm [29].

Not all pairwise swaps are swaps between adjacent ele-
ments. However, any pairwise swap of two non-adjacent
elements a and b can be performed by swapping all the
elements between a and b. The procedure

The proof of theorem A.5 shows that pairwise swaps of
agents on adjacent branch vertices are possible on any
map.



Part 3
Theorem A.8. Every connected map with n agents on
n branch vertices is directly solvable from at least one
assignment p of agents to branch vertices.

Proof of Theorem A.8. Consider the scenario where ev-
ery agent is positioned on its corresponding goal. By
theorem A.2, the agents can all travel to branch squares
without collision. This results in a assignment p of
agents to branch squares.

Theorem A.9. Every connected map with n agents and
at least n branch vertices is feasible.

Proof of Theorem A.9. By Theorem A.2, it is possible
for every agent to reach a branch vertex. By Theorem
A.7, every assignment of agents to branch vertices can

be created. Theorem A.8 shows that there is always
an assignment for which the map is solvable. Therefore,
every map with at least n branch vertices is feasible.

A.3. Solving MAPFM instances

Theorem A.10. Every connected MAPFM map with
n agents and at least n branch vertices is feasible.

Proof of Theorem A.10. A MAPFM instance can be
decomposed into many MAPF instances by considering
all possible assignments of agents to goals, which can ex-
haustively be searched. Theorem A.9 shows that every
MAPF instance is feasible. As a result, every possible
assignment of agents to goals of a MAPFM instance is
also feasible. Therefore, all MAPFM instances with n
agents and n branch vertices are feasible as well.


	Introduction
	Prior work

	Definitions of MAPF and MAPFM
	A description of M*
	M* and matching
	Inmatching
	Prematching

	Extensions to M*
	Precomputed paths and heuristics
	Operator decomposition
	Pruning of matchings

	Experimental setup
	Results and Discussion
	Matching strategies
	Extensions to M*
	Comparison with other algorithms

	Conclusion
	Future work
	Reproducibility
	Generating feasible maps
	Properties of a feasible MAPF instance
	Proof of feasibility
	Solving MAPFM instances


