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This study investigated whether radiomic features extracted from pre-
treatment [18F]FDG PET could improve the prediction of both histo-
pathologic tumor response and survival in patients with locally
advanced cervical cancer (LACC) treated with neoadjuvant chemora-
diotherapy followed by surgery compared with conventional PET
parameters and histopathologic features. Methods: The medical
records of all consecutive patients with LACC referred between July
2010 and July 2016 were reviewed. [18F]FDG PET/CT was performed
before neoadjuvant chemoradiotherapy. Radiomic features were
extracted from the primary tumor volumes delineated semiautomati-
cally on the PET images and reduced by factor analysis. A receiver-
operating-characteristic analysis was performed, and conventional
and radiomic features were dichotomized with Liu’s method accord-
ing to pathologic response (pR) and cancer-specific death. According
to the study protocol, only areas under the curve of more than 0.70
were selected for further analysis, including logistic regression analy-
sis for response prediction and Cox regression analysis for survival
prediction. Results: A total of 195 patients fulfilled the inclusion crite-
ria. At pathologic evaluation after surgery, 131 patients (67.2%) had
no or microscopic (#3mm) residual tumor (pR0 or pR1, respectively);
64 patients (32.8%) had macroscopic residual tumor (.3mm, pR2).
With a median follow-up of 76.0mo (95% CI, 70.7–78.7mo), 31.3% of
patients had recurrence or progression and 20.0% died of the dis-
ease. Among conventional PET parameters, SUVmean significantly dif-
fered between pathologic responders and nonresponders. Among

radiomic features, 1 shape and 3 textural features significantly differed
between pathologic responders and nonresponders. Three radiomic
features significantly differed between presence and absence of
recurrence or progression and between presence and absence of
cancer-specific death. Areas under the curvewere less than 0.70 for all
parameters; thus, univariate andmultivariate regression analyses were
not performed. Conclusion: In a large series of patients with LACC
treatedwith neoadjuvant chemoradiotherapy followed by surgery, PET
radiomic features could not predict histopathologic tumor response
and survival. It is crucial to further explore the biologic mechanism
underlying imaging-derived parameters and plan a large, prospective,
multicenter study with standardized protocols for all phases of the pro-
cess of radiomic analysis to validate radiomics before its use in clinical
routine.

Key Words: locally advanced cervical cancer; radiomics; [18F]FDG
PET/CT; response to therapy; prognosis
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DOI: 10.2967/jnumed.123.267044

Cervical cancer is one of the most common malignancies in
women worldwide (1). According to international guidelines (2,3),
the preferred treatment for patients with locally advanced cervical
cancer (LACC) is definitive cisplatin-based chemoradiotherapy
followed by brachytherapy. However, the disease recurs in one
third of LACC patients, usually within 2 y after chemoradiotherapy,
and the 5-y overall survival is around 70% (4,5). Neoadjuvant
chemoradiotherapy followed by radical surgery is an alternative
strategy, aiming to remove residual tumor that is resistant to
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chemoradiotherapy. It has been shown that persistence of patho-
logic residual tumor predicts poor survival in patients treated with
this approach (6,7).
Recently, there has been growing interest in the extraction and

analysis of a variety of quantitative features from medical images,
including [18F]FDG PET/CT, denoted as radiomics (8–10). In
essence, radiomics comprises the shape, intensity, and textural fea-
tures of the tumor. Shape features describe geometric characteristics
of tumors and provide morphologic characterization of [18F]FDG
uptake within a specified volume of interest (VOI). Intensity fea-
tures describe the intensity signal variations in the tumor volume,
without reference to their spatial distribution. Textural features are
extracted from statistical matrices on the basis of local intensity spa-
tial distribution relationships and reflect tumor [18F]FDG distribu-
tion and, so, its heterogeneity (11). These features could better
predict the histopathologic markers, therapy response, and progno-
sis than could conventional imaging parameters such as SUVmax,
SUVmean, SUVpeak, metabolically active tumor volume, and total
lesion glycolysis (12). Previous studies performed on LACC
patients treated with exclusive chemoradiotherapy have investigated
the use of radiomics derived from pretreatment PET/CT for predict-
ing response to therapy (13–15) as well as survival (15–25). Even
though the results reported are difficult to compare because of the
large variability in methodology and lack of standardization, most
of the studies showed that texture features were significantly predic-
tive of response (13–15) and that the combination of radiomic and
clinical features was significantly predictive of recurrence and sur-
vival (16,17,19,21–23). The aim of our study was to investigate
whether radiomic features extracted from pretreatment [18F]FDG
PET could predict histopathologic tumor response and survival in
LACC patients treated with neoadjuvant chemoradiotherapy fol-
lowed by surgery in comparison with conventional PET parameters
and histopathologic features.

MATERIALS AND METHODS

Patients and Study Protocol
This retrospective study was approved by the Ethical Committee of

Fondazione Policlinico Universitario A. Gemelli–IRCCS (study code
3860), and all subjects gave written informed consent. The medical
records of all consecutive LACC patients who were referred to the
Gynecologic Oncology Unit between July 2010 and July 2016 were
reviewed. Women were included if they were at least 18 y old, under-
went pretreatment [18F]FDG PET/CT, and received neoadjuvant che-
moradiotherapy followed by radical surgery. Additionally, a primary
tumor of at least 2.6 cm in diameter on MRI (available in all patients)
was necessary to allow heterogeneity quantification on PET, which
requires spheric volumes to be larger than 10 cm3 (26). Patients were
excluded if they had distant metastatic disease, prior locoregional sur-
gery, prior chemotherapy, locoregional radiation therapy within 5 y, or
a plasma glucose level of more than 200 mg/dL before the [18F]FDG
PET/CT acquisition.

[18F]FDG PET/CT Image Acquisition
Pretreatment [18F]FDG PET/CT was performed as previously

described (27). Briefly, images were acquired at a median of 65 min
(range, 52–78 min) after intravenous administration of 2.5–4 MBq of
[18F]FDG per kilogram on a Gemini GXL (Philips Healthcare) or Bio-
graph mCT (Siemens Healthineers) PET/CT scanner. A low-dose CT
scan (110–120 kV, 20–40 mAs) and PET scan (2.5–3.0 min per bed
position) were acquired from skull to pelvis according to the European
Association of Nuclear Medicine guidelines (28) and reconstructed in

line with the 18F standard 1 provided by the European Association of
Nuclear Medicine Research Ltd.

Image Analysis
All PET/CT images were reviewed by consensus between 2 nuclear

medicine physicians (with 3 and 8 y of experience), who were masked
to clinical, histopathologic, and follow-up information.

VOIs of the primary tumor were drawn semiautomatically with the
ACCURATE software (29,30) on all PET images using a background-
corrected 50% isocontour of the body-weighted SUVpeak, defined as the
highest SUVmean of a 1-mL sphere within the VOI (31). Areas of high
[18F]FDG uptake close to the primary tumor (e.g., bladder, kidneys,
ureters) were excluded manually when necessary. The conventional
PET parameters SUVmax, SUVmean, SUVpeak, metabolically active
tumor volume, and total lesion glycolysis were extracted from the origi-
nal VOIs. In addition, 477 radiomic features were extracted using
RaCaT 1.27 software (32). Detailed information about the radiomic
features can be found in the supplemental materials (available at http://
jnm.snmjournals.org) (11,30,32).

Neoadjuvant Chemoradiotherapy
Neoadjuvant radiotherapy included whole-pelvis irradiation (10.8

cGy/fraction, 22 fractions) with a total dose of 39.6 Gy, and an addi-
tional dose of 10.8 Gy to the primary tumor and parametrium through
the concomitant boost technique (0.9 cGy/fraction, 12 fractions every
other day). Concomitant chemotherapy included cisplatin (20 mg/m2,
2-h intravenous infusion) during the first 4 d and last 4 d of treatment,
and capecitabine (1,300 mg/m2/daily, orally administered) during the
first 2 wk and last 2 wk of treatment (33).

FIGURE 1. Flowchart of study population.
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Surgery and Histopathology
Patients underwent radical hysterectomy plus pelvic with or without

aortic lymphadenectomy. Histopathologic evaluation was performed by
a skilled gynecologic oncologist–pathologist. Histopathology subtype

(squamous cell carcinoma, adenocarcinoma, others), tumor grade, and
pelvic or paraaortic lymph nodes were assessed. Pathologic response
(pR) was defined as complete (absence of any residual tumor after treat-
ment at any site level, pR0) or partial, including microscopic (persistent

TABLE 1
Clinical, Pathologic, and Treatment Characteristics and Oncologic Outcomes of Whole Study Population (n 5 195)

Characteristic Data

Age at diagnosis (y)

Mean 6 SD 516 12

Median 51 (range, 20–77)

Body mass index (kg/m2)* 24.0 (range, 15.6–44.5)

Clinical 2009 FIGO stage (n)

IB2 9 (4.6%)

IIA2 16 (8.2%)

IIB 136 (69.7%)

IIIA 8 (4.1%)

IIIB 26 (13.3%)

Median maximum tumor diameter on MRI (cm) 5 (range, 2.6–11.5)

Histotype (n)

Squamous cell carcinoma 169 (86.7%)

Adenocarcinoma 23 (11.8%)

Others 3 (1.5%)

Tumor grade (n)

G1 7/174 (4.0%)

G2 109/174 (62.6%)

G3 58/174 (33.3%)

pR (n)

Complete response 86 (44.1%)

pR1 (#3mm) 45 (23.1%)

pR2 (.3mm) 64 (32.8%)

Median tumor dimension (mm) 1 (range, 0–80)

Positive pelvic or aortic lymph nodes at histology (n) 24 (12.3%)

Recurrence/progression (n) 61 (31.3%)

Site of recurrence/progression (n)

Local (vaginal/cervical) 3/59 (5.1%)

Regional (pelvic/paraaortic) 16/59 (27.1%)

Distant (upper abdominal/extraabdominal) 25/59 (42.4%)

Local and regional 3/59 (5.1%)

Local and distant 2/59 (3.4%)

Regional and distant 8/59 (13.6%)

Local, regional and distant 2/59 (3.4%)

Cancer-specific death 39 (20.0%)

Median follow-up (mo)† 76.0 (95% CI, 70.7–78.7)

% probability of DFS at 6 y‡ 65.5 (95% CI, 57.9–72.1)

% probability of OS at 6 y‡ 77.1 (95% CI, 69.9–82.9)

*Information available for 194/195 patients.
†Calculated with inverse Kaplan–Meier technique.
‡Calculated with Kaplan–Meier method.
FIGO 5 International Federation of Gynecology and Obstetrics; DFS 5 disease-free survival; OS 5 overall survival.
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tumor foci # 3 mm, pR1) and macroscopic (persistent tumor foci . 3
mm, pR2) residual tumor. pR0 and pR1 were grouped on the basis of
literature results showing similar outcomes in terms of prognosis
(7,33,34).

Follow-up
Patients underwent follow-up visits every 3 mo for 2 y, then every 6

mo from 2 to 5 y, and annually thereafter according to international
guidelines (3). Recurrence or progression was diagnosed through
biopsy or follow-up imaging. Vaginal or cervical recurrence or progres-
sion was classified as local; pelvic or paraaortic, as regional; and upper
abdominal or extraabdominal, as distant (3).

Data Collection and Statistical Analysis
Data were extracted from the patients’ medical records and collected

using the REDCap tool hosted at https://redcap-irccs.policlinicogemelli.
it (35). Study characteristics were presented as number and percentage
or as median and range, as appropriate. Mean 6 SD was also provided
when there was a normal distribution (Shapiro–Wilk test). When neces-
sary for readability, the original radiomic features were linearly trans-
formed by multiplying by powers of 10. An automatic factor analysis
was performed with the FMradio package for R as described by Peeters
et al. (36,37), to identify the latent factors that better represented the
extracted features. Detailed information about the dimensionality reduc-
tion and feature selection can be found in the supplemental materials
(available at http://jnm.snmjournals.org) (36–38). The association of
clinical characteristics, histopathologic parameters, and radiomic fea-
tures with pathologic tumor response, disease-free survival, and overall
survival was made with the Mann–Whitney U or Student t test for con-
tinuous independent variables and the Pearson x2 or Fisher exact test
for nominal variables. Disease-free survival and overall survival were
defined as the time between the date of diagnosis (biopsy) and the date
of the first clinical or imaging detection of recurrence/progression and

cancer-specific death, respectively. Patients who did not experience
these events were censored to the date of last follow-up or death from
any cause. Median follow-up was calculated according to the inverted
Kaplan–Meier technique (39). Conventional and radiomic features were
dichotomized according to receiver-operating-characteristic analysis for
pR and cancer-specific death prediction. Best cutoffs were chosen with
Liu’s method (40). Areas under the curve (AUCs) and 95% CIs were
provided. An AUC of greater than 0.70 was planned for further analy-
ses (41), including logistic and Cox regression analysis for assessing
the role of dichotomized conventional and radiomic features in pR and
survival prediction, respectively (42). As no AUC value reached the
cutoff of 0.7, the expected analysis was no longer done. The full analy-
sis was performed both on the whole population and separately accord-
ing to the PET/CT scanner used. Statistical analyses were performed
using Stata Statistical Software (release 17; StataCorp LLC). Two-
sided tests were used with a significance level set at a P value of less
than 0.05, and no imputation was carried out for missing data.

RESULTS

Patients and Follow-up
The records of 216 women with LACC were reviewed. Among

these, 195 fulfilled the inclusion criteria (Fig. 1). Most patients had
FIGO 2009 IIB stage and histologic grade 2 disease (Table 1).
Squamous cell carcinoma was the most frequent histologic subtype.
After surgery, 67.2% of patients had pR, including pR0 (44.1%)
and pR1 (23.1%); 32.8% had pathologic nonresponse (pR2). Most
patients (87.7%) had negative findings for pelvic and aortic lymph
nodes. With a median follow-up of 76.0mo, 31.3% of patients
experienced recurrence or progression, and 20.0% died of the dis-
ease. Two patients died from other causes: 1 from osteosarcoma
and 1 from myocardial infarction, 81 and 31mo after the cervical
cancer diagnosis, respectively.

[18F]FDG PET/CT
Most [18F]FDG PET/CT images (161/195 patients, 82.6%) were

acquired on the Gemini GXL. Only 32 patients (16.4%) had high-
uptake areas near the primary tumor and required manual correction
of the VOI after semiautomatic delineation.
Data Dimensionality Reduction and Radiomic Feature Selection.

Figure 2 shows the correlations for all radiomic features. Fifty-five
features were retained after performing redundancy filtering. The
Kaiser–Meyer–Olkin value of the final model was 0.9, well above
the minimum threshold. Factor analysis performed on the 55 fea-
tures determined 11 latent factors that explained 76% of the vari-
ance. These factors corresponded best to the following 11 radiomic
features: volume, center of mass shift (CMS), spheric dispro-
portion, flatness, skewness, contrast (2-dimensional [2D] merged
neighborhood gray-tone difference matrix [NGTDM] feature
[contrastNGTDM]), normalized inverse difference moment (NIDM)
(2D averaged gray-level cooccurrence matrix [GLCM] feature
[NIDMGLCM]), first measure of information correlation (FMIC)
(3-dimensional [3D] averaged GLCM feature [FMICGLCM]), nor-
malized zone distance nonuniformity (NZDNU) (3D gray-level dis-
tance zone matrix (GLDZM) feature [NZDNUGLDZM]), coarseness
(3D NGTDM feature [coarsenessNGTDM]), and low-dependence low–
gray-level emphasis (LDLGLE) (3D merged neighborhood gray-
level dependence matrix [NGLDM] feature [LDLGLENGLDM]).
Although CMS did not show the highest loading with one of the

components, it showed the least correspondence to the other com-
ponents and was therefore selected instead of the best-loading fea-
ture for the specific component, that is, large-zone high–gray-level

FIGURE 2. Heat map showing correlations between all radiomic features
(n 5 477). Red 5 high positive correlation; blue 5 high negative correla-
tion; white5 no correlation.
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emphasis (2D merged gray-level size zone matrix feature). A sub-
analysis was conducted on the Gemini GXL PET/CT cohort only
(Supplemental Table 1 provides clinical data), as the sample size of
the Biograph mCT cohort was too limited to perform statistical
analysis separately. Ten features were selected, 5 of which had
already been selected in the whole analysis (NZDNUGLDZM, skew-
ness, contrastNGTDM, coarsenessNGTDM, and FMICGLCM) and 5 of
which were different (area density axis-aligned bounding box,
volume density axis-aligned bounding box, minimum intensity,
large-distance low–gray-level emphasis [3D GLDZM feature], and
gray-level nonuniformity [2D averaged GLDZM feature]).
Radiomic Feature Results. Among conventional features,

SUVmean was statistically significantly higher in patients achieving
pR0–pR1 than in those with pR2 (P 5 0.039), whereas there were
no statistically significant differences in SUVmax, SUVpeak, metaboli-
cally active tumor volume, and total lesion glycolysis values between
the 2 groups of each comparison (Table 2; Supplemental Table 2). In
the inferential analysis of the whole cohort, among radiomic features,
contrastNGTDM was significantly higher in responders than in nonre-
sponders, in patients without recurrence or progression than in those
with recurrence or progression, and in surviving patients than in those
who had died from the disease. The opposite behavior was found for
CMS, NIDMGLCM, and NZDNUGLDZM (Table 2; Supplemental
Table 2). Supplemental Table 3 shows the results of statistical analy-
sis of conventional and radiomic features in the Gemini GXL
PET/CT cohort, with similar findings for SUVmean and the same
radiomic features that were selected in both cohorts. The best cutoffs
for conventional PET and radiomic features according to pR and
cancer-specific death, and the relative AUCs of receiver-operating-
characteristic analysis, are reported in Supplemental Tables 4 and 5
(40). All the AUCs were below 0.70; therefore, according to the
study protocol, no further analysis was performed (Fig. 3).

DISCUSSION

This study explored the role of radiomic features extracted from
pretreatment PET images to predict histo-pR and survival in LACC
patients treated with neoadjuvant chemoradiotherapy followed by
radical surgery. Among conventional PET parameters, SUVmean

was the only discriminator between responder and nonresponder

patients. Surprisingly, higher values were
found in responders. Conversely, Yang et al.
showed that none of the conventional PET
parameters were associated with a signifi-
cant difference between the 2 groups, even
though in this study response assessment
was imaging-based rather than
histopathology-based (14). When applying
PET-derived parameters in clinical practice,
we must consider that [18F]FDG uptake into
tumor cells depends on many factors such
as upregulation of glucose transporters and
hexokinase enzymes, neoangiogenesis, and
other factors, which in turn are related to
tumor aggressiveness and proliferative
activity (27,43). At the same time, many
factors are responsible for intratumoral het-
erogeneity, such as necrosis, cellular prolif-
eration, energy metabolism, oxygenation,
and neoangiogenesis, which have been asso-
ciated with tumor aggressiveness and influ-

ence biologic behavior and treatment response variability (44,45).
Therefore, it is of clinical relevance to explore the biologic signifi-
cance of functional imaging parameters and to evaluate intratumoral
heterogeneity before treatment, thus allowing tailored management
and improvement of outcome.
Among radiomic features, 1 shape and 3 textural features signifi-

cantly differed between responders and nonresponders. The shape fea-
ture selected in our study was CMS, describing the spatial distribution
of low- and high-intensity regions within the VOI; higher values are
expected in nonresponders. The 3 textural features selected were
NIDMGLCM, NZDNUGLDZM, and contrastNGTDM. NIDMGLCM is a
textural feature derived from GLCM matrix measuring the local
homogeneity in the gray-level pattern; therefore, higher values are
expected in responders. NZDNUGLDZM is a textural feature derived
from the GLDZ matrix, measuring the distribution of groups of voxels
with the same gray level and the same distance from the VOI edge.
ContrastNGTDM is a texture feature derived from NGTD matrix
describing the spatial frequency of intensity changes (11). Therefore,
higher values are expected for these 2 latter features in nonresponders.
On the basis of these explanations, the results for CMS and
NZDNUGLDZM were no surprise, as higher values were found in non-
responders, indicating that the patterns of intratumoral [18F]FDG
uptake at baseline would be more heterogeneous at a regional level.
Conversely, NIDMGLCM and contrastNGTDM results were not in line
with expectations. In our series, 3 radiomic features significantly dif-
fered between presence and absence of recurrence or progression and
between presence and absence of cancer-specific death groups. Also
in this case, discrepancies were found. As expected, we observed
higher CMS values in patients with a worse prognosis, whereas
NIDMGLCM and contrastNGTDM values were not as expected.
We chose to dichotomize the conventional and radiomic features

according to receiver-operating-characteristic analysis to retrieve
cutoffs, which are a tool immediately usable by physicians for
incorporating the results into clinical decision-making algorithms.
Indeed, this is one of the major challenges of radiomics. The
AUCs, a measure of predictive performance, were less than 0.70
for all parameters. According to the study protocol, univariate and
multivariate logistic regression analyses were not performed, indi-
cating that no conventional or radiomic features were predictive of
pR and survival.

FIGURE 3. Receiver-operating-characteristics curves according to pR (A) and cancer-specific
death (B).
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Several articles regarding PET radiomics in LACC patients have
been published (Table 3). Just 1 study had a prospective design
(15). Only 3 studies investigated PET radiomic features to predict
response (13–15), whereas most assessed PET radiomic features to
predict outcome (15–25). In most studies, texture features were sig-
nificantly predictive of outcome, mainly progression-free survival
and overall survival. According to Lucia et al., added value might
be derived from the combination of PET and MRI radiomic fea-
tures, as these 2 techniques are currently performed in standard clin-
ical care (20,21). Only the study by Ferreira et al. was in line with
our results, showing that no individual radiomic or clinical features
were significantly associated with cancer recurrence (23). Impor-
tantly, the previous studies show huge variability regarding study
protocol, image acquisition parameters, extraction and reduction of
radiomic features, type of validation methods, and clinical outcome,
affecting the reproducibility and robustness of radiomics (8,46,47)
and emphasizing the need for further standardization of radiomic
research to facilitate direct comparisons. Parallel to these considera-
tions, we believe that our results, albeit negative, might impact cur-
rent and future investigations, with the ultimate goal of exploring
the biologic mechanisms underlying radiomic results (48).
This study had several strengths, the first being the novelty of

using PET radiomic features to predict the pR in LACC patients
undergoing chemoradiotherapy followed by radical surgery. A sec-
ond strength was that the study included the—to our knowledge—
largest cohort of LACC patients with the longest follow-up (13–
25). Another strength was that a fixed-threshold approach was used
to segment the primary tumor, which led to consistent results in the
radiomic characteristics extracted from PET images (49). All fea-
tures were extracted using software (32) that complies with the
guidelines of the Imaging Biomarker Standardization Initiative
(11). In radiomic studies, the problem of multiple testing or multi-
collinearity yields the problem of results that are falsely statistically
significant (38,49). We addressed this problem by performing
dimensionality reduction, leaving only 11 imaging features that
explained most of the variance of our dataset.
This study also had some limitations. The first was its retrospective

nature, like most radiomic studies (13,14,16–25). Second, we chose
not to split our cohort into training and testing (internal validation) sets
because of the limited number of events and the poor-to-moderate
accuracy of the AUCs retrieved (50). We intend to further validate our
findings in an external cohort of patients in a prospective multicenter
study. Third, PET/CT images were acquired using 2 different PET/CT
scanners. Nevertheless, all images were reconstructed in accordance
with the European Association of Nuclear Medicine Research Ltd.
standard (28), which has been shown to harmonize a wide range of
radiomic features (51). Alternatively, when European Association of
Nuclear Medicine Research Ltd.–compliant reconstructions are not
available, radiomic features can be harmonized using ComBat (52).

CONCLUSION

One of the major challenges of radiomics is its incorporation into
clinical decision-making algorithms for routine application. Our
results in LACC patients treated by chemoradiotherapy followed by
surgery indicate that this goal has not yet been reached, as
[18F]FDG PET radiomic features could not predict histopathologic
tumor response and survival up front. In this setting, it is crucial to
further explore the biologic significance of image-derived para-
meters and plan a large, prospective, multicenter study with stan-
dardized protocols for all phases of radiomic analysis (from image

acquisition to tumor segmentation, image processing, feature
extraction and reduction, and model evaluation) to assess the impact
of radiomics on personalized medicine and definitively validate its
use in clinical routine.
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KEY POINTS

QUESTION: Does upfront PET radiomics predict treatment
response and survival in LACC?

PERTINENT FINDINGS: Our retrospective study demonstrated
that no radiomic features extracted from upfront PET/CT could
predict pathologic tumor response or survival in 195 patients with
LACC.

IMPLICATIONS FOR PATIENT CARE: Our negative results
suggest that radiomic implementation in clinical routine is still a
challenge and needs to be addressed by exploring the biologic
significance of image-derived parameters and by performing a
prospective, multicenter study with standardized protocols for all
phases of radiomic analysis.
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