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Dynamic Threshold Detection Based on
Pearson Distance Detection ∗†‡§

Kees A. Schouhamer Immink, Kui Cai, and Jos H. Weber

January 5, 2018

Abstract

We consider the transmission and storage of encoded strings of
symbols over a noisy channel, where dynamic threshold detection is
proposed for achieving resilience against unknown scaling and offset
of the received signal. We derive simple rules for dynamically estimat-
ing the unknown scale (gain) and offset. The estimates of the actual
gain and offset so obtained are used to adjust the threshold levels or
to re-scale the received signal within its regular range. Then, the re-
scaled signal, brought into its standard range, can be forwarded to
the final detection/decoding system, where optimum use can be made
of the distance properties of the code by applying, for example, the
Chase algorithm. A worked example of a spin-torque transfer mag-
netic random access memory (STT-MRAM) with an application to
an extended (72, 64) Hamming code is described, where the retrieved
signal is perturbed by additive Gaussian noise and unknown gain or
offset.
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1 Introduction

In mass data storage devices, the user data are translated into physical fea-
tures that can be either electronic, magnetic, optical, or of other nature.
Due to process variations, the magnitude of the physical effect may devi-
ate from the nominal values, which may affect the reliable read-out of the
data. We may distinguish between two stochastic effects that determine the
process variations. On the one hand, we have the unpredictable stochastic
process variations, and on the other hand, we may observe long-term effects,
also stochastic, due to various physical effects. For example, in non-volatile
memories (NVMs), such as floating gate memories, the data is represented
by stored charge. The stored charge can leak away from the floating gate
through the gate oxide or through the dielectric. The amount of leakage de-
pends on various physical parameters, for example, the device temperature,
the magnitude of the charge, the quality of the gate oxide or dielectric, and
the time elapsed between writing and reading the data.

Spin-torque transfer magnetic random access memory (STT-MRAM) [1]
is another type of emerging NVMs with nanosecond reading/writing speed,
virtually unlimited endurance, and zero standby power. In STT-MRAM,
the binary input user data is stored as the two resistance states of a memory
cell. Process variation causes a wide distribution of both the low and high
resistance states, and the overlapping between the two distributions results
in read errors. Furthermore, it has been observed that with the increase
of temperature, the low resistance hardly changes, while the high resistance
decreases, leading to a drift of the high resistance to the low resistance [2],
which may lead to a serious degradation of the data reliability for conven-
tional detection.

The probability distribution of the recorded features changes over time,
and specifically the mean and the variance of the distribution may change.
The long-term effects are hard to predict as they depend on, for example,
the (average) temperature of the storage device. An increase of the vari-
ance over time may be seen as an increase of the noise level of the storage
channel, and it has a bearing on the detection quality. The mean offsets
can be estimated using an aging model, but, clearly, the offset depends on
unpredictable parameters such as temperature, humidity, etc, so that the
prediction is inaccurate. Various techniques have been advocated to improve
the detector resilience in case of channel mismatch when the mean and the
variance of the recorded features distribution have changed.
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For example, estimation of the unknown offsets may be achieved by using
reference cells, i.e., redundant cells with known stored data. The method
is often considered too expensive in terms of redundancy, and alternative
methods with lower redundancy have been sought for.

Also, coding techniques can be applied to alleviate the detection in case
of channel mismatch. Specifically balanced codes [3], [4], [5] and composition
check codes [6], [7] preferably in conjunction with Slepian’s optimal detec-
tion [8] have been shown to offer solace in the face of channel mismatch.
These coding methods are often considered too expensive in terms of coding
hardware and redundancy when high-speed applications are considered.

Immink and Weber [9] advocated detectors that use the Pearson distance
instead of the traditional Euclidean distance as a measure of similarity. The
authors assume that the offset is constant (uniform) for all symbols in the
codeword. In [10], it is assumed that the offset varies linearly over the code-
word symbols, where the slope of the offset is unknown. The error perfor-
mance of Pearson-distance-based detectors is intrinsically resistant to both
offset and gain mismatch.

Although minimum Pearson distance detection restores the error perfor-
mance loss due to channel mismatch without too much redundant overhead,
it is, however, an important open problem to optimally combine it with er-
ror correcting codes. Source data are usually encoded to improve the error
reliability, which means that the codewords have good (Hamming) distance
properties using structures such as, for example, Hamming or BCH codes.
Exhaustive optimal detection of such codes is usually an impracticality as
it requires the distance comparison of all valid codewords. The celebrated
Chase algorithm [11] has been recommended as it enables the trading of de-
coder complexity versus error performance of conventional error correcting
codes. The Chase algorithm makes preliminary hard decisions of reliable
symbols based on a given threshold level. The Chase algorithm reduces the
exhaustive search of all symbols in the codeword to only a small number of
unreliable symbols. In case of channel mismatch, however, due to incorrectly
tuned threshold levels, the hard decisions made are unreliable, and the Chase
algorithm fails to deliver reliable detection.

In this paper, we present new dynamic threshold detection techniques
used to estimate the channel’s unknown gain and offset. The estimates of
the actual gain and offset so obtained are used to scale the received signal or
to dynamically adjust the threshold levels on a word-by-word basis. Then,
the corrected signal, brought into its standard range, can be forwarded to
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the final detection/decoding system, where optimum use can be made of the
distance properties of the code.

We set the scene in Section 2 with preliminaries and a description of
the mismatched channel model. In Section 3, we analyze the case where it is
assumed that only the offset is unknown and the gain is known. In Section 4,
we discuss the general case, where both gain and offset are unknown. In
Section 5, we study the principal case of our paper, where it is assumed that
an error correcting code is applied to improve the error performance of the
channel. We start by showing that channel mismatch has a detrimental effect
on the error performance of the extended Hamming code decoded by a Chase
decoder. We show that the presented dynamic threshold detector (DTD)
restores the error performance close to the situation with a well-informed
receiver. Section 6 concludes the paper.

2 Preliminaries and channel model

We consider a communication codebook, S ⊆ Qn, of selected codewords
x = (x1, x2, . . . , xn) over the binary alphabet Q = {0, 1}, where n, the length
of x, is a positive integer. The codeword, x ∈ S, is translated into physical
features, where logical ‘0’s are written at an average (physical) level b0 and
the logical ‘1’s are written at an average (physical) level 1+ b1, where b0 and
b1 ∈ R. Both b0 and b1 are average deviations, or ‘offsets’, from the nominal
levels, and are relatively small with respect to the assumed unity difference
(or amplitude) between the two physical signal levels. The offsets b0 and b1
may be different for each codeword, but do not vary within a codeword. For
unambiguous detection, the average of the physical levels associated with the
logical ‘0’s, b0, is assumed to be less than that associated with the ‘1’s, 1+b1.
In other words, we have the premise

b0 < 1 + b1. (1)

Assume a codeword, x, is sent. The symbols of the received vector r =
(r1, . . . , rn) are distorted by additive noise and given by

ri = xi + f(xi; b0, b1) + νi, (2)

where we define the switch function

f(x; b0, b1) = (1− x)b0 + xb1,
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and x ∈ {0, 1} is a dummy integer. We assume that the received vector,
r, is corrupted by additive Gaussian noise ν = (ν1, . . . , νn), where νi ∈ R
are zero-mean independent and identically distributed (i.i.d) noise samples
with normal distribution N (0, σ2). The quantity σ2 ∈ R denotes the noise
variance. We may rewrite (2) and obtain

ri = axi + b+ νi, (3)

where
b = b0 and a = 1 + b1 − b0. (4)

The mean levels, b0 and b1, may slowly vary (drift) in time due to charge
leakage or temperature change. As a result, the coefficient, a = 1 + b1 −
b0, usually called the gain of the channel, and the offset, b = b0, are both
unknown to sender and receiver. From the premise (1) we simply have a > 0.
Note that in [9] the authors study a slightly different channel model, ri =
a(xi + νi) + b, where also the noise component, νi, is scaled with the gain a.

We start, in the next section, with the simplest case, namely the offset
only case, a = 1.

3 Offset-only case

In the offset-only case, b0 = b1 = b and a = 1, we simply have

ri = xi + b+ νi, (5)

where the quantity, b, is an unknown (to both sender and receiver) offset. For
detection in the above offset-only situation, Immink and Weber [9] proposed
the modified Pearson distance instead of the Euclidean distance between the
received vector r and a candidate codeword x̂ ∈ S. The modified Pearson
distance is defined by

δ(r, x̂) =
n∑

i=1

(ri − x̂i + x̂)2, (6)

where we define the mean of an n-vector of reals z by

z =
1

n

n∑
i=1

zi. (7)
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For clerical convenience we drop the variable r in (6). A minimum Pearson
distance detector operates in the same way as the traditional minimum Eu-
clidean detector, that is, it outputs the codeword xo ‘closest’, as measured
in terms of Pearson distance, to the received vector, r, or in other words

xo = argmin
x̂∈S

δ(x̂). (8)

Immink and Weber showed that the error performance of the above detection
rule is independent of the unknown offset b. The evaluation of (8) is in
principle an exhaustive search for finding xo, but for a structured codebook,
S, the search is much less complex. We proceed our discussion with the
definition of a useful concept.

Let Sw denote the set of codewords of weight w, that is,

Sw = {x ∈ Qn :
n∑

i=1

xi = w}, w = 0, . . . , n.

A set Sw is often called a constant weight code of weight w. We study ex-
amples, where the codebook, S, is the union of |V | constant weight codes
defined by

S =
∪
w∈V

Sw, (9)

where the index set V ⊆ {0, 1, . . . , n}.
After working out (6), we obtain

δ(x̂) =
n∑

i=1

(ri − x̂i)
2 + nx̂(2r − x̂), (10)

where the first term is the square of the Euclidean distance between r and
x̂, and the second term, nx̂(2r − x̂), makes the distance measure, δ(x̂),
independent of the unknown offset b. The exhaustive search (8) can be
simplified by the following observations. The decoder hypothesizes that x ∈
Sw. Then we have

δ(x̂ ∈ Sw) =
n∑

i=1

(ri − x̂i)
2 + w

(
2r − w

n

)
. (11)
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Since (8) is a minimization process, we may delete irrelevant (scaling) con-
stants, and obtain

δ(x̂ ∈ Sw) =
n∑

i=1

r2i − 2
n∑

i=1

x̂iri +
n∑

i=1

x̂2
i

+ w
(
2r − w

n

)
≡ w

(
1 + 2r − w

n

)
− 2

n∑
i=1

x̂iri. (12)

The symbol ≡ is used to denote equivalence of the expressions (11) and (12)
deleting (scaling) constants irrelevant to the minimization operation defined
in (8). Note that the term

w
(
1 + 2r − w

n

)
depends on the number of ‘1’s, w, of x̂ and, thus, not on the specific positions
of the ‘1’s of x̂. The only degree of freedom the detector has for minimizing
δ(x̂ ∈ Sw) is permuting the symbols in x̂ for maximizing the inner product∑n

i=1 x̂iri. Slepian [8] showed that the inner product
∑n

i=1 x̂iri, x̂ ∈ Sw, is
maximized by pairing the largest symbol of r with the largest symbol of x̂,
the second largest symbol of r with the second largest symbol of x̂, etc.

To that end, the n received symbols, ri, are sorted, largest to smallest,
in the same way as taught in Slepians prior art. Let (r′1, r

′
2, . . . , r

′
n) be a

permutation of the received vector (r1, r2, . . . , rn) such that r′1 ≥ r′2 ≥ . . . ≥
r′n. Then, since the w largest received symbols, r′i, 1 ≤ i ≤ w, are paired
with ‘1’s (and the smallest symbols r′i, w + 1 ≤ i ≤ n with ‘0’s), we obtain

δw = w
(
1 + 2r − w

n

)
− 2

w∑
i=1

r′i

=
w∑
i=1

(
−2(r′i − r) +

n+ 1− 2i

n

)
, (13)

where for convenience we use the short-hand notation

δw = min
x̂

δ(x̂ ∈ Sw).
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Since, as is immediate from (13), δ0 = δn = 0, the detector cannot distinguish
between the all-‘0’ or the all-‘1’ codewords. For enabling unique detection
one of the two (or both) codewords must be barred from the code book S. In
other words, either V ⊆ {1, . . . , n} or V ⊆ {0, 1, . . . , n−1}. Such constrained
codes, S, called Pearson codes, have been described in [9]. In order to reduce
computational load, we may rewrite (13) in recursive form, and obtain for
1 ≤ w ≤ n,

δw = δw−1 − 2(r′w − r) +
n+ 1− 2w

n
, (14)

where we initialize with δ0 = 0. The value w ∈ V that minimizes δw is
denoted by ŵ, or

ŵ = argmin
w∈V

δw. (15)

Once we have obtained ŵ, we may obtain an estimate of the sent codeword,
x, by applying Slepian’s algorithm, and, subsequently we find an estimate
of the offset, b. The estimate of the offset, denoted by b̂, is obtained by
averaging (5), or

b̂ =
1

n

n∑
i=1

(ri − x̂i) = r̄ − ŵ

n
. (16)

The retrieved vector, r, is re-scaled by subtracting the estimated offset, b̂, so
that

r̂i = ri − b̂ = ri −
(
r̄ − ŵ

n

)
, 1 ≤ i ≤ n, (17)

where r̂ denotes the corrected vector. Note that we can, instead of re-scaling
the received signal as done above, adjust the threshold levels used in a Chase
decoder to discriminate between reliable and unreliable symbols. For asymp-
totically small noise variance, σ2, we may assume with high probability that
ŵ =

∑
xi, so that the variance of the offset estimate, b̂, can be approximated

by

E[(b− b̂)2] ≈ σ2

n
, σ ≪ 1, (18)

where E[] denotes the expectancy operator. The next example illustrates the
detection algorithm.

Example 1 Let n = 6, x = (110010), σ = 0.125, and offset b = 0.2. The
received word is r = (1.194, 1.233, -0.024, 0.331, 1.402, 0.263), and after
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sorting we have r′ = (1.402, 1.233, 1.194, 0.331, 0.263, -0.024). We simply
find r = 0.733. The next table shows δw versus w using (14).

w r′w δw
1 1.402 −0.505
2 1.233 −1.005
3 1.194 −1.761
4 0.331 −1.123
5 0.263 −0.682
6 −0.024 0.000

We find ŵ = 3. The estimated offset equals b̂ = r − ŵ/n = 0.733 − 3/6 =
0.233.

Example 2 Let, S, n even, be the union of two constant weight codes, that
is,

S = Sw0 ∪ Sw1 , (19)

where w0 =
n
2
− 1 and w1 =

n
2
+ 1. We find from (13) that

δw0 = −2

w0∑
i=1

r′i + w0

(
1 + 2r − w0

n

)
and

δw1 = −2

w1∑
i=1

r′i + w1

(
1 + 2r − w1

n

)
,

so that
δw1 − δw0 = −2(r′n

2
+ r′n

2
+1) + 4r. (20)

We define the median of the received vector, r̃, as the average of the two
middle values (n even) [12], that is,

r̃ =
1

2
(r′n

2
+ r′n

2
+1). (21)

The receiver decides that ŵ = w1 if

δw1 − δw0 < 0,

or, equivalently, if
r̃ > r. (22)
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In the next section, we take a look at the general case where we face both
gain and offset mismatch, a ̸= 1 and b ̸= 0.

4 Pearson distance detection

We consider the general situation as in (3) where the symbols of the received
vector r = (r1, . . . , rn) are given by

ri = axi + νi + b, (23)

where both quantities a, a > 0, and b are unknown. Immink and Weber
proposed the Pearson distance as an alternative to the Euclidean distance in
case the receiver is ignorant of the actual channel’s gain and offset [9]. The
Pearson distance between the n-vectors r and x̂ is defined by

δp(x̂) = 1− ρr,x̂, (24)

where

ρr,x̂ =

∑n
i=1(ri − r)(x̂i − x̂)

σrσx̂

(25)

is the Pearson correlation coefficient. The (unnormalized) variance of the
vector z is defined by

σ2
z =

n∑
i=1

(zi − z)2. (26)

A minimum Pearson distance detector operates in the same way as the min-
imum Euclidean detector, that is, it outputs the codeword xo ‘closest’, as
measured in terms of Pearson distance, to the received vector, or in other
words

xo = argmin
x̂∈S

δp(x̂). (27)

The minimum Pearson distance detector estimates the sent codeword x, and
implicitly it offers an estimate of the gain, a, and offset, b, using (23). We
start by evaluating (24) and (27). Since (27) is a minimization process, we
may delete irrelevant (scaling) constants, and obtain

δp(x̂) ≡ − 1

σx̂

n∑
i=1

ri(x̂i − x̂). (28)
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As in the previous section, we consider a code S =
∪

w∈V Sw, where the index
set V ⊆ {0, 1, . . . , n}. Let x̂ ∈ Sw, then

δp(x̂ ∈ Sw) ≡
1√

w − w2

n

[
wr −

n∑
i=1

rix̂i

]
. (29)

Note that δp(x̂ ∈ Sw) is undefined for w = 0 and w = n, and we must
bar both the all-‘0’ and all-‘1’ words from S for unique detection. Clearly,
V ⊆ {1, . . . , n− 1}.

Except for the inner product
∑

rix̂i, the above expression depends on
the number of ‘1’s, w, of x̂ and, thus, not on the specific positions of the ‘1’s
of x̂. For maximizing the inner product

∑
rix̂i we must pair the w largest

symbols ri with the w 1’s of x̂. Let (r′1, r
′
2, . . . , r

′
n) be a permutation of the

received vector (r1, r2, . . . , rn) such that r′1 ≥ r′2 ≥ . . . ≥ r′n. Since the w 1’s
are paired with the largest symbols, r′i, 1 ≤ i ≤ w, we have [8]

δp,w = − 1√
w − w2

n

w∑
i=1

(r′i − r), (30)

where δp,w is a short-hand notation of minx̂ δp(x̂ ∈ Sw). The detector eval-
uates δp,w for all w ∈ V . Define

ŵ = argmin
w∈V

δp,w. (31)

The decoder decides that the ŵ largest received signal amplitudes, r′i, 1 ≤ i ≤
ŵ are associated with a ‘one’, and n− ŵ smallest received signal amplitudes,
r′i, ŵ + 1 ≤ i ≤ n are associated with a ‘zero’.

The estimates of the gain, â, and offset, b̂, of the received vector r are
found by using (4). Let b̂0 and b̂1 denote the estimates of b0 and b1, respec-
tively. Then we find

b̂0 =
1

n− ŵ

n∑
i=ŵ+1

r′i

and

b̂1 = −1 +
1

ŵ

ŵ∑
i=1

r′i,
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so that, after using (4),

â = 1 + b̂1 − b̂0 =
1

ŵ

ŵ∑
i=1

r′i −
1

n− ŵ

n∑
i=ŵ+1

r′i (32)

and

b̂ = b̂0 =
1

n− ŵ

n∑
i=ŵ+1

r′i. (33)

The normalized vector r̂ is found after scaling and offsetting with the esti-
mated gain, â, and offset, b̂, that is,

r̂i =
ri − b̂

â
, 1 ≤ i ≤ n. (34)

After the above normalization, the normalized vector, r̂, is corrected to its
standard range, and may be forwarded to the second part of the decoder,
where the vector is processed, decoded, and quantized.

The variance of the estimates â and b̂ depend on the numbers of 1’s and
0’s in the sent codeword x. For asymptotically small noise variance, σ2, so
that we may assume that with high probability ŵ =

∑
xi, the variance of

the offset, b, denoted by σ2
b̂,w

, can be approximated by

σ2
b̂,w

= E[(b− b̂)2] = E

(b− 1

n− ŵ

n∑
i=ŵ+1

r′i

)2


=
1

n− w
σ2, σ ≪ 1. (35)

Similarly, the variance of the estimate of the gain a, denoted by σ2
â,w, is given

by

σ2
â,w = E[(a− â)2] =

n

w(n− w)
σ2, σ ≪ 1. (36)

The above findings are intuitively appealing as they show that the quality of
the estimate of the quantities, a and b, depends on the numbers, n−w and w,
of ‘0’s and ‘1’s in the sent codeword, respectively. We have verified the above
estimator quality using computer simulations. Results of our simulations are
collected in Table 1, where we assumed the case σ = 0.1 and n = 6. We are
now considering the general case of uncoded i.i.d input data, so that the sent
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Table 1: Simulations results of 105 samples for σ = 0.1 and n = 6. The
values in parentheses are computed using (35) and (36), respectively.

w σ2
b̂,w

/σ2 σ2
â,w/σ

2

1 0.201 (0.200) 1.201 (1.200)
2 0.250 (0.250) 0.745 (0.750)
3 0.333 (0.333) 0.668 (0.667)
4 0.497 (0.500) 0.751 (0.750)
5 1.011 (1.000) 1.198 (1.200)

codeword does not have a specified weight. The codeword’s weight is in the
range {1, . . . , n − 1}. For the i.i.d. case, the variance of the estimations â
and b̂, denoted by σ2

â and σ2
b̂
, can be found as the weighted average of σ2

â,w

and σ2
b̂,w

, or

σ2
b̂
=

σ2

2n − 2

n−1∑
w=1

(
n

w

)
1

n− w
(37)

and

σ2
â =

σ2

2n − 2

n−1∑
w=1

(
n

w

)
n

w(n− w)
. (38)

Results of computations and simulations are shown in Table 2, where we
assumed the case σ = 0.1. We have computed the relative variance of the
estimators σ2

b̂
/σ2 and σ2

â/σ
2 for different values of the noise level, σ, and

observed that (37) and (38) are accurate up to a level where the detector is
close to failure (word error rate > 0.1).

In the next section, we show results of computer simulations with the
newly developed DTD algorithms applied to the decoding of an extended
Hamming code.

5 Application to an extended Hamming code

Error correction is needed to guarantee excellent error performance over the
memory’s life span. To be compatible with the fast read access time of STT-
MRAM, the error correction code adopted needs to have a low redundancy
of around ten percent and it must have a short codeword length. A (71, 64)

13



Table 2: Simulations results of 105 samples for σ = 0.1. The values in
parentheses are computed using (37) and (38), respectively.

n σ2
b̂
/σ2 σ2

â/σ
2

8 0.297 (0.296) 0.5919 (0.5919)
16 0.135 (0.135) 0.2700 (0.2699)
32 0.064 (0.065) 0.1293 (0.1293)
64 0.031 (0.032) 0.0634 (0.0635)
128 0.017 (0.016) 0.0314 (0.0315)

regular Hamming code is used for Everspins 16 MB MRAM, where straight-
forward hard decision detection is used [13]. Cai and Immink [14] propose a
(72, 64) extended Hamming code with a two-stage hybrid decoding algorithm
that incorporates hard decision detection for the first-stage plus a Chase II
decoder [11] for the second stage of the decoding routine.

In the next subsection, we show, using computer simulations, that the
application of DTD in the above scenario offers resilience against unknown
charge leakage or temperature change. We show results of computer simula-
tions with the (72, 64) Hamming code, which is applied to a simple channel
with additive noise.

5.1 Evaluation of the Hamming code

An (n, n− r) Hamming code is characterized by two positive integer param-
eters, r and n, where the redundancy r > 1 is a design parameter and n,
n ≤ 2r − 1 is the length of the code [13]. The payload is of length n− r. The
minimum Hamming distance of a regular Hamming code equals dH = 3. An
extended Hamming code is a regular (n, n−r) Hamming code plus an overall
parity check. The minimum Hamming distance of an extended Hamming
code equals dH = 4.

The word error rate of binary words transmitted over an ideal, matched,
channel, using a Hamming code under maximum likelihood soft decision
decoding, denoted by WERH, equals (union bound estimate)

WERH ≈ AH(n, r)Q

(√
dH
2σ

)
, σ ≪ 1, (39)
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where AH denotes the average number of codewords at minimum distance
dH, and the Q-function is defined by

Q(x) =
1√
2π

∫ ∞

x

e−
u2

2 du. (40)

For a regular Hamming code, we have

AH(n, r) =
n(n− 1)

6
, n = 2r − 1. (41)

For a shortened Hamming code, n < 2r − 1, since the weight distribution
of many types of linear codes, including Hamming codes, is asymptotically
binomial [15] for n ≫ 1, we can use the approximation

AH(n, r) ≈
(
n

3

)
1

2r
, (42)

and for an extended Hamming code (only even weights)

AH(n, r) ≈
(
n

4

)
1

2r−1
. (43)

Exhaustive optimal detection of long Hamming codes, such as the extended
(72, 64) is an impracticality as it requires the distance comparison of 264 valid
codewords. Sub-optimal detection can be accomplished with, for example,
the well-known Chase algorithm [11], [14].

The Chase algorithm selects T of the least reliable bits by selecting the
symbols, ri, having least absolute channel value with respect to the decision
level. The remaining n − T symbols, that is the most reliable ones, are
quantized. Then, the T unreliable symbols are selected, using exhaustive
search, in such a way that the word so obtained is a valid codeword of the
Hamming code at hand and that the word minimizes the Euclidean distance
to the received vector r. The error performance of the Chase algorithm is
worse than the counterpart error performance of the full-fledged maximum
likelihood detector given by (39). The loss in performance depends on the
parameter T .

As the parameter T determines the complexity of the search, it is usually
quite small in practice. The majority of symbols are thus quantized using
hard decision detection, where a pre-fixed threshold is used. The error per-
formance of the Chase decoder depends therefore heavily on the accuracy of

15



the threshold with respect to mismatch of the gain and offset of the signal
received. This means that the Chase decoder loses a major part of its error
performance in case of channel mismatch.

Using computer simulations, we computed the error performance of the
Chase decoder in the presence of offset or gain mismatch versus the noise
level −20 log10 σ. We simulated the error performance of an extended (72, 64)
Hamming code decoded by the Chase decoder, where we selected, in Figure 1,
the offset mismatch case, a = 1 and b = 0.15. Figure 2 shows the gain
mismatch case, a = 0.85 and b = 0 (b0 = 0, b1 = −0.15). Both diagrams show
the significant loss in performance due to channel mismatch. Combinations of
offset and gain mismatch give similar devastating results [9]. The word error
rate found by our simulations of the ideal channel (without mismatch), is
quite close to the theoretical performance given by the union bound estimate
(39) and (43).

In order to improve the detection quality, we applied DTD, as presented
in the previous sections, followed by (standard) Chase decoding. Before
discussing the simulation results, we note two observations. The all-‘1’ word
is not a valid codeword, and the all-‘0’ word is a valid codeword of the
(72, 64) Hamming code. The probability of occurrence of the all-‘0’ word,
assuming equiprobable codewords is 2−64 ≈ 10−19, which is small enough to
be ignored for most practical situations. The weight of a codeword of an
extended Hamming code is even, so that the number of evaluations of δw or
δp,w, see (13) and (30), can be reduced.

Figure 1 shows the word error rate in case DTD is applied in the offset-
only case, a = 1 and b = 0.15. We notice that DTD restores the error
performance close to the error performance of the ideal offset-free situation.

Figure 2, the gain mismatch case, shows that the error performance with
DTD (Curve 2) is worse than that of the ideal case, a = 1, without applying
DTD (Curve 4). This can easily be understood: in case a = 0.85 (b0 =
0, b1 = −0.15), the average levels, b0 and 1+ b1, of the recorded data, xi, are
closer to each other than in the ideal case, a = 1. Curve 3 shows that the
error performance with DTD is close to the situation, where the receiver is
informed about the actual gain, a = 0.85. This gives a fairer comparison,
and we observe that the WER of DTD almost overlaps with the simulated,
matched channel, performance. This demonstrates the efficacy of DTD for
the case of a = 0.85 (b0 = 0, b1 = −0.15).

Figure 3 shows theWER as a function of the offset mismatch, b, where a =
1 and −20 log σ = 15, using a Chase decoder, T = 4. The error performance
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Figure 1: Word error rate (WER) of the extended (72, 64) Hamming code with
and without dynamic threshold detection (DTD), and with and without an offset,
b = 0.15, using a Chase decoder, T = 4. The union bound estimate to the word
error rate for the ideal channel, a = 1 and b = 0, given by (39), is plotted as a
reference (Curve 5).

of the DTD is unaffected by the offset mismatch, b, and the error performance
is close to the performance without mismatch. Figure 4 shows the WER as a
function of b1, where the gain a = 1+ b1, −20 log σ = 15.5, and b0 = 0, using
a Chase decoder, T = 4. Curve 3 shows the situation where the receiver is
informed about the actual gain (no mismatch), and we infer that the error
performances of a receiver of the matched channel and a receiver of the
mismatched channel combined with DTD are very similar.

Above we have shown simulation results of dynamic threshold detection
used in conjunction with an extended Hamming code and a Chase decoder.
We remark that although in this paper we exemplify DTD detection on an
extended Hamming code, the hybrid DTD/decoding algorithm is a general
tool that can be applied to other (extended) BCH codes, LDPC, polar codes,
etc., for applications in both data storage and transmission systems.
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Figure 2: Word error rate (WER) of the extended (72, 64) Hamming code with
and without dynamic threshold detection (DTD), and with and without a gain
mismatch, a = 0.85 (b0 = 0, b1 = −0.15), using a Chase decoder, T = 4. The
union bound estimate, Curve 6, to the word error rate for the ideal channel, a = 1
and b = 0, given by (39), is plotted as a reference. Curves 2 and 3 show that
the error performance with DTD is close to the situation, where the receiver is
informed about the actual gain, a = 0.85.
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Figure 3: Word error rate (WER) of the extended (72, 64) Hamming code with
and without dynamic threshold detection (DTD), versus the offset mismatch b,
where a = 1 and −20 log σ = 15, using a Chase decoder, T = 4.
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Figure 4: Word error rate (WER) of the extended (72, 64) Hamming code with and
without dynamic threshold detection (DTD), versus the gain mismatch a = 1+b1,
b0 = 0, where −20 log σ = 15.5, using a Chase decoder, T = 4. Curve 3 shows the
situation where the receiver is informed about the actual gain.
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6 Conclusions

We have considered the transmission and storage of encoded strings of bi-
nary symbols over a storage or transmission channel, where a new dynamic
threshold detection system has been presented, which is based on the Pear-
son distance. Dynamic threshold detection is used for achieving resilience
against unknown signal-dependent offset and corruption with additive noise.
We have presented two algorithms, namely a first one for estimating an un-
known offset only and a second one for estimating both unknown offset and
gain. As an example to assess the benefit of the new dynamic threshold de-
tection, we have investigated the error performance of an extended (72, 64)
Hamming code using a Chase decoder. The Chase algorithm makes hard de-
cisions of reliable symbols that are above or below a given threshold level. In
case of channel mismatch, however, due to incorrectly tuned threshold levels,
the hard decisions made are unreliable, and as a result the Chase algorithm
fails. We have shown that the error performance of the extended Hamming
code degrades significantly in the face of an unknown offset or gain mis-
match. The presented threshold detector dynamically adjusts the threshold
levels (or re-scales the received signal), and improves the error performance
by estimating the unknown offset or gain, and restores the performance close
to the performance without mismatch. A worked example of a Spin-torque
transfer magnetic random access memory (STT-MRAM) with an applica-
tion to an extended (72, 64) Hamming code has been described, where the
retrieved signal is perturbed by additive Gaussian noise and unknown gain
or offset.
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