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Abstract
As artificial intelligence (AI) is increasingly in-
tegrated into decision-making processes, effective
collaboration between humans and AI becomes
crucial. This study investigates how textual sum-
maries of changes of artificial agent’s mental model
affect human trust and overall satisfaction. Using a
between-groups experimental design in an Urban
Search and Rescue scenario, 56 participants were
randomly assigned to either receive or not receive
these summaries. Trust and satisfaction were mea-
sured through established scales and objective met-
rics, including the number of actions the human and
AI performed together. Results show that providing
textual summaries significantly increased both hu-
man trust in the AI agent and overall satisfaction.
While the Task success rate improved with addi-
tional communication, other performance metrics
showed no significant differences. This research
contributes to understanding effective communica-
tion strategies in human-AI teams, highlighting the
importance of transparency and justifications from
artificial agents. These findings can help the de-
sign of collaborative AI systems, enhancing trust
and satisfaction in human-AI partnerships.

1 Introduction
As the capabilities of autonomous systems continue to ad-
vance, artificial intelligence (AI) is increasingly playing cen-
tral roles in decision-making processes across various sec-
tors, including healthcare, aerospace, and industrial opera-
tions. These systems utilize sophisticated AI algorithms to
enhance decision-making capabilities and operate at different
levels of autonomy depending on the environment and con-
text [1, 2].

The integration of AI systems alongside humans, known as
Collaborative AI, aims to complement human abilities, lever-
aging the strengths and limitations of both to achieve more
efficient solutions [1]. Collaborative AI systems are designed
to understand human intentions, adapt to behaviors, and com-
municate effectively, thereby facilitating seamless interaction
and cooperation [2].

Extending from the concept of Collaborative AI, the notion
of Human AI teams (HAT) has emerged. At the core of HAT
are mutual trust and transparency between human and AI col-
laborators. These factors contribute to HAT’s superior perfor-
mance compared to traditional human-only or AI-only teams
[3, 4]. Human satisfaction is another crucial factor in team
effectiveness. Recognized as a major component in estab-
lished teams [5], satisfaction has been shown to positively af-
fect various team characteristics, including performance [6].
In the context of HAT, both trust and satisfaction play key
roles in shaping team dynamics and outcomes. Mutual trust,
defined as the shared belief that the team members will fulfill
their roles towards the common goal [7], is a product of both
artificial and natural trust [8]. In this study, we differentiate
between natural trust, which refers to human trust, and arti-
ficial trust, which designates the trust the robot forms in the
human [9].

While most of the current trust models are applicable only
for natural trust [9], this study also proposes a formalization
of artificial trust. Equally important is how AI communicates
its reasoning, intentions, and decisions back to human team
members. These elements are key components of building
trust in artificial systems. Effective communication strategies
are essential for AI agents to be perceived as reliable team
members [10, 11]. These strategies include the clarity and
relevance of the information shared, as well as the timing and
manner of its delivery, all of which profoundly affect human
trust and team cohesion [12].

Current literature highlights the importance of trans-
parency, explanations, and improved situational awareness in
human-AI collaboration [3, 13]. Concepts such as explain-
able AI (XAI) emphasize the necessity for AI systems to be
transparent and understandable to their human collaborators
[14]. While the need for communication is widely acknowl-
edged in HAT, there is a research gap regarding how specific
characteristics of communication, such as timing and gran-
ularity of justifications provided by AI, affect the trust dy-
namics within the team [3]. Addressing this gap is crucial
for enhancing trust and facilitating an efficient team dynamic,
which is fundamental to the success of human-AI collabora-
tion [15].

To bridge this gap, this research seeks to explore how a
specific form of communication, namely a textual summary
of changes of the mental model of an AI agent, affects the
trust and satisfaction levels of the human teammates. The
choice of a textual summary strikes a balance between visu-
alization and timing. This method mitigates the risk of exces-
sive communication that continuous communication offers,
which distracts and overwhelms humans [16]. Additionally,
textual representation helps avoid the misunderstandings that
often arise from incorrect or ambiguous visual representa-
tions [17], making it potentially more effective for human-AI
collaboration. Guided by these insights, this study poses the
following research question:

“How does a textual summary of changes (justifi-
cation) of the mental model of the agent’s trust in
the human teammate affect the human teammate’s
trust in the agent and overall satisfaction?”

To address this primary question, two secondary questions
have been formulated:

• “How can a textual summary of changes (justifica-
tion) of the mental model of an AI agent’s trust in a
human teammate be developed to effectively trans-
mit artificial trust from AI to humans?”

• “What is the impact of the developed communica-
tion method on the natural trust and overall satis-
faction?”

This research aims to address the communication gap in
human-AI teams by exploring how a textual summary of
changes in an AI agent’s mental model affects human trust
and satisfaction. It focuses on formalizing artificial trust and
developing a textual summary method to convey changes in
the AI agent’s mental model. This study makes use of a con-
trolled environment inspired by an Urban Search and Rescue
(USAR) scenario [18].

This research paper is structured as follows. Section 2 ex-
plains key concepts such as trust in human-AI collaboration,
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preferences of human agents, and explainable AI. Section 3
details the environment used for the study, specifically the
USAR scenario. Section 4 outlines the trust mechanism, in-
cluding the development and update of the mental model and
behavior adaptation. Section 5 discusses the communication
method, focusing on the textual summary of changes in the AI
agent’s mental model. Section 6 covers the study design, par-
ticipants, hardware and software, task setup, procedure, and
measurements. Section 7 presents findings from both sub-
jective and objective measurements. Section 8 analyzes the
results, limitations, and future work suggestions. Section 9
addresses responsible research considerations and Section 10
summarizes the key findings and their implications.

2 Background
2.1 Trust in Human-AI Collaboration
Trust is the fundamental element in collaborative environ-
ments, directing the success of both human-human and
human-AI teams [3, 4]. Various definitions and conceptu-
alizations of trust have been proposed, generally pointing to
the trustor’s willingness to be vulnerable to the trustee’s ac-
tions, based on the expectation that the trustee will perform a
particular action important to the trustor [19, 9]. In human-
AI collaboration, trust is viewed as a dyadic relationship be-
tween humans and artificial agents, where both parties can
assume the roles of trustor and trustee [8, 2, 20]. Trust is
a central prerequisite for effective collaboration, influencing
the acceptance of AI team members’ suggestions and actions
[21].

Researchers have developed various models to study and
implement trust in human-AI teams [22, 21]. These models
typically determine how much a human trusts an AI agent to
perform a task, and the AI agent uses this estimate to predict
human behavior [9]. Progress has been made in developing
shared mental models (SMMs) that focus on aligning indi-
vidual team members’ understandings of their shared tasks
and each other’s roles [23, 24]. While the literature primarily
focuses on human trust in AI, the concept of artificial trust
has received less attention [20]. However, attempts have been
made to map AI perceptions of trustworthiness [25] and for-
malize artificial trust by exploring how an AI agent can detect
situations requiring trust or assess human trustworthiness [2,
4].

2.2 Conceptual Framework of Artificial Trust
Jorge, Tielman, and Jonker [20] made an effort to propose
a conceptual framework for formalizing artificial trust. In
their study, the mental model of trust is evaluated using two
primary beliefs: competence and willingness. Competence
refers to the assessment of the human agent’s abilities and
reliability in performing tasks effectively, while willingness
pertains to the human’s intention and motivation to execute
the tasks. These beliefs are tied to internal features of an agent
that influence how trustworthy they seem. These features,
known as krypta, include ability, benevolence, and integrity
[19]. Observable behaviors, or manifesta, provide cues for
these features. For instance, performance metrics indicate
competence, while favoritism or commitment reflect willing-
ness. As such, the preferences of human agents can be mod-
eled using the willingness belief.

2.3 Preferences of Human Agents
Continuing on the idea of preference modeling, in the con-
text of HAT collaboration, incorporating the preferences of
human agents is crucial for optimizing the performance and
efficiency of task allocation and execution [26]. Human pref-
erences are shaped by various factors such as the nature of the
tasks, workload, and risk, all of which influence the decision-
making process. Preferences can manifest in selecting tasks
that require less effort for the same reward, adhering to the
“law of least effort” [27]. By aligning their actions with hu-
man preferences, artificial agents can reduce the cognitive
load on human teammates and minimize errors, thereby in-
creasing trust within the team [26]. Consequently, the trust
mechanism of artificial agents must be designed to dynam-
ically incorporate human preferences, enhancing the overall
synergy of Human-AI teams [28, 26]. Human preferences are
often revealed through observable behaviors, which can be
interpreted as cues indicating internal qualities such as com-
petence, benevolence, and integrity [4].

2.4 Communication in Human-AI Collaboration
Effective communication and explanation of decisions made
by robotic agents with human collaborators are crucial in
Human-AI Teams (HAT), particularly in safety-critical ap-
plications where failures can have severe consequences [29,
14, 30]. Explainable AI (XAI) plays a vital role in making
AI’s decisions and behaviors more transparent and easier to
interpret by humans, leading to increased trust and perfor-
mance [29, 14, 12]. Existing literature explores various as-
pects of communicating AI’s justifications and decisions back
to human agents, such as modeling the impact of perceived
trustworthiness on message quality and feedback [31], pro-
viding frameworks for textual justifications of AI’s mental
model and decision-making [15], and aligning explanations
with end-users mental models and cognitive processes [32].

Research has compared the effectiveness of different ex-
planation methods, such as visual and textual formats, and
proposed combining them into hybrid approach to improve
understanding while maintaining preference and ease of use
[17]. Insights from social sciences advocate for user-centered
approaches that prioritize the needs and understanding of
end-users, considering factors such as expertise level and
mental models, to improve the acceptance of AI systems [33].
By aligning explanations with users’ requirements and capa-
bilities, XAI can enhance trust, understanding, and perfor-
mance in human-AI collaboration [32, 17, 33].

3 Environment
To effectively study trust dynamics in human-AI collabora-
tion, a controlled yet realistic environment is crucial. This re-
search utilizes a scenario inspired by Urban Search and Res-
cue (USAR)[18] set in a 2D grid world. Participants act as
human agents paired with an artificial agent, RescueBot (see
Figure 1). Players navigate the grid with visibility restricted
to a 2-cell radius, keeping the locations of victims and obsta-
cles initially unknown. RescueBot and the player only know
each other’s location within this radius. The terrain includes
blue zones representing flooded areas, which slow down the
movement of any agent crossing them.
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Eight room entrances are obstructed by three types of ob-
stacles, each with different interdependence levels for their
removal. This way, the environment emphasizes the need for
effective collaboration and communication between the hu-
man and the AI agent. Obstacles within the grid include big
rocks, trees, and small stones. Big rocks necessitate collab-
oration between the agents, while trees can only be removed
by RescueBot. Small stones can be removed by either agent,
though the task is faster if both work together.

Additionally, six victims are scattered across the grid.
These victims are of two types: critically injured (marked in
red) and mildly injured (marked in yellow). Rescuing crit-
ically injured victims requires collaboration, as both agents
must work together to save them. Mildly injured victims can
be saved by either agent working alone or by both agents
working together. However, when a single agent attempts to
rescue a mildly injured victim, it takes more time than if both
agents collaborated. Among the victims, the critically injured
old woman and the mildly injured old man are referred to as
special victims. They require extra time to rescue beyond the
standard rescue duration, regardless of whether one or both
agents are involved in their rescue.

Figure 1: Overview of the game environment displaying all obsta-
cles and victims.

4 Trust Mechanism
To introduce and evaluate the impact of the additional com-
munication of the AI agent’s mental model with the human
teammate, a trust mechanism for the artificial agent has been
developed. The following section details the trust model, its
components, and how it influences the behavior adaptation of
the agent.

4.1 Mental Model
While existing literature proposes many ways of modeling
artificial trust, as specified in subsection 2.1, this study adapts
the conceptual model proposed by Jorge, Tielman, and Jonker
[20]. This framework centers on two key factors in assessing
trust: competence and willingness.

In [2], Jorge et al. discuss the nature of the task and its
impact when assessing a teammate’s trustworthiness. They

argue that trust is context-dependent [34, 2], and the type of
task a collaborator is executing is one of the critical factors
upon which a model can be built. Consequently, all actions
that the pair of agents could perform either solely or together
were divided into three distinct categories representing the
main types of interactions a teammate could have with the
environment: Search, Remove, and Rescue. The Search cat-
egory includes actions related to exploring new areas for vic-
tims. The Remove category encompasses actions that deal
with obstacles in the environment. Finally, the Rescue cate-
gory refers to actions the teammates can perform concerning
the victims present in the scenario.

Each of the three categories is represented by different trust
values denoted by a tuple of competence and willingness as
illustrated in the following equation:

T = {TSearch, TRemove, TRescue}
= {(CSearch,WSearch), (CRemove,WRemove),

(CRescue,WRescue)}
where C is a competence value and W is a willingness value.

During the collaboration with the human agent, all com-
petence and willingness values remain in the range [−1, 1].
At the beginning of the scenario, the artificial trust starts with
initial values of 0 for both willingness and competence, repre-
senting a neutral perception of trust toward the human collab-
orator. The values are dynamically updated after each action
of the human teammate as perceived by the artificial agent. To
account for the workload and criticality of different tasks, we
introduced three different thresholds for updating the trust-
worthiness values: {±0.1,±0.2,±0.4}. These thresholds,
alongside preference modeling, are the direct factors influ-
encing artificial trust, as will be discussed in subsection 4.3.

4.2 Preference Modelling
As discussed in subsection 2.3, preference integration exclu-
sively updates the willingness values. To create a general
preference model for a typical human user, we considered
three factors: Flooded areas, Special victims, Distance to
the task.

Flooded Areas
The scenario environment includes a flooded area that slows
down user movement, as explained in Section 3. This creates
a preference for tasks in non-flooded zones. The preference
factor f can take values of 1 for tasks ending in non-flooded
areas, 0.5 for tasks keeping the user in flooded areas, and 0 for
tasks bringing the user into flooded areas (see subsection C.1
for the exact formula).

Special Victims
To adhere to the “law of least effort” [27], special victims
were included in the scenario, that require additional time to
rescue, making them less preferred compared to regular vic-
tims. The preference factor s takes a value of 1 if the victim
is not special and 0 if the victim is special or if the task does
not involve rescuing a victim (see subsection C.2 for the exact
formula).

Distance to the Task
The third factor, d, represents the distance to the task. It
aligns with human preferences for tasks requiring lower cog-
nitive workload [27]. The distance factor is calculated based
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on the ratio of the team’s distance to the task over the main
diagonal of the environment (see subsection C.3 for the exact
formula).

Combining Preference Factors
The overall preference score, p, combines these three fac-
tors, each with a weight. By default, the flooded and special
victims factors have a weight of 1, while the distance factor
has a weight of 2. For searching room actions, the distance
factor is ignored to prevent unnatural trust increases, and the
special victims’ factor is only relevant for rescue tasks. The
preference score ranges from 0 (least preferred) to 1 (most
preferred) and is calculated as follows:

p(a) =
wf · f(a) + wd · d(a) + wv · v(a)

wf + wd + wv

Preference implementation involves adjusting the willingness
of the human agent based on task preference. Performing
less preferred tasks rewards willingness, while rejecting more
preferred tasks penalizes it.

4.3 Updating the Perception of Trust
The developed trust model evaluates every decision made by
the human agent concerning a task, considering the state of
the environment at that moment. These decisions, referred to
as actions, are categorized into Search, Rescue, and Remove.
Based on the specific action, the model updates the compe-
tence and willingness values for the corresponding trust cate-
gory. Updates use predefined thresholds {±0.1,±0.2,±0.4}
or may remain unchanged (∆ = 0). The workload and sig-
nificance of the action determine which update value is ap-
plied. Additionally, actions influenced by the human prefer-
ence model incorporate an extra factor in updating the will-
ingness value. This preference update, represented by pU (a),
depends on the preference score of action a. The human
preference score, which ranges from [0,1], has to be nor-
malized using a preference factor. Negative outcomes, like
refusing to help, decrease willingness more with higher pref-
erence scores. Conversely, positive outcomes, such as help-
ing, increase willingness more with lower preference scores.
The detailed formula for this update can be found in subsec-
tion C.4.

The new trust value Tc(new) for a category c is described
by the following formula:
Tc(new) = (Cc(old) + ∆C, Wc(old) + ∆W + pU (a))

where ∆C and ∆W can take values from
{±0.1,±0.2,±0.4}, and c represents the action category:
Search, Rescue or Remove.

The preference updates are particularly relevant in tasks
like removing obstacles or rescuing victims, but also apply
when searching new areas. The detailed updates for all pos-
sible actions from each task category are provided in Ap-
pendix A.

4.4 Behavior Adaptation
Building on the dynamically updated trust beliefs, the ar-
tificial agent adapts its behavior to enhance collaboration
in Human-Agent Teamwork for USAR. These trust beliefs,
including competence, willingness, and preference factors,
guide the AI’s decision-making and interactions with human
teammates.

Integration of Confidence
Each time trust values are updated, the confidence value of
the updated category is adjusted. This confidence represents
how certain the artificial agent is about the human’s trustwor-
thiness regarding that specific task category.

The system updates confidence based on the last two trust
beliefs, increasing it if the beliefs show a consistent trend (ei-
ther increasing or decreasing) and decreasing it if the beliefs
are inconsistent. If fewer than two beliefs are recorded, con-
fidence is not updated. Confidence is then clipped within the
range [0, 1]. The detailed formula for this process is provided
in subsection C.5.

General Adaptations
When the AI is not restricted by interdependence with the
human, it evaluates whether to trust the human for a specific
task. This evaluation is based on the trustworthiness levels
for that particular task category and the human’s preference
score for the task. This decision is probabilistic, comparing a
uniform random sample between 0 and 1 to the current confi-
dence level for the task. The agent checks if both willingness
and competence values meet their thresholds, adjusted by the
preference score. Specifically, the willingness threshold is
dynamically adjusted by subtracting a fraction of the prefer-
ence score. If the sample is below the confidence level and
both values exceed their thresholds, the action is trusted; oth-
erwise, it is not. If the sample is above the confidence level,
the action defaults to being trusted. This process is reduced to
a mathematical formula that can be found in subsection C.6.

The AI adapts its behavior in specific scenarios to ensure
task completion when the human agent is deemed untrust-
worthy. If the agent perceives the human as unreliable, it
will adapt its behavior accordingly. For instance, it may pro-
ceed autonomously with tasks it can complete independently,
such as rescuing mildly injured victims or removing trees and
small stones, without waiting for human intervention.

5 Communication
In the scope of the experimental condition, the textual sum-
mary of changes of the AI agent’s mental model in the human
teammate was developed. This communication design em-
ploys a user-centered approach to explanation, generating tai-
lored explanations specifically for the human teammate. Such
an perspective to explanation can significantly enhance trust
and satisfaction compared to explanations that do not con-
sider the user’s perspective [32].

Upon generation, the summary appears centrally on the
screen, pausing the game until the participant closes it. The
information is presented across three different screens, which
participants must review before closing the communication
and resuming the game. Three summaries are provided
throughout the game, balancing the need for effective AI
communication between efficiency and sociability [11]. The
summaries’ appearance is based on a logic considering the
number of victims rescued and the current progress relative
to the maximum game duration, ensuring all users receive all
summaries irrespective of skill level, as illustrated in Figure 2.

The following subsections outline the information pro-
vided to the human agent.
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Figure 2: Logic flow of the generation of summaries

5.1 Status Update
This section offers a general overview of the current game
state as perceived by the AI agent. It includes details on the
victims collected by the AI, rooms searched by the AI, rooms
known to be searched by the human, and the remaining time
until the game’s 10-minute limit. A visual example can be
seen in Figure 3.

Figure 3: Example of status update content

5.2 Actions Impact on Trust
This section lists all actions taken by the human agent from
the start of the game or since the last summary. Actions are
categorized into three task types and explained clearly. For
each action, the impact on the trust value within its specific
category is presented as a percentage, making it easier for
users to understand. Figure 4 illustrates this with a visual
example.

Figure 4: Example of an action’s impact on trust

5.3 Justification of Human Preferences
Here, actions performed by the human, as perceived by the
AI, are linked to the human preference model. Each action is
described alongside a percentage representing the change in
willingness resulting from the preference update. The state of
the three preference factors at the time of each action is also
presented as additional justification. A visual example can be
seen in Figure 5.

Figure 5: Example of justification of human preference

5.4 Justification of Robot’s Actions
This section lists all decisions made by the artificial agent
that were influenced by the behavior adaptation logic. The
AI’s decisions to trust or not trust the human teammate are

justified based on the level of trust in the human at the time
of their action and the preference score explained in textual
format. A visual example can be seen in Figure 6.

Figure 6: Example of justification of robot’s decision

5.5 Trust Levels
The final section presents the current levels of trust and con-
fidence at the time of summary generation, classified by the
three task types explained in Section 4.1, as well as the per-
centage change since the last summary was generated. A vi-
sual example can be seen in Figure 7.

Figure 7: Example of trust level from the communication

The full visualization of the developed textual summary of
changes of AI’s mental model can be found in Appendix D.

6 Methods
To address the research question, a between-groups user
study was conducted to investigate the impact of textual sum-
maries of changes (justifications) of the mental model of an
AI agent’s trust in a human teammate on the human team-
mate’s trust and satisfaction. The two proposed hypotheses
were as follows:
H1: Additional communication of the mental model of the

AI agent to the human agent increases the human agent’s
trust in the AI agent.

H2: Additional communication of the mental model of the
AI agent to the human agent increases the human agent’s
satisfaction.

The user study employed an independent measures experi-
mental design, with participants randomly assigned to one of
two experimental conditions: one group played the game with
the textual summary of changes of the AI’s mental model of
trust in the human teammate (Communication group), and the
other group played the game without this additional commu-
nication (Baseline group). The independent variable was the
added communication method, and the dependent variables
were the trust and overall satisfaction of the human team-
mates after completing the game.

6.1 Participants
The study recruited 56 participants, all of whom reported re-
siding in Europe. The sample consisted of 17 females, 36
males, 1 non-binary, and 2 unspecified individuals. They
were evenly split into two conditions of 28 participants each.
Age distribution was predominantly 18-24 years (49 partici-
pants), with 6 participants aged 25-34, and 1 participant aged
35-44. Educational background included 21 with high school

5



diplomas, 30 with Bachelor’s degrees, 3 with Master’s de-
grees, and 2 with HBO school diplomas. Regarding gaming
experience, 26 participants reported extensive experience, 17
had some experience, 9 had little experience, and 4 had no
experience.

6.2 Hardware and Software
The experiments were conducted on multiple laptops. The ex-
perimental group, with the additional communication, used a
MacBook with macOS and an M1 processor. In the Baseline
group, 10 participants used Windows laptops, while the rest
used macOS laptops. The game environment was built us-
ing the Human-Agent Teaming Rapid Experimentation soft-
ware (MATRX)1. Twelve participants reported prior experi-
ence with MATRX software before participating in the study.

6.3 Task
The game’s primary goal is to collaborate with RescueBot
to rescue six victims scattered across the grid as quickly as
possible. Players navigate the grid, communicate with Res-
cueBot via a chat interface with predefined action buttons,
and coordinate to complete various tasks. Some tasks require
both agents, while others can only be completed by Rescue-
Bot, necessitating human agents to request help. Likewise,
RescueBot may seek help from the human player. Effec-
tive communication is essential for task management, such
as informing each other about searched rooms to avoid re-
dundancy. The game has a 10-minute limit, ending when all
victims are rescued or time expires.

6.4 Procedure
The procedure lasted about 30 minutes per participant. Partic-
ipants first read and signed the informed consent and HREC
checklist forms, then completed an anonymized survey to col-
lect potential confounding factors such as age group, region
of residence, gender, highest education level, whether they
major in Computer Science, prior knowledge of MATRX, and
gaming experience (see subsection 6.1 for results).

Participants were then assigned to one of two experimental
conditions, followed by a game tutorial to familiarize them
with the rules and objectives. They also received a scripted
explanation of the trust mechanism in RescueBot. Those in
the experimental group also received a detailed explanation
of the communication method’s contents and logic. In the
baseline condition, participants collaborated with RescueBot
during the search and rescue mission until one of the two end-
ing conditions was met. In the experimental group, partic-
ipants additionally read through the communication method
three times during the game (see Section 5 for details). After
completing the mission, participants filled out an anonymized
questionnaire focusing on the two dependent variables.

6.5 Measurements
To assess the influence of the additional textual summary on
natural trust and participant satisfaction, both subjective and
objective measures were used. Subjective measures capture
personal experiences, perceptions, and satisfaction levels, es-
sential for understanding psychological impact [35]. Ob-
jective measures help mitigate biases from subjective mea-

1MATRX software: https://matrx-software.com

sures, providing more useful insights [36]. Objective data
was logged using MATRX software, while subjective data
was collected via Microsoft Forms2.

Subjective Measurements
Participants’ trust and satisfaction towards the AI system
were assessed using established scales from Hoffman et al.
[37], presented in a Likert format.

Trust was measured with an adapted version of the trust
scale from ’TABLE 8 The trust scale for the XAI context.’
[37]. This scale includes eight items, each rated on a 5-point
Likert scale, assessing facets like confidence, predictability,
reliability, safety, efficiency, wariness, and likability. The full
scale is in subsection B.1.

Satisfaction was measured with the scale from ’TABLE 3
The explanation satisfaction scale.’ [37], consisting of seven
items rated on a 5-point Likert scale. These items evaluate
understanding, satisfaction, detail sufficiency, completeness,
usability, usefulness, and perceived accuracy of the AI expla-
nations. The full scale is in subsection B.2.

Additionally, the questionnaire included four optional
open-ended questions to gather qualitative data. These ques-
tions asked about missing information, liked and disliked as-
pects of collaboration with RescueBot, and participants’ per-
ceptions of how the AI viewed them, providing deeper con-
text and feedback on their interactions with the AI system.

Objective Measurements
To complement subjective measures, we used several objec-
tive metrics to assess trust and satisfaction levels:

Compliance and Communication Rate: Compliance, the
number of times participants follow the AI’s recommenda-
tions, correlates with trust levels, with higher compliance sug-
gesting greater trust [38]. The communication rate tracks the
number of messages sent by the human agent. Increased com-
munication often correlates with higher trust levels, indicat-
ing greater engagement and willingness to interact with the
AI [38].

Task Success Rate and Interaction Frequency: The task
success rate, measuring the completeness of the joint objec-
tive of the HAT on a scale of [0, 1], indicates reliability and ef-
fectiveness, correlating with higher trust and satisfaction [39].
Interaction frequency, the number of joint actions between the
human and AI, signifies greater engagement, trust, and satis-
faction, showing users’ confidence and compatibility with the
system [39].

Finally, task completion time records the duration taken
to complete tasks. Shorter completion times correlate with
higher satisfaction [39], because, as discussed by Nielsen
[40], efficient task completion suggests users find the system
reliable and easy to interact with, contributing to higher trust
and satisfaction levels.

7 Results
7.1 Subjective Results
The Likert scale data from the questionnaire was translated
to a numerical scale from 1 to 5, where 1 indicates “Strongly
disagree” and 5 indicates “Strongly agree.” Item 6 in the trust
scale (“I am wary of the RescueBot”) was reverse-scored due

2Microsoft Forms: https://forms.microsoft.com
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to the negative formulation, as such ensuring higher scores
consistently represent higher levels of trust across all items.

Reliability Consistency
Cronbach’s alpha was used to assess the internal consis-
tency of the trust and satisfaction scales, with a threshold
of α = 0.7 based on Tavakol and Dennick [41]. The Base-
line group showed acceptable reliability for both scales, with
Cronbach’s alphas of 0.719 for trust and 0.896 for satisfac-
tion. However, the Communication group had lower reliabil-
ity, with a trust survey alpha of 0.476, indicating issues with
internal consistency discussed further in the subsection 8.3.

Hypothesis Testing
Composite scores for trust and satisfaction were computed by
averaging the respective item scores for each participant. Due
to the negative results of the Shapiro-Wilk tests for normality,
the Mann-Whitney U test was chosen for both trust and satis-
faction composite scores. The significance threshold was set
to p = 0.05, meaning that results with p-value less than 0.05
is considered significant. The Mann-Whitney U test indicated
a significant difference in trust composite scores between the
Baseline group (M = 3.563, SD = 0.64) and the Communica-
tion group (M = 4.25, SD = 0.427), U = 185.0, p = 0.0012.
This result suggests that the textual summary of artificial trust
significantly increases human trust in the AI agent, support-
ing Hypothesis 1.

Similarly, the Mann-Whitney U test for satisfaction com-
posite scores revealed a significant difference between the
Baseline group (M = 3.786, SD = 0.899) and the Communica-
tion group (M = 4.571, SD = 0.436), U = 177.0, p = 0.0007.
This finding supports Hypothesis 2, indicating that the com-
munication of the AI’s mental model significantly enhances
overall human satisfaction.

Figure 8 presents box-plots of the trust and satisfaction
composite scores for both groups, illustrating the differences
identified by the Mann-Whitney U tests.

Figure 8: Box-plots for comparing the composite scores for trust and
satisfaction

7.2 Objective Results
To compare the Baseline and Communication groups across
the measurements specified in Section 6.5, a systematic ap-
proach was used. First, the normality of each measurement
was assessed with the Shapiro-Wilk test. Depending on the
results, either the Independent samples t-test or the Mann-
Whitney U test was applied to identify significant differences
between the groups. The findings are summarized in Table 1,

showing the means and standard deviations for both groups,
the statistical test used, and the corresponding p-values. An
asterisk (*) marks measurements with significant differences,
which, in this case, is only the Task success rate.

8 Discussion
8.1 Trust and Satisfaction
The results show a significant difference in natural trust and
satisfaction between the experiment groups. Participants in
the Communication group reported higher levels of trust and
satisfaction compared to the Baseline group, aligning with
prior research highlighting the importance of transparency
and explanations in human-AI collaboration [3, 13].

The significant increase in trust and satisfaction in the
Communication group can be attributed to the transparency
and explanations provided by the textual summary of
changes. Transparency helps calibrate human’s trust in
robots, especially when behavior is unexpected or reliabil-
ity varies [3, 13]. Clear updates enhance the human team-
mate’s situation awareness and trust in the AI’s capabilities
[42, 31]. Providing explanations about the robot’s behavior,
particularly for unexpected actions, improves understanding
and trust [3].

Detailed justifications and updates help users better cali-
brate their trust in the AI [3, 9, 31]. Communicating task
outcomes and providing explanations enhances understand-
ing and trust [9, 16]. Attributing trust changes to specific top-
ics offers a fine-grained explanation that helps maintain trust
even if the AI’s trust varies in some areas [31].

In addition to the existing literature, qualitative feedback
from the participants provides further insight into the signifi-
cant differences in natural trust and satisfaction observed be-
tween the groups. Participants in the Baseline group reported
a lack of guidance and clarity, leading to confusion and fre-
quent need for explanations from the AI. This sentiment is ex-
emplified by Participant 18’s comment: “I have no idea how
the rescue bot thinks of me. I would have liked to know more
about whether the robot trusts me or not, so I can better base
my decisions.”

Conversely, participants in the Communication group ap-
preciated the additional information and regular updates,
which they felt improved alignment with the artificial agent
and team collaboration. A particularly valued aspect of the
communication was the updates on the levels of artificial trust
(see subsection 5.5). Participant 11 noted, “It also makes
me want to perform better, when seeing I am not trustworthy
enough.” Similarly, Participant 18 from the Communication
group expressed satisfaction with the textual indicators: “The
decreases were highlighted in red and I could see exactly what
I did wrong quickly so that I could correct it.”

8.2 Performance Metrics
From the objective metrics, only the Task completeness rate
showed a significant difference between the experimental
groups. Previous research indicates that a higher Task suc-
cess rate correlates with increased trust and satisfaction [39].
However, the Task completeness is influenced by various fac-
tors, including software performance. During pilot runs, the
team observed slower performance on Windows OS com-
pared to macOS due to less optimized file handling on Win-
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Table 1: Comparison of Baseline and Communication groups across objective measurements.

Measurement Test Baseline Mean Baseline SD Comm. Mean Comm. SD p-value

Compliance Mann-Whitney U 3.000 1.388 2.464 1.753 0.097
Ratio of joint actions t-test 209.536 66.073 189.893 49.228 0.213
No. of human messages Mann-Whitney U 19.857 6.422 20.214 3.645 0.347
Task success rate* Mann-Whitney U 0.911 0.184 1.000 0.000 0.0027
Total task time (ticks) t-test 4813.571 607.418 4508.036 544.493 0.053

dows. This is relevant as 10 Baseline participants used Win-
dows devices, while none in the experimental group did. This
OS disparity may have affected Task completeness rates, po-
tentially confounding interpretation of this metric as a trust
and satisfaction indicator.

The remaining metrics considered in the user study, com-
pliance, communication rate, interaction frequency, and task
completion time did not show significant differences between
groups. This may be because these metrics are related to in-
dividual user performance and personal skills, which could
have influenced the results more than the added communi-
cation method. Trust and satisfaction in HAT are influenced
by many factors beyond the measured metrics, such as indi-
vidual user experiences, expectations, and perceptions of AI
capabilities [34, 25]. Additionally, objective measures may
not capture the nuances in human-robot interactions as effec-
tively as subjective metrics [34, 35].

8.3 Limitations
This study has several limitations that should be taken into
account when interpreting the results. Firstly, the Baseline
group consisted of an equally divided pool of participants,
both those who majored in Computer Science and those who
did not. In contrast, the Communication group had 82% of
its participants majoring in Computer Science. This dispar-
ity could influence the results, as individuals with a Com-
puter Science background are generally more familiar with
the technology used in the experiment than those from other
fields. Apart from the affinity with Computer Science, other
confounding variables such as familiarity with the MATRX
software used to develop the USAR scenario and overall gam-
ing experience might affect participants’ views on AI collab-
oration and their performance. While these variables were
recorded, the study did not analyze their impact on the de-
pendent variables measured. Therefore, the homogeneity of
participants might affect the validity of the results.

Secondly, the trust survey in the Communication group had
a low Cronbach’s alpha of 0.476, indicating poor internal con-
sistency. Items 6 and 7 caused most of this inconsistency, as
removing them raised the alpha to 0.695. This low score may
be due to participants misunderstanding terms like ’wary’ and
’novice,’ resulting in high response variance. However, both
the trust and satisfaction scales were adapted from Hoffman
et al. (2023), suggesting their reliability had been previously
validated.

8.4 Future Work
Future research should include a larger, more diverse partic-
ipant pool to mitigate the influence of confounding variables
and obtain a comprehensive perspective on human dynamics

in HAT. Additionally, future studies should explore the corre-
lation between gaming experience, software familiarity, and
reported trust and satisfaction levels. Understanding these
correlations can help isolate their effects, providing a clearer
picture of the impact of different communication methods.

Improving the trust survey’s reliability is crucial. Selecting
more comprehensive and cohesive scales assessing both trust
and satisfaction can provide additional validation for results.
Identifying other game logs correlating the communication
method with natural trust and satisfaction could be valuable
for future studies.

Finally, comparing the effects of the textual summary of
changes in the AI agent’s mental model on natural trust and
satisfaction with other communication methods can provide
a direct comparison of XAI communication methods. Such
research could extend the questions tackled in this study, of-
fering deeper insights into the most effective communication
strategies to implement in HAT.

9 Responsible Research
When discussing the integrity of this research, two crucial
topics need to be addressed: reproducibility, and ethical con-
siderations.

First, reproducibility is a vital aspect of this study that
must be guaranteed. To achieve this, the code base devel-
oped and utilized for this research is stored in a repository3

with restricted access, available to authorized researchers and
reviewers. Detailed methodologies and parameters are pro-
vided in this paper to support broader reproducibility efforts.
Since the study incorporates objective measures recorded
through game logs, consistency in data collection was key.
Thorough reviews were conducted to ensure all researchers
used the same code script to obtain consistent and unaltered
objective measures.

To enhance reproducibility, this research provides au-
tomated data analysis through several Jupyter notebooks4.
These notebooks allow anyone to replicate the results using
the same data set. The analysis includes data from all 56 par-
ticipants: 28 from the group receiving textual summaries of
the artificial agent’s mental model changes and 28 from the
Baseline group. This data set, along with data from related
studies exploring different communication types, is available
through the 4TU.ResearchData5 platform.

Secondly, ethical concerns arise due to the carrying out of
a user study. The primary issues involve data processing and

3GitLab repository used for this project: GitLab Repository
4Project Jupyter: https://jupyter.org
54TU.ResearchData data repository: https://data.4tu.nl
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privacy. To address these matters, a risk assessment was con-
ducted using the “Ethics review checklist” proposed by the
Human Research Ethics Committee of TU Delft. The identi-
fied concerns were the collection, processing, and storage of
directly identifiable Personally Identifiable Information (PII)
and Personally Identifiable Research Data (PIRD). To miti-
gate these risks, names, and signatures related to PII were
collected in separate informed consent forms, accessible only
to the research team. Regarding PIRD, the study collected
and stored participants’ age group, gender, region, educa-
tion, computer science background, gaming expertise, and
experience with MATRX software. However, this data was
anonymized and used solely to describe samples and may be
used in future work to identify correlations with confounding
variables. These risk mitigation techniques were approved by
the Human Research Ethics Committee (HREC) at TU Delft.
Subjective measures and personal data were collected using
Microsoft Forms6, a survey tool known for its compliance
with GDPR laws.

10 Conclusion
This research aimed to investigate how a textual summary of
changes of the mental model of an AI agent’s trust in a hu-
man teammate affects the human teammate’s trust in the AI
agent and overall satisfaction. The findings demonstrate that
the communication method significantly influences both trust
and satisfaction levels, providing valuable insights into the
dynamics of human-AI collaboration.

The study revealed that textual summaries significantly in-
creased the human teammate’s trust in the AI agent. Trans-
parency and explanations provided by these summaries al-
lowed participants to understand the AI’s decision-making
and trust calibration better. Additionally, overall satisfaction
improved significantly among participants who received the
summaries. The detailed updates and justifications made par-
ticipants feel more informed and aligned with the AI’s ac-
tions, leading to higher satisfaction levels. While the Task
success rate was notably higher in the group with additional
communication, other metrics like compliance, communica-
tion rate, interaction frequency, and task completion time
showed no significant differences. This suggests that while
communication boosts trust and satisfaction, its direct impact
on performance metrics may depend on factors such as indi-
vidual skills and task familiarity.

This study contributes to the understanding of effective
communication strategies in HAT. It highlights the impor-
tance of human-centered communication methods in building
trust and satisfaction, emphasizing transparency and justifica-
tions from AI agents. These findings can guide the design of
collaborative AI systems, promoting transparency and justifi-
cation in AI interactions.

6Microsoft Forms: https://forms.microsoft.com
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[35] Karel Mackǔ et al. “Subjective or objective? How ob-
jective measures relate to subjective life satisfaction
in Europe”. In: ISPRS International Journal of Geo-
Information 9.5 (2020), p. 320.

[36] Wayne H Anderson et al. “Variability in objective and
subjective measures affects baseline values in studies
of patients with COPD”. In: PLoS One 12.9 (2017),
e0184606.

[37] Robert R Hoffman et al. “Measures for explainable AI:
Explanation goodness, user satisfaction, mental mod-
els, curiosity, trust, and human-AI performance”. In:
Frontiers in Computer Science 5 (2023), p. 1096257.

[38] Andrea Krausman et al. “Trust measurement in
human-autonomy teams: Development of a conceptual
toolkit”. In: ACM Transactions on Human-Robot In-
teraction (THRI) 11.3 (2022), pp. 1–58.

[39] Alona Weinstock, Tal Oron-Gilad, and Yisrael Parmet.
“The effect of system aesthetics on trust, cooperation,
satisfaction and annoyance in an imperfect automated
system”. In: Work 41.Supplement 1 (2012), pp. 258–
265.

[40] Jakob Nielsen. Usability engineering. Morgan Kauf-
mann, 1994.

[41] Mohsen Tavakol and Reg Dennick. “Making sense of
Cronbach’s alpha”. In: International journal of medi-
cal education 2 (2011), p. 53.

[42] Eduardo Salas, Nancy J Cooke, and Michael A Rosen.
“On teams, teamwork, and team performance: Dis-
coveries and developments”. In: Human factors 50.3
(2008), pp. 540–547.

11



A Tables of trust value updates

A.1 Searching

Table 2: Competence and Willingness Adjustments for Search ac-
tions

Action a Competence Willingness
update ∆C update ∆W

Lied about searching a room - 0.4 - 0.4 - p U(a)
Room already searched,
incorrect input - 0.1 0
Double searches room - 0.1 0
Searches new room + 0.2 + 0.2 + p U(a)
Forgot to announce search
before finding victim - 0.1 0
Forgot to announce search
before collecting victim - 0.1 0

A.2 Removing

Table 3: Competence and Willingness Adjustments for Remove ac-
tions

Action a Competence Willingness
update ∆C update ∆W

No response to big rock 0 - 0.2 - p U(a)
Responds to big rock together + 0.2 + 0.2 + p U(a)
Responds but late to big rock - 0.4 - 0.4 - p U(a)
Asked for help with big rock,
not there - 0.2 - 0.2
Asked for help with big rock,
and there + 0.1 + 0.1
No response to tree - 0.2 0
Responds to tree + 0.2 + 0.2
Asks to help remove tree + 0.2 + 0.2
No response to small stones 0 - 0.1 - p U(a)
Responds to small stones
together + 0.1 + 0.1 + p U(a)
Responds but late to small
stones - 0.2 - 0.2 - p U(a)
Asked for help with small
stones, not there - 0.2 - 0.2
Responds and arrives to
small stones + 0.1 + 0.1
Lied about obstacle - 0.2 - 0.2
Removes rock together + 0.4 + 0.4 + p U(a)

A.3 Rescuing

Table 4: Competence and Willingness Adjustments for Rescue ac-
tions

Action a Competence Willingness
update ∆C update ∆W

Human lied about a victim being
rescued - 0.4 - 0.4
Drop for acting rescue - 0.2 - 0.2
Bot confirms found victim + 0.1 + 0.1
Lies about mildly injured
victim - 0.2 - 0.2
Lies about critically
injured victim - 0.4 - 0.4
Robot asks to rescue critically
injured victim together,
human agrees + 0.2 + 0.2 + p U(a)
Robot asks to rescue mildly
injured victim together,
human agrees + 0.1 + 0.1 + p U(a)
Robot asks to rescue
mildly injured victim,
no response - 0.1 - 0.1 - p U(a)
Did not announce victim
found during search - 0.1 - 0.1
Robot asks to rescue
critically injured victim,
no response - 0.2 - 0.2 - p U(a)
Agrees to rescue
critically injured victim,
but doesn’t come - 0.4 - 0.4 - p U(a)
Agrees to rescue
mildly injured victim,
but doesn’t come - 0.2 - 0.2 - p U(a)
Rescues before threshold
(mild victim) + 0.2 + 0.2 + p U(a)
Rescues before threshold
(critical victim) + 0.4 + 0.4 + p U(a)
Announced finding victim + 0.1 + 0.1
Collects victim + 0.2 + 0.2
Did not announce victim
found during search - 0.1 - 0.1
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B Subjective Measurements
B.1 Trust Measurement

Table 5: Adapted trust scale for subjective measurements

Item

1. I am confident in RescueBot. I feel that it works well.
2. The outputs (communication, decisions) of RescueBot
are very predictable.
3. The RescueBot is very reliable. I can count on it
to be correct all the time.
4. I feel safe that when I rely on RescueBot I will get
the right result.
5. RescueBot is efficient and works very quickly.
6. I am wary of the RescueBot.
7. The RescueBot can perform a task better than
a novice human user.
8. I like using the RescueBot’s guidance for decision making.

B.2 Satisfaction Measurement

Table 6: Adapted satisfaction scale for subjective measurements

Item

1. From RescueBot’s explanations, I know how it works.
2. The RescueBot’s explanations of how it works
are satisfying.
3. The RescueBot’s explanations of how it works
have sufficient detail.
4. The RescueBot’s explanations of how it works
seem complete.
5. The RescueBot’s explanations of how it works
tell me how to use it.
6. The RescueBot’s explanations of how it works
are useful to my goals.
7. The RescueBot’s explanations show me how accurate
the system is.

C Trust Model Formulas
C.1 Flooded factor formula

f(a) =


1 if a ends in non-flooded area
0.5 if a makes the human remain in a flooded area
0 if a brings the human into flooded area

C.2 Special Victims factor formula

s(a) =

{
1 if the victim is not special
0 if the victim is special or

a does not involve saving a victim

C.3 Distance factor formula

d(a) =

{
1− team distance

main diagonal if team distance is not None
0 otherwise

C.4 Preference update formula

pU (a) =



0 if a is not influenced by
human preference

−p(a)
PF

if a has negative outcome
1− p(a)

PF
if a has positive outcome

where:
• pU (a) is the preference update for action a.
• a is the action done by human agent.
• p(a) is the preference score calculated for action a.
• PF is the preference factor used for normalization, set to

5 for this study.

C.5 Confidence update formula

Cnew = Cold +


+∆C if beliefs

are monotonic
−∆C if beliefs

are inconsistent

where:
• Cnew is the updated confidence value.
• Cold is the previous confidence value.
• ∆C is the change in confidence, which is either 0.2 for

competence or 0.15 for willingness.
• The confidence value is clipped to be within the range
[0, 1].

C.6 Trustworthiness Evaluation formula

TD(a) =

{
True if r ≥ cl

(w ≥ WT +
1− p(a)

PF
and c ≥ CT ) if r < cl

where:
• TD(a) is the boolean result of the formula that dictates

if the artificial agent trusts the human or not regarding
action a.

• r is the random sample generated between [0, 1].
• cl is the confidence level at that moment.
• w is the willingness value.
• c is the competence value.
• WT is the willingness threshold set to 0 for this study.
• CT is the competence threshold set to 0 for this study.
• p(a) is the preference score calculated for action a.
• PF is the preference factor used for normalization set to

2 for this study.
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D Textual Summary

Figure 9: First screen of the communication

Figure 10: Second screen of the communication, part 1
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Figure 11: Second screen of the communication, part 2

Figure 12: Third screen of the communication
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