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Abstract Modern web applications often interact with internal web services,
which are not directly accessible to users. However, malicious user inputs can
be used to exploit security vulnerabilities in web services through the appli-
cation front-ends. Therefore, testing techniques have been proposed to reveal
security flaws in the interactions with back-end web services, e.g., XML In-
jections (XMLi). Given a potentially malicious message between a web ap-
plication and web services, search-based techniques have been used to find
input data to mislead the web application into sending such a message, possi-
bly compromising the target web service. However, state-of-the-art techniques
focus on (search for) one single malicious message at a time.

Since, in practice, there can be many different kinds of malicious messages,
with only a few of them which can possibly be generated by a given front-end,
searching for one single message at a time is ineffective and may not scale.
To overcome these limitations, we propose a novel co-evolutionary algorithm
(COMIX) that is tailored to our problem and uncover multiple vulnerabilities
at the same time. Our experiments show that COMIX outperforms a single-
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target search approach for XMLi and other multi-target search algorithms
originally defined for white-box unit testing.

Keywords Security Testing - Code Injection Vulnerabilities - Search-based
Software Engineering

1 Introduction

Web applications often rely on interactions with internal web services, e.g.,
SOAP [23] and REST [30]. This is a typical case for example in microservice
architectures [60]. When web applications become too large and complex to
develop and maintain, splitting them into smaller services helps to reduce their
complexity. Despite being more flexible, scalable and maintainable, microser-
vice architectures are characterized by a larger attacks surface due to increased
communication complexity [68]. Indeed, in addition to every single microser-
vice, hackers can exploit communication channels among microservices (e.g.,
front-end web applications and back-end web services) and try to compromise
the entire system.

In the context of web applications, a major security concern is the val-
idation and sanitization of user inputs (e.g., text strings in HTML input
forms) which are checking for malicious content. Input validation discards
user-supplied data if it does not conform to a specified rule or set of rules. On
the other hand, input sanitization removes some special characters (e.g., <)
from user inputs to prevent many kinds of possible attacks. These procedures
are usually performed by front-end web applications that process and em-
bed user inputs into messages (e.g., XML messages) for internal web services.
When input validation and sanitization procedures are not properly imple-
mented, malicious inputs can be used to attack internal web services leading
to different kinds of security attacks, such as XML injection (XMLi) and XSS
attacks [75]. Due to time pressures or lack of familiarity with security issues,
such vulnerabilities are common in practice [45,46]. For these reasons, re-
searchers have proposed various techniques [44,54,55] to test input validation
and sanitization routines in web applications against different types of security
attacks.

Recently, we proposed a black-box technique [44,47] based on genetic al-
gorithms (GAs) to generate malicious user inputs that, once validated and
processed by the front-ends, result in malicious XML messages potentially af-
fecting internal web services. Given a malicious message X that could affect
internal web services, search-based software testing techniques are then used
to find user inputs to the front end (i.e., strings for web application form) that
would lead to the generation of X. The search is guided by the edit distance
(string [44] or real-coded [47] distance) between the message generated with
the given user inputs and the target malicious message X [44]. If such user
inputs are found, then the front-end is deemed vulnerable since it is not able
to prevent the generation of X.
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The main advantage of the aforementioned black-box approach is that it
does not need to access the source code (of neither front-ends nor internal web
services) and it can discover different types of vulnerabilities [44]. However,
existing techniques focus on one single message at a time and, therefore, require
to run GAs many times, once for each potential malicious message X . Since the
number of messages can be large in practice when considering multiple types
of attacks, searching for a single message/vulnerability at a time is inefficient
(single-target approach) and not scalable to many large applications. First, not
all target messages are feasible since the input validation would likely detect
and filter out many malicious messages. Second, searching for malicious inputs
related to some messages may be more difficult than others. Therefore, when
the goal is to detect as many vulnerabilities as possible within time constraints,
the order by which messages are selected for testing may impact the overall
effectiveness (i.e., the number of detected vulnerabilities).

In this paper, we investigate different strategies targeting all malicious mes-
sages at the same time, which aim to overcome potential scalability challenges
with the single-target approach. In the context of white-box unit testing, vari-
ous search techniques [10,61,62] have been successfully used to cover multiple
structural targets at the same time (e.g., branches). In our context, these tech-
niques can be adapted and applied to detect XMLi attacks in front-end web
applications. More specifically, in this paper, we investigate the performance of
MOSA [62] and MIO [10], which are the most recent and effective techniques
for white-box unit testing. To tailor it to our context, we adapt MOSA by de-
veloping a novel variant, which we call vMOSA. Moreover, we propose a novel
search technique (COMIX), which is based on a co-operative, co-evolutionary
search and is specifically designed for the XMLi testing problem. Finally, we
investigate the usage of an alternative fitness function, which is much less
expensive but possibly provides less guidance than the string edit distance
commonly-used in search-based software testing [7,44].

We evaluated these strategies by conducting an empirical study involv-
ing different versions of three web applications. Our results show that (i) all
multi-target techniques outperform the single-target approach, and (ii) the
novel co-evolutionary algorithm (COMIX) is significantly more effective and
more efficient than both vMOSA and MIO, independently of the used fitness
function. Finally, when the number of target messages increases, the fitness
function we propose clearly helps all techniques to achieve better results.

The paper is organized as follows. Section 2 briefly describes XMLi, prior
testing techniques for XMLi, the state-of-the-art multi-target techniques for
white-box unit testing, and background information about co-evolutionary al-
gorithms. Section 3 introduces our novel co-evolutionary algorithms and the
proposed alternative fitness function. Sections 4 and 5 describe our empirical
study and report our results, respectively. Section 6 discusses threats to valid-
ity while Section 7 summarizes related work. Finally, Section 8 concludes the

paper.
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2 Background

This section briefly describes (i) XMLi attacks; (ii) search-based approaches
for testing front-end web applications to detect these attacks; (iii) multi-target,
search-based approaches used in white-box unit testing that we adapt to the
context of XMLi vulnerability detection; and (iv) background information
about co-evolutionary algorithms.

2.1 XML Injection and Testing Context

Enterprise systems are composed of several components (e.g., SOAP web ser-
vices, web applications). Figure 1 depicts a typical three-tiered XML-based
business application [29]. It consists of different components: front-end systems
(typically web applications), an XML gateway /firewall, and the back-end web
services or databases. In a typical scenario, the front-ends receive user inputs
and generate XML messages, which are forwarded to the XML gateway /fire-
wall. At this stage, malicious XML messages are filtered out while the benign
ones are sent to the back-end web services (or databases). Attackers may ex-
ploit XML-based vulnerabilities at any tier, e.g., targeting the front-end web
application or the XML gateway /firewall. However, the front-end web applica-
tion is at most risk as an attacker can directly interact with it. If the front-end
is vulnerable to XMLi, an attacker may produce and send malicious XML
messages to the back-end web services.

XMLi attacks are the most common XML-based attacks that aim to ma-
nipulate or compromise the logic of a web application [75]. They are carried
out by injecting malicious strings into user inputs to produce harmful XML
messages. This, in turn, can result in compromising the systems or subsequent
components that receive and process the malicious XML messages. XMLi at-
tacks can be used as a carrier for other types of attacks, such as SQL Injection,
Cross-site Scripting, or Privilege Escalation [2]. Their impact depends on the
type of malicious content that the XML message carries, e.g., an attack can
result in breaching confidential data.

To better understand XMLi attacks, let us consider an example of a web
application for user registration [44] that uses an XML database to store user
registration data. Users can register via a web form by submitting three inputs:
(i) username, (ii) password, and (iii) mail. The application assigns privileges
to the user by generating a role, creates an XML SOAP message and sends it
to the central service. Users are not allowed to modify the role element. We
assume that the application directly concatenates the user inputs to the XML
elements in the SOAP message. Figure 1 contains the resulting SOAP message
for the following malicious inputs:

Username = Tom

Password = Un6Rkb!e</password><!--

E-mail = --><role>administrator</role><mail>admin@email.com

As we can observe in the figure, the original (first) role element with the
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<soapenv:Envelope xmins:soapenv="http://schemas.
xmlsoap.org/soap/envelope/">
<soapenv:Header/>

<soapenv:Body>

<user>
<username>Tom</username>
<password>Un6Rkb!e</password>

<l--
</password>
<role>user</role>

<mail>

-—->
<role>administrator</role>
<mail>admin@uni.lu</mail>

</user>
</soapenv:Body>

</soapenv:Envelope>
Example of an injected XML Message (Test Objective, TO)

Back-end Systems

—

Generated XML%
Messages DB
N~
0

I1
: 12 Front-end
System
| (Web Application) Web Service
—In_ | : ,
i XML Gateway/ :
: Firewall
Other
Systems

User

Testing Front-end Web Application :

Fig. 1 An example of XML-based Enterprise System

value of user is commented out and a new role element having the value of

administrator is inserted in the message. In this way, the malicious user Tom
has succeeded in escalating his privileges to the administrator level. Since this
SOAP message is syntactically correct and is valid according to the associated

schema, a validation procedure will not detect this vulnerability.
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2.1.1 Testing front-end web-applications for XMLi

Testing the input validation and sanitization procedures of front-ends is cru-
cial to guarantee the security of the internal web services. In our previous
paper [44], we proposed a black-box testing strategy targeting XMLi vulnera-
bilities. Such a strategy generates user inputs and inspects the corresponding
XML messages produced by the given front-end web application, which corre-
sponds to the actual software under test (SUT).

The basic idea is to test whether well-formed and yet malicious XML mes-
sages can be generated by front-ends given some specific user inputs, i.e., input
strings of HTML forms. Given an XML message X known to be harmful to
the internal web services, genetic algorithms (GAs) are used to search for in-
put strings that —once validated and executed against the SUT— lead to the
generation of X. If such input strings are found, it implies that input valida-
tion and sanitization are incomplete as they do not detect malicious inputs
resulting in XML attacks.

Coverage criteria. Since the goal is to find as many XMLi vulnerabilities as
possible, multiple XML malicious messages have to be used as targets to cover
various types of attacks. In the following, we refer to the set of malicious XML
messages to target with GAs as Test Objectives (TOs), to be consistent with
the terminology used in [44]. TOs are defined based on four types of XMLi
attacks [46], namely (i) deforming, (ii) random closing tags, (iii) replicating,
and (iv) replacing attacks. Each of these attacks can have a different impact
such as creating a malformed XML message to crash the system, nested attacks
like SQL Injection or Privilege Escalation. We use an automated tool, namely
SOLMI, to create a diverse set of TOs. SOLMI is specifically designed to
generate malicious XML messages based on various types of XML: attacks,
and is very effective compared to other state-of-the-art tools [44,46].

Search algorithm. To enable the search for XMLi, Jan et al. [44] used a
classical GA with string encoding schema. Given a set of TOs, the GA is
executed multiple times, once for each TO (single-target strategy). Thus, the
testing technique terminates when all TOs have been targeted by the GA.

A candidate solution (also called chromosome or individual) is a list of
strings I = (I, Is,...,Iy) to insert in the target web-form, where I}, denotes
the string for the k-th input of the SUT. The GA is initialized by generating a
random pool of chromosomes, called population, which is evolved across various
iterations (or generations). In each generation, the fittest chromosomes (par-
ents) are selected and combined to form new chromosomes (offsprings) using
crossover and mutation. More specifically, the single-point crossover creates
new input strings by combining the input strings of the two selected parents;
the character mutation randomly adds, deletes or changes some characters in
the offsprings. The fitness of each chromosome I is measured by computing
the edit distance [7] between the target TO and the message generated when
executing I against the SUT. A zero edit distance value indicates that I covers
the target TO, i.e., the SUT generates the TO when executed using I. The
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GA terminates if either the target TO is covered or the maximum search time
is reached.

A later variant of the aforementioned single-target strategy [47] uses real-
coded genetic algorithms rather than classical string-coded GAs. The overall
idea is to consider characters forming input strings with the corresponding
ASCII code. This allows the application of real-coded operators, such as the
single arithmetic crossover and the gaussian mutation, that are known to work
better than classical operators when dealing with numerical problems [26].
Finally, we also investigated the real-coded edit distance as a substitute of the
string edit distance where the difference between characters is measured as
the relative distance between their corresponding ASCII codes. The results of
an empirical study with both open-source and industrial systems showed that
the real-coded GA combined with real-coded edit distance is able to detect
more XMLi vulnerabilities and in less time compared to other combinations
of search algorithms and fitness function [47].

Limitations. While using the real-coded search helped to improve the ef-
fectiveness and the efficiency in detecting XMLi attacks, it does not solve the
budget allocation problem. Given a total search budget B to assess all possible
TOs, each TO is assigned a local search budget equal to Bro = B/|TOs|,
where |T'Os| is the total number of test objectives to cover. If one TO is cov-
ered and its local budget is not fully consumed, the search budget for the
remaining uncovered TOs is dynamically recomputed, as the total remaining
search budget divided by the yet uncovered TOs.

In such a scenario, the search budget is dynamically divided among the
TOs. Therefore, the order by which the TOs are selected as targets may im-
pact the search effectiveness, i.e., the number of TOs covered within the search
budget B. Indeed, some TOs can be infeasible because the input validation
routines of the SUT are able to prevent the generation of the malicious mes-
sages regardless of the input string inserted in the web forms. In addition, not
all TOs require the same search budget to be covered: some TOs can be more
expensive than others since, for example, they require more GA generations as
the attack may involve multiple input parameters. If the less expensive TOs
are selected first as targets, the saved search budget can be used to increase
the budget assigned to the remaining TOs. Instead, infeasible TOs or TOs
that cannot be covered within their local budget Bro should not be targeted
first as they represent an inefficient budget allocation. However, the feasibility
or the time needed to cover each TO is a priori unknown. Therefore, managing
the search budget allocation in an efficient way is very challenging.

In this paper, we devise the need for more advanced testing strategies that
target all TOs at the same time, thus avoiding the inefficiency of single-target
strategies.
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2.2 Multi-target search-based techniques in white-box unit testing

In the context of white-box unit testing, various strategies [31,61,62] have been
investigated in recent years aimed at overcoming the limitations of the single-
target strategy. The key idea is considering all coverage targets (e.g., branches
in white-box testing) as multiple independent objectives to optimize at the
same time. Solving all objectives at once prevents the search from focusing
on one single target (e.g., branch) that is infeasible or too difficult to cover
within a given amount of time. Although recent research effort focused on unit
testing only, the problem of covering multiple targets can be generalized for
different types of testing, including XMLi vulnerability detection. Indeed, our
goal is to generate multiple XMLi attacks, one for each target TO (malicious
XML message).

In the following subsections, we briefly describe the most recent and effec-
tive multi-target testing techniques, as proposed in the context of white-box
unit testing.

2.2.1 Many-objective Sorting Algorithm

MOSA [61,62] is a many-objective genetic algorithm that customizes NSGA-
IT [27], one of the most popular multi-objective genetic algorithms, for white-
box testing. In MOSA, all coverage targets in white-box unit testing (e.g.,
branches) correspond to different objectives to optimize. Therefore, a chromo-
some is a test case and its fitness (optimality) is based on a vector of scalar
values (objective scores) capturing the distances from all uncovered targets
(e.g., uncovered branches). To handle the potentially large number of targets
(objectives) in a program, MOSA uses two preference criteria to select and
evolve (in the next iterations) a subset of test cases in the Pareto front. This
subset should contain the test cases with minimum distance for each uncov-
ered target and, when multiple test cases show the same distance, shorter test
cases should be selected. The distance for each test 7 is measured according
to the type of coverage targets [61]. For branch coverage, it is the sum of
the normalized branch distance [58] of 7 for branch b; and the corresponding
approach level [58].

To further speed-up the search, the set of objectives to optimize in MOSA
at each generation is kept dynamic and corresponds to the yet uncovered
targets. Test cases satisfying some of the branches are stored within a second
population, called archive. The archive is updated as soon as a new test 7 is
generated depending on whether (i) it satisfies previously uncovered targets
or (ii) it is shorter than another test 7* in the archive, which covers the same
targets (i.e., 7 and 7* are equivalent regarding coverage but the former contains
fewer statements than the latter).

With the exception of these three components (i.e., preference criteria,
dynamic selection of the targets, and archiving strategy), MOSA shares the
same main loop with NSGA-II (or any other GA). Indeed, the initial popula-
tion is iteratively evolved using mutation and crossover while the selection is
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based on the preference criteria. At the end of the search, the final test suite
corresponds to the updated archive from the last generation.

In the context of XMLi, we notice that the original MOSA algorithm can-
not be directly applied for two main reasons. First, in traditional white-box
unit testing, it is very frequent that two or more test cases with different
lengths are equivalent in terms of objective scores (i.e., same coverage). There-
fore, prioritizing shorter tests at the same level of coverage may help in gen-
erating better (more concise) tests. In the context of XMLi, a target TO can
be covered by only one single solution (input strings) and other equivalent
shorter strings cannot exist. Second, the crossover operator is detrimental if it
recombines two different chromosomes that are optimizing two different TOs.
For example, let us assume that MOSA selects as parents the two chromo-
somes [; = (OR 1) and [y = (-—><role>admn</role>). The former has an
edit distance of d(I1,TO1) = 2 for the test objective TO; = “<test>data OR
1=1</test>”; the latter is the closest chromosome covering the test objective
TOy =“--><role>admin</role><mail>admin@ email.com” with a distance
d(I5,TO3) = 1. Applying the single point crossover to recombine I; and I
will result in offsprings having worse edit distances for both TO; and T'O5. In
other words, the crossover is damaging the original input strings in terms of
satisfying uncovered TOs.

To make MOSA applicable in the context of XMLi, we developed a variant,
which we call vMOSA. Such a variant shares the main loop with the original
MOSA but it differs on the following two points: (i) the preference criterion
does not include the length of the chromosomes as a secondary objective; (ii)
for the reasons explained above, offsprings are generated by only using the
mutation operator (i.e., the crossover operator is not used).

Please notice that an extension of MOSA, called DynaMOSA, has been
recently proposed in the literature [61]. It uses control flow analysis to reduce
the number of targets to optimize in each generation. Although being more
effective than MOSA in white-box unit testing, DynaMOSA cannot be applied
for XMLi testing as no structural dependencies exist among the different TOs
to cover.

2.2.2 Many Independent Objective Algorithm

The Many Independent Objective (MIO) algorithm [10] is an evolutionary
algorithm designed to improve the scalability of test suite generation for non-
trivial programs with a very large number of testing targets (e.g., in the order of
thousands/millions). It is tailored around the following three main assumptions
in white-box testing: (i) testing targets (e.g., lines and branches) can be sought
independently, as test suite coverage can be increased by adding a new test
case; (ii) testing targets can be either strongly related (e.g., nested branches)
or completely independent (e.g., when covering different parts of the SUT);
(iii) some testing targets can be infeasible to cover.

Based on the above assumptions, at a high level, the MIO algorithm
works as follows: it keeps one population of tests for each testing target (e.g.,
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branches). Individuals within a population are compared and ranked based on
their fitness value computed exclusively for that testing target. At the begin-
ning of the search, all populations are empty and are iteratively filled with
generated tests. At each step, with a given certain probability, MIO either
samples new tests at random or samples (and then mutates) one test from
one of the populations related to uncovered targets. A sampled test is added
to all the populations for uncovered targets and is thus evaluated and ranked
independently in each population. Once the size of a population increases over
a certain threshold (e.g., 10 test cases), the worst test (based on its fitness
for that population) is removed. Whenever a target is covered, its population
size is shrunk to one, and no more sampling is done from that population. At
the end of the search, a test suite is created based on the best tests in each
population.

Feedback-directed sampling. For each population, there is a counter, ini-
tialized to zero. Every time an individual is sampled from a population X,
its counter is increased by one. Every time a new, better test is successfully
added to X, the counter for that population is reset to zero. When sampling
a test from one of the populations, the population with the lowest counter is
chosen. This helps focus the sampling on populations (one per testing target)
for which there has been a recent improvement in the achieved fitness value.
This is particularly effective to prevent spending significant search time on
infeasible targets [10].

Parameter-control. To dynamically balance the tradeoff between ezplo-
ration and exploitation of the search landscape, MIO changes its parameters
during the search (similarly to Simulated Annealing).

2.3 Cooperative Co-evolutionary algorithms

Co-evolutionary algorithms extend more classical genetic algorithms by evolv-
ing multiple populations [64] (often referred to as islands or species) rather
than one single population of solutions. The overall idea consists of solving
complex problems by using the principle of divide and conguer [34]: a large
problem is divided into many sub-problems; an island (or sub-population) is
initialized and evolved for each sub-problem separately; finally, the solution to
the original problem is obtained by assembling the best solutions from each
island (specie). Each island is evolved separately using standard genetic algo-
rithms, i.e., selection, crossover and mutation are used to recombine solutions
(parents) within the same islands to create new solutions (offsprings). Each
solution is assigned a local fitness score that measures its ability to solve the
sub-problem (island) it belongs to.

While islands are evolved separately, they interact with each other through
periodical migration [15,52, 74], which is a genetic operator specific to co-
operative co-evolutionary algorithms. It consists of copying and injecting the
strongest solution from one of the islands to the other ones with the goal of
increasing genetic diversity and supporting islands with poor performance [15]
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(e.g., no improvements in local fitness scores). During migration, the island
with the largest fitness improvements in local fitness score is selected and the
strongest solution from that island is copied into the other islands. If two or
more islands are equally eligible for selection (i.e., multiple islands have local
fitness improvements), the winner can be selected randomly among them.

3 A New Approach

Test generation for detecting XMLi vulnerabilities features important differ-
ences with respect to white-box unit testing. First, coverage targets in white-
box testing (e.g., branches) are organized into a priority hierarchy according
to their positions in the control flow graph (CFG) [61]. For example, in a pro-
gram with two nested if conditions, the branches of the inner if condition
can be covered if and only if the outer condition is already satisfied. Instead,
in security testing, the target TOs are completely independent of each other
and there is no structural relationship among them, i.e., covering one TO does
not depend on whether any other TO has been covered previously. Another
important difference relates to the collateral coverage phenomenon. In white-
box testing, some targets (e.g., branches) can be accidentally covered when
optimizing other coverage targets [12,59]. In the context of XMLi attack gen-
eration, collateral coverage never happens given the fact that no relationship
exists among different TOs.

To better explain why the TOs are independent of each other, let us con-
sider as an example the two TOs, TO1 and TO2, shown in Figure 2. The two
TOs correspond to two different types of XML Injection attack as described
in [46]. The SUT can generate TO1 only with the following inputs:

Username = Tom
Password = Un6Rkb!e</password><!--

E-mail = --><role>administrator</role><mail>admin@uni.lu

Therefore, to cover TO1, the search algorithm must find these unique in-
puts. As shown in the figure, the malicious content in TO2 is different from
TOL1. To cover this TO, the following inputs are needed:

Username = Tom

Password = ' OR '1'='1"

E-mail = admin@uni.lu

Although the Username input is similar for these two TOs, the other two
inputs (Password and Email) are entirely different. Finding the three inputs
for TO1 does not depend on the inputs or coverage of TO2 and vice versa.
Also, these TOs can only be covered with their corresponding unique inputs as
mentioned above. Further, since each TO requires the unique combination of
the three inputs, it is not possible to accidentally cover a TO with the inputs
of another TO during the search.
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<soapenv:Envelope xmins:soapenv="http://schemas.
xmlsoap.org/soap/envelope/">
<soapenv:Header/>
<soapenv:Body>
<user>
<username>Tom</username>
<password>Un6Rkble</password>
<!--
</password>
<role>user</role>
<mail>
->
<role>administrator</role>
<mail>admin@uni.lu</mail>
</user>
</soapenv:Body>
</soapenv:Envelope>

(a). Test Objective TO1

<soapenv:Envelope xmins:soapenv="http://schemas.
xmlsoap.org/soap/envelope/">
<soapenv:Header/>
<soapenv:Body>
<user>
<username>Tom</username>
<password>' OR '1'="'1'</password>
<role>user</role>
<mail>admin@uni.lu</mail>
</user>
</soapenv:Body>
</soapenv:Envelope>

(b). Test Objective TO2

Fig. 2 Example of Test Objectives (TOs)

Starting from these observations, we propose a novel many-objective, co-
evolutionary algorithm that is customized for XMLi. To further speed-up the
search process, we also describe an alternative fitness function with a lower
computational complexity compared to the commonly-used string edit dis-
tance [44]. While we demonstrate that the proposed methodology is effective
and efficient for XMLi, we believe that the novel algorithm and fitness function
can be adapted or reused to other types of injections attacks.

The details of the novel search algorithm and fitness function are described
in the next subsections.
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Algorithm 1: COMIX: CO-evolutionary algorithm for Multl-
vulnerability testing of Xml injections

Input:

Set of test objectives TO

N. of new individuals per generation M
N. of generations with no improvement k
Result: A test suite T’

1 begin

2 // initialization

3 R + RANDOM-TESTS(M)

4 T < UPDATE-ARCHIVE(R)

5 for each t € TO that is uncovered do

6 L islands[t] - INITTIALIZE-ISLAND(R)

7 while all TOs not covered and search is not timed out do
8 while |offsprings| < M do

9 t - SELECT-ISLAND (islands)

10 parents < SELECT (islands|t])

11 O + GENERATE-OFFSPRINGS(parents)
12 EVALUATE(O, t)

13 T < UPDATE-ARCHIVE(O)

14 offsprings(t] < offsprings[t] J O

15 // create one random individual

16 R + RANDOM-TESTS(1)

17 // update islands

18 for each uncovered t € TO do

19 offsprings(t] < offsprings[t] U R

20 islands[t] + UPDATE-ISLAND (offsprings[t])
21 / periodic migration
22 APPLY-MIGRATION (islands)
23 / apply restarting strategies
24 for each uncovered t € TO do

25 if fitness has not improved for k generations then
26 | RESTART(islands][t])

3.1 Cooperative Co-evolutionary Algorithm for XMLi

In this paper, we introduce a novel many-objective, co-operative, and co-
evolutionary algorithm tailored for XMLi, hereinafter referred to as COMIX
(CO-evolutionary algorithm for Multl-vulnerability testing of Xml injections).

In our context, the overall problem can be formulated as generating XMLi
attacks that match/cover all target TOs. This problem can be divided into
sub-problems: generating one test case (attack) for each target TO. Therefore,
in a co-evolutionary environment, each TO corresponds to an island to evolve.
Once a given sub-problem is solved (i.e., an attack has been generated for its
corresponding TO), its test case is stored in the final test suite. Therefore,
at the end of the search, the test suite will contain all successfully attacks
generated across search iterations.

The pseudo-code of COMIX is detailed in Algorithm 1. COMIX initializes
the search by randomly generating a set of test cases R (line 3), which is used
to initialize the islands (loop in lines 5-6). For each target ¢, an island islands/t]
is created using the routine INITTALIZE-ISLAND (line 6). Such a routine (i)
sorts R in ascending order of fitness value (distance) for ¢; and (ii) it copies
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the top p C R tests in the corresponding islands[t]. After this initialization
process, the islands are evolved independently through subsequent iterations
within the loop in lines 7-26.

In each iteration, islands are evolved separately using three traditional ge-
netic operators: selection, crossover, and mutation. Given an uncovered target
t € TO, two parents are selected from the corresponding island islandsft] us-
ing the binary tournament selection. Then, the two parents are recombined
using crossover and mutation (routine GENERATE-OFFSPRINGS in line
11) forming two offsprings. These offsprings are evaluated only against the
test objective t € TO and are inserted into an offspring island offsprings/t].
At the end of each iteration, the total number of new individuals (test cases)
generated across the islands is kept constant (condition in line 8): M — 1 new
tests are created using the routines GENERATE-OFFSPRINGS; the last so-
lution is randomly generated (line 16) to reach the set population size M and
preserve diversity.

Islands selection. There are multiple islands from which we could select and
recombine solutions in each generation. In COMIX, we use a heuristic similar
to the feedback-directed sampling used in MIO [10] (the routine SELECT-
ISLAND in line 9). More specifically, islands with recent improvements in
their fitness function have a higher likelihood of being selected for evolution.
For each island islandsft], COMIX uses a counter to keep track of the number
of times an island was selected in past generations and the new generated
tests did not lead to any improvements for the corresponding test objective t.
Every time the fitness function for ¢ is improved (decreases) the corresponding
counter is reset to zero. Such a counter is used to assign a selection probability
to each island associated with an uncovered TO. Let C(¢;) be the value of the
counter for the island islandft;], its probability of being selected for evolution
is computed as:

1 1
Ct)+1 3

t;€TO

p(t;) = (1)

1
C(tj)+1

In other words, the larger the value of the counter C(t;), the lower the
probability for the islandft;] to be selected. This heuristic helps to focus the
search towards promising islands and to penalize those with no improvements
in recent generations.

Updating the islands. At the end of each iteration, the island of each uncov-
ered target ¢ is updated with the new individuals stored in the corresponding
offspring island offspringsft] defined for the same target ¢ (lines 18-20). In
particular, the routine UPDATE-ISLANDS sorts parents and offsprings (that
compete with each other) according to the fitness function for the given island
and the top u tests survive for the next evolutionary iteration. In addition,
the random test generated in line 16 is copied to each island offspringsft] and
competes with offsprings and parents when forming the island for the next
iteration.
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Migration policy. Although the islands are evolved independently, migra-
tion strategies are applied in co-evolutionary algorithms in order to migrate
(copy) the strongest individuals in one source island and replace the weaker
one in a target island [52,71]. The motivation is that one good solution in an
island might turn out to be good in another island as well.

In our context, such a strategy might be effective since, though TOs are
independent, some of them might share some commonalities, such as common
substrings needed to evolve for the inputs. For example, when the SUT uses
input validation techniques, it produces error messages when the user-supplied
data does not conform to a specific rule set. In such a scenario, randomly
generated input data (test cases) lead to error messages during the initial
stages of the search. When one island produces the first test case that passes
the input validation, the SUT produces an XML message that is used to
compute the fitness function (distance). This passing test case is useful not
only for the island it belongs to but also for all other islands to evolve.

On the one hand, a migration policy would help spread such good sub-
strings among the different islands. On the other hand, a too high migration
rate could be detrimental, as it would also share genetic material that is only
good for a specific island. Based on our preliminary results, we found that
migrating one single test case per search iteration leads to a higher percent-
age of covered TOs. An analysis on the performance of COMIX with different
migration rates is reported in Section 5.4.

In Algorithm 1, the migration is performed in line 22 using the routine
APPLY-MIGRATION. Such a routine randomly selects one uncovered test
objective t, copies the best test case from the corresponding island islands/t]
into all the other islands islandsft’] (with ¢ # t) and, evaluates it against
the corresponding TOs. APPLY-MIGRATION selects the test case to migrate
exclusively from islands that have improved in recent iterations. This is meant
to avoid repeating the same migrations over iterations and prioritizing the
migration of new, good solutions in recently improved islands.

Archiving. Following the search strategy implemented in MIO and MOSA [61,
62], COMIX focuses the search only on the uncovered TOs (see lines 9, 18,
and 24). Test cases satisfying previously uncovered TOs are stored into an
archive [61,62], which is an external data structure representing the final test
suite. The archive is updated by the routine UPDATE-ARCHIVE whenever
new test cases are generated (lines 4 and 13).

Re-starting strategies. Restarting the search is a common practice in evo-
lutionary algorithms to reduce the probability of converging toward local op-
tima [48]. For this purpose, COMIX restarts the islands for which stagnation
is detected (line 25 of Algorithm 1). Stagnation is detected separately for each
island when the fitness function (distance to the corresponding TO) of the
best test case within the island has not improved in the latest k subsequent
iterations. Islands satisfying the condition in line 25 are restarted, i.e., its u
individuals are deleted and replaced with randomly generated tests (routine
RESTART in line 26).
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Differences with other multi-target strategies. MIO, vMOSA and COMIX
target all TOs at once. However, there is a substantial difference in how they
evaluate the chromosomes. In vMOSA, all TOs are objectives to optimize in a
many-objective scenario; therefore, each individual is evaluated against all the
uncovered TOs (i.e., the edit distance is computed for each uncovered TO).
Even if MIO uses different populations (one for each TO), it still performs
multiple edit distance computations, one for each uncovered TO. Instead, in
COMIX, the TOs are completely independent and, thus, each individual is
evaluated only against the single TO optimized by the island it belongs to.
In other words, COMIX performs one single edit distance computation per
individual.

Another important difference is that COMIX uses the crossover operator
while MIO and vMOSA do not. However, it is worth noting that in COMIX
the crossover is applied within each island and therefore it is used to recombine
chromosomes optimizing the same target TO. Instead, MIO does not use the
crossover by design [10] while in vMOSA we had to disable the crossover
because it is detrimental when recombining chromosomes optimizing different
TOs (see Section 2.2.1).

3.2 Linear Complexity Fitness Function

The original fitness function used by Jan et al. [44] is the string edit distance
(or Levenshtein distance), which is the standard string fitness function used in
search-based testing [7]. Given two strings A and B, the edit distance d(A, B)
is equal to the minimum number of characters to insert, delete and change
in A to obtain B. In our previous paper [47], we improved the edit distance
with a real-coded variant where, whenever a character cl is substituted with
a character c2, the overall distance is increased by the difference of the ASCII
codes of ¢l and c2. In Section 4 and 5, we explain why and show how such a
modification provides additional guidance to the search.

A potential limitation of the edit distance is its high computational cost,
which is O(n x m), with n and m being the lengths of the strings being
compared. When using multi-target strategies for testing XML: vulnerabili-
ties, evaluating each chromosome can be very expensive when using MIO or
vMOSA since it requires to compute the edit distance against each yet uncov-
ered TO. In this paper, we consider a less expensive fitness function; given two
strings A (with length n) and B (with length m), their distance is defined as:

min{m,n}
d(A,B)=n—m|+ Y

i=1

o= bl @)
where a; and b; denote the ASCII codes for the characters in position 7 of
A and B, respectively. With its first term, Equation (1) strongly penalizes
differences in lengths among strings. The second term penalizes differences
in characters in the shortest string by accounting for character differences in
ASCII code. Such a difference is normalized to be always inferior to missing



Search-based Multi-Vulnerability Testing of XML Injections in Web Applications 17

characters due to different lengths. The usage of the character differences in
ASCII code has been proposed in previous studies [7,47] and provide better
guidance than search based on the classical edit distance. In the following, we
refer to the distance in Equation 2 as linear distance since its computational
complexity is O(min{n, m}). In our empirical evaluation, we compare the lin-
ear distance with the real-coded edit distance [47], which has been proven to be
more effective (i.e., provide better guidance) than the classical edit distance.
Though the linear distance is definitely less expensive to compute than the
real-coded edit distance, it provides less guidance to the search and is more
exposed to getting stuck in local optima. This is why an extensive empirical
comparison is required.

4 Empirical Study

This section describes our empirical evaluation, whose goal is to assess our
proposed search-based approach and compare it with state-of-the-art testing
strategies for XML Injection.

4.1 Study Context

We carried out our evaluation on different versions of four web applications,
namely SBANK, SecureSBANK (SSBANK), XMLMAO and M.

The first two subjects are XML-based web applications interacting with a
real-world bank card processing system of a credit card processing company.
They are simplified versions of the actual front-end web applications from one
of our industrial collaborators (a credit card processing company?).

Both SBANK and SSBANK have three versions with a different number of
user inputs, i.e., SBANK1 (SSBANK1), SBANK2 (SSBANK?2) and SBANK3
(SSBANK3). These different versions of the same applications are used to an-
alyze to what extent the number of input parameters affects the ability of
solvers and fitness functions to detect XMLi vulnerabilities. Each application
version receives user inputs, produces XML messages, and sends them to the
back-end web services. All versions of SBANK are vulnerable to XML Injec-
tions as they do not apply any input validation or sanitization routine on user
inputs. On the other hand, SSBANK applications contain validation and san-
itization procedures for one of its user inputs (i.e., IssuerBankCode) that are
applied before generating the XML messages.

The third subject of our study is a vulnerable-by-design, open-source web
application, namely XMLMao [1]. It is a module of the Magical Code Injection
Rainbow (MCIR) - a framework for building a configurable vulnerability test-
bed and is available on GitHub?.

1 The name of the company cannot be revealed due to a non-disclosure agreement
2 https://github.com/SpiderLabs/MCIR



18 Sadeeq Jan et al.

The fourth subject M is an industrial web application with millions of reg-
istered users and hundreds of thousands of visits per day. The application itself
is hundreds of thousands of lines long, communicating with several databases
and more than 50 corporate web services (both SOAP and REST). Out of
hundreds of different HTML pages served by M, in this paper we focus on one
page having a form with two string inputs. As the experiments on this system
had to be run on a dedicated machine (e.g., it could not be run on a research
cluster of computers) due to confidentiality constraints, we could not use all
of its web pages and forms. We chose one example manually, by searching for
non-trivial cases (e.g., web pages with at least two string input parameters
that are not enumerations), albeit not too difficult to analyze, i.e., given the
right inputs, it should interact with at least one SOAP web service. Due to
non-disclosure agreements and security concerns, no additional details can be
provided on M.

The selected systems have varying size and complexity, are written using
different programming languages and technologies (i.e., Java and PHP) and
interact with a variety of back-end web services. In addition, these web appli-
cations differ in the number of user inputs as well as their processing routines:
SBANK and XMLMAO have no input validation or sanitization, while SS-
BANK and M use various routines to validate and sanitize user inputs. More-
over, all these web applications have already been used in the literature [44] to
assess the effectiveness of search-based testing techniques for XMLi detection.

Test Objectives Generation. In our testing context, a Test Objective (TO)
is an XML message with malicious content that may result into an XMLi
attack on the back-end web services.

For each subject application, we created 50 Test Objectives (T'Os) based on
different types of XMLi attacks [46]. These TOs are created using SOLMI [46],
an automated tool designed for generating successful XMLi attacks. We se-
lected this tool as it outperforms state-of-the-art attack generation tools [44].
Moreover, it creates malicious XML messages (test objectives) covering the
four most common and critical types of XML: attacks that, if generated by
the front-ends, could compromise the back-end services.

4.2 Research Questions

In this paper, we investigate the following three research questions:

RQ1: What is the best search-based algorithm for generating XMLi at-
tacks? This research question aims at finding the most effective and efficient
algorithm for detecting XMLi vulnerabilities. In particular, we compare the
performance of the proposed COMIX algorithm with vMOSA, MIO, and the
single-target strategy, while using two different distance functions.

RQ2: Is the execution time to achieve maximum coverage for a given set of
TOs acceptable in practice? We investigate the performance of COMIX, which
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is the best approach according to the results from RQ1, from the perspective
of security analysts who want to uncover as many XMLi vulnerabilities as
possible within practical execution time.

RQ3: What is the impact of using the linear distance on the fitness calcu-
lation time? This research question investigates the impact of the alternative
fitness function proposed in this paper (linear distance) on the time needed to
evaluate candidate solutions. This is intended to better explain the results in
RQ1. Therefore, we compare the amount of time spent on fitness calculations
by COMIX for the two fitness functions: edit distance and linear distance.

To answer the research questions above, we use the following two perfor-
mance metrics: Coverage and the Area Under the Curve (AUC).

Coverage (C) is the ratio |Covered|/|Feasible|, where Covered denotes the
TOs covered by a given algorithm, while Feasible is the set of feasible TOs. To
determine the feasible TOs, we carefully inspected the source code of the front-
ends, their input validation and sanitization routines, and we analyzed each
TO generated by SOLMI. Notice that all evaluated testing strategies are black-
box and therefore do not require access the source code. We performed this
analysis only for the purpose of computing the coverage scores. We found that
all 50 TOs generated by SOLMI for the SBANK versions and for XMLMAO
are feasible. In contrast, the number of feasible TOs for all SSBANK versions
is 34 (out of 50), whereas for M it is only 2.

While coverage is typically used to assess effectiveness at the completion
of the search, analyzing coverage over time provides more fine-grained infor-
mation about the efficiency of each algorithm. The simplest methodology to
perform such an analysis consists of plotting coverage over running time, for
each iteration/generation of the compared algorithms (coverage graph). To
better quantify the differences among algorithms, we use AUC of the cover-
age graphs, computed according to the trapezoidal rule [24]. The AUC is a
scalar value in the range [0, 1]; higher AUC values indicate that an algorithm
achieves higher coverage in less execution time. Since the search time used in
our experiment is to some extent arbitrary and that, in practice, people may
have less time than required to achieve maximum coverage, AUC provides a
useful additional indicator about what search strategy is to be selected.

4.3 Experimental Procedure

We carried out a number of experiments on each version of the web applications
with the four algorithms considered in this paper. For each experiment, and
for each algorithm run, we recorded the time needed to cover each TO (if
covered), the total execution time, the time spent on the fitness calculations,
and the time required for executing tests. All execution times are recorded in
minutes.

To account for the randomized nature of the optimization algorithms and
to conduct a reliable statistical analysis, we ran each algorithm 30 times on
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each version of the subject applications. There are total seven versions of
our open source subjects, i.e., three for SBANK, three for SSBANK and one
for XMLMao. We allocated 30 minutes to each experiment resulting in an
execution time of 420 hours® for all experiments. Since all these experiments
had to be run twice, i.e., for 5 and 50 TOs, it would normally result in 840
hours of total execution time. To reduce it to a manageable time, we used a
cluster of computers. A separate virtual machine (node) was dedicated for the
experiments involving each application version. Hence a total of 14 nodes were
used which reduced the total execution time from 840 hours to 60 hours. In
contrast, the experiments on the industrial case study M had to be run on a
dedicated physical machine, and were repeated only 10 times.

For answering RQ1, we first analyzed the coverage and the AUC values
obtained by each algorithm. Next, we applied the Friedman’s test [33] to verify
whether the differences among the algorithms are statistically significant. The
Friedman’s test is a non-parametric test for multiple-problem analysis and it
is the most suitable statistical test for comparing different randomized algo-
rithms when considering multiple benchmarks [33], i.e., the software systems in
our case. This test has been used in various CEC competitions (e.g., [19]) and
in the latest SBST competition [63] to compare evolutionary algorithms and
testing tools. For the level of significance, we used a=0.05. While the Fried-
man’s test indicates whether a group of algorithms are significantly different,
a statistical test for multiple pairwise comparisons is needed to understand
which pair of algorithms are significantly different in terms of AUC values.
To this aim, we used the pairwise Wilcoxon test with a significance level of
a=0.05. Because of the multiple comparisons, the p-values of the Wilcoxon test
were further adjusted using the Holm-Bonferroni procedure [41] for correcting
the significance level.

To answer RQ2, we analyzed the execution time required to achieve max-
imum coverage with COMIX and assessed the practical usability of our ap-
proach in a realistic context. To this aim, we collected the time at which each
TO is covered in a given run; then, we computed the elapsed time between
the beginning of the search and the time in which we detect the last covered
TO. Notice that, in practice, security analysts may stop the search before con-
suming the entire search budget if no further improvement is observed in the
distance values for all uncovered TOs.

To answer RQ3, we investigated the execution time of the fitness function
computations. For each subject, we compared the execution time spent on
the fitness calculation when using the two distance functions, i.e., the edit
and the linear distances. This analysis helped us understand the magnitude of
the benefits obtained from using the linear distance over the traditional edit
distance.

3 7 app. wersions x 4 algorithms x 30 minutes X 30 repetitions =
25200 minutes or 420 hours
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4.4 Parameter Settings

We follow the recommendations in the related literature for setting the pa-
rameter values of the search algorithms, as detailed below:

— Population size: for the single target algorithm and for vMOSA we use a
population size of 50 as recommended by recent studies in search-based
software testing [11,61,62]. For MIO, the size of each population was set to
10 individuals [10]. Finally, in COMIX the size of each island is dynamically
computed in each generation as:

A = round(#Total Size/#Uncovered TOs) + 1 (3)

where #Total Size denotes the total number of test cases generated in
each iteration of COMIX. For a fair comparison with vMOSA, we set
#Total Size to 50 test cases.

— Mutation: It has been established in the literature [17,40,67,69] that a mu-
tation rate based on population size and chromosome length achieves better
performance. We confirmed this in our context with some preliminary ex-
periments comparing this strategy with other mutation rates recommended
in [25,35]. Therefore, we use p,, = (1.75)/(AV1) as mutation rate, where
is the length of the chromosome and A is the population size.

— Crossover: We use the same crossover rate of 0.8 for the single-target ap-
proach as used in its original implementation [44]. As discussed above, for
the many-objective algorithms considered in this paper, we do not apply
Crossover.

— Search Timeout: For each experiment on the open-source systems, we al-
locate a search budget of 30 minutes. For the industrial system M, we use
a budget of 180 minutes, as each test execution takes much longer. The
search also stops when all feasible TOs are covered.

Regarding the other configuration parameters of the experiments, we fol-
lowed the settings that were empirically found superior in the original imple-
mentation of the single-target approach [44]. In particular, we used an initial
population consisting of strings with variable lengths. Further, for generating
input strings, we used a reduced alphabet set consisting of only the characters
found in the T'Os instead of the complete alphabet of all possible characters.

5 Results

This section describes the results of our empirical evaluation to answer the
research questions defined in Section 4.2.
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Table 1 Coverage achieved when using the edit distance (bold numbers indicate best results
across techniques)

COMIX MIO vMOSA Single

System # Inputs | 7 TOs Mean Sd Mean S.d Mean S.d Mean . S.d

1 5 1.0000 - 1.0000 - 1.0000 - 1.0000 -
SBANK 2 5 1.0000 - 0.8800  0.1627 | 0.9933 0.0365 | 0.9600 0.0968

3 5 0.9867 0.0507 | 0.8467 0.2446 | 0.7533 0.2270 | 0.8867 0.1252

1 5 1.0000 - 1.0000 - 1.0000 - 1.0000 -
SSBANK 2 5 1.0000 - 0.9800  0.0610 | 1.0000 - 0.1000  0.1365

3 5 1.0000 - 0.8000  0.4068 | 0.9400 0.2298 | 0.0333  0.0758
XMLMAO 1 5 1.0000 - 1.0000 - 1.0000 - 0.9933  0.0365

1 50 1.0000 - 0.0140 0.0196 | 0.0413 0.0389 | 0.2860 0.1937
SBANK 2 50 0.4553 0.0918 | 0.0006 0.0037 - 0.0000 | 0.0467  0.0579

3 50 0.2120 0.0582 | 0.0000 - 0.0000 - 0.0000 -

1 50 0.9971 0.0118 | 0.0108 0.0238 | 0.0373 0.0540 | 0.1069  0.0554
SSBANK 2 50 0.8160 0.0482 | 0.0284 0.0350 | 0.0275 0.0362 | 0.0000 -

3 50 0.4108 0.1011 | 0.0000 - 0.0000 - 0.0000 -
XMLMAO 1 50 1.0000 - 0.6153  0.0985 | 0.3813 0.0908 | 0.3247  0.0374
M 2 50 0.7777 0.2635 | 0.6500 0.3374 | 0.6500 0.2415 | 0.0000 -

Table 2 Coverage achieved when using the linear distance (bold numbers indicate best
results across techniques)

COMIX MIO vMOSA Single
System # Inputs | # TOs Mean Sd Mean S.d Mean S.d Mean S.d
1 5 1.0000 - 0.9800 0.0610 | 1.0000 - 0.8467  0.1871
SBANK 2 5 1.0000 - 0.9333 0.1213 0.9733 0.0691 | 0.1200 0.1243
3 5 1.0000 - 0.6400 0.1610 0.8600 0.1192 | 0.0133  0.0507
1 5 1.0000 - 1.0000 - 1.0000 - 0.8200  0.1846
SSBANK 2 5 1.0000 - 0.5067  0.3226 | 0.9933  0.0365 | 0.0067 0.0365
3 5 0.8813 0.2583 0.0267 0.1142 0.8800 0.0997 | 0.0000 -
XMLMAO 1 5 1.0000 0.0000 0.9667 0.0758 | 1.0000 - 0.8133 0.1814
1 50 1.0000 - 0.9807 0.0388 | 1.0000 - 0.6860  0.0536
SBANK 2 50 0.9320 0.0469 0.9693 0.0355 | 0.9667 0.0384 | 0.1293  0.0489
3 50 0.9716 0.0434 0.5133 0.1342 0.9407 0.0350 | 0.0307 0.0221
1 50 0.9117 - 0.9961 0.0128 0.8637 0.1762 | 0.6824 0.0879
SSBANK 2 50 0.4067 0.2628 0.3039 0.1272 0.2167 0.2817 | 0.0020 0.0075
3 50 0.3510 0.4025 0.1265 0.1983 0.2686 0.3977 | 0.0000 -
XMLMAO 1 50 1.0000 - 0.8247 0.1217 0.9967 0.0130 | 0.3967 0.0847
M 2 50 0.2777 0.44095 | 0.8500 0.2415 0.4500 0.1581 | 0.0000 -

5.1 RQ1: What is the best search-based algorithm for generating XMLi
attacks?

Tables 1 and 2 show the coverage results of each algorithm when using the
edit and the linear distances, respectively. The AUC results are shown in
Tables 3 and 4.

According to Table 1, with the edit distance as fitness function, COMIX
achieves 100% of coverage most of the time when optimizing only five TOs.
For the larger set of TOs, its coverage ranges between 21% and 100%. Instead,
MIO and vMOSA are very competitive only when dealing with five TOs: the
coverage obtained by vMOSA ranges between 75% and 100% while for MIO
it ranges between 80% and 100%. However, when the goal is to optimize 50
TOs, MIO and vMOSA yield zero coverage in most of the cases. The only
exception is XMLMAO, for which vMOSA and MIO achieve 38% and 61%
coverage, respectively; for the same subject, COMIX reaches a coverage of
100%. The single-target algorithm turns out to be the worst search strategy:
it achieved a low coverage (<10%) for SSBANK with two and three inputs
even when targeting only five TOs. Similar to MIO and vMOSA, the single-
target algorithm often yields zero coverage when optimizing the largest set of
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Table 3 AUC achieved when using the edit distance (bold numbers indicate best results
across techniques)

COMIX MIO vMOSA Single

System # Inputs | # TOs Mean S.d Mean S.d Mean S.d Mean S.d

1 5 0.9759 0.0039 | 0.8122 0.0283 | 0.8817 0.0271 | 0.9689  0.0037
SBANK 2 5 0.9131 0.0126 | 0.4945 0.1008 | 0.6236 0.0589 | 0.8878  0.1099

3 5 0.8665 0.0465 | 0.3485 0.1258 | 0.2824 0.1053 | 0.8209  0.1165

1 5 0.9781 0.0068 | 0.8369 0.0286 | 0.9062 0.0166 | 0.9790 0.0060
SSBANK 2 5 0.9419 0.0190 | 0.8131 0.1069 | 0.8421 0.0342 0.1340 0.1755

3 5 0.9117 0.0242 | 0.5744 0.2934 | 0.6165 0.1692 0.0245 0.0646
XMLMAO 1 5 0.9696  0.0057 | 0.9044 0.0161 | 0.9165 0.0209 | 0.9609  0.0367

1 50 0.5637 0.0590 | 0.0010 0.0014 | 0.0142 0.0166 0.2829 0.1919
SBANK 2 50 0.1412 0.0394 | 0.0001  0.0003 | 0.0000  0.0000 0.0459 0.0570

3 50 0.0540 0.0182 | 0.0000 - 0.0000 - 0.0000 -

1 50 0.6007 0.0582 | 0.0018 0.0043 | 0.0094 0.0150 | 0.1054  0.0547
SSBANK 2 50 0.3497 0.0399 | 0.0071 0.0107 | 0.0061 0.0103 | 0.0000 -

3 50 0.1185 0.0348 | 0.0000 - 0.0000 - 0.0000 -
XMLMAO 1 50 0.7983 0.0351 0.3788  0.0496 | 0.2903 0.0516 0.3250 0.0407
M 2 50 0.3450 0.1646 | 0.2292 0.1288 | 0.3013 0.1018 0.0000 -

Table 4 AUC achieved when using the linear distance (bold numbers indicate best results
across techniques)

COMIX MIO vMOSA Single
System # Inputs | # TOs Mean S.d Mean S.d Mean S.d Mean S.d
1 5 0.9977  0.0005 | 0.9509  0.0600 0.9934 0.0010 0.8452  0.1869
SBANK 2 5 0.9901 0.0125 | 0.8335 0.1054 0.9544 0.0679 0.1197  0.1239
3 5 0.9364 0.1241 | 0.5861  0.1602 0.8477 0.1158 0.0133  0.0506
1 5 0.9944 0.0010 | 0.9909 0.0015 0.9913 0.00085 | 0.8168 0.1844
SSBANK 2 5 0.9825 0.0165 | 0.4594  0.3091 0.9773 0.03548 | 0.0066  0.0363
3 5 0.6973 0.2971 | 0.0090 0.0356 | 0.7080 0.2808 0.0000 -
XMLMAO 1 5 0.9230 0.0211 | 0.8400 0.0650 | 0.9550 0.0097 0.7925 0.1764
1 50 0.9216 0.0082 | 0.7264  0.0629 | 0.9298 0.0316 0.6845  0.0535
SBANK 2 50 0.7358  0.0406 | 0.4334 0.0464 | 0.8013  0.0571 | 0.1288  0.0484
3 50 0.8979 0.0464 | 0.2508  0.1039 0.8607 0.0443 0.0302 0.0218
1 50 0.7724 0.0624 | 0.7236  0.0240 0.7511 0.1597 0.6800  0.0875
SSBANK 2 50 0.2535 0.1641 | 0.1892 0.0885 0.1826 0.2176 0.0019  0.0074
3 50 0.2564 0.3413 | 0.0618  0.0995 0.2035 0.3324 0.0000 -
XMLMAO 1 50 0.74924  0.0508 | 0.5642  0.0992 | 0.7533 0.0524 0.3947  0.0839
M 2 50 0.0020 0.0038 | 0.0154 0.0044 | 0.0020 0.0060 0.0000  0.0000

TOs. For those cases where COMIX achieves the same level of coverage as
MIO and vMOSA, we compare the corresponding AUC values, as reported
in Table 3. As we can observe from the table, COMIX achieved higher AUC
values for all cases where coverage results were similar to other algorithms. For
example, all algorithms achieved 100% coverage for SBANK with 1 input, but
the AUC value for COMIX is higher. This means that, for this subject, our
co-evolutionary algorithm was able to cover all TOs in SBANK in less time
compared to the alternative algorithms.

Coverage results of the algorithms when using the linear distance are shown
in Table 2. With this fitness function, the algorithms achieved 90-100% cov-
erage in 11 (COMIX), 9 (vMOSA) and 7 (MIO) case study settings out of
16. The corresponding AUC values are also in accordance with the cover-
age results, as reported in Table 4. For the smaller set of five TOs, vMOSA
achieved higher AUC values than COMIX in 1 out of 7 experiments. For 50
TOs, COMIX exhibited the highest AUC values in most of the experiments.
Similar to the results with edit distance, the single-target algorithm was found
to be the worst when using the linear distance.

Figure 2 depicts the coverage obtained (during the first five minutes of the
search) by the four algorithms when using linear distance, for the experiment
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Fig. 3 % Coverage achieved by different algorithms when using linear distance, for SBANK
with one-input and 50 TOs

with the one-input version of SBANK when optimizing 50 TOs. As shown in
the figure, COMIX exhibited the best performance by achieving 100% coverage
in less than three minutes, while vMOSA needed more than four minutes to
reach the same level of coverage. In contrast, the single-target search and MIO
could only achieve less than 40% coverage within five minutes. As a result,
COMIX has the highest AUC value among all alternatives.

Statistical analysis. According to the Friedman’s test, the various combi-
nations of distances and algorithms have statistically different AUC values
(p-value = 2.187°) with 50 TOs. To help understand which are the best com-
binations, the final ranking produced by the Friedman’s test is reported in
Table 5. The results of the pairwise comparison (the pairwise Wilcoxon test)
are also reported in Table 5. As we can notice, COMIX with linear distance
is ranked first and is significantly better than all other combinations in the
comparison. vMOSA (the MOSA variant customized for XMLi) with linear
distance is ranked second and statistically outperforms all other combinations.
Finally, we notice that MIO with linear distance is ranked third but it is not
statistically better then COMIX with edit distance, which is ranked fourth.

On the subjects considered, our results suggest that the Many-Objective
Cooperative Co-Evolutionary Algorithm (COMIX) using linear distance
is the most effective and efficient algorithm for detecting XMLi vulner-
abilities.
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Table 5 Ranking produced by the Friedman’s (smaller values of Rank indicate better AUC
values) and statistical significance by the pairwise Wilcoxon test.

ID Algorithms Rank Significantly better than

(1)  COMIX-Lin 188 (2), (3), (4), (5), (6), (7), (8)
(2)  vMOSA-Lin 2.25  (3), (4), (5), (6), (7), (8)

(3) MIO-Lin 3.50  (5), (6), (7), (8)

(4) COMIX-Ed 3.75  (6), (7), (8)

(5) MIO-Ed 531 (8)

(6) SINGLE-Lin  5.63 -

(7)  vMOSA-Ed 6.81 -

(8) SINGLE-Ed 6.88 -

Table 6 Average time (in minutes) required to reach the maximum coverage for 50 TOs
when executing COMIX with linear distance

System SBANK SSBANK XMLMAO M
# Inputs 1 2 3 1 2 3 1 2
Time 3.83 1544 5.84 | 9.04 21.37 2241 19.96 175.87

5.2 RQ2: Is the execution time to achieve maximum coverage for a given set
of TOs acceptable in practice?

Table 6 reports the execution time required to achieve the maximum coverage
by COMIX with linear distance, which is the most efficient and effective strat-
egy according to the results of RQ1. For this analysis, we focus only on 50 TOs
as, in practice, security analysts are interested in discovering as many XMLi
vulnerabilities as possible within minimum time. As we can observe from the
table, the execution time ranges between 3 and 23 minutes for SBANK, SS-
BANK, and XMLMAO. The maximum running time is that of SSBANK with
three inputs. For the industrial case study (e.g., M) the running time is up
to 175 minutes (e.g., less than three hours). Such a larger running time is
because test cases in M are more expensive to run compared to the other
systems. Indeed, in SBANK, SSBANK, and XMLMAO, one single test case
execution corresponds to 1-2 milliseconds on average compared to 400ms spent
on one single test execution in M, on average. Based on our experience, finding
XMLi vulnerabilities in web-applications in (at most) few hours is reasonable
in practice as the vulnerability analysis can be run overnight.

Therefore, for RQ2, we conclude that:

The Many-Objective Cooperative Co-Evolutionary Algorithm (COMIX)
with linear distance is expected, in most situations, to have an accept-
able execution time and can be used to find XMLi vulnerabilities within
practical time constraints.




26 Sadeeq Jan et al.

Table 7 Fitness calculation times (% of total execution time) for COMIX with 50 TOs
when using Edit Distance (FCeq) and Linear Distance (FCip)

System # Inputs | FCqq FCiin
1 85.10 0.59
SBANK 2 85.07 0.84
3 95.26 1.34
1 80.15 0.64
SSBANK 2 73.43 0.43
3 92.88 1.97
XMLMAO 1 14.03 0.04
M 1 1.04 | 0.00093

5.3 RQ3: What is the impact of the linear distance on the fitness calculation
time?

To better understand the impact of the fitness function on the running time
of COMIX, Table 7 reports the string distance calculation time when using
edit distance (FCeq) and linear distance (FCy;y), for the set of 50 TOs.

As we can observe from the table, the distance calculations for the edit
distance are very expensive compared to linear distance. For instance, for
SBANK with one input, COMIX spent 84.33% of the total execution time
on the string distance calculations. On the other hand, when using the linear
distance, the distance calculations took less than 1% of the total execution
time. Similar differences in the distance calculation times can be observed for
the other applications.

However, the impact of distance calculations is strongly related to the
complexity of the case study. For example, although the edit distance is roughly
1,000 times slower than the linear distance on M, such cost is only 1% of the
fitness evaluation. The more complex an application is, the less impact the
choice of distance will be on performance.

To summarize, the edit distance is more expensive to compute and can
consume most of the search budget because of its higher computational com-
plexity, i.e., O(n x m), as opposed to linear distance with its linear time com-
plexity O(n). While the linear distance may provide less search guidance than
the edit distance, its low computation time is a major advantage in terms
of search effectiveness as it can enable the execution of many more COMIX
generations within the same time.

Therefore, for RQ3, we can conclude that:

Using the linear distance significantly reduces the fitness calculation
time. This, in turns, can lead to better performance of the search al-
gorithms (e.g., COMIX) despite providing less guidance.

5.4 The impact of the migration rate on the performance of COMIX

As described in Section 2.3, in co-evolutionary algorithms, the strongest indi-
vidual of the winning island is migrated to others islands to improve genetic
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Table 8 TO Coverage (%) achieved with different migration percentages when using
COMIX with linear distance for SBANK.

# Migrated % Covered TOs
Tests in 2 mins in 5 mins
0 (0%) 11.43 29.60
1(2%) 53.60 93.11
2 (4%) 46.80 95.77
3 (6%) 47.40 94.40
5 (10%) 33.20 89.20
10 (20%) 35.20 81.80
50 (100%) 7.60 45.60

diversity. However, in our context, the TOs are different and independent from
each other: if one test case covers one TO, it cannot cover other TOs at the
same time. This specificity may render the migration ineffective.

In our empirical study, the migration rate was set to one single test case
selected from the island that wins the migration. To assess whether the mi-
gration policy impacts the performance of COMIX, we ran our algorithm with
different migration rates. Table 8 reports the TO coverage achieved by running
COMIX when varying the number of migrated tests from zero (no migration)
to 50 (i.e., all test cases are migrated to different islands). For the sake of
analysis, we focus on SBANK with three test inputs and use the linear fitness
function. The leftmost column in the table reports the number of migrated
individuals while the second and third columns report the percentage of TOs
covered within two and five minutes of execution, respectively. Since each ex-
periment was repeated 10 times to account for the randomized nature of the
algorithm, we report the average values for TO coverage.

As we can observe from the table, coverage is very low in the absence of
migration: less than 12% and 30% of the TOs are covered within the first two
and five minutes, respectively. Instead, when the migration rate is increased
from 0 to 10%, a drastic increase in coverage can be observed within the
same execution time, i.e., from 29.60% to 93%-95% for five minutes. However,
further increases in migration rate, from 10% to 100%, lead to a lower number
of covered TOs within the same amount of time. This trend in coverage is
due to the increased overhead of the migration policy: every time a test case
t is migrated from the source island to the target ones, t is re-evaluated to
compute the distance function to cover the corresponding TOs. When the
migration rate is 100%, then all test cases are migrated and evaluated against
all TOs, similarly to vMOSA and MIO.

Finally, from a statistical point of view (using the Wilcoxon test), COMIX
with the setting used in our empirical study (e.g., one test case migrated per
iteration) achieves a significantly higher coverage than all other settings with
two minutes of search budget (all p-values are <0.01). However, when the
search time is set to five minutes, there is no statistically significant difference
when varying the migration rate from 2% to 10%, though zero or rates higher
than 10% still lead to significantly lower coverage.
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6 Threats to validity

Threats to internal validity come from the fact that our empirical study is
based on a software prototype. We implemented different search algorithms,
and possible differences in performance might be due to bugs or inefficiencies
in their implementation details. We carefully tested our implementations, but
we cannot guarantee that they are bug-free.

The fact that a web application can be led to send malicious messages to
internal web services does not necessarily mean that such web services will be
compromised. It depends on how such service will process these messages. As
a result, the number of found TOs is only an upper bound to the number of
discovered vulnerabilities that can be exploited. In any case, it is still safer if
this kind of malicious messages are never sent, as bugs in new releases of these
internal web services could lead to security breaches.

Regarding conclusion validity, our study is based on randomized search
algorithms, which exhibit some degree of random variation in their results.
Therefore, each experiment was repeated 30 times (10 for the industrial sys-
tem), and the resulting data were analyzed with appropriate statistical tests,
like for example the Friedman’s test [33].

Threats to external validity come from the fact that any feasible empirical
study on such a topic is necessarily limited to a small number of systems
and inputs, mostly given the substantial computational time required to run
our experiments (about 800 hours). In our case, we rely on three open source
systems and an industrial one. More case studies are required to be able to
better generalize the findings of this paper. However, as the used industrial
system is a very typical enterprise application, we can expect that our novel
technique could be successful with other similar systems.

7 Related Work

In this section, we describe work related to testing techniques for vulnerability
detection in web applications. We also discuss search-based testing and our
previous work on XMLi [44,47] that we extend in this paper.

7.1 Security testing of Web applications/services

Security testing techniques of web applications can be divided into two main
categories: based either on (i) White-box testing or (ii) Black-box testing.

White-box testing: In White-box testing techniques, information about
the internal workings of the SUT (web application) is available to the tester,
e.g., source code, bytecode and/or design documentation. Such information
is used to generate test inputs (attacks) to assess the security of the web
application.

Several white-box testing techniques [56] have been proposed in the litera-
ture [20,36,43,49,50,53,56] for the detection of web application vulnerabilities,
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e.g., SQL Injection and Cross-site Scripting. One of such white-box security
testing techniques is “taint” analysis [50,74], which is used to identify vulner-
able execution paths by statically detecting the data coming from untrusted
(tainted) sources. Halfond et al. [36,37] proposed a taint analysis based ap-
proach and a tool, namely WASP, for protecting web applications against
SQL Injection attacks. Their approach identifies trusted data sources, use dy-
namic tainting to track trusted data at runtime, and allow only trusted data
to be used in SQL queries. Clause and Orso [22] also proposed an approach
and tool, Penumbra, based on dynamic tainting. Penumbra identifies failure-
relevant inputs from a given set of failure-inducing inputs and an observable
faulty behavior of the SUT. Avancini and Ceccato [13] have also proposed
an approach to improve taint analysis by integrating with genetic algorithms
for detecting cross-site scripting vulnerabilities in web applications. Their ap-
proach first identifies the vulnerable execution paths via taint analysis, and
then use genetic algorithms to make the execution flow traverse the identi-
fied target paths. Another white-box testing approach based on static analysis
and runtime protection is proposed by Huang et al. [43]. Their approach uses
Type-based [70] and data-flow analysis [6] to identify vulnerable parts of the
code (those using untrusted data) and inserts sanitization routines there.

All of the above white-box testing approaches require access to the source
code of the web application and may need to modify it (e.g., by doing code
instrumentation) of the web application. At times, this might not be feasible in
practice, e.g., when the security testers are not the developers of the applica-
tion. Even in the presence of source code, such techniques can only work with
known attack patterns that might become out-dated. Dynamic code analyses
have also intrinsic limitations due to their complexity, e.g. tools like WASP
do not handle “primitive types, native methods, and reflection” [36]. And a
white-box testing tool is limited only to the specific type of language it sup-
ports, e.g., a tool targeting Java will not be able to handle all the other popular
languages used in web/enterprise development such as C#, PHP, JavaScript,
Python, Ruby on Rails. This is a particular problem considering current trends
in industry, where different languages are often used together in the same
microservice architecture. Moreover, none of these techniques target XML
vulnerabilities.

In contrast, COMIX and our baselines are black-box security testing tech-
niques targeting XMLi. They do not rely on source code and search for un-
known inputs that can detect XML in the SUT. They can be applied to any
type of language in which the web applications are written (e.g., in our case
study, both PHP and Java were used).

Black-bozx testing: Black-box security testing techniques are widely used
in scenarios where no insights about the internal working (e.g., source code) of
the application are provided to the tester. There is a large research body inves-
tigating such techniques for the detection of web application/services vulnera-
bilities, e.g., [18,21,42,53,57]. A common issue with most of these approaches
is the large number of false positives, which makes their application in practice
difficult.
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Bau et al. [16] performed a study to evaluate the effectiveness of the state-
of-the-art in automated vulnerability testing of web applications. Their results
demonstrate that such approaches are only good at detecting straightforward
historical vulnerabilities but there exist more room for research in detecting
advanced forms of vulnerabilities and lowering the false positive rates of the
current state-of-the-art. Besides, none of these approaches are dedicated to the
detection of XML injections, the objective of this paper.

In the following section, we discuss existing literature on XMLi vulnera-
bilities and techniques that are closely related to our work, i.e., search-based
testing.

7.2 Testing for XML Injections:

Unlike SQL injection and cross-site scripting vulnerabilities that received much
attention (e.g., [8,9,32,51]), only limited research targets XML injections. An
approach for the detection of XML injection attacks is presented by Rosa et
al. [66]. They proposed a strategy to first build a knowledge database from
the known attack patterns and then use it for detecting XML injection at-
tacks, when they occur. This approach is an improvement over the traditional
signature-based detection approaches but it focuses on intrusion detection and
not on security testing. In contrast, our work targets test data generation to
detect XML injection vulnerabilities in web applications.

A basic testing methodology for XML injections is defined by OWASP [3].
It suggests to first discover the structure of the XML by inserting meta-
characters in the SUT. The revealed information, if any, combined with XML
data/tags can then be used to manipulate the structure or business logic of
the application or web service. OWASP also provided a tool named WS-
FUZZER [4] for SOAP penetration testing with fuzzing features. However,
as reported in [46], the tool could not be used with WSDLs having a complex
structure (nested XML elements) and is only useful in scenarios where the web
services are directly accessible for testing.

In our previous work [46], we discussed four types of XML injection attacks
and proposed a novel approach for testing web services against these attacks.
Our evaluation found the approach very effective compared to state-of-the-art
tools. However, it focuses on the back-end web services that consume XML
messages and are directly accessible for testing. In contrast, our current work
targets the front-ends (web applications) of SOA systems that produce XML
messages for web services or other back-end systems.

In addition, while in [46] we used constraint solving and input mutation
for manipulating XML messages, in this paper we use search-based testing
techniques to generate test inputs for the front-end of the SUT that produces
malicious XML messages. Such inputs can then help detect XMLi vulnerabil-
ities in web applications that can be exploited through the front-ends.
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7.3 Search-based approaches for security testing:

Search-based software testing has mostly focused on functional testing [31,
38,39, 59] while non-functional aspects, and especially security testing, have
received only limited attention [5,73]. Avancini and Ceccato [14] have used
search-based testing for detecting cross-site scripting vulnerabilities in web ap-
plications. First, they use static analysis to detect candidate cross-site scripting
vulnerabilities in PHP code. A genetic algorithm together with a constraint
solver is then used to search for input values that can trigger the vulnerabil-
ities. In contrast, our approach is a black-box testing technique that targets
XMLi vulnerabilities.

Thomé et al. [72] also used a search-based technique for the security testing
of web applications. Their approach systematically evolves inputs to expose
SQL injection vulnerabilities by assessing the effects on SQL interactions be-
tween the web server and database. Our search-based testing approach also
focuses on evolving test inputs but we address a different type of vulnerabil-
ities, XMLi attacks. Moreover, Thomé et al. used a fitness function based on
a number of factors that indicate the likelihood that the output is resulting
from SQLi attacks. In contrast, we use a fitness function based on the distance
between the SUT’s outputs and automatically derive test objectives based on
attack patterns.

There exist other vulnerability detection techniques [28,65] that rely on
evolutionary algorithms. Unlike our black-box approach for XMLi testing,
these techniques are white-box and are used for buffer overflow detection.

To the best of our knowledge, search-based testing has never been used for
the detection of XMLi vulnerabilities in web applications that deliver XML
messages to corporate web services.

Previous work and current extension: In our previous work [44], we
presented a search-based approach for generating test inputs exploiting XML
injection vulnerabilities in front-end web applications. We used the standard
Genetic Algorithm (SGA) along with the string-edit distance (Ed) to find
malicious test inputs. We evaluated our approach on several web applications
including a large industrial application and we also compared it with random
search. We found our proposed search-based testing approach to be very effec-
tive, as it was able to cover vulnerabilities in all case studies while the random
search could not, in any single case. We further extended this work in [47]
by investigating two additional optimization algorithms, namely Real-coded
Genetic Algorithm (RGA) and Hill Climbing (HC'). We also introduced a dif-
ferent fitness function i.e., the Real-coded Edit Distance (Rd), which further
improves the traditional string edit distance (Ed). Our empirical evaluation
showed that RGA with Rd is significantly superior to the previous approach
[44] in terms of both effectiveness and efficiency.

Both of our previous works [44,47] are based on single-target search-based
techniques (i.e., searching for each malicious message independently), which
may face scalability challenges with large applications where the search is re-
quired for many potential malicious messages to uncover multiple vulnerabili-
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ties at the same time. The current paper extends our previous works in several
ways. First, we proposed a novel co-evolutionary testing technique, namely
COMIX. Second, we investigated and adapted the two multi-target search
techniques, namely MOSA and MIO, which are the two most recent multi-
target white-box unit testing techniques. Finally, we investigated the usage of
an alternative fitness function, which is less expensive than our previously used
fitness functions (Ed and Rd). Our results show that the multi-target tech-
niques outperform the single-target and our novel technique COMIX, when
used with our proposed fitness function, is significantly more effective and
efficient than all investigated alternatives.

8 Conclusion and Future Work

Security testing of the front-ends of enterprise systems is crucial for their over-
all security. Such front-ends are the first point of contact with the user. For
example, if they are vulnerable to XML Injections (XMLi), then they can be
tricked to generate and send malicious XML messages to internal services (e.g.,
SOAP web services). And though there exist testing techniques that can pos-
sibly lead to the generation of malicious, potentially harmful XML messages,
these techniques target each malicious XML message one at a time. Therefore,
they are inefficient when testing the security of larger web applications that
require testing for many potential XML messages, especially in the presence
of strict input validation/sanitization routines and time constraints.

In this paper, we have presented a novel co-evolutionary testing technique,
namely COMIX, to address the scalability challenges of the existing single-
target approach for XMLi. Moreover, as baselines of comparison, we have
investigated and adapted the two most recent multi-target, white-box unit
testing techniques, namely MOSA and MIO, to XMLi testing. Last, we have
proposed and evaluated an alternative fitness function, which is less expensive
than the string edit distance used in the literature to guide the search for
matching strings.

We have carried out an experimental evaluation to compare our proposed
co-evolutionary algorithm (COMIX) and fitness function with existing ap-
proaches. Our subjects for evaluation include: (i) six different variants of a
front-end web application for a real-world bank card processing system, (ii)
one open-source web application vulnerable to XMLi, and (iii) one large real-
world industrial application.

Consistent with our expectations, our case study results provide empirical
evidence that COMIX, when combined with our proposed fitness function, is
significantly more effective and efficient in finding XMLi vulnerabilities, when
compared to other combinations of search algorithms and fitness functions,
including both multi-target and single-target techniques. Though more studies
are of course required to confirm our results, COMIX is not based on any
assumption that is particularly advantageous for our case studies.
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COMIX is not limited to XML Injections. It is a generalizable approach and
can be adapted to test web applications for other types of attacks. To do so, one
only needs to modify the Test Objectives (TOs) according to the corresponding
types of attacks. In our context, TOs are malicious XML messages which are
essentially strings for the proposed search technique (COMIX). For other types
of attacks, only such messages (strings) need to be modified and no changes
to the implementation of the search technique are required.

In addition to XML, many systems now use the JSON format for data
exchange. There are two options to apply COMIX to such systems: (1) modify
the existing TOs by inserting malicious content in JSON messages, (2) if the
system also supports XML, convert the JSON inputs to XML and use the
same set of TOs. The latter option can easily be integrated into COMIX as
there exist many tools/plugins for converting JSON to XML and vice versa.
In either case, once again, the implementation of the search technique will not
require any modifications.

Our future work will extend the current approach to cover more vulnera-
bilities and data exchange formats.
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