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Abstract 
In this paper a one-sided, in-situ method based on the time of flight measurement of ultrasonic waves is 
described. The primary application of this technique is to non-destructively measure the stiffness 
properties of isotropic and transversely isotropic materials. The method consists of generating and 
receiving quasi-longitudinal and quasi-shear waves at different through-thickness propagation angles. 
First, the analytical equations are provided to calculate the ultrasonic wave velocities. Then, an inverse 
method based on non-linear least square technique is used to calculate the stiffness constants using the 
ultrasonic wave velocities. Sensitivity analysis is performed by randomly perturbing the velocity data, 
thus observing the effects of perturbations on the calculated stiffness constants. An improved algorithm is 
proposed and tested to reduce the effects of random errors. Based on the sensitivity analysis, minimum 
number of angles required to inversely calculate the stiffness constants are suggested for isotropic and 
transversely isotropic material. The method was experimentally verified on an isotropic 7050-T7451 
aluminum with two different thicknesses and a transversely isotropic composite laminate fabricated using 
24 plies of CYCOM 977-2 12 k HTA unidirectional carbon fibre reinforced polymer (CFRP) prepregs. 
The results demonstrate that this technique is able to accurately measure the material properties of 
isotropic material. As for the transversely isotropic material this method is able to accurately measure the 
material properties if the experimental errors can be reduced to less than 1%.  

 

Keywords 
Material characterization, ultrasound wave velocities, composite, non-destructive evaluation, material 
stiffness constants 

1 Introduction 
Material elastic properties such as tensile stiffness, shear stiffness, and Poisson’s ratio are required by 
engineers for analyzing stress-strain response, vibration behaviour, stress wave propagation, and for finite 
element analysis. The most widely used experimental techniques for determining such properties are by 
conducting tension, shear, bending, and torsion tests following ASTM and ISO standards. The standard 
tests require small, discrete samples of the same structural materials to be evaluated and are for the most 
part destructive in nature. Sometimes the samples may not be available for an already manufactured 
structure or ageing of the structure may have caused the material properties to change. As such, the 
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experimental results from the discrete samples may not be truly representative of the final or in service 
component. To overcome this problem, non-destructive methods such as ultrasonic waves using time of 
flight analysis and Lamb waves have been used to find the elastic properties of the material. Typically 
these properties consist of: Poisson’s ratio, tensile and shear stiffness in different directions for isotropic 
and anisotropic medium [1]. This paper focuses on the use of ultrasonic waves’ time of flight for material 
property determination.  
 
The most commonly used ultrasonic methods for determining the stiffness constants for an isotropic solid 
consist on directly measuring the pure longitudinal and shear velocities across the thickness using pulse-
echo [2] or through-transmission technique [3]. The stiffness constants E, G, and Poisson’s Ratio (µ) are 
directly related to these velocities [4]. In the case of transversely isotropic media, the stiffness constants 
are calculated using the ultrasonic phase/group velocities, which require: (i) cutting the specimen in a 
predetermined crystallographic plane or (ii) by using an immersion technique. In the cutting technique, 
the samples are cut along a predetermined direction and the velocities are measured along those directions 
to directly calculate the stiffness constants [5]. In the immersion techniques, the sample is immersed in a 
liquid where quasi-longitudinal and quasi-shear waves are generated at oblique angles to the liquid-solid 
interface [6]. Poisson’s ratio has also been calculated by combining ultrasonic and mechanical tests, 
where Young’s modulii and normal stiffness tensor were measured using mechanical tests and through-
transmission ultrasonic tests respectively [7]. One drawback of the aforementioned methods is that small 
samples from the material or structure being analyzed where access to both sides may be required. This 
may not be feasible for in-service components or components where access to only one side is available.   
 

In this paper an in-situ method based on the through-thickness propagation of ultrasonic wave is 
presented and experimentally verified for isotropic and transversely isotropic material. The method 
consists of generating and receiving quasi-longitudinal (QL) and quasi-transverse (QT) waves at different 
through-thickness propagation angles requiring access to only one side of the specimen. An inverse 
algorithm based on non-linear least square technique is developed to calculate the material constants from 
the QL and QT wave velocities.  

2 Materials and Methods 
Two different thicknesses of isotropic 7050-T7451 aluminum and one transversely isotropic carbon-
fiber/epoxy laminate constructed with 24 plies of CYCOM 977-2 12k HTA unidirectional prepregs were 
tested. The experimental schematic and test setup is shown in Figure 1. 
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Figure 1: Experimental (a) schematic and (b) setup to generate and gather ultrasonic waves 

Referring to Figure 1, UTEX UT340 pulser/receiver system was used to send a short-pulse of 100V 
amplitude signal to a broadband Panametrix 5MHz/0.25”/C543-SM ultrasonic transducers as well as a 
trigger signal to start the Tektronix TDS 5104 digital oscilloscope. The ultrasonic waves generated by the 
pulse signal propagate through the sample thickness at an angle 13θ  (Figure 1a) and are reflected from the 
back surface; a second ultrasonic transducer of the same type picks up the reflected wave signal. The 
distance TSd  (Figure 1a) between the actuating and sensing transducers was varied in a straight line with 
the help of a wedge guide to find the maximum signal strength received by the sensing transducer. Once 
the maximum signal strength was received, data were acquired at a rate of 125 MS/s and exported to 
Matlab as a (.mat) file for post-processing. Software was developed in Matlab to process the data and to 
extract the ultrasonic wave velocity. Custom made angled-wedges were used to generate the QL and QT 
waves at different angles for isotropic and transversely isotropic specimen. Different angled-wedges were 
needed to excite the QL and QT waves following the Snell’s Law.  As shown in Figure 2, below the first 
critical angle (angle above which no energy is propagated into the solid) both QL and QT waves are 
present. Whereas, between the first and the second critical angles only QT waves are present at lower 
wedge angles, while QT and Surface Waves (SW) are present at higher wedge angles. Above the second 
critical angle only SW are present [8]. The wedges were designed and then printed in a Stratasys 
Dimension 3D printer, with the holes filled with Westsystem 105 Epoxy resin with 205 Fast-hardener.  

 

Figure 2: Modes of ultrasonic wave propagations at various wedge angles 

Acquired signals were calibrated to incorporate the time taken for the ultrasound to travel through the 
wedge and into the sample. This was done by measuring the time for the ultrasound to travel from the 
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actuating transducer to the sensing transducer for all sets of angled-wedges. It was also found that there 
was a delay between the pulse generated by the pulser/receiver and the ultrasound generated by the 
transducer. This was due to the time-delay or rise-time for the piezoelectric element used in the transducer 
to react to the applied short pulse high voltage signal. The time of travel was found by tracking the peak 
of the initial pulse and the wave signal received by the receiving transducer. The total time delay was 
added to the acquired initial pulse when calculating the QL and QT wave velocities. The stiffness 
constants were calculated using the experimentally determined QL and QT wave velocities at different 
through-thickness propagation angles 13θ  (Figure 1a) excited using different angled-wedges.  

2.1 Numerical Solution and Optimization 
There are several methods to inversely calculate and optimize the stiffness constants for isotropic and 
transversely isotropic material using the measured phase/group velocities. Some of the most commonly 
used methods include: genetic algorithms (GA) [9], non-linear least square method [10], or a combination 
of both [11]. Before using the experimental data to determine the stiffness constant, it is necessary to 
verify the optimization algorithm. These optimization algorithms can be sensitive to the experimental 
errors associated with the measurement of the QL and QT wave velocities. For this purpose, a non-linear 
least square method was first used to find the stiffness constants of a known isotropic and transversely 
isotropic material. Refer to Appendix A for the derivation and explanation of equations used for 
calculating the material stiffness. 

For the isotropic material, the theoretically calculated phase velocities along ( )1 3x x− plane with varying 
through-thickness propagation angles 13θ  (Figure A1) were used. The functions to be minimized are 
given by Eqn. (A.7) to determine the stiffness constants ( )11 13 33 55, , ,c c c c  by minimizing the error between 
the calculated and experimental phase velocities of QL and QT waves as shown in the equation below: 

 ( ) ( )
2

1
min

Calculated Measured

n

p pi i
i

V V
=

⎡ ⎤−⎣ ⎦∑
 

(2.1) 

 
Where, n is the number of different propagation angles and pV  is the phase velocity. 
 

2.1.1 Sensitivity Analysis for Isotropic Material 
The non-linear least square algorithm was first analytically verified on an isotropic (Al 2024-T6) with the 
known properties of elastic stiffness (E) = 72.4 GPa, shear stiffness (G) = 27.2GPa, and Poisson’s Ratio 
( )µ = 0.33 [12]. The phase velocities were calculated analytically using Eqn. (A.7) by considering the QL 

and QT waves propagating at 12 0θ = o along 13θ at [60/65/70/75/80/85/90] and [25/30/35/40/45/50/55] 
degrees respectively (Figure A1). Higher angles of 13θ were considered for QL as compared to QT due to 
Snell’s Law of Refraction. The flow chart of the method initially used to find the material constants 
( ), ,E G µ  of an isotropic solid is shown in Figure 3.  
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Figure 3: Initially used non-linear least square method to calculate material constants  

The QL and QT wave velocities at a given sets of propagation angle were randomly perturbed by 0.5, 1, 
2, and 5 percent from their original values ten times to get ten data points (ten QL and ten QT velocities) 
for inversely calculating the stiffness constants. This study was performed in order to find out how the 
number of experimental readings, the number of propagation angles considered (number of different 
angled-wedges needed to generate the waves), and the effect of random variation in the experimental data 
influences the convergence of calculated material stiffness constants. The results, as shown in Figure 4 to 
Figure 6 for E, G, and Poisson’s Ratio can be used to select the minimum number of propagation angles. 
Thus, the number of different angled-wedges needed to generate the QL and QT waves for an isotropic 
solid to inversely calculate the stiffness constants.  
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Figure 4: Initial convergence summary of elastic stiffness (E) 

Figure 4 shows the convergence of the elastic stiffness as groups of bar graphs plotted against the number 
of propagation angles considered (2 to 7), where different percent perturbations are shown in cross-
hatches increasing from left to right. The grouped bar graphs represent the average values of ten runs, 
where the minimum and maximum values are shown by the error bars.  

 

Figure 5: Initial convergence summary of shear stiffness (G) 
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Figure 6: Initial convergence summary of Poisson’s ratio (µ) 

From Figure 4 to Figure 6 above, it can be seen that six different propagation angles are needed for 
convergence due to random perturbation errors of approximately 1%. Even without perturbation, the 
algorithm did not converge if only two sets of propagation angles were considered. This indicated the 
need for at least three different sets of angles for the experiments (three for QL and three for QT). As can 
be seen from Figure 4 and Figure 6, the errors associated with the data scatter of E and Poisson’s ratio 
respectively were higher when compared to G shown in Figure 5. Therefore, an improvement in the least-
squared algorithm for an isotropic material presented above was performed by comparing the stiffness 
matrix constants 11c and 33c .  Knowing that 11c should equal to 33c for an isotropic material, a bisection 
method was implemented to minimize the difference between 11c and 33c . This was performed by letting 
the other two variable ( )13 55,c c  change between the upper and lower bounds in order to satisfy the 
imposed equality condition. The improved optimization method is shown in Figure 7 within the dotted 
box.  
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Figure 7: An improved method to calculate material stiffness constants 

The convergence summary and the data scatter plot after implementing the bisection method on the same 
sets of data used previously are shown in Figure 8 to Figure 10.  

 

Figure 8: Convergence summary of elastic stiffness (E) using improved algorithm 
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Figure 9: Convergence summary of shear stiffness (G) using improved algorithm 

 

Figure 10: Convergence summary of Poisson’s ratio (µ) using improved algorithm 

By comparing Figures 4 to 6 with Figures 8 to 10, it can be seen that implementing the bisection search 
greatly improved the convergence results and minimized the spread (difference between maximum and 
minimum value). The improved algorithm also reduced the number of required propagation angles from 
six to three in order to counteract up to 1% of random errors found by comparing the original data to the 
average calculated values. For example, in Figure 10, the bar graph of 3 propagation angles at 1% 
perturbation is equal to the original data, whereas at 2%, the value is lower than the original data. It can 
be seen that the refined algorithm still did not converge if only two sets of propagation angles were 
considered. Hence a minimum of three propagation angles are required for both QL and QL waves. 
Results were similar when the algorithm was tested on an isotropic Ti-6Al-4V alloy. It was also found 
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that changing the initial guesses and the upper bounds had no effect on the final results, further proving 
the robustness of the improved algorithm.  

2.1.2 Sensitivity Analysis for Transversely Isotropic Material 
The algorithm for a transversely isotropic material was verified on a previously researched composite 
laminate (Cytec G40-800/5276-1) with known stiffness properties provided in Table 1 [13].  The QL and 
QT  phase velocities were calculated analytically using Eqn. (A.7) and Eqn. (A.8) provided in Appendix 
A for 12 0θ = o and 12 90θ = o

 (Figure A1) respectively.  

Table 1: Material properties for Cytec G40-800/5276-1 laminate  

E11   E22   G12   µ12 µ 23   Density   
143 GPa 9.1 GPa 4.8 GPa 0.3 0.3 1650 kg/m3 

 

Similar to the isotropic case, the propagation angles for 13θ and 23θ  (Figure A1) were chosen at [65/70/ 
75/80/85/90] and [30/35/40/45/50/55] degrees to generate QL and QT waves respectively. Figure 11 
shows the flow chart of the method initially used to calculate the stiffness constants.  

Referring to Figure 11; first, the initial guesses along with the lower/upper bounds for the stiffness 
constants ( )11 13 33 55, , ,c c c c  and ( )22 23 33 44, , ,c c c c  were chosen. Then, Eqn. (A.7) and Eqn. (A.8) were used 

to calculate the QL and QT wave velocities using the initial guesses for ( )11 13 33 55, , ,c c c c  and 

( )22 23 33 44, , ,c c c c  respectively. The calculated and the experimentally measured QL and QT wave 

velocities were compared for wave propagating in the ( )1 3x x− and ( )2 3x x−  plane using left hand side 

and right hand side (RHS) of the algorithm respectively. The guesses for ( )11 13 33 55, , ,c c c c and 

( )22 23 33 44, , ,c c c c  were updated within the lower and upper bounds to calculate and compare the analytical 
and experimental wave velocities. This process was repeated until the desired tolerance was reached. 
Then, the stiffness constants were assembled into a 6x6 stiffness matrix ijc⎡ ⎤⎣ ⎦ , which was inverted to find 

the compliance matrix ijs⎡ ⎤⎣ ⎦ . Using the terms in the 6x6 compliance matrix, the material constants (E11, 

E22, G12, µ12, and µ23) were calculated.  
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Figure 11: Flow chart to calculate stiffness constants of a transversely isotropic material 

Similar to the isotropic case, the QL and QT wave velocities were randomly perturbed by 0.5, 1, 2, and 5 
percent from their original values ten times. However, during these perturbations, the propagation angles 
were kept constant as to generate a total of ten data points for each perturbation. The results shown in 
Figure 12 to Figure 16 for E11, E22, G12, and Poisson’s ratios (µ12, µ23) respectively can be used to select 
the minimum number of propagation angles needed to generate the QL and QT waves for inversely 
calculating the stiffness constants of a transversely isotropic material.  
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Figure 12: Initial convergence summary of E11 

 

Figure 13: Initial convergence summary of E22 
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Figure 14: Initial convergence summary of G12 

 

Figure 15: Initial convergence summary of µ12 
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Figure 16: Initial convergence summary of µ23 

From Figure 12 to Figure 16, it can be seen that unlike for isotropic material, the algorithm converged 
even when only two different propagation angles were considered.  This suggests that a minimum of two 
propagation angles are required for QL and QT waves propagating in ( )1 3x x−  and ( )2 3x x− planes for 
transversely isotropic material. It can also be seen that the errors associated with the data scatter of 
Poisson’s ratios (µ12, µ23) were higher as compared to the tensile and shear stiffness. Therefore, an 
improvement in the least-squared algorithm for a transversely isotropic material presented above was 
performed. This improvement consisted of comparing and equating the stiffness matrix constants ( )33c  
calculated using the waves propagating in ( )1 3x x−  and ( )2 3x x− planes.  Also knowing that 22c should be 
equal to 33c for a transversely isotropic material; a bisection method was implemented in two steps as 
shown in Figure 17 within the dotted box. First, the difference between the calculated 33c  from two 
different wave propagation planes were minimized.  Then, the minimized stiffness constant 33c was 
further compared with 22c . During the minimization process the other variables ( )11 13 23 55 44, , , ,c c c c c were 
left to freely change between the upper and lower bounds to satisfy the equality condition.  

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1.6	

2	 3	 4	 5	 6	

	µ
23
		

Number	of	Considered	Propaga8on	Angles	(Wedges	Used)		

Original	Data	 0.5%	Peturb	 1%	Peturb	 2%	Peturb	 5%	Peturb	



15	|	P a g e 	
	

 

Figure 17: Improved method to find stiffness constant of a transversely isotropic material 

This method in turn greatly improved the convergence results especially for E22 and µ23 as shown in 
Figure 19 and Figure 22 respectively. The other stiffness constants E11 (Figure 18), G12 (Figure 20) and 
µ12 (Figure 21) were also improved as compared to the initial algorithm shown in Figure 11. 
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Figure 18: Convergence summary of E11 after implementing the improved algorithm 

 

 

Figure 19: Convergence summary of E22 after implementing the improved algorithm 
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Figure 20: Convergence summary of G12 after implementing the improved algorithm 

 

Figure 21: Convergence summary of µ12 after implementing the improved algorithm 
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Figure 22: Convergence summary of µ23 after implementing the improved algorithm 

From Figure 18 to Figure 22 above, it can be seen that a minimum of two sets of propagation angles are 
required to generate QL and QT waves for the inverse stiffness calculation of transversely isotropic 
material.   Similar to the isotropic case, it was found that changing the initial guesses and the lower/upper 
bounds had no effects on the final results generated by the improved algorithm. 

3 Experimental Results  

3.1 Isotropic 7050-T7451 aluminum 
Two samples of isotropic aluminum alloy 7050-T7451 aluminum measuring 254 mm by 50.8 mm with 
thicknesses of 5 mm and 12.7 mm were experimentally tested using the ultrasonic method presented in 
this paper. Stiffness constants for the 7050-T7451 aluminum sample cut from the same block was 
experimentally determined previously at Delft University of Technology (TU Delft) [14] using tensile 
tests following the ASTM E8M-04 standard [15]. The QL and QT waves were generated and acquired 
using three different angled-wedges as suggested by the sensitivity analysis for isotropic material.  The 
average of three data points were taken for each velocity measurements. The summary of the averaged 
QL and QT velocities using different wedges for the isotropic 7050-T7451 aluminum is provided in Table 
2.  

Table 2: Measured QL and QT velocities and propagation angles of 7050-T7451 aluminum 
specimen 

 5 mm Sample 12.7 mm Sample 

Wave Mode 
Propagation Angle 

13θ  (Figure A1) 
Wave Velocity 

(m/s) 
Propagation Angle 

13θ  (Figure A1) 
Wave Velocity 

(m/s) 
QL 37.2° 6247.3 46.9° 6188.9 
QL 60.0° 6200.6 60.8° 6188.7 
QL 90.0° 6278.2 90° 6235.3 
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QT 40.2° 3033.0 32.3° 3041.7 
QT 42.6° 3060.7 39.8° 3057.6 
QT 48.6° 3069.7 46.8° 3076.5 

 

The velocity data in Table 2 was used to inversely calculate the material constants provided in Table 3 
using the improved algorithm from Figure 7. In Table 2, the spread of propagation angle is greater for QL 
as compared to QT because of the Snell’s Law. Since the velocity of QL is greater than QT, any small 
change in the wedge angle created a large change in the through-thickness propagation angle of QL 
compared to QT.  

 
Table 3: Measured material properties of 7050-T7451 aluminum  

 E (GPa) Poisson’s Ratio G (GPa) Density (kg/m3) 
Published [16] 71.7 0.33 26.9 2825 

Measured using Tensile Test [14] 70.2 0.33 26.4 Not Measured 
Measured using ultrasonic techniques presented above 

12.7 mm sample  
(Using improved algorithm) 71.8 0.34 26.7 2830 (Measured) 

5 mm sample 
(Using improved algorithm) 71.7 0.35 26.6 2830 (Measured) 

 

It can be seen from Table 3 that the results obtained using the non-destructive ultrasonic method 
presented in this paper were consistent for both thick (12.7 mm) and thin (5 mm) samples with minor 
discrepancy in the Poisson’s ratio. The values for E and G measured using the ultrasonic method were 
closer to the published data as compared to the values using the mechanical testing. However, the 
Poisson’s ratio was slightly off as compared to both mechanical testing and published value. The 
discrepancy can be attributed to the experimental error as Poisson’s Ratio is most sensitive to random 
errors compared to E and G. It was also found that the conventional algorithm over predicted both E and 
Poisson’s Ratio as compared to the improved algorithm using the bisection method.  

3.2 Transversely Isotropic  
In order to validate the ability of the presented non-destructive technique for material characterization of a 
transversely isotropic material, a blind test was conducted.  Collaborators at TU Delft in the Netherlands 
prepared a series of composite panels, out of which one was shipped to Carleton University, Canada for 
evaluation. The material properties were then measured at both labs and the results were compared with 
those obtained from the non-destructive ultrasonic technique presented in this paper. 

The sample sent to Carleton University was constructed out of 24 layers of unidirectional carbon-fibre 
epoxy Cycom 977-2 12 k HTA prepreg. The panels were fabricated in an autoclave following the 
manufacturer’s recommended cure cycle. The cure cycle consisted of: (1) an application of 7 bar gauge 
autoclave pressure; (2) 1-3°C/min to 177°C; (3) a hold of the temperature and 7 bar gauge pressure at 
177°C for 180 minutes; (4) cool down at a rate of 2-5°C/min; (4) a vent of the autoclave pressure when 
the components reaches 60°C or below. The overall dimension of the sample was approximately 300 mm 
by 300 mm with an average thickness of 6 mm and the density was measured to be approximately 1700 
kg/m3.  
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For finding the stiffness constants of the carbon-fiber laminate, experiments were conducted at two 
different locations. At TU Delft, the stiffness constants of the same material were measured on a 
Zwick/Roell Hydraulic test frame system Z250 following the ASTM standard D3039-08 [17] for tensile 
to measure E11 and E22 and D3518-94 [18] for shear to measure G12. At Carleton University, the carbon-
fiber laminate was tested using the ultrasonic technique and tensile tests.  For the ultrasonic technique, the 
QL and QT waves were generated and acquired using three different angled-wedges to improve the 
convergence as opposed to two as suggested by the sensitivity analysis due to the variation in the sample 
thickness. The QL and QT waves were measured at two different planes corresponding to 12θ = 0° and 
90° angles (Figure A1) with respect to the fibre orientation. An average of three data points were taken 
for each velocity measurements. Summary of the measured QL and QT velocities at different propagation 
angles for the transversely isotropic composite laminate is provided in Table 4.  

Table 4: Summary of the measured QL and QT velocities of the transversely isotropic specimen 

 12θ  = 0° (Figure A1) 12θ = 90° (Figure A1) 

Wave 
Mode 

Propagation Angle 
( )13θ   

Wave Velocity 
(m/s) 

Propagation Angle 
( )23θ  

Wave Velocity 
(m/s) 

QL 23.9° 8334.8 45.6° 2801 
QL 27° 8179 34° 2755.6 
QL 90° 2800.5 90° 2800.5 
QT 65.7° 2422.6 43.9° 1637.5 
QT 66.4° 2447.6 43.1° 1640.9 
QT 70.9° 2501.2 37.7° 1676.5 

 

For laminated composite, the equations provided in Appendix A are based on Representative Volume 
Elements (RVEs); therefore, it is important that the wavelength of the excited QL and QT waves be 
sufficiently larger than the micro-structural scale of 7 micro-meters fiber diameter [19], defining the 
RVEs. This was verified by analysing the frequency content using Fast Fourier Transform (FFT) of the 
received signal as shown in Error! Reference source not found..  

 

Figure 23: Typical actuation and received signal 

Error! Reference source not found. (a) and (b) shows a typical actuation and received signals 
respectively. Error! Reference source not found. (c) shows that the received signal comprises of waves 
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at different frequencies. Since only the first wave of arrival is considered, the FFT in Error! Reference 
source not found. (d) shows the first arriving wave has the highest frequency content around 2.5 MHz. 
This was true for other signals that were analyzed, where most of the received signals were concentrated 
around 2 to 3 MHz frequency band. Wavelengths of the wave excited at 2 to 3 MHz travelling at different 
velocities are provided in Error! Reference source not found..  

 

Figure 24: Wavelength at different wave velocities 

Using the velocity data from Table 4 and Error! Reference source not found., it can be verified that the 
smallest wavelength is 0.66 mm corresponding to QT travelling at 1637.5 m/s and 2.5 MHz, which is 
greater than the fiber diameter and the individual lamina thickness of 0.25 mm.  

The velocity data provided in Table 4 was used to inversely calculate the material constants provided in 
Table 5 using the improved algorithm shown in Figure 17. The initially developed algorithm failed to 
converge for this type of material characterization. Once the ultrasonic velocity data were obtained, the 
carbon-fiber laminate was waterjet cut to produce four coupons measuring 25.4 mm by 254 mm each for 
tensile testing. Two coupons from 0° and 90° fibre orientations were used to measure 11E  and 22E  
respectively. Coupons from 0° were instrumented with Tee strain gage (CAE-06-125WT-350) to 
determine the in-plane Poisson’s ratio 12µ ; whereas, MTS-643.12E-24 extensometer was used to measure 

the induced strains due to applied loads on rest of the coupons for calculating 11E  and 22E  stiffness.  

Transverse Poisson’s ratio 23µ  and shear stiffness 12G  could not be measured due to limitations in the as 
constructed carbon-fiber laminate. Results from the tensile tests are presented in Table 5.  

Table 5: Measured material properties of transversely isotropic sample  

 E11 (GPa) E22 (GPa) G12 (GPa) µ12 µ23 
Measured at Carleton using 

ultrasonic technique 
and improved algorithm 

127.3 11.8 13.4 0.56 0.27 

Measured at Carleton  
using tensile test 119.6 10.9 Not 

Measured 0.33 Not 
Measured 

Measured at TU Delft 
using tensile test 125.9 7.7 3.6 0.34 Not 

Measured 
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It can be observed from Table 5, that the results obtained using the non-destructive ultrasonic method and 
the improved algorithm presented in this paper were consistent with the tensile tests conducted on the 
same laminate with minor discrepancy in the 11E  and 22E . However, the ultrasonic method over-

predicted the in-plane Poisson’s ratio 12µ by 70% and no data were available to compare 23µ  and 12G . 

However, it is interesting to note that the 12G  of the carbon fiber filament is around 14 to 18 GPa for 
fibers similar to the one that was used in this experiment [20]. This discrepancy can be explained due to 
the tested panel thickness variation of approximately ±0.5 mm corresponding to the percent error in the 
propagating wave between 1.2 to as high as 7.8 percent. As presented in Figure 18 to Figure 22, even 
after implementing the improved algorithm, 5% random error in the input velocity data had significant 
effect on 12µ  (Figure 21) as compared to the other constants. However, despite the presence of 
experimental error higher than 5%, the ultrasonic method provided in this paper had an excellent 
agreement with the tensile tests for 11E  and 22E .  The initial algorithm was unable to provide the material 
properties using the experimental data.  

 

When the results were compared with the tests performed using the same material but following the 
ASTM standard at TU Delft, the 11E stiffness was consistent. However, 22E was higher by 53%, 12G was 

higher by 272% and 12µ was higher by 65% using the ultrasonic technique. It is to be noted that the 
coupons were manufactured from the same unidirectional prepreg but with different thicknesses and 
layups as suggested by the ASTM standard [17] and [18]. This discrepancy can be attributed to the 
manufacturing variability of laminate samples with different thicknesses and layups corresponding to 
differences in the overall material stiffness properties.  

4 Conclusion 
An in-situ method for measuring the material properties with access to only one side of the specimen is 
presented. The technique uses generating and receiving quasi-longitudinal and quasi-transverse waves at 
different through-thickness angles using angled-wedges. First, the analytical equations were derived for 
an isotropic and transversely isotropic material.  Then, an inverse method based on the non-linear least 
square technique was used to calculate the stiffness constants using the ultrasonic wave velocities. 
Sensitivity analysis was performed by randomly perturbing the velocity data and observing its effect on 
the calculated stiffness constants. An improved algorithm was proposed and tested to reduce the effects of 
random experimental errors. Based on the sensitivity analysis, a minimum number of angled-wedges 
required to inversely calculate the stiffness constants were determined. It was found that a minimum of 
three and two angled-wedges (corresponding to number of different propagation angles) were needed to 
inversely calculate the stiffness constants for an isotropic and a transversely isotropic material 
respectively.  

The method was then experimentally verified on an isotropic aluminum alloy 7050-T7451 aluminum with 
two different thicknesses and a transversely isotropic composite laminate fabricated using 24 plies of 
carbon-fibre epoxy Cycom 977-2 12 k HTA unidirectional prepregs. As expected for an isotropic 
aluminum, at lower wedge angles, below the first critical angle, quasi-longitudinal wave was more 
distinct. Whereas, for the wave travelling between the first and the second critical angle quasi-transverse 
wave was more prominent. The results were consistent for both thick (12.7 mm) and thin (5 mm) 
isotropic 7050-T7451 aluminum samples with minor discrepancy in the Poisson’s ratio. The values for E 
and G measured using the ultrasonic method were closer to the published data as compared to the values 
using the mechanical testing.  As for the transversely isotropic sample, it was found that 11E  and 22E
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agreed well with the presented ultrasonic method and the tensile test, despite having in excess of 5% 
experimental error due to the sample thickness variation. However, for the in-plane Poisson’s ratio 12µ , 
the discrepancy was approximately 70% between the ultrasonic method and the tensile experiment. This 
is because 12µ is most sensitive to the random error as compared to other stiffness constants found by the 

sensitivity analysis. No data were available for comparing the transverse Poisson’s ratio 23µ  and shear 

stiffness 12G . When the results were compared with the tests performed following the ASTM standard at 

TU Delft, the 11E stiffness was consistent. However, 22E was higher by 53%, 12G was higher by 272% 

and 12µ was higher by 65% using the ultrasonic technique due to the manufacturing variability of 
laminate samples with different thicknesses and layups.   
 
Therefore, it can be concluded that the method presented in this paper is more accurate for the isotropic 
material as compared to the transversely isotropic material. For transversely isotropic material the 
ultrasonic method presented here works well if the experimental errors can be reduced to less than 1%.  
Also the ultrasonic method was able to better predict the material properties 11E and 22E of the as 
manufactured sample. 
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Appendix A: Ultrasonic Wave Equations 
 

For the relationship between the ultrasonic wave velocity and material properties, consider a plate with 
thickness of 2h with the associated co-ordinates shown in Figure A1.   

 

Figure A1: Transversely isotropic plate with the coordinate system 

The general equation of motion without considering the body forces for the plate can be written as: 

 
2 2

2ρ
∂ ∂

=
∂ ∂ ∂

k i
ijkl

j l

u uc
x x t  

(A.1) 

Where, ijklc is the stiffness constant, ρ is the density, ix is the direction, iu is the displacement, and 
t  is time. 

 

The displacement iu is assumed to be a simple harmonic of the form: 

 ( )j ji kn x t
i iu U e ω−=  (A.2) 

 Where, iU is the displacement amplitude, k  is the wave number, jn is the unit vector, and 
 ω is the circular frequency. 
 

Taking the partial derivative of the displacement iu  with respect to direction ix and time t and substituting 
the partial derivatives back into the equilibrium equation Eqn. (A.1) gives the well-known Christoffel 
equation in a matrix form as: 

 

2
11 12 13 1

2
12 22 23 2

2
13 23 33 3

0
p

p

p

c U
c U

c U

ρ

ρ

ρ

⎡ ⎤Λ − Λ Λ ⎧ ⎫
⎢ ⎥ ⎪ ⎪

Λ Λ − Λ =⎨ ⎬⎢ ⎥
⎪ ⎪⎢ ⎥Λ Λ Λ − ⎩ ⎭⎣ ⎦

 (A.3) 
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Where, pc is the phase velocity and the elements of Λil  are given in terms of propagation 
directions by: 

 

2 2 2
11 11 1 66 2 55 3

12 12 66 1 2

13 13 55 1 3
2 2 2

22 66 1 22 2 44 3

23 23 44 2 3
2 2 2

33 55 1 44 2 33 3

( )
( )

( )

c n c n c n
c c n n
c c n n

c n c n c n
c c n n

c n c n c n

Λ = + +

Λ = +

Λ = +

Λ = + +

Λ = +

Λ = + +

 (A.4) 

 

Equation (A.3) is the mathematical representation of an eigenvalue problem of phase velocity 2
pc , which 

defines three homogeneous linear equations of displacement amplitudes ( 1 2 3, ,U U U ). The three solutions 
represent a quasi-longitudinal, a quasi-transverse-vertical, and a transverse-horizontal waves propagating 
within the material along different directions. The solution to Eqn. (A.3) and hence the phase velocities 
2
pc can be found by setting the determinant to be zero. Eqn. (A.3) can be further simplified by considering 

the waves propagating in the through thickness direction along two-dimensional planes of symmetry 
(principal planes). For isotropic material the wave propagating in the principal plane ( )1 3x x−  along the 
refracted angle 13θ measured with respect to the 1x  axis is considered (Figure A1).  For transversely 
isotropic material additional waves propagating in the principal plane ( )2 3x x−  along the refracted angle 

23θ measured with respect to the 2x  axis must be considered (Figure A1).  

The unit vector in  for the wave propagating in ( )1 3x x−  plane can be expressed as: 

 ( ) ( )1 2 3 13 13, , cos ,0,sinin n n n θ θ= =  (A.5) 

 

Therefore, determinant of Eqn. (A.3) can be reduced to:  

 

2
11 13

2
22

2
13 33

0
0 0 0

0

p

p

p

c
c

c

ρ

ρ

ρ

Λ − Λ

Λ − =

Λ Λ −

 (A.6) 

  

As mentioned earlier, Eqn. (A.6) can be decomposed into three waves, which are: transverse-horizontal 
(T), quasi-longitudinal (QL) and quasi-transverse-vertical (QT) waves and are given by [21]: 

 
( )

( )

2
( ) 22

2 2
11 33 132 11 33

( )

2 2
11 33 132 11 33

( )

4
2 2

4
2 2

p T

p QL

p QT

c
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c

ρ

ρ

ρ

= Λ

Λ −Λ + ΛΛ +Λ⎛ ⎞
= +⎜ ⎟
⎝ ⎠

Λ − Λ + ΛΛ +Λ⎛ ⎞
= −⎜ ⎟
⎝ ⎠

 (A.7) 
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Therefore, knowing the phase velocity, which is also equal to the group velocity for the wave propagating 
in the principal direction, it is possible to inversely calculate the stiffness matrix using Eqn. (A.7) and 
hence, find the material properties of an isotropic solid. Similar to ( )1 3x x−  plane, three waves: 
transverse-horizontal (T), quasi-longitudinal (QL) and quasi-transverse-vertical (QT) waves exist for the 
( )2 3x x−  plane as well and are given by [21]: 

 
( )

( )

2
( ) 11

2 2
22 33 232 22 33

( )

2 2
22 33 232 22 33

( )

4
2 2

4
2 2

p T

p QL

p QT

c

c

c

ρ

ρ

ρ

= Λ

Λ −Λ + ΛΛ + Λ⎛ ⎞
= +⎜ ⎟
⎝ ⎠

Λ − Λ + ΛΛ + Λ⎛ ⎞
= −⎜ ⎟
⎝ ⎠

 
(A.8) 

Using the quasi-longitudinal or quasi-transverse-vertical waves propagating in the ( )1 3x x−  plane, four 

linear elastic constants ( )11 13 33 55, , ,c c c c can be found. Similarly, by considering the wave propagating in 

the ( )2 3x x− plane, four more elastic constants ( )22 23 33 44, , ,c c c c  can be found for a transversely isotropic 
material.  
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Nomenclature 
 

Symbols Description Units 

Λil  Christoffel matrix components  

ω  Circular wave frequency Rad
s  

ρ  Density 3
kg
m  

ix  Direction  

jn  Directional unit vector  

iu  Displacement m  

iU  Displacement amplitude m  

i Imaginary number  

E  Longitudinal elastic constant 2
N
m

 

inv  Matrix inverse  

pc  Phase velocity m
s  

h Plate half-thickness m  
µ  Poisson’s ratio  

QL Quasi-longitudinal waves  

G  Shear elastic constant 2
N
m

 

ijklc  Stiffness elastic constants 2
N
m

 

SW  Surface waves  

t Time s  

Φ  Vertical wave incident angle (wedge angle) Degrees 

ijθ  Wave propagation direction Degrees 

k Wavenumber 1s−  

QT Quasi-transverse waves   

T Transverse-horizontal waves  

 

 


