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Abstract—To have a better understanding of difference in
characteristics between various mother wavelets, this paper
presents a comprehensive investigation into the performance of
three commonly used non-orthogonal mother wavelets, namely
Morlet, Paul and DOG, in a wavelet-based system identifica-
tion approach when used for evaluating joint impedance. This
method is further modified to make the estimation result much
closer to the realistic result. Additionally, the optimization of
smoothing parameters is explored across ten distinct situations,
encompassing diverse stiffness waveforms such as step, square,
sine, triangle, and sawtooth, as well as two different input
perturbations. Performance metrics, including running time,
random error, bias error, total error, and variance accounted
for (VAF), are used to assess the performance of the system
identification method in each scenario. The result shows that
Paul wavelet yields a better result of stiffness estimation together
with bias error for most situations after averaging. The DOG
has the shortest running time and Morlet wavelet gives the
highest VAF and lowest random and total error. The findings of
this study contribute to a better understanding of the strengths
and weaknesses of various mother wavelets in joint impedance
estimation, providing valuable insights for future applications in
the field of system identification and parameter estimation in
neuromechanics control.

Index Terms—Wavelet transform, mother wavelets, system
identification, parameter estimation, human joint impedance

I. INTRODUCTION

Using time series (TS) is a useful method for exploring
the fluctuations and changes in variables [1]. In the field of
neuromechanics control, several techniques have been applied
to time series data to characterize the joint’s mechanical
properties of a time-varying system [2]. The joint impedance
of a system can be defined as a metric that expresses the
dynamic relationship between an externally applied joint dis-
placement and the corresponding restoring joint torque, which
is a good quantification of the joint’s mechanical properties,
shown as Fig. 1 [3]. System identification methods have been
extensively employed to explore these mechanical properties
during different postural tasks and under varying experimen-
tal conditions [3]. There exists lots of time-varying system
identification methods aiming to the identification of joint
impedance [2]. There are various system identification (sysID)
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techniques available for analyzing time series data, which
can be broadly categorized into three types based on their
domains: time domain, frequency domain, and a combination
of both time and frequency domains [4]. For example, the
short data segment (SDS) is a time-domain method [5], while
the ensemble spectral method (ESM) is based on frequency
domain [6].

Fig. 1. Dynamic model of human ankle joint.

Moreover, a time-frequency domain based method has been
developed for the identification of joint admittance making
use of the wavelet transform (WT) [7]. This is the first time
of applying wavelet transform for the identification of joint
impedance and this method demonstrates promising outcomes
in estimating the mechanical properties of human joint. WT
can be used to decompose a time series into the time-frequency
space, which makes it possible to identify the dominant modes
of variability and understand how these modes change over
time [8]. The method makes use of WT to transfer the time
signals into a time-frequency representation. The cross wavelet
transform (XWT) has been applied to find the relationship
between the input perturbation angle and the output torque,
which will be lately served as the non-parametric identification
result. The joint impedance parameters will be derived from
this result using the nonlinear least square method.

Great care is needed when applying WT in this method
since that all the possible factors, such as the selection of
mother wavelets, parameter in mother wavelets’ equations and
the scale parameters, could affect the result [9]. In WT, the
mother wavelets are finite-length waveforms that are scaled
and translated to analyze the signal [10]. Different mother
wavelets, such as Morlet and Paul wavelets, can be selected
for specific applications, each with its own characteristics and
properties.
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A. Problem statement

There are multiple parameters that need to be carefully
selected and considered during the execution of this wavelet-
based system identification method. This paper mostly fo-
cuses on the results obtained from applying different mother
wavelets, specifically concerning various time-varying sys-
tems. This study is carried out based on the wavelet package
developed by Christopher Torrence and Gilbert P. Compo,
which has been implemented for the analysis conducted in
their research [8]. Particular attention was given to the three
commonly used non-orthogonal mother wavelets in this study,
namely the Morlet wavelet, the Paul wavelet and the Derivative
of Gaussian (DOG) wavelet. Morlet wavelet has a better
frequency localization, while Paul exhibits a better localization
in time and DOG wavelet is only composed of real part [9].
Considering these distinct properties exhibited by these mother
wavelets, five time-varying systems are being applied to assess
the performance and results of the method. These systems are
distinguished by different joint stiffness, specifically including
non-periodic step waves, periodic square waves, sine waves,
triangle waves, and sawtooth waves.

B. Goal

The goal of this study is to assess and compare the variations
in parameter estimation results when employing different
mother wavelets, namely Morlet, Paul and DOG wavelet, in
the wavelet-based system identification method for diverse
time-varying systems, including non-periodic step waveform,
periodic square, sine, triangle and sawtooth waveforms, in
simulation.

C. Outline

This paper develops further investigation on the selection of
different mother wavelets for system identification method in
various scenarios. The paper is organized as follows: Section 2
gives an introduction to this wavelet-based system identifica-
tion method, the wavelet transform and mother wavelets used
in this study. A simulation is performed, serving as a basic
comparison between these three mother wavelets. Section 3
first introduced the open-loop human joint impedance model,
following by the simulation environment used in the later
experiment, introducing the system to be identified and param-
eters used for simulations. Section 4 shows how to optimize
the result of this wavelet-based sysID method, by making
modifications and adding more constraints to the process
and finding the optimal parameter sets used in the following
simulations. In Section 5, parameter estimation results in
various scenarios are presented with the conclusion of best
mother wavelet to be used under that situation. In Section
6, some extension experiments have been introduced to give
more guidance and suggestion on the use of this wavelet-based
method. Finally, the report is summarized with a discussion
about the future work and conclusion of the study.

II. WAVELET

This section introduces some fundamental concepts and
background knowledge on which this study is based, including

the wavelet transform, mother wavelets to be discussed in this
paper. A simulation result is also included to briefly compare
the different characteristics of these mother wavelets. Finally,
the wavelet based system identification method is introduced
at the end of this section.

A. Wavelet transform

The wavelet transform (WT) of a function f(t) is defined
as the convolution of f(t) with a mother wavelet ψ(η), which
is given by [9]:

W =

∫ ∞

−∞
f(t)|a|(− 1

2 )ψ∗(η)dt, (1)

where ψ∗ is the complex conjugate of the mother wavelet
ψ(η) and a is the scale parameter can only be set larger than
0. The η is generally set to

η =
t− b

a
, (2)

where b is the time shift factor which can determine the
temporal location in time. Similar to the Short-time Fourier
transform (STFT), wavelet transform can be viewed as the
projection of a signal into a set of basis functions named
wavelets [11]. The difference between them is that the wavelet
transform can change the length of window by adjusting the
value of scale, however, the window length in STFT is fixed
initially and therefore has limitations on non-stationary time
series analysis [12].

In practical applications, various types of wavelet transforms
are used for different use, employing numerous kinds of
mother wavelets.

B. Mother wavelets

To optimize efficiency, it is preferable to use mother wavelet
functions that are continuously differentiable and compactly
support [13]. The wavelet functions are in generally both
absolutely and square integrable, which means they have to
satisfy the following equations,∫ ∞

−∞
|ψ(η)|dt <∞ (3)

∫ ∞

−∞
|ψ(η)|2dt <∞ (4)

Furthermore, there are also many other wavelet properties
of mother wavelets, such as progressive and linear phase, good
localization in time or frequency, a trade-off between time and
scale, complex or real, and the property of being orthogonal
or not [14]. In this study, the performance of three orthogonal
mother wavelets provided by Torrence and Compo’s code
is looked into to evaluate their effectiveness when dealing
with different time-varying system, namely Morlet, Paul and
Derivative of Gaussian (DOG) [15]. They are respectively
defined as [9],

ψ(η) = π−1/4e−η2/2eikη, (5)
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ψ(η) =
2kikk!√
π(2k)!

(1− iη)−(k+1), (6)

ψ(η) =
(−1)k+1√
Γ(k + 1

2 )

dk

dηk
(e−η2/2). (7)

which should be inserted into Equation 1.
The parameters of these three mother wavelets used in this

study stick to the empirically derived factors from Torrence’s
guide., where k are separately set to 6, 4 and 6 [8]. The plots
of real parts of these mother wavelets are shown as Fig. 2.

Fig. 2. The three different mother wavelets, from top to below, separately
Morlet, Paul and DOG, while the key parameter setting to 6, 4 and 6. The
real part is plotted with a solid line and the imaginary part is plotted with a
dashed line.

C. A brief comparison between mother wavelets

As introduced in the Section 2.B, this study will specifically
examine the effect brought by three different mother wavelets
provided by Torrence and Compo’s wavelet transform pack-
age. Their plots of both real parts and imaginary parts are sepa-
rately shown in Fig. 2. Moortel pointed out the characteristics
of the three mother wavelets with a short experiment about
the wavelet transform of a time-varying frequency signal: the
Morlet wavelet exhibits good frequency resolution, the Paul
wavelet demonstrates superior time localization, and the DOG
wavelet falls somewhere between the other two in terms of
performance. [9]. In order to demonstrate the basic differences
among these three mother wavelets described by Moortel,
this study reproduces his simulation with the same analytical
function as mentioned in his paper, with the form of

f(t) =


sin(2π10t), 0 ≤ t < 1/4,

sin(2π25t+ π
2 ), 1/4 < t < 1/2,

sin(2π50t− π
2 ), 1/2 < t < 3/4,

sin(2π100t+ π
2 ), 3/4 < t ≤ 1.

(8)

The plots for this analytical signal is shown in Fig. 3.
In order to provide a more comprehensive demonstration

of the analysis results for different mother wavelets within
the wavelet package provided by Torrence, the simulations in
this section are based on the code available in that package.
This package is preferred over using function provided by

MathWorks, as it has been found out to produce results with
slight differences. Relying on this wavelet package code allows
for more precise conclusions to be drawn as a fundamental
assumption, considering that all subsequent simulations con-
ducted in this study also rely on this package. The wavelet
transform result of the signal are given in Fig. 3. To be
mentioned, the k parameters within Morlet, Paul and DOG
mother wavelets are also separately set to 6, 4 and 6, which
is stick to the value introduced previously.

Fig. 3. The wavelet transform result of the analytical signal used in Moortel’s
paper. The top figure shows the signal to be analyzed, the other three plots
from top to bottom are separately the result when using mother wavelet
Morlet, Paul and DOG in WT. The result is based on the wavelet package
developed by Torrence.

It can be seen that for the result using Morlet mother
wavelet, yellow triangles exhibit the narrowest width, which
corresponds to the values on the scales, which means the good
frequency resolution. But there are higher noise for the length
of triangles, which corresponding to the time. In opposite,
the result triangles of Paul mother wavelet have neater length
but broader width. This just proves the conclusion mentioned
above: Paul wavelet demonstrates superior time localization.
However, for the result plot of DOG mother wavelet, the
triangles are split into several blocks. Both the widths and
lengths of the triangles for the DOG mother wavelet fall in
between the performance of the other two mother wavelets.
In the meantime, yellow triangles are surrounding by noise of
various shapes. While, there seems to have the largest con-
fidence interval in the background of DOG mother wavelet’s
figure with less noise.

The simulation study results presented here offer an oppor-
tunity to establish a fundamental assumption for subsequent
simulations involving various time-varying systems. Based on
these results, certain expectations can be set for the perfor-
mance of different wavelets. The use of Morlet wavelet is
expected to provide better estimations of the exact values of
the system parameters. It is expected to yield more precise
results when estimating the true values of the system. On the
other hand, the Paul mother wavelet is expected to outperform
in scenarios where there are sudden changes or discontinuities
at specific time steps. Finally, the DOG mother wavelet may
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introduce more noise in the estimation results. These expec-
tations and assumptions provide valuable insights for guiding
and interpreting future simulations involving different time-
varying systems and selecting appropriate wavelets for system
identification. Additionally, the DOG wavelet is expected to
exhibit the least effect resulting from boundary effects, making
it more reliable in capturing the desired features near the edges
of the data.

III. SIMULATION STUDY

This section provides a detailed description of the simu-
lation study conducted to assess the performance of mother
wavelets on various time-varying systems. To begin with, the
human joint impedance model will be introduced. The param-
eters used in this simulation model, different waveforms to be
identified and also two different kinds of input perturbation
will be discussed in the following parts.

A. Human joint impedance model

In this study, a simplified time-varying open loop human
joint impedance model was chosen to be used in the simulation
study, which was shown in Fig. 4. This model is commonly
used in a force task experiment, where participants react
to angular perturbations. As a consequence, the joint torque
will also exhibit time-varying characteristics [16]. This model
exactly describes the relationship between the angular input
u(t), torque output y(t) and measurements noise n(t) [2]. The
model is described by:

y(t) = Hjoint(s, t)u(t) + n(t), (9)

where Hjoint(s, t) is a 2nd-order inertia-spring-damper system
with a time-varying stiffness, which can be described by:

Hjoint(s, t) = Is2 +Bs+K(t), (10)

where I is the inertia of the joint, B is the viscosity of the
joint and K(t) is the time-varying stiffness of the joint, s is
the Laplace variable equals to j2πf .

Fig. 4. The simplified time-varying open loop human joint impedance model
with angular input u(t), torque output y(t) and measurements noise n(t).

B. Simulation parameters and perturbation signal

1) Simulation parameters: The model used in this study
was implemented in MATLAB 2019b-Simulink 9.7 [2]. The
chosen parameters in Hjoint(s, t) which introduced in Eq. 4
were employed to represent the impedance of the human ankle
joint in a seated position. Joint inertia and viscosity will be
set to time-invariant during this study . The study employed

commonly selected parameter values, where inertia is set to
0.02 Nm.s2/rad and viscosity is set to 2.2 Nm.s/rad [17].

Given that this study focuses on evaluating the performance
of different mother wavelets on systems with varying wave-
forms, the joint stiffness K(t) in Eq. 4 is separately described
by step, square, sine, triangle and sawtooth waves. In general,
non-periodic waves do not display a repeated pattern over time,
making them more unpredictable compared to periodic waves.
Among these waveforms, a step function can be considered
as a representative example of a non-periodic waveform, it
consists of an instantaneous change from one level to another,
and this transition occurs abruptly and does not exhibit any
oscillation or fluctuation [18]. And all the other waveforms
are simple examples of periodic waveforms. And they can
effectively represent various significant shapes in common
signals observed in nature, such as sudden drops/rises, smooth
oscillations and ramp shape patterns [19]. The square wave
demonstrates an abrupt and instantaneous transition between
two levels. The sine wave exhibits a smooth, continuous, and
symmetric oscillation. The triangle wave displays a linear
and symmetric rise and fall. While the sawtooth wave is a
combination of an abrupt fall and a linear rise. These different
shapes allow for a further investigation into the effectiveness
of this system identification method using different mother
wavelets.

For the non-periodic step function, the stiffness amplitudes
is set to be changing from 100 Nm/rad to 150 Nm/rad, with
a duration time of 10 s. For the square wave, sine wave and
sawtooth wave, the stiffness ranges from 50 Nm/rad to 150
Nm/rad, with a duration of 40 s and frequency 0.1 Hz [2].
For the triangle wave, the stiffness ranges from 100 Nm/rad
to 150 Nm/rad, so that it has the same slope as the sawtooth
wave. The figure of waveforms to be identified is shown in
Fig. 5.

Fig. 5. Different joint stiffness K(t) to be identified in this simulation
study. From top to bottom, figure shows the step wave, square wave, sine
wave, triangle wave and sawtooth wave separately.

To simulate the sampling process, the frequency of time
series is downsampled by a factor of 1/10. As a result, the
frequency of the time series from which the parameters are
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extracted is 100 Hz.
The output noise, which is denoted as n(t) in Eq. 9 is

a normally distributed noise signal that has been low-pass
filtered with a 2nd-order Butterworth filter, with a cutoff
frequency of 40 Hz. In order to ensure that the noise has a
desirable effect on the output signal, the amplitude of output
noise was adjusted such that the signal to noise ratio (SNR) of
the resulting output signal of the simulink model is 10 dB [20].
Examples of the different angular input perturbations u(t) and
their corresponding output torques y(t) both with noise and
without noise for a step system are shown in Fig. 6.

Moreover, in order to reduce the influence of randomness in
the simulation, experiments are repeated 100 times for all the
different mother wavelets across various time-varying system.

2) Perturbation signal: Two commonly used perturbation
input signals, denoted as u(t), were used as inputs to the
system. The first input signal is a filtered noise signal that
has been passed through a second-order Butterworth low-pass
filter with a cutoff frequency of 5 Hz. It has a mean absolute
velocity of 0.20 rad/s. The second input signal is a pseudo-
random binary sequence (PRBS) signal with a switching rate
of 147 ms and a mean absolute velocity of 0.08 rad/s. Both
signals were scaled such that they had a root mean square
(RMs) of 0.5 deg (0.0087 rad). Moreover, a small trick filter
module was used to extract velocity and acceleration data from
the filtered position before sending the input perturbation into
the joint impedance simulation system.

Fig. 6. The angular input to the model is either a 5 Hz low-pass filtered
noise u1(t) or a pseudorandom binary sequence u2(t). The noiseless torque
and true torque output of the model are both shown in the second line of the
figure, where noiseless torque is plotted with a thick black dotted line and
true torque with thin solid line.

C. Wavelet based system identification method

The method under investigation in this study is mainly
developed based on the cross wavelet transform (XWT) of
the provided time-series data, which is a system identification
method developed in 2009 as a part of MSc thesis [7]. The
whole process of this method is shown in Fig. 7. To begin

Fig. 7. Scheme of the method. u(t) is the input perturbation to the simulation
model. I , B, K(t) is separately the initial inertia, viscosity and stiffness,
where K(t) is time-varying. y(t) is the output torque of the simulation model.
The spectral density results WY U

n (s) and WUU
n (s) can be calculated using

the cross wavelet transform, and there are three mother wavelets, Morlet, Paul
and DOG to be chosen from in this study. ⟨WY U

n (s)⟩ and ⟨WUU
n (s)⟩ are

separately the smoothing result of the spectral density results, during which
smoothing parameters in time and scale should be selceted. After smoothing,
the estimated transfer function Ĥw

n (s) can be calculated. With this estimated
transfer function, estimated parameters can be approximated with least square
methods fitting transfer function onto the Eq. 10. With these new parameters,
a estimated model was built. Finally, the estimated output torque ŷ(t) can be
calculated with the same input perturbation u(t) to the estimated model.

with, XWT is used for measuring the similarity between two
waveforms. It is defined as follows,

WUY
n (s) =WU

n (s)WY ∗
n (s) (11)

where U and Y separately refer to the Fast Fourier Transform
(FFT) of the two time-series, u(t) and y(t), and * is the
complex conjugation [8].
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After the application of the cross wavelet transform on the
time-series, the obtained spectral density results are smoothed
in order to decrease the variance of the estimator. The smooth-
ing process is performed in both the time domain and the
frequency domain, following the form:

⟨WUY
n (s)⟩ = Sscale(Stime(W

UY
n (s)) (12)

where Sscale represents the smoothing carried out along the
wavelet scale axis, and Stime denotes the smoothing in time
axis. In this study, these two parameters are defined as follows:

Stime(Wn)|s = (Wn(s) ∗ e
− n2

2(s/sdt)2 )|s (13)

Sscale(Wn)|n = (Wn(s) ∗Π((δj0/sdj)s))|n (14)

where sdj and sdt are the smoothing factors separately in
scale and time. Hereby in this study, a Gaussian function is
used for smoothing in time, and a boxcar function is employed
for smoothing in scale. These smoothing operators are in
a similar form with the mother wavelets discussed in this
paper. According to Torrence and Combo, the parameter δj0
is separately set to 0.6, 1.5 and 0.97 for Morlet, Paul and
DOG mother wavelets [8]. This smoothing method represent
an optimal compromise between time and scale [15].

Similar to the frequency response of systems based on
the Fourier transform, the time-varying frequency response
function (FRF) can be defined as:

Hw
n (s) =

WY U
n (s)

WUU
n (s)

. (15)

An estimate with a lower variance can be achieved using a
smoothed result described in the Equation 12:

Ĥw
n (s) =

⟨WY U
n (s)⟩

⟨WUU
n (s)⟩

. (16)

By showing the equation of estimated system admittance,
denoted as Ĥw

n (s), it represents the transfer function between
the input perturbation angle and the output torque. To ex-
tract additional information about joint mechanics from the
transfer function, least squares method is applied to fit the
transfer function onto the time-varying model of human joint
impedance Hjoint(s, t). With the help of this method, one can
determine the parameter values that minimize the sum of the
squares of the differences, or residuals, between the fitting
function and the experimental data [21]. The estimated value
obtained through this method have been proved to have the
highest probability (maximum likelihood) of being accurate,
provided that certain critical assumptions are valid.

Finally, a new estimated human joint impedance system can
be built based on this result. With the same input, the estimated
torque ŷest(t) can be calculated, which can be compared with
the true torque to evaluate the effectiveness of the method
used.

D. Performance quantification

To evaluate and compare the performance of the method
using different mother wavelets across various systems, six
metrics were selected to calculate the result of the simulation
study [2]. They are separately bias error, random error, total
error, running time, variance-accounted-for (VAF) and rise
time.

1) Bias error: Bias error, also known as systematic error, is
used to calculate the error in the average parameter estimation
result obtained from the repeated times’ experiments with
respect to the true joint stiffness [22]. It is defined as:

Errbias =

√√√√△t
T

T/△t∑
i=1

(
¯̂
K(i△t)−K(i△t))2, (17)

where K(i△t) is the true joint stiffness and ¯̂
K(i△t) is the

average estimated stiffness across all the 100 trials at time
point i△t. Bias error generally provides a better interpretation
about an inaccurate estimation of the system identification
method.

2) Random error: Random error is used to calculate the
variance of the estimated stiffness across different simulation
trials over the 100 repeated times [5]. It is defined as:

Errrandom =

√√√√ △t
R · T

T/△t∑
i=1

R∑
r=1

(K̂(i△t, r)− ¯̂
K(i△t))2,

(18)
where K̂(i△t, r) is the stiffness estimated at i△t in the r-th
trial. In this method, the parameter estimation result always
remains the same for the same perturbation input u(t), the
same output torque y(t) and the same parameters. It will be
proved in the later sections. Therefore, the random error is
mostly concerned with the variations in input perturbations
u(t) and noise n(t). Consequently, random error can provide
a better assessment of the method’s robustness using different
mother wavelets.

3) Total error: Total error is a combination of both the
systematic error and random error, this describe the overall
error in the system identification of the joint stiffness. It is
defined as:

Errtotal =

√√√√ △t
R · T

T/△t∑
i=1

R∑
r=1

(K̂(i△t, r)−K(i△t))2. (19)

This can be used to find the measurement of error between
the estimates obtained from all the 100 trials and the true
stiffness waveforms.

4) Running time: The running time refers to the average
duration taken to complete the system identification process
from the input perturbation u(t) and the output torque y(t).
This can show the effectiveness of the method when applying
different mother wavelets.
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5) Variance-accounted-for: VAF describes the goodness of
fit of the time domain identification procedures [23]. It can be
defined as:

V AF (i△t) = (1− E[(y(i△t)− ŷ(i△t))2]
E[y(i△t)2]

) · 100%, (20)

where y(i△t) is the noiseless true torque at time point
i△t, ŷ(i△t) is the estimated torque at time point i△t using
the parameters received from system identification. E is the
expectation. VAF can be used to assess the extent to which
the time-varying model of joint impedance explains the output
torque data [2].

6) Rise time: Rise time generally refers to how rapidly a
time-varying system identification method can adjust to an
abrupt change in simulated stiffness [2]. This is quantified
by examining the derivative of the estimated stiffness, and
special attention should be paid to the time point where the
true stiffness undergoes a sharp change.

IV. OPTIMIZING SIMULATION RESULT

To better align the estimated results with the realistic
situation and yield the advantages of performance for each
mother wavelets, a brief optimization was conducted on both
the method process itself and the parameters used within the
method before the simulation.

A. Performance metrics used in optimizing

Given that the previous performance metrics were designed
for situations where simulations are repeated multiple times
which mostly cost hours to perform the simulation for a single
scenario, this section introduces new performance metrics only
for this part to accommodate a single optimization process.
They are separately root mean square error (RMSE), mean
absolute error (MAE) and standard deviation (SD) between
the estimated stiffness and true stiffness.

1) Root mean square error: RMSE describes the average
difference between the estimated value and the actual value,
it is defined as [24],

RMSE =

√√√√△t
T

T/△t∑
i=1

(K̂(i△t)−K(i△t))2. (21)

2) Mean absolute error: MAE a more natural measure of
average error comparing to RMSE, it is defined as [25],

MAE =
△t
T

T/△t∑
i=1

|K̂(i△t)−K(i△t)|. (22)

3) Standard deviation: SD mainly introduces the degree to
which how estimated result points cluster around the mean
value, it is defined as [26],

SD =

√∑T/△t
i=1 (K̂(i△t)−K(i△t))2

T/△t
. (23)

These three indicators will serve as crucial reference metrics
for the subsequent optimization process in this section.

TABLE I
THE LOWER BOUNDS AND UPPER BOUNDS OF ALL PARAMETERS FOR

LEAST SQUARE METHOD IN BOTH TWO TRIALS

First trial Second trial
Lower
bound

Upper
bound

Lower
bound

Upper
bound

Inertia
(Nm.s2/rad) 0 0.1 ¯̂

Iestimated
¯̂
Iestimated

Viscosity
(Nm.s/rad) 0 10 0 10

Stiffness
(Nm/rad) 0 1000 0 1000

B. Optimize the parametric estimation

According to Kearney, the inertia parameter in the human
ankle typically characterized by small positive values with a
very low variance [3]. To get a constant estimated inertia,
the least square method is performed twice. In the first trial,
the estimated inertia Î(t) is averaged across time to obtain
¯̂
Iestimated. This value is then set as the inertia parameter and
remains unchanged during the second iteration of the least
square method, a condensed version of the scheme includ-
ing major modification is shown in Fig. 8. With this slight
modification, the estimation result of the inertia parameter
will remain constant and have a positive value. Meanwhile,
to ensure that the results fall within a realistic range, lower
and upper bounds are applied to both trials. These values are
listed in Table I.

Fig. 8. Scheme of the modifications to the method. All the other processes
will be exactly the same as shown in Fig. 7. The first parameter estimation
will be performed given the transfer function Ĥw

n (s). The estimated time
series of inertia Î1(t) will be averaged to ¯̂

I1(t). During the second least
square method, the inertia will be set to the constant ¯̂

I1. The final result of
the parameter estimation will be separately ¯̂

I1, B̂2(t), K̂2(t).

An example result of the modified method is given in Fig.
9. The model used in this example is the periodic square wave,
and the mother wavelet used here is Morlet. The smoothing
parameters are set to 10 for both in time and scale. It can
be observed from the figure that all three estimated results,
inertia, viscosity and stiffness, fall within the feasible range
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for the human ankle joint in real-life scenarios. Furthermore,
the estimated inertia remains constant over time, while the
viscosity exhibits slight variations, which are acceptable for
human joints, except for the beginning and ending parts that
are significantly influenced by boundary effect [27].

Fig. 9. The estimated result of the method after the modification introduced
is plotted with blue line and the true value is plotted with black dotted line.
The system to be identified is the periodic square wave the mother wavelet
used here is Morlet. Both the smoothing parameters in time and scale are set
to 10.

Meanwhile, the new method exhibits increased robustness
to the choice of the starting point for the least square method.
The performance metrics, RMSE, MAE and SD with respect
to the true stiffness exhibit only slight variations according to
the initial stiffness value, as illustrated in Fig. 10. Considering
the actual experimental scenario, it is more likely that the
approximate value is not known in advance. This further
validates the practicality of this modified method. Therefore,
all the subsequent simulation experiments carried out in this
study will be based on this modified method. To be mentioned,
the initial point of all the subsequent simulation experiments
will be set to p0 = [0.02; 2.2; 100].

C. Optimize the smoothing parameters
In Eq. 13 and Eq. 14, there are two smoothing factors

sdt and sdj separately in time and scale. Use of these two
parameters have great effect on the system identification result
since they will greatly affect the non-parametric identification
result Ĥw

n (s). Therefore, it will also have significant variations
in the parameter estimation results for different smoothing
parameter sets. An example comparison between different
smoothing parameter set is given in Fig. 11. The results
indicate an inverse relationship between the smoothing effect
and the values of the smoothing parameter sets. When the
parameters are set to sdt = 0.1 and sdj = 0.1, the result is
over smoothed since that the estimated stiffness value deviate
significantly from the true value of the system. However, the
estimated viscosity seems to have a better approximation to the
true system with lower variation. When the parameters are set
to sdt = 10 and sdj = 10, the estimated stiffness seems to suc-
cessfully detect the initial system resembling a square system.

Fig. 10. Performance metrics of the estimated stiffness exhibit only slight
variance with respect to the initial stiffness value set as the starting point of
the stiffness. The system to be identified and all the parameters used remain
consistent to those used in Fig. 9.

However, the result seems to be under-smoothed especially for
the viscosity, which should ideally be a constant value. In the
following parts of this section, preliminary experiments are
performed to determine the optimal smoothing parameter sets
for each scenarios, aiming to better illustrate the advantages
and characteristics of different mother wavelets in this system
identification method.

Fig. 11. Comparison between different smoothing parameter sets for a square
system using Morlet wavelet. The true value is plotted as black dotted line.
When setting both parameters to 10, the result is plotted with blue solid line.
When setting both parameters to 0.1, the result is plotted with red solid line.

To further investigate the optimal combination of these two
parameters, a preliminary simulation was conducted. During
this simulation, both smoothing parameters will be considered
within the range of 0.1 to 10. The parameter values will be
sampled at intervals of 0.1 from 0.1 to 1, and at intervals of
1 from 1 to 10. The performance metrics for this simulation
are again selected as RMSE, MAE and SD. The simulation
was carried out for method using all the mother wavelets
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mentioned on various systems with different perturbation
inputs. A particular example result is given in Fig. 12 and Fig.
13. Since that there are two variables affecting the result, two
plots with different ways of clustering bars are presented. In
this way, these plots can better illustrate to what extent either
parameters are affecting the result of the system identification.

Fig. 12. Performance metrics of the step system (PRBS input) using
Morlet wavelet with different smoothing parameter in time sdt, while setting
smoothing parameter in scale sdj = 1.

Fig. 13. Performance metrics of the step system (PRBS input) using
Morlet wavelet with different smoothing parameter in scale sdj, while
setting smoothing parameter in time sdt = 1. Comparing with the Fig. 12,
performance metrics show smaller variations when smoothing parameter in
time sdt is set to constant.

It can be seen from these two plots that the smoothing
parameter in time has a much more significant influence on the
result of estimated stiffness. When the performance metrics are
clustered with constant sdj, great difference can be detected
from the lowest valley to the highest peaks. When the the
performance metrics are clustered with constant sdt, resulting
shape of the plot closely resembles a square. It has been
proved that this is not an coincidence, as similar results have
been observed for each mother wavelet and various fixed

smoothing parameter values, different perturbation inputs, and
all the introduced systems discussed earlier. Therefore, a better
sdj will be first selected to simplify the process. For the
example given here, sdj = 0.1 is selected, and only smoothing
parameter in time will be investigated in the following part of
this section.

To better select from these parameters, sparse figures have
been plotted with varying sdt. In these figures, only the values
that exhibit significant changes compared to their neighbours
will be presented. All the parameter values not included are
either have a rather close value to its neighbours or follow the
same trend, either increasing or decreasing, as their neighbour
values. A typical example is given in Fig. 14.

Fig. 14. Performance metrics of the step system (PRBS input) for all mother
wavelet while selecting sdj = 0.1. Only those parameter values with unique
results are presented in this figure.

To better show the difference between estimated inertia,
viscosity and stiffness for different smoothing parameters, the
estimated result is shown in Fig. 15.

Based on the estimated results and the performance metrics,
a final optimal parameter set will be selected. There are two
principles for selecting the final parameter used for repeated
system identification simulation. The first principle is that the
estimated stiffness should be as close to the value as possible.
Furthermore, preference will be given to the results with lower
variance compared to those with higher variance, considering
that the system being identified in this study primarily consists
of a smooth time series. In the example scenario, sdt = 0.2 is
chosen for further analyzing because of several reasons. In Fig.
14, it can be observed that among all the values presented, the
value of 0.2 yields the lowest RMSE and MAE. Additionally,
the SD value associated with this parameter seems acceptable.
And in Fig. 15, result associated with the value of 0.2 has a
faster rise time comparing to that of 0.1. In the meantime,
the result’s noise is also much lower comparing to those with
a bigger sdt. Similarly, optimal parameter sets are selected
for all three mother wavelets under this situation. It is worth
noting that for the DOG mother wavelet, sdt = 0.9 is selected
as the final choice, sacrificing some smoothness in the result
to ensure that the estimated stiffness reaches a value of 150.
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Fig. 15. The estimated result of the parameter selected in Fig. 14 when setting sdj to 0.1. The system to be identified is the step system with a PRBS as
input perturbation. Based on these two plots, optimal parameter sets can be chosen for different scenarios.

The same preliminary simulation is performed for all the
different scenarios investigated in this study. The results of
the performance metrics and estimated time series for each
scenarios are included in the Appendix. From these plots,
it can be seen that when sdt is larger than 1, there will
be only slight difference between results with varying sdt
for the Morlet wavelet, the estimated is still rather smooth
even that sdt is set to 10. While the result of Paul will be
mainly influenced by the sdt on noise, and slightly on the
estimated value. And the reuslt of DOG will be influenced
both greatly on either the estimated value or noise. Based on
these simulations, it can be seen that with a smaller sdt, the
estimated result is more smoothing but can barely detect the
waveform, corresponding to a higher RMSE and MAE and
lower SD. With a higher sdt, the estimated result can better
detect the waveform reaching to the lowest and highest value,
but the result is usually with a higher noise, which means
a lower RMSE and MAE but a higher SD in performance
metrics. With all these results, the parameter sets chosen in
this study for all the different scenarios are listed in Table
.II. The analyzing results in next section is based on these
parameter sets.

V. SIMULATION RESULT

Using the modified approach and fine-tuned optimal pa-
rameters discussed in the last section, the simulation exper-
iment successfully estimate the system identification results
for various systems illustrated in Fig. 5. In this section, the
results obtained from system identification will be presented
and discussed. The results will be categorized and grouped
according to the different systems, combining with both PRBS
input and filtered noise input. The estimation results obtained
using different mother wavelets will be evaluated using various
ways, including the performance metrics mentioned earlier,

noise levels in the results, accuracy in reaching the exact
values, and other relevant criteria. These evaluations will
provide a comprehensive analysis of the performance for each
mother wavelets in different systems.

A. Step waveform

The non-periodic step function waveform is considered the
easiest to identify, and the analysis will start with focusing
on this waveform. First, using the estimated inertia, viscosity
and stiffness, the estimated torque is successfully calculated as
described in Fig. 7. By comparing the estimated torque with
the true torque, feasibility of this method is further proven.
Both of the estimated torque results for two input perturbations
with various mother wavelets are separately shown in Fig. 16
and Fig. 17.

From the analysis of these two plots, it is evident that the
system identification method manage to reproduce the torque.
The plots show great similarities between the estimated torque
and true torque, especially for the system with filtered noise
input. The estimated torques for system with PRBS input
accurately reproduce the square portions of the waveform.
However, it is worth noting that the peaks parts in the
estimated torque may appear failed to reproduce the exact
value. The Morlet mother wavelets seems to over estimate the
value for these peaks. The DOG mother wavelets exhibit the
worst performance among the tested wavelets, where seems to
be no peaks at all in the estimated result. Regardless of the
shortcomings in performance observed among different mother
wavelets, the overall results still suggest that this system iden-
tification method is still worth further investigation, focusing
on either the best mother wavelets for different situation or
the optimal parameter sets to reveal the result.

Afterwards, the estimated stiffness results, which is the
average across all 100 trials, are plotted for both two different
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TABLE II
THE SMOOTHING PARAMETERS USED IN THIS STUDY

Various Systems
Step system Square system Sine system Triangle system Sawtooth system

Morlet Paul DOG Morlet Paul DOG Morlet Paul DOG Morlet Paul DOG Morlet Paul DOG

Input
PRBS

Smoothing
parameter

in time sdt
0.2 0.2 0.9 2 2 5 3 2 5 2 2 4 3 5 5

Smoothing
parameter

in scale sdj
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 1

Input
Filtered

noise

Smoothing
parameter

in time sdt
1 0.3 0.6 2 2 5 2 2 5 10 2 3 2 2 3

Smoothing
parameter

in scale sdj
0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1

Fig. 16. Comparison between the true torque and estimated torque for
step system with PRBS input using different mother wavelets in the system
identification method, with orange line indicating the estimated torque and
black thick line indicating the true torque. The results further prove the
feasibility of the method investigated in this study.

input perturbations using all three mother wavelets, which is
shown in Fig. 18. And the lower plots show the standard
deviation (SD) of the average estimated result comparing to
the true stiffness.

The plots show that the estimated stiffness mainly repro-
duce the true stiffness given in the system. In the result
of Morlet, the estimated stiffness values in the simulation
study successfully reach the exact values of the true system,
that is the 50 Nm/rad and 150 Nm/rad. Moreover, the
estimated result seems to have the smoothest one among all
the three mother wavelets. Specifically, it is observed that the
boundary effect has minimal influence on the estimated results
for the system with filtered noise as the input perturbation.
Regarding the outcome of the Paul wavelet, the estimated
value closely approximates the true value. It is worth noting
that the rise time appears to be the shortest compared to the
other two mother wavelets. The estimated result rapidly rises
from 50 Nm/rad to 150 Nm/rad in a brief period, validating
the earlier assumptions about the Paul wavelet’s superior
time localization. Regarding the result of the DOG, despite

Fig. 17. Comparison between the true torque and estimated torque for
step system with filtered noise input using different mother wavelets in the
system identification method, with orange line indicating the estimated torque
and black thick line indicating the true torque. The results further prove the
feasibility of the method investigated in this study.

sacrificing smoothness in order to achieve the closest value to
the true stiffness, the outcome remains unsatisfactory. And at
the same time the result is quite noisy, which further proves the
assumptions made about DOG in previous simulation result.
But it is still worth noting that there is a sharp change at the
end of rising which better shows the characteristics of sudden
change within the true system.

To better show the rise time needed between stages for
different mother wavelets, the average derivative of estimated
stiffness among all 100 trials is shown in Fig. 19. Only
time interval from 5 to 6s has been paid more attention
to in this plot. The results of DOG wavelet yields higher
peaks compared to the other two wavelets with PRBS input,
while the Paul has the highest peak with filtered noise input.
However, the result of DOG wavelet is rather noisy, even
after the result has been averaged. This phenomenon can be
attributed to the presence of noisy, small square-like variations
within the estimated stiffness, which corresponds to the split
blocks in Fig. 3. When only considering the other two mother
wavelets, it appears that Morlet exhibits a higher derivative
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Fig. 18. The three upper plots show the average estimated stiffness results
of 100 trials for step system with two different input perturbation using all
three mother wavelets, where the dashed lines stand for the true stiffness,
the red lines stand for the result of system with PRBS input and blue lines
for filtered noise input. From left to right the plot is separately the result of
using Morlet, Paul and DOG mother wavelet. The three lower plots show
the standard deviation of the average estimated result comparing to the true
stiffness, where red bar indicates the PRBS input and blue bar indicates the
filtered noise input. The value is separately 7.99, 6.94, 7.93, 6.94, 7.89, 9.07
Nm/rad.

within a brief period after 5 s. However, Paul quickly surpasses
Morlet with a higher value, this well explains the shorter rise
time of the estimated stiffness using Paul mother wavelets,
which indicates a quicker response of the sharp changing in
true system.

Fig. 19. Average derivatives of estimated stiffness for step system with both
input perturbations. The upper plot is for the system with PRBS input and
the lower plot is for the system with filtered noise input.

To better compare the difference between different mother
wavelets, Fig. 20 presents the performance metrics for all
mother wavelets using PRBS and filtered noise as input
perturbations.

Regarding the running time, the Paul wavelet is observed
to have the longest duration for both input perturbations. Ad-

Fig. 20. Performance metrics between different mother wavelets for step
system with both PRBS and filtered noise input perturbations. The first row
is for the PRBS input and the second row is for the filtered noise. Each column
shows a single performance metric. Bars with the same color is the system
identification method with different mother wavelets. VAF here is calculated
comparing with the noiseless torque.

ditionally, it can be concluded that the DOG wavelet is more
affected by the input type compared to Morlet. Concerning
the random error in relation to the true stiffness, the DOG
wavelet demonstrates a higher sensitivity to noise, evident
from its larger random error. Meanwhile, the Paul wavelet
exhibits robustness to input perturbations and displays a lower
sensitivity to noise. As to the bias error, it can be concluded
that with a filtered noise input, the Morlet and Paul yield
better results, which is also what can be seen in Fig. 18.
In converse, DOG exhibits a larger bias with filtered noise
input due to its not able to reach to the exact value of true
stiffness and larger influence brought by boundary effect.
Considering the total error combining the randomness and
systematic error, Paul wavelet exhibits good performance for
both input perturbations. It is noteworthy that when the input
perturbation is filtered noise, the Morlet wavelet exhibits the
best total error, primarily because it is merely not affected
by boundary effects. However, when examining the total error
plot of the estimated stiffness, it is expected that the Paul
wavelet would exhibit a large variance accounted for, which
is in the contrary to the actual result, especially when the
input perturbation is PRBS. Morlet wavelet, demonstrates a
relatively high VAF, aligning with expectations. Therefore, it
can be inferred that the estimated inertia and viscosity for the
Paul wavelet may not be satisfactory, contributing to its lower
VAF. To further prove this assumption, the estimated inertia
and viscosity results for both three mother wavelets are plotted
in Fig. 21.

From the plots, it can be seen that the estimated viscosity
of the Paul wavelet approximates closer to the true viscosity
value comparing with that of DOG wavelet with PRBS as
input perturbation, while the estimated inertia deviates from
the true inertia compared with other two mother wavelets. This
difference could be exactly the reason behind the unexpectedly
lower VAF for Paul wavelet with PRBS as input perturbation.
It is worth noting from the plot that the estimated viscosity of
the DOG wavelet is greatly lower than the true value, which is
unexpected and perform much worse than the other two mother
wavelets, approaching zero. Moreover, the Morlet wavelet with
PRBS as input has the best estimation of both inertia and



13

Fig. 21. Estimated inertia and viscosity results for step using different mother
wavelets. The upper plots represent estimated inertia and lower parts represent
estimated viscosity. The dashed lines stand for the true value in the system.

viscosity.
This part serves as an short example of analyzing the

simulation result for various waveforms of system. In the
following parts of this section, simulation results will be
presented similarly with this part. For all the other systems,
only plots with estimated inertia, estimated viscosity, estimated
stiffness and performance metrics will be presented.

B. Square waveform

The estimated result across all 40 seconds for the square
system is shown in Fig. 22.

Fig. 22. The average estimated stiffness results across all 40 seconds of
simulations for square system in all 6 scenarios.

It can be seen from the figure that the estimated result
of Morlet is quite similar to a sine wave. To be mentioned,
there is the largest influence brought by the boundary effect
when the input perturbation is set to PRBS, while there
are almost no boundary effect when setting filtered noise
as input. The estimated result of Paul wavelet exhibits the

closest shape to a square wave. In the meantime, the result
also closely reproduces the true stiffness value. And there
are only slight influence brought by boundary effect. As to
the DOG’s estimated result, the signal seems to undergo
a translation in negative y direction. The lower value is
smaller than 50 Nm/rad, while the higher value exceeds 150
Nm/rad. Moreover, there exhibits significant noise in areas
where a fixed value is expected. But it is worth noting that
when the perturbation input is set to PRBS, DOG has the
smallest influence brought by boundary effect, especially at the
beginning of the signal. To better show the estimation result
without boundary effect, an average result of three segments
is plotted. These segments range from 5 s to 15 s, 15 s to 25
s, and 25 s to 35 s. The corresponding plot can be referred
to as Fig. 23.

Fig. 23. The average estimated stiffness results of three segments for square
system in all 6 scenarios. The standard deviation is separately 20.35, 20.01,
14.47, 14.51, 16.80, 16.93 Nm/rad.

Based on the analysis of this figure, it can be concluded
that the Paul wavelet performs better than other wavelets when
dealing with a square-shaped system, regardless of the input
perturbation. This conclusion is drawn without considering
the influence of boundary effects. When excluding the noisy
part from consideration, it can be observed that the DOG
wavelet also provides a good estimation. To further prove this
conclusion, the performance metrics for a square system is
shown in Fig. 24.

Fig. 24. Performance metrics between different mother wavelets for square
system with both PRBS and filtered noise input perturbations.
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When dealing with time series with a longer time, the
time consumed is rather long for this wavelet based method,
with almost 80 s for a single trial when using Paul wavelet.
When referring to random error, the Morlet wavelet has
the best performance while the Paul wavelet has the worst
performance, which means that Paul wavelet is most sensitive
to the noise. However, as to the bias error, Paul exhibits the
best performance while Morlet has the worst result, which
further proves conclusion reached to before. Considering these
two error together, the Morlet has the lowest total error for
both two kinds of noise. And again, the VAF for Paul wavelet
is much lower than expected. Therefore, estimated inertia and
viscosity results are shown in Fig. 25.

Fig. 25. Estimated inertia and viscosity results for square system using
different mother wavelets.

The estimated inertia and viscosity have exactly the same
characteristics with the step system. Therefore, low VAF of
Paul can be explained by a lower estimated inertia.

The average derivative of estimated stiffness across 100
trials is plotted in Fig. 26. It can be seen that DOG has the
maximum value around the time step where there is a sharp
change, but the result is rather noisy. The Paul wavelet has the
second highest value and a more smooth result.

C. Sine waveform

When the true stiffness is of sine waveform, the estimated
result of all 40 seconds is shown in Fig. 27.

Once again, the figure demonstrates that the Paul wavelet
consistently gives the best results among all three mother
wavelets. This is particularly evident when there is minimal
deviation caused by boundary effects, especially when the
input perturbation is filtered noise. Furthermore, it can be
observed that the estimated result obtained using the DOG
wavelet shows negligible boundary effects regardless of the
type of input perturbation. The averaged result of one segment
is shown in Fig. 28.

The performance metrics for sine system is shown in Fig.
29, where DOG again has the shortest running time and Paul
again has the lowest bias error. In the meantime, the Morlet

Fig. 26. Average derivatives of estimated stiffness for square system with
both input perturbations. The upper plot is for the system with PRBS input
and the lower plot is for the system with filtered noise input.

Fig. 27. The average estimated stiffness results across all 40 seconds of
simulations for sine system in all 6 scenarios.

wavelet has the lowest random error and total error, also the
highest VAF. The performance metrics for sine system has
almost same result as the previous square system.

The estimated inertia and viscosity for sine system in shown
in Fig. 30, which can serve as an explanation to low VAF for
Paul wavelet, where Paul wavelet has a rather low estimated
inertia and DOG wavelet has a wrongly estimated viscosity.

The average derivative of estimated stiffness across 100
trials is plotted in Fig. 31. Again result of DOG is much more
noisy than the other two mother wavelets and result of Paul
has a higher value than that of Morlet around the change of
true stiffness.

All these results for sine system seems to have exactly the
same conclusion as the square system.

D. Triangle waveform

Fig. 32 displays the estimated result for the entire 40
seconds duration when the true stiffness follows a triangle
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Fig. 28. The average estimated stiffness results of three segments for sine
system in all 6 scenarios. The standard deviation is separately 5.89, 5.49, 1.99,
1.93, 4.44, 5.13 Nm/rad.

Fig. 29. Performance metrics between different mother wavelets for sine
system with both PRBS and filtered noise input perturbations.

waveform.
In this case, none of the mother wavelets successfully

imitated the peaks of the triangle waveform, even if the Paul
wavelet showing a relatively similar result for the ramp part
and a rather close estimation to the true peak value. However,
it is worth mentioning that the result of DOG can successfully
turn from rising to falling quickly when the other two peaks
look more like a circular arc. Similar to the conclusions
drawn for the square system, other characteristics related
to performance and boundary effects remain consistent. The
averaged result in one segment is shown in Fig. 33.

Figure 34 presents the performance metrics for the triangle
system across all scenarios.

It can be seen from the plot that again DOG has the shortest
running time. And Morlet has the lowest total error and highest
VAF. Despite having a relatively small bias error, the total
error of the Paul wavelet is the highest among all three mother
wavelets. But this error can be reduced by taking average many
times, which explains why there is a better approximation
in Fig. 33. Compared with the previous performance metrics
in both square and step system, that of triangle system has
a much better result with lower errors and higher VAFs for
all mother wavelets, which shows that this wavelet transform
based system identification method is much more suitable

Fig. 30. Estimated inertia and viscosity results for sine system using different
mother wavelets.

Fig. 31. Average derivatives of estimated stiffness for sine system with both
input perturbations. The upper plot is for the system with PRBS input and
the lower plot is for the system with filtered noise input.

when dealing with a triangle system.
The estimation results of inertia and viscosity for triangle

system is shown in Fig. 35. The estimated result of these two
parameters share the same characteristics with all the previous
systems.

The rise time is plotted in Fig. 36.

E. Sawtooth waveform

The estimated results for sawtooth system is shown in the
Fig. 37.

Similar to the triangle system, none of the three mother
wavelets are able to accurately estimate the peak of the
waveform. And again Paul wavelet perform best among all
three mother wavelets, especially when there is almost no
boundary effect with a filtered noise input. From Figure 38, it
is evident that only the DOG wavelet detects a sharp change
within the estimated result, similar to what was observed in
the triangle system. However, Paul and Morlet wavelets have a
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Fig. 32. The average estimated stiffness results across all 40 seconds of
simulations for triangle system in all 6 scenarios.

Fig. 33. The average estimated stiffness results of three segments for triangle
system in all 6 scenarios. The standard deviation is separately 2.76, 2.29, 1.21,
1.56, 3.04, 3.96 Nm/rad.

better approximation result for the ramp part. The performance
metrics for sawtooth system is shown in Fig. 39. Again DOG
wavelet has the shortest running time, and Morlet has the
lowest total error and highest VAF. In the meantime, Paul
wavelet also has the largest random error and the lowest bias
error for among all wavelets, same as the conclusion received
from the Fig. 38. The rise time is plotted in Fig. 41.

Therefore, to better estimate the sawtooth system when the
performing time is not limited and large number of trials are
allowed, Paul wavelet would be strongly recommended. If the
perturbation input is PRBS and the simulation time is relatively
short, the DOG wavelet can be considered as another suitable
choice.

VI. EXTENSIONS

This section serves as an extension, a supplement ex-
planation to previously encountered interesting problems in
this study. This section mainly discusses three topics, effect
brought by shorter simulation time on non-periodic waveform,

Fig. 34. Performance metrics between different mother wavelets for triangle
system with both PRBS and filtered noise input perturbations.

Fig. 35. Estimated inertia and viscosity results for triangle system using
different mother wavelets.

longer time on periodic waveforms and also the effect of
different SNR. Noticing that all the smoothing parameters used
in this part is the same as same scenarios described in Table.
II. And it is worth noting that repeating times for a single
scenario are lower to 10 to save time.

A. Effect of shorter simulation time on non-periodic waveform
Considering that the previous study focused solely on a

duration of 10 seconds for step waveform, an intriguing topic
arises when considering non-periodic systems with very short
time intervals. In such cases, where boundary effects inevitably
impact the estimation results, will the best mother wavelet to
be used switch to another one? This part will firstly focus on
this topic. The experiment is performed with a simulation time
of 3s, and the estimated stiffness results are shown in Fig. 42.

Comparing with the estimated result in Fig. 18, the esti-
mated result is much further from a step waveform, especially
when DOG is selected as the mother wavelet used during the
method. In the meantime, the standard deviation (SD) is also
much higher than that of when the simulation time is 10s. It
also can be seen from the figure that the estimated result is
greatly affect when choosing PRBS as the input perturbation.
To better evaluate the best mother wavelet, performance met-
rics under this situation is given in Fig. 43 and rise time is
shown in Fig. 44.
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Fig. 36. Average derivatives of estimated stiffness for triangle system with
both input perturbations. The upper plot is for the system with PRBS input
and the lower plot is for the system with filtered noise input.

Fig. 37. The average estimated stiffness results across all 40 seconds of
simulations for sawtooth system in all 6 scenarios.

When only considering the filtered noise input perturbation
with Morlet and Paul mother wavelet, Paul has a better
performance given that both a lower bias error and total
error even when there is a higher random error. However,
Morlet still appears to have a better VAF. Moreover, it can
be concluded from the derivative of estimated stiffness that
there will be a short delay in rising when using Paul as the
mother wavelet under this situation.

B. Effect of longer simulation time on periodic waveforms

In contrast, a longer simulation time for periodic waveform
generally improve the performance of parameter estimation
[2]. It is also worth trying what is the effect brought by
longer simulation time for different mother wavelets, will the
best mother wavelet again switch to another one? This is the
second topic to be discussed in this section. This topic will be
discussed using square system as an example.

Fig. 38. The average estimated stiffness results of three segments for
sawtooth system in all 6 scenarios. The standard deviation is separately 14.08,
13.90, 8.74, 10.34, 11.78, 12.46 Nm/rad.

Fig. 39. Performance metrics between different mother wavelets for sawtooth
system with both PRBS and filtered noise input perturbations.

To find the effect brought by longer simulation time for
periodic waveform, experiments with simulation time of 80,
150, 300 and 600 seconds are performed. The discussions
primarily focus on experiments involving PRBS noise. For
each simulation duration, the smoothing parameters in both
time sdt and scale sdj are re-chosen. All the optimized
smoothing parameters in scale sdj are consistently set to 0.1.
The roughly selected smoothing parameters in time sdt used
are listed in Table III, and the estimated result across segments
and performance metrics are separately shown in Fig. 45 and
Fig. 46.

Only slight difference can be seen from the estimated result
for Morlet and Paul mother wavelets. As to DOG mother
wavelet, even if the smoothing parameters haven been roughly
optimized, the estimated result seems to become worse when
the simulation time is enlarged. For Morlet mother wavelet,

Morlet Paul DOG
T=600s 10 10 20
T=300s 5 10 10
T=150s 5 5 10
T=80s 2 2 5

TABLE III
SMOOTHING PARAMETER IN TIME sdt SELECTED FOR THE EXPERIMENTS

WITH LONGER SIMULATION TIME
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Fig. 40. Estimated inertia and viscosity results for sawtooth system using
different mother wavelets.

Fig. 41. Average derivatives of estimated stiffness for sawtooth system with
both input perturbations. The upper plot is for the system with PRBS input
and the lower plot is for the system with filtered noise input.

small improvements can be seen when simulation time changes
from 300 seconds to 600 seconds, with a larger smoothing
parameter in time sdt. This improvement is much more sig-
nificant for Paul mother wavelet, the estimated result gradually
improves from 80 seconds to 300 seconds with an increasing
sdt. This strongly proves the necessity of optimizing before
applying this system identification method.

Considering the performance metrics, there is indeed a
descending trend in random error and total error for all three
mother wavelets and also a increasing trend in VAF. However,
there is a increasing trend in the bias error for all three mother
wavelets. As to comparing the performance between these
three mother wavelets, it seems Paul still has the lowest error
and Morlet has the highest VAF.

In conclusion, it will be recommended for this system
identification method to be applied to the time series where
the simulation time is not that long with few repeated times
considering both the running time and the error performance.

Fig. 42. Estimated stiffness result for step system when simulation time is
3s.

Fig. 43. Performance metrics for step system when simulation time is 3s.

C. Effect of different SNR

Considering random error of Paul wavelet has a relative high
value for both triangle and sawtooth system, which means
more sensitive to the noise. Therefore, signal to noise ratio
(SNR) is set to different values, separately -10, 0, 10, 20, 30
dB to see the change in performance of three mother wavelets
in the square waveform system. The estimated stiffness results
are shown in Fig. 47. There is only a slight distinction
observed among these estimated results across varying SNR.

The performance metrics for different SNR is shown in Fig.
48. These values remain almost constant for varying SNR,
especially for Morlet wavelet. It is worth noting that when
SNR is set to 20 dB, the results exhibit a slightly higher error
compared to the others when Paul is chosen as the mother
wavelet. The conclusion remains consistent with the findings
presented in the previous section: Paul has a lower bias error
and total error, while Morlet has the lowest random error
and the highest VAF. Therefore, it can be concluded that the
selection of mother wavelet in this wavelet transform based
sysID method will not be affected by SNR.

VII. DISCUSSION

In this study, performance of different mother wavelets in
various scenarios has been investigated. Not only systems with
various waveforms of stiffness have been tested, but also the
system with different kinds of perturbation input. Besides,
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Fig. 44. Derivative of estimated stiffness for step system when simulation
time is 3s.

Fig. 45. Estimated stiffness result for square system across varying simulation
time.

the threshold at which the estimated result more accurately
approximates the true stiffness, performance over longer sim-
ulation times and performance of torque with higher SNR has
also been discussed in this study. The findings of this study can
be served as a preliminary simulation and lay the groundwork
for further research. Based on these results, a short guidance
for using this wavelet based system identification method for a
system with time-invariant inertia, viscosity and time-varying
stiffness can be given for different scenarios:

1) When the stiffness is non-periodic step function, using
Paul mother wavelet yields the most accurate approxima-
tion of the jump between two stages if not considering
boundary effect. However, the lowest total error and
highest VAF will be realized using Morlet wavelet with
the filtered noise input. In the meantime, if the total
simulation time is too short, for example 3 seconds, then
using Morlet wavelet with the filtered noise input to the
system will result in the best result.

2) When the stiffness is periodic function, Paul is the mother
wavelet can find the closet value comparing to the true

Fig. 46. Performance metrics for square system across varying simulation
time.

Fig. 47. Estimated stiffness result for square system across varying SNR.

stiffness with the lowest SD of averaged result comparing
to true stiffness, this is not affected by whatever the
periodic waveform is. The large random error in result
can be reduced by doing average both across trials and
different segments without boundary effect. The highest
VAF and lowest random and total error can be received
using Morlet wavelet. To be mentioned, if the total
simulation time is too short with only 1 or 2 segments
and the input perturbation has to be the PRBS input, then
DOG is preferred as the mother wavelet.

3) When estimated stiffness is preferred to be as smooth as
possible, then Morlet will be the choice.

4) When there is limited time available to obtain the esti-
mation result, such as when fewer trials are allowed for
repetition or when time constraints exist for a single trial,
the DOG wavelet becomes the preferred choice as the
mother wavelet.
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Fig. 48. Performance metrics of different scenarios with varying SNR.

5) When estimated inertia and viscosity is preferred as the
final result, then Morlet will be the only choice as mother
wavelet.

Certainly, there are still numerous topics for exploration
and investigation in future studies based on this method. The
following sections will introduce five new topics for discus-
sion, separately exploring other mother wavelets, smoothing
function before estimation, optimization of other method pa-
rameters exploring systems can be detected, exploring the
relation between simulation time and smoothing parameter in
time,. These topics open up new directions for future studies,
enabling a deeper understanding and potential enhancements
of the method studied.

A. Exploring other mother wavelets

Wavelet analysis has been a rapidly developing field, espe-
cially in recent years, resulting in the proposal of numerous
new wavelet functions. Examples of such wavelets include
the Haar wavelet, Daubechies wavelets, Coiflets, and Symlets
wavelets. These new wavelets offer different characteristics
and properties, offering more options to choose from in
different scenarios of signal processing. Ngui’s conclusion
suggests that the selection of mother wavelets primarily relies
on the similarity between the signal and the chosen wavelet
[10].

However, this study is mainly based on the wavelet package
developed by Torrence, focusing only on three non-orthogonal
wavelets, namely Morlet, Paul and DOG. Therefore, we be-
lieve that there are still underlying optimal mother wavelets
in the field of identifying human joint impedance. Other
frequently used mother wavelets in neuromechanics control

are suggested to be used as test object in future studies.
Examples of such wavelets include Daubechies, Symlet and
Mexican hat wavelets [28]. Daubechies and Symlet are well-
known examples of orthogonal mother wavelets, which differ
significantly from the three mother wavelets used in this study.
These two mother wavelets are separately plotting in Fig.
49 and Fig. 50 provided in Wavelet Toolbox in MathWorks.
It can be seen these two mother wavelets are with total
different shape from the three symmetric mother wavelets used
in this study. Moreover, they exhibit a closer shape to the
torque time-series being applied, may result in more similar
estimation results. It is believed that integrating these two
mother wavelets into this system identification method will
come to substantially different performance results.

Fig. 49. Shapes of Daubechies wavelet family, where n is the order, and
db short for Daubechies. Db1 has the exact same shape as the Haar mother
wavelet.

Fig. 50. Shapes of Symlet wavelet family, where n is the order, and sym
short for Symlet. The properties of the two wavelet families are similar.

B. Smoothing function before estimation

As discussed in Section 2, the Gauss function and boxcar
function is separately used for smoothing in times and in
scale. These two smoothing method is proposed by Torrence
[8]. However, the paper mentions other smoothing methods
as well, such as using damped cosine or white noise. The
two used in this study are just brief examples discussed by
Torrence. Additionally, it is worth noting that the smoothing
operator tends to have improved performance when its shape
closely matches that of the mother wavelets. This suggests
that there may be other more suitable smoothing operators
that can be explored for better results in different mother
wavelets, noticing that all three mother wavelets share the
same smoothing operators in this study.
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C. Optimization of other parameters

In this study, only the influence of the smoothing parameters
and initial points of the least square method on the final
results have been tested and discussed. However, there are still
lots of parameters to be extensively discussed or investigated
to optimum the estimation performance for different mother
wavelets. The most interesting parameter is definitely the
parameter within mother wavelets itself, the k within Eq. 5, 6
and 7. In this study, all the simulation is based on setting k
to 6, 4 and 6 separately for Morlet, Paul and DOG wavelets.
As mentioned by Moortel, this value also greatly affect the
characteristics of these mother wavelets [9]. This can be seen
in Fig. 51 and Fig. 52, which is plotted with the same data to
be applied with CWT while changing value of k.

Fig. 51. CWT result of the analytical signal used in Moortel’s paper with
k = 3, slight differences can be seen comparing to Fig. 3.

Fig. 52. CWT result of the analytical signal used in Moortel’s paper with
k = 12, great differences can be seen comparing to Fig. 51.

The results indicate that when the value of k is set to a
larger value, the characteristic of the mother wavelets become
more evident. However, this also leads to more prominent

shortcomings associated with each wavelet. Therefore, in order
to fully make use of the advantages offered by each mother
wavelet and avoid the prominent shortcomings, it is necessary
to find a specific order that optimizes their respective strengths.

Besides, there are also lots of other parameters used in
the wavelet transform, for example the smallest scale S0,
the spacing between discrete scales DJ . These may all have
influence on the final estimation result.

D. Exploring systems can be detected
During the experiment, it has been proved that no matter

what mother wavelets to be used and the values assigned to
the smoothing parameters, the wavelet-based method cannot
be effectively applied to a system with a stiffness frequency
of 0.5 Hz while keeping all other values fixed, to achieve
accurate approximation of results. An example estimated result
is given in Fig. 53. It can be seen from the figure that
even if the estimated torque is almost accurately reproduced,
the estimated result of stiffness is rather noisy for all three
mother wavelets. Therefore, it can be inferred that there
exists a threshold in the relationship between the amplitude
and frequency of stiffness, beyond which the wavelet-based
method accurately identify the results. It will be worth trying
to find this threshold for the system to be identified.

Fig. 53. Example estimated result of the system with a stiffness frequency
of 0.5 Hz.

E. Exploring the relation between simulation time and
smoothing parameter in time

Described by Section 4.B, when the simulation time is
enlarged there should also be a increasing in smoothing param-
eter in time sdt to ensure the accuracy of the estimated result.
Therefore, it will be also interesting to find this relationship
between the optimized smoothing parameter in time and the
simulation time.

VIII. CONCLUSION

The wavelet-based method has been proved to be a rather
effective way to identify the human joint impedance. How-
ever, there are lots to consider when referring to wavelet
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analysis. Considering that there are different mother wavelets
with various characteristics, it becomes obvious that specific
scenarios may arise where a particular mother wavelet is the
most suitable choice. This study investigates the performance
of three mother wavelets in different scenarios. The findings
from this investigation can provide valuable insights and serve
as a guideline for further research in the field. Additionally,
this study offers some additional guidance for extending the
application of this wavelet-based method in future studies. As
a result, future studies can use these guidance to select the
most appropriate mother wavelets for their specific research
needs.
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APPENDIX

ABBREVIATIONS

The following is the abbreviations for the commonly used
words in this report:

TS Time Series
WT Wavelet Transform
sysID System Identification
STFT Short-time Fourier Transform
XWT Cross-Wavelet Transform
DOG Derivate of Gaussian
CWT Continuous Wavelet Transform
FRF Frequency Response Function
PRBS Pseudo Random Binary Sequence
SNR Signal to Noise Ratio
VAF Variance-accounted-for
RMSE Root Mean Square Error
MAE Mean Absolute Error
SD Standard Deviation

COMPARISON FOR DIFFERENT PARAMETERS

https://en.wikipedia.org/wiki/Wavelet#Mother_wavelet
https://en.wikipedia.org/wiki/Wavelet#Mother_wavelet
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Fig. 54. The estimated result of the parameters selected. The system to be identified is the step system with a filtered noise as input perturbation.

Fig. 55. The estimated result of the parameters selected. The system to be identified is the square system with a PRBS as input perturbation.
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Fig. 56. The estimated result of the parameters selected. The system to be identified is the square system with a filtered noise as input perturbation.

Fig. 57. The estimated result of the parameters selected. The system to be identified is the sine system with a PRBS as input perturbation.
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Fig. 58. The estimated result of the parameters selected. The system to be identified is the square system with a filtered noise as input perturbation.

Fig. 59. The estimated result of the parameters selected. The system to be identified is the triangle system with a PRBS as input perturbation.
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Fig. 60. The estimated result of the parameters selected. The system to be identified is the triangle system with a filtered noise as input perturbation.

Fig. 61. The estimated result of the parameters selected. The system to be identified is the sawooth system with a PRBS as input perturbation.
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Fig. 62. The estimated result of the parameters selected. The system to be identified is the sawooth system with a filtered noise as input perturbation.


	Introduction
	Problem statement
	Goal
	Outline

	Wavelet
	Wavelet transform
	Mother wavelets
	A brief comparison between mother wavelets

	Simulation study
	Human joint impedance model
	Simulation parameters and perturbation signal
	Simulation parameters
	Perturbation signal

	Wavelet based system identification method
	Performance quantification
	Bias error
	Random error
	Total error
	Running time
	Variance-accounted-for
	Rise time


	Optimizing simulation result
	Performance metrics used in optimizing
	Root mean square error
	Mean absolute error
	Standard deviation

	Optimize the parametric estimation
	Optimize the smoothing parameters

	Simulation result
	Step waveform
	Square waveform
	Sine waveform
	Triangle waveform
	Sawtooth waveform

	Extensions
	Effect of shorter simulation time on non-periodic waveform
	Effect of longer simulation time on periodic waveforms
	Effect of different SNR

	Discussion
	Exploring other mother wavelets
	Smoothing function before estimation
	Optimization of other parameters
	Exploring systems can be detected
	Exploring the relation between simulation time and smoothing parameter in time

	Conclusion
	Acknowlegement
	References
	Appendix



